
Resource-Efficient Adaptive-Network Inference Framework
with Knowledge Distillation-based Unified Learning

Rebati Gaire†, Sepehr Tabrizchi†, and Arman Roohi†
†School of Computing, University of Nebraska–Lincoln, Lincoln, NE, USA

{rgaire2, stabrizchi2, aroohi}@unl.edu

Abstract—Batteryless edge devices represent a promising av-
enue for sustainable computing, but are challenged by intermit-
tent behavior and energy constraints. To address these issues,
we propose a novel comprehensive approach integrating adaptive
task module selection for intermittent computing paradigms. Our
methodology incorporates the design of diverse task modules
with varying sizes, precision levels, computational requirements,
and energy consumption profiles, utilizing various compression
techniques. These modules utilize a shared feature extractor that
minimizes data movement and facilitates efficient checkpoint
recovery, enhancing overall system robustness. In computing
mode, the employed power-aware scheduler selects task modules
based on performance requirements and available energy in
the system. Subsequently, computation is performed to ensure
optimal resource utilization while meeting application demands.
We ensure optimal performance of these modules with pro-
posed knowledge distillation-based unified learning. Quantitative
evaluations on benchmark datasets—CIFAR-10, CIFAR-100, and
Tiny-ImageNet—reveal that, with our proposed learning frame-
work, designed models not only achieve improved performance
metrics, including accuracy increases of 1.47%, 2.44%, and
3.70% for each dataset respectively but also enhance energy effi-
ciency. These results validate our comprehensive and synergistic
approach, demonstrating significant gains in both performance
and resource optimization.

Index Terms—Multi-task learning, model fine-tuning, intermit-
tent computing, IoT

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) has led
to an unprecedented growth in the number of connected de-
vices, projected to reach 75 billion by 2025 [1]. These devices,
equipped with diverse sensors, generate a massive volume of
data at the edge of the network. The traditional approach of
transmitting all this data to the cloud for processing is becom-
ing increasingly unsustainable due to bandwidth limitations,
latency concerns, and privacy issues. This has fueled the emer-
gence of edge computing, a paradigm that pushes computation
closer to the data sources, enabling real-time processing and
decision-making [2]. The advent of deep learning has revolu-
tionized the field of artificial intelligence, enabling machines to
learn and make intelligent decisions from data. Deep neural
networks (DNNs) have achieved remarkable success across
various domains, including computer vision, natural language
processing, and speech recognition. The integration of deep
learning with edge computing, known as edge intelligence,
holds immense potential for enabling smart and autonomous
IoT applications. By deploying DNNs on edge devices, we can
harness the power of local data to enable real-time insights,
personalized experiences, and seamless interactions between

the physical and digital worlds [3]. However, the deployment
of DNNs on resource-constrained IoT devices presents sig-
nificant challenges. DNNs are computationally intensive and
require substantial memory and energy resources, which are
often scarce on edge devices, while IoT devices are typically
battery-powered. The high energy consumption of DNN in-
ference can quickly drain the battery, limiting the operational
lifetime of the devices [4]. To address these challenges, various
techniques have been proposed, such as model compression,
hardware acceleration, and energy-efficient architectures. On
the other hand, batteryless IoT devices, powered by energy
harvesting from ambient sources such as solar, thermal, or
RF, have emerged as a promising solution for sustainable
edge computing. These devices scavenge energy from their
environment, eliminating the need for battery replacement
and maintenance. However, the intermittent and unpredictable
nature of ambient energy sources poses unique challenges for
computation. Batteryless devices are subject to frequent power
failures, which can disrupt the execution of DNNs and lead
to data loss. This intermittent computing paradigm requires
novel approaches to ensure progress and maintain state across
power cycles [5]. Several techniques have been proposed to
enable reliable computation on intermittently-powered devices.
Checkpoint-based approaches periodically save the system
state to non-volatile memory (NVM), allowing resumption of
execution after a power failure. However, these techniques
often incur significant overhead and may not be suitable for
the tight energy budgets of batteryless devices. Task-based
approaches break down the computation into smaller, atomic
tasks that can be executed within a single power cycle [6]–[8].
However, these techniques require careful task decomposition
and scheduling, which can be challenging for complex DNN
workloads.

This paper introduces an adaptive-network inference frame-
work crafted to tackle the challenges of deploying neural net-
works in energy-constrained environments, notably batteryless
IoT devices at the edge. Central to our approach is understand-
ing that the energy consumption of neural networks scales
with their size and computational intensity, as demonstrated
in Figure 1. Our framework innovatively integrates adaptive
task module selection with intermittent computing techniques.
It features a range of task modules, each tailored to specific
computational and energy profiles, enhanced by cutting-edge
model compression techniques. A shared feature extractor
across modules minimizes data transfers and supports efficient
state recovery. Additionally, we integrate unified learning



Fig. 1: Number of parameters vs. energy consumption for
various task models with different number of parameters.

with knowledge distillation to improve performance across
multi-network systems, adjusting dynamically to the energy
variability of batteryless devices. This method significantly
enhances both the reliability and efficiency of IoT systems
operating under energy constraints.

The main contributions of this paper are: (1) An adaptive
network inference framework with diverse task modules op-
timized for varied energy and performance requirements; (2)
Exploration of training strategies for effective learning in a
multi-task setting with a shared feature extractor; and (3) Com-
prehensive experimental evaluation demonstrating improved
performance and resource efficiency on benchmark datasets.

II. BACKGROUND

The rapid expansion of the IoT has led to an exponential
increase in edge devices, generating massive streams of sen-
sory data. Harnessing the insights from these data through
ML techniques holds immense potential for applications across
various domains. However, deploying computationally de-
manding DNNs on resource-constrained edge devices presents
substantial challenges in terms of memory, energy, and latency.
Network compression techniques [9]–[11] have emerged as a
vital tool to address these constraints, enabling the creation of
compact and efficient DNNs compatible with the limitations of
edge hardware. Network compression encompasses a diverse
range of strategies. Pruning methods aim to remove redundant
connections (weights) or entire neurons from the DNN archi-
tecture, reducing model size. Quantization techniques decrease
numerical precision (e.g., from 32-bit floating-point to 8-bit
integers), leading to memory savings and faster computations.
Knowledge distillation involves training a smaller “student”
network to mimic the behavior of a larger, more accurate
“teacher” network. Low-rank factorization methods approx-
imate weight matrices using lower-rank decompositions, re-
ducing computational complexity and storage requirements.

Energy-harvesting systems represent a critical advancement
in the development of sustainable, autonomous computing
devices, particularly within the Internet of Things (IoT).
These systems derive power from environmental sources like
solar radiation, thermal gradients, and ambient RF energy.
The principle behind energy harvesting is to capture these
omnipresent energies and convert them into electrical energy

to power electronic devices. This approach enables devices
to operate independently of conventional power grids, facil-
itating deployments in remote or inaccessible areas without
regular maintenance. Energy-harvesting systems function in-
termittently, activating only when there is sufficient environ-
mental energy and entering a state of power failure when
the energy is insufficient. Therefore, the operation of energy-
harvesting systems typically alternates between active periods
and power-saving states. Devices are engineered to collect
energy slowly, store it in elements like capacitors, and then
consume this stored energy rapidly during active phases.
This cycle presents unique challenges, especially the quick
depletion of energy compared to its collection rate, which can
lead to the loss of volatile memory states—such as registers
and stack memory—during power outages, although NVM re-
mains unaffected. The emergence of energy-harvesting neural
network accelerators represents a significant innovation in the
field of edge computing, particularly for devices that operate
within the constraints of intermittent power sources. This
advancement capitalizes on the local processing capabilities
of CNNs, enabling edge devices to perform complex inference
tasks autonomously. The move towards on-device computation
is driven by the need to reduce latency, bandwidth usage, and
reliance on constant cloud connectivity.

III. PROPOSED APPROACH

We introduce an adaptive-network inference framework
with multiple task models, each with distinct computational
complexity, energy profiles, and performance metrics, tailored
to diverse energy availability and performance requirements.
The structure of an intermittent-aware inference engine with
the proposed adaptive-network inference framework is shown
in Figure 2. A power-aware scheduler facilitates the selection
of an appropriate network configuration for different scenar-
ios by evaluating the available energy resources against the
necessary performance metrics. Next, we outline the process
of designing variable networks for specific tasks, detailing the
strategic steps in crafting configurations optimized for diverse
energy constraints and performance objectives. Subsequently,
we discuss the methods used to train these networks effec-
tively, ensuring optimal performance within defined energy
parameters.

A. Network Design

To enhance reliability under intermittent energy condi-
tions, we have designed neural networks featuring variable
sizes, parameters, computational demands, and energy pro-
files specifically tailored to meet the requirements of distinct

En
vi

ro
nm

en
t

D
at

a

Evaluation

Training

Algorithm Sensor 0

Sensor 1

Sensor n

…

Peripheral
 CircuitsMemory MCU

Power
ControlBuffer

Power Management Unit

Power-aware 
Scheduler

En
er

gy
 

H
ar

ve
st

er
Po

w
er

 
Pr

of
ile

Energy-harvested IoT NodeAdaptive-Network Framework

Fig. 2: Structure of an intermittent-aware inference engine.



Classifier

Lkd LceLkd LceLkd LceLce

Shared Feature 
Extractor

ŷ1
Classifier ClassifierClassifier

Task 
Module 1

z

ŷ2 ŷ3

f1 f2 f3 f4

ŷ4

Task 
Module 2

Task 
Module 3

Task 
Module 4

Fig. 3: The proposed unified learning framework. Each task
module receives shared features z from a central feature
extractor and processes them to generate specific features
f1, f2, f3, and f4 along with predictions ŷ1, ŷ2, ŷ3, and ŷ4.
These outputs are utilized to compute the knowledge distilla-
tion loss Lkd and the categorical cross-entropy loss Lce, which
collectively optimize the training of the entire framework.

tasks. These networks leverage a power-aware scheduler that
dynamically selects the optimal modules for inference based
on the prevailing energy availability and performance needs.
We incorporate established deep neural network architectures,
known for their robustness in edge inference applications,
and utilize the initial convolutional blocks as a standard-
ized feature extractor across all configurations. This feature
extractor serves as the primary processing stage, efficiently
extracting salient features from the input data that are rich
in information and reduced in dimensionality relative to the
original inputs. By utilizing a fixed feature extractor, we
avoid redundant weight reloading when switching among
different task modules, significantly reducing the energy con-
sumed in data transfer. Moreover, such optimization facilitates
energy-efficient feature checkpointing and enables smaller,
task-specific modules to make precise predictions. The task
modules are then subject to extensive model compression,
achieving diverse operational characteristics through methods
such as layer reduction, narrowing of layer widths, and the
application of quantization and knowledge distillation, thus
enhancing the networks’ efficiency. Detailed specifications of
each configuration—including parameters, memory demands,
computations, and inference durations—are comprehensively
documented in Section IV-B, supporting the deployment of
these neural networks in energy-constrained environments.

B. Network Training

In this section, we outline various training strategies de-
signed to optimize performance within an adaptive-network
inference framework tailored for different energy scenarios. To
ensure clarity and consistency throughout our discussion, we

introduce several key terms and notations. The input sample
is denoted by x, the true label by y, and the predicted label
by ŷ. The parameters of any given module M are represented
as ΘM . For a task t, the function used for extracting fea-
tures from the input is referred to as gt(), while the task-
specific post-processing function that converts these features
into predictions is denoted by ft(). We denote the categorical
cross-entropy loss function for task t by Lcet(yt, ŷt), which is
critical for training the network to minimize prediction errors.
This function is expressed as:

Lcet(yt, ŷt) = −
Nt∑
i=1

Ct∑
c=1

yt,i,c log(ŷt,i,c) (1)

where Nt and Ct are the number of samples and classes,
respectively, for task t. The variable yt,i,c denotes whether
the sample i for the task t actually belongs to class c and
ŷt,i,c denotes the predicted probability that the sample i for
task t belongs to class c.

1) Baseline: Initially, we establish a baseline through in-
dependent training of each task model. Each task, indicated
by k, is equipped with its dedicated feature extractor gk
and a task-specific module fk. These components are trained
separately, fostering the development of specialized feature
representations and prediction mechanisms tailored for each
task. The functional relationship for the output of each task, ŷk,
given an input sample x, is defined by the following equation:

ŷk = fk(gk(x; ΘFEk );ΘTMk ) (2)

Here, the parameters ΘFEk
and ΘTMk

correspond to
the feature extractor and the task module for the task k,
respectively. The corresponding loss function for each task
k is calculated as Lce(yk, ŷk) from Equation 1. While this
approach allows for high specialization through independent
training, it results in each task having unique feature extractor
parameters (ΘFE), differing from one another. This spe-
cialization necessitates extensive data movement and energy
consumption due to the frequent reloading of ΘFE parameters
each time a different task module is activated for inference.
Consequently, this approach, although effective in isolation,
poses significant challenges in terms of energy efficiency when
deployed within a multi-network inference configurations.

2) Finetuning L2S: Subsequently, we explore approaches
to maintain the ΘFE stationery irrespective of the chosen task
module. In this approach of fine-tuning from large to small
(L2S), the training begins with the largest task module TML,
utilizing a comprehensive feature extractor g. The output
prediction for the largest task, ŷL for an input sample x, is
computed as follows:

ŷL = fL(g(x; ΘFE); ΘTML
) (3)

Here, the parameters ΘFE and ΘTML
correspond to the

common feature extractor and the task module for the largest
task L, respectively. The loss function, LL, used for opti-
mizing the parameters during training of TML, is defined as
LceL(yL, ŷL) in Equation 1. After training TML, the feature
extractor’s parameters, ΘFE , are frozen. These pre-trained



parameters are then employed to train each of the smaller
task modules. For each smaller task module k, the output
prediction ŷk for an sample x is calculated using the frozen
feature extractor:

ŷk = fk(g(x; ΘFEfrozen);ΘTMk ) (4)

In this equation, ΘTMk
are the parameters for the smaller

task modules, and ΘFEfrozen
indicates that the feature extrac-

tor parameters remain unchanged. The loss function for the
smaller tasks, Lk, is similar to that of the largest task and
is given by Lcek(yk, ŷk) from Equation 1. This fine-tuning
approach allows each task to benefit from a robust, generalized
feature base, thus potentially increasing the overall efficiency
and effectiveness of the multi-task learning framework.

3) Finetuning S2L: In contrast to the L2S strategy, the small
to large (S2L) fine-tuning approach starts with the training of
the smallest task module, TMS , and focuses on utilizing a
shared, fixed feature extractor across increasingly larger task
modules. This method aims to explore how well small-scale
learning can generalize to larger, more complex tasks. The
initial phase involves training the TMS , which is designed to
manage the least complex scenarios. The output prediction for
the smallest task, ŷS , from an input sample x, is derived as
follows:

ŷS = fS(g(x; ΘFE);ΘTMS ) (5)

Here, the parameters ΘFE and ΘTMS
correspond to the

common feature extractor and the task module for the smallest
task S, respectively. The corresponding loss function, LS ,
used to optimize the parameters during the training of TMS ,
is defined by LceS (yS , ŷS) in Equation 1. Once TMS is
adequately trained, the feature extractor’s parameters, ΘFE ,
are frozen. These pre-trained parameters are then used to
independently train the larger task modules. This approach
tests the ability of basic features, developed under limited
complexity, to scale and adapt to more demanding scenarios.
For each larger task module k, the prediction output ŷk is
calculated with the now frozen feature extractor:

ŷk = fk(g(x; ΘFEfrozen);ΘTMk ) (6)

Here, ΘTMk
are the parameters for the larger task modules,

and ΘFEfrozen
indicates that the feature extractor parameters

remain unchanged. The loss function for the larger tasks mir-
rors that of the smallest task and is expressed as Lcek(yk, ŷk)
in Equation 1. While this strategy provides certain benefits
similar to L2S by exploiting a generalized feature base, it
also faces limitations as the fundamental features derived from
the smallest task may not capture the complexity required
for optimal performance in larger tasks. Nevertheless, the
capability of larger modules to accommodate and refine these
initial features can sometimes result in improved performance
over L2S, although it typically falls short of the baseline
performance achieved with independently trained modules.

4) Unified Learning: In the unified learning approach,
we diverge from traditional methodologies, where each task
module is trained independently. Instead, all task modules are

trained simultaneously using a shared feature extractor, de-
noted as g, which is trained concurrently across all tasks. This
approach not only standardizes the weights across the feature
extractor but also creates a synergistic learning environment
where the learning outcomes from one task benefit others. The
shared feature representation z extracted from an input x using
the common feature extractor with parameters ΘFE is given
by: z = g(x; ΘFE). For each task k, the task-specific output
ŷk is then generated by the corresponding task module:

ŷk = fk(z; ΘTMk ) (7)
The overall loss function L, which optimizes the multi-task
learning model, aggregates the losses from each task, weighted
by their respective importance:

L =

K∑
k=1

αkLcek (ŷk, yk) (8)

Here, αk denotes the weight or importance assigned to
the loss of each task k. These weights help balance the
training focus among the tasks, depending on their signif-
icance and the complexity of the learning objectives. This
multi-task framework leverages shared learning to minimize
redundancy and maximize the efficiency of the model training
process, demonstrating a significant advantage over isolated
task-specific training models.

5) Unified Learning with Knowledge Distillation: Building
on the unified learning framework, this enhanced version
incorporates knowledge distillation to leverage the differential
learning capabilities across networks of varying sizes. By
using the more robust features and logits learned by larger
networks, as depicted in Figure 3, this method optimizes the
performance of smaller networks through guided learning from
their larger peers. The approach maintains static weights for
the common feature extractor and fosters an environment of
mutual learning among the tasks, thereby elevating the overall
performance beyond previous models.

For each task k, the task-specific output ŷk continues to
be generated by the respective task module as described
in Equation 7. The comprehensive loss function L is now
extended to integrate both the conventional task-specific losses
and knowledge distillation losses:

L =

K∑
k=1

αkLcek (ŷk, yk) +

K∑
j>k

βj,kLkdj→k

 (9)

Here, βj,k denotes the weight for each knowledge distillation
loss. The knowledge distillation loss Lkdj→k

, which facilitates
the transfer of knowledge from a larger task j to a smaller
task k, is defined by:

Lkdj→k = ∥ϕj(x)− ϕk(x)∥2 + ∥ŷj − ŷk∥2 (10)

Here, ϕj(x) and ϕk(x) refer to the features from the teacher
model and student model, respectively. This strategy not only
enhances the efficiency of learning within smaller networks
but also significantly boosts the overall system performance
by harnessing the strengths of larger networks. By promoting
the development of generalized features that are effectively
applicable across various tasks, this learning model enhances
both the efficiency and robustness of the learning outcomes.



Fig. 4: Training convergence comparision of various task
modules in Independent Learning (Baseline) and Proposed
Learning Framework.

IV. ANALYSIS AND EVALUATION

A. Dataset

Our methodology underwent rigorous evaluation using
three prominent datasets in image recognition tasks: CIFAR-
10 [12], CIFAR-100 [12], and Tiny-ImageNet [13]. CIFAR-10,
renowned in computer vision research, includes 60,000 color
images, each measuring 3×32×32 pixels and categorized into
ten distinct classes. CIFAR-100 broadens the spectrum by
providing 60,000 color images of the same dimensions as
CIFAR-10 but across 100 fine-grained classes, intensifying
complexity and variability. In contrast, Tiny-ImageNet offers a
downscaled version of the ImageNet dataset, comprising 200
object classes with 500 training samples per class. Resized to
3×64×64 pixels, images in Tiny-ImageNet strike a balance
between dataset intricacy and computational feasibility for
computer vision experiments.

B. Baselines Architectures

Central to our innovative adaptive-network inference frame-
work is implementing versatile network architectures under-
pinned by a shared feature extractor and an array of special-
ized task modules. This architecture draws upon the proven
strengths of seminal deep neural network models, specifically
VGG16 [14] and MobileNetV1 [15], acclaimed for their robust
edge inference capabilities in image classification domains.
Table I encapsulates the architectural essence and performance
nuances of different designed task-specific modules. The task
modules (TM ) range from TM1, which mirrors the original
full-scale models, embodying the peak of computational ca-
pability for accuracy-critical applications, to TM4, the most
streamlined variant, which trims down to the bare essentials
with few or no convolutional layers, optimizing for swift infer-
ence and minimal energy consumption in resource-constrained
environments. Intermediate modules TM2 and TM3 mediate
between these extremes, providing balanced options that cater
to varying requirements for computational complexity and
efficiency, all the while leveraging a shared feature extraction
base (FE) to maintain consistency across the spectrum of
network configurations.

C. Implementation Details

In our implementation, we employed the PyTorch frame-
work for network creation, training, and testing, capitalizing
on its versatility and efficiency. Optimization was achieved
through stochastic gradient descent (SGD), a widely-utilized
algorithm in deep learning. We initiated training with a learn-
ing rate of 0.01 for the task model, progressively reducing it
by 90% after 80 epochs to enhance convergence. Training was
conducted with a batch size of 128 over 200 epochs to ensure
effective learning. Hyperparameters for the loss function were
finetuned through grid search to optimize model performance.
For our proposed joint training approach, we pre-trained the
each network for twenty epochs using cross-entropy loss ex-
clusively. This preliminary step facilitated the establishment of
plausible intermediate features and logits before incorporating
knowledge distillation losses. In determining the most effective
instance of each task model, we preserved the best-performing
checkpoint based on validation set performance. Subsequently,
this checkpoint underwent rigorous evaluation on the test set to
provide a comprehensive assessment of model generalization
and performance.

D. Quantitative Evaluation

Table II presents a comprehensive performance compari-
son of various approaches for the adaptive-network inference
framework described in Section III-B. From the table, we can
clearly see that the employment of unified learning with a
shared feature extractor and the inclusion of knowledge distil-
lation led to a significant performance gain, often surpassing
fine-tuning methods and the baseline.

Finetuning L2S resulted in decreased performance, par-
ticularly noticeable in streamlined modules with an average
drop up to 34.58% compared to baseline performance on
TinyImageNet classification with VGG16-based modules. This
is attributed to the incompatibility of feature representations
learned by more extensive task modules when applied to
more diminutive counterparts. Conversely, Finetuning S2L
showed improved results compared to the Finetuning L2S,
with average accuracies dropping only 8.20% on the same
task, suggesting that features learned by smaller networks are
effectively expanded and refined by the larger ones due to their
greater capacity.

Unified training has demonstrated a clear beneficial impact
on model performance across all datasets, with VGG16 show-
ing average percentage improvements of 0.69% for CIFAR-
10, 0.39% for CIFAR-100, and 0.87% for Tiny-ImageNet
against the baseline, across all task modules. Similarly, Mo-
bileNetV1 exhibited gains of 0.73% for CIFAR-10, 1.46%
for CIFAR-100, and 1.19% for Tiny-ImageNet, underlining
the effectiveness of a holistic training approach. The in-
corporation of knowledge distillation further amplified these
improvements, resulting in more significant performance en-
hancements. With knowledge distillation embodied, VGG16’s
improvements surged to 1.47% for CIFAR-10, 2.44% for
CIFAR-100, and 3.70% for Tiny-ImageNet. For MobileNetV1,
the jumps were even more pronounced, with a 1.90% boost



TABLE I: Detailed specification and performance evaluation of designed network modules.

DNN Model Modules Convolutional Layers Fully-Connected Layers Total Inference
Time (ms)

Module
Size (MB)# Layers # MAC # Params # Layers # MAC # Params # MAC # Params

VGG16

FE 2 158,072,832 38,720 0 0 0 158,072,832 38,720 8.136 0.156
TM1 11 1,094,713,344 14,675,968 3 3,155,968 3,158,026 1,097,869,312 17,833,994 1.150 71.712
TM2 2 94,371,840 369,024 2 66,176 66,250 94,438,016 435,274 0.319 1.202
TM3 1 75,497,472 73,856 2 66,816 66954 75,564,288 140,810 0.227 0.611
TM4 0 0 0 2 17,024 17,098 17,024 17,098 0.139 0.093

MobileNetV1

FE 1 884,736 928 0 0 0 884,736 928 7.842 0.005
TM1 26 1,572,864,000 3,206,048 1 10,240 10,250 1,572,874,240 3,216,298 13.361 2.241
TM2 10 126,877,696 713,248 1 10,240 10,250 126,887,936 723,498 1.296 3.302
TM3 8 134,217,728 29,728 1 1,280 1,290 134,219,008 31,018 0.797 0.184
TM4 4 92,274,688 11,680 1 1,280 1,290 92,275,968 12,970 0.107 0.539

TABLE II: Performance comparison of various designed network modules on different learning strategies. The best results are
highlighted in bold, and the second-best results are shown in red color.

CIFAR-10 CIFAR-100 Tiny-ImageNetNetwork Experiment TM1 TM2 TM3 TM4 TM1 TM2 TM3 TM4 TM1 TM2 TM3 TM4
Baseline 89.38 85.09 81.92 75.74 63.57 55.1 53.36 45.31 54.20 48.47 38.37 31.95
Finetuning L2S 89.38 81.32 75.34 53.51 63.57 51.00 47.98 30.18 54.20 26.6 21.54 16.18
Finetuning S2L 90.19 84.37 80.59 75.74 65.84 51.62 49.49 45.31 55.19 37.69 33.61 31.95
Unified Learning 90.59 85.07 82.76 76.04 65.44 53.82 53.15 45.94 56.07 47.66 38.04 32.77

VGG16

Unified Learning + KD (Ours) 90.73 86.22 83.64 76.44 66.77 54.76 54.53 46.76 57.25 49.82 39.02 33.45
Baseline 88.39 85.44 81.67 72.85 64.47 60.64 54.59 42.75 51.62 42.08 38.09 28.39
Finetuning L2S 88.39 84.82 78.58 67.22 64.47 57.5 51.05 39.14 51.62 42.36 37.58 28.43
Finetuning S2L 88.32 85.02 78.61 72.85 63.8 58.2 51.85 42.75 51.33 42.5 37.89 28.39
Unified Learning 89.26 86.67 80.57 73.58 64.33 60.26 55.09 45.57 51.57 44.25 37.34 28.86

MobileNetV1

Unified Learning + KD (Ours) 90.30 87.65 82.48 75.23 64.77 61.29 54.59 46.32 51.88 46.23 38.60 29.49

for CIFAR-10, 2.48% for CIFAR-100, and a remarkable
3.89% for Tiny-ImageNet. Furthermore, as evident in Figure
4, the convergence during training of the proposed approach
with knowledge distillation demonstrates superior convergence
during training, characterized by a better decline in validation
loss and a higher rise in validation accuracy compared to the
baseline. These experimental results underscore the synergistic
advantage of our approach of unified training coupled with
knowledge distillation, leading to more robust and generaliz-
able models with greater training efficiency.

V. CONCLUSION

In this paper, we presented a comprehensive methodology
for enhancing the efficiency and reliability of edge intelligence
in batteryless IoT devices. Our approach, centered on adaptive
task module selection and intermittent computing techniques,
demonstrates significant advancements in managing the in-
herent constraints of power-scarce environments. Quantita-
tive evaluations of the proposed learning framework using
benchmark datasets like CIFAR-10, CIFAR-100, and Tiny-
ImageNet revealed that our models not only achieve improved
performance metrics but also enhance energy efficiency, with
up to an average of 1.47%, 2.44%, and 3.70% of increase
in accuracy for CIFAR-10, CIFAR-100, and Tiny-ImageNet
classification, respectively, over the baseline. These results
underscore our strategy’s effectiveness in optimizing resource
utilization while closely aligning with application-specific
requirements.

ACKNOWLEDGEMENT

This work is supported in part by the National Science
Foundation under Grant No. 2303114 and 2247156.

REFERENCES

[1] S. Al-Sarawi et al., “Internet of things market analysis forecasts, 2020–
2030,” in 2020 Fourth World Conference on smart trends in systems,
security and sustainability (WorldS4). IEEE, 2020, pp. 449–453.

[2] W. Shi et al., “Edge computing: Vision and challenges,” IEEE internet
of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[3] Z. Zhou et al., “Edge intelligence: Paving the last mile of artificial
intelligence with edge computing,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1738–1762, 2019.

[4] S. Yao et al., “Deepsense: A unified deep learning framework for
time-series mobile sensing data processing,” in Proceedings of the 26th
international conference on world wide web, 2017, pp. 351–360.

[5] S. Umesh et al., “A survey of techniques for intermittent computing,”
Journal of Systems Architecture, vol. 112, p. 101859, 2021.

[6] A. Roohi and R. F. DeMara, “Nv-clustering: Normally-off computing
using non-volatile datapaths,” IEEE Transactions on Computers, vol. 67,
no. 7, pp. 949–959, 2018.

[7] N. Taheri et al., “Intermittent-aware design exploration of systolic array
using various non-volatile memory: A comparative study,” Microma-
chines, vol. 15, no. 3, p. 343, 2024.

[8] S. Tabrizchi et al., “Diac: Design exploration of intermittent-aware
computing realizing batteryless systems,” 2024 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2024.

[9] Y. Cheng et al., “A survey of model compression and acceleration for
deep neural networks,” arXiv preprint arXiv:1710.09282, 2017.

[10] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[11] R. Gaire et al., “Encode: Enhancing compressed deep learning mod-
els through feature—distillation and informative sample selection,” in
2023 International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2023, pp. 633–638.

[12] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[13] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[14] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[15] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.


