
DIAC: Design Exploration of Intermittent-Aware Computing

Realizing Batteryless Systems
Sepehr Tabrizchi∗, Shaahin Angizi†, Arman Roohi∗

∗School of Computing, University of Nebraska–Lincoln, Lincoln NE, USA
†Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

aroohi@unl.edu

Abstract—Battery-powered IoT devices face challenges like
cost, maintenance, and environmental sustainability, prompting
the emergence of batteryless energy-harvesting systems that
harness ambient sources. However, their intermittent behavior
can disrupt program execution and cause data loss, leading to
unpredictable outcomes. Despite exhaustive studies employing
conventional checkpoint methods and intricate programming
paradigms to address these pitfalls, this paper proposes an
innovative systematic methodology, namely DIAC. The DIAC
synthesis procedure enhances the performance and efficiency of
intermittent computing systems, with a focus on maximizing
forward progress and minimizing the energy overhead imposed by
distinct memory arrays for backup. Then, a finite-state machine
is delineated, encapsulating the core operations of an IoT node,
sense, compute, transmit, and sleep states. First, we validate the
robustness and functionalities of a DIAC-based design in the
presence of power disruptions. DIAC is then applied to a wide
range of benchmarks, including ISCAS-89, MCNS, and ITC-99.
The simulation results substantiate the power-delay-product (PDP)
benefits. For example, results for complex MCNC benchmarks
indicate a PDP improvement of 61%, 56%, and 38% on average
compared to three alternative techniques, evaluated at 45 nm.

I. INTRODUCTION

Shifting from a cloud-centric approach to a thing-/data-

centric perspective, known as the Internet of Things (IoT),

could significantly mitigate challenges such as high latency,

limited scalability, quality of service, privacy, and security.

Given its promising potential, the IoT market is expected to

reach $4.5 trillion by 2035, with an interconnected network

of over one trillion devices encompassing smart homes, cities,

industries, healthcare wearables/implants, and agriculture [1]–

[3]. According to Ericsson, intelligent IoT systems could re-

duce carbon emissions by 3%, or 63.5 gigatons, by 2030

[4]. However, IoT devices are primarily powered by batteries,

which presents critical challenges related to limited lifespan,

cost, maintenance, and environmental sustainability. EnABLES

forecasts that without change, global battery disposal could

reach 78 million units daily by 2025 [5].

In contrast, batteryless devices can overcome these signifi-

cant and inherent limitations using energy-harvested systems,

which harness ambient energy sources, eliminating the need for

traditional batteries. However, intermittent behaviors caused by

the sources can disrupt program execution and lead to data loss

and unpredictable outcomes. Therefore, advanced techniques

in the normally-off (intermittent) computing domain have been

formulated. These methodologies offer advantageous features

such as near-zero power consumption during idle states, im-

mediate wake-up capabilities, and robustness against power

failures [6], [7]. Consequently, non-volatile (NV) components,

including non-volatile memories (NVMs) and non-volatile flip-

flops (NV-FFs), have received significant industry and academic

attention [8]. These NV elements prevent the need for a boot-up

sequence post-sleep owing to their inherent nonvolatility. Typ-

ically, in NV processors, data from all registers are offloaded

to NVMs before entering a deep sleep state. Throughout this

sleep phase, there is no need for a continuous power source.

Upon re-energizing the processor, data are retrieved from the

NVMs, and system operations recommence. Recent literature

has highlighted various hardware-assisted strategies tailored

explicitly for intermittent computing paradigms. The authors

of [9] have replaced all traditional flip-flops with NV-FFs,

whereas in [10], multiple diminutive NVM arrays are used for

efficient backup and data restoration. While NVMs present the

benefit of data persistence, this comes at the expense of elevated

write power consumption. As a result, there is a pressing need

for a holistic and systematic synthesis approach. Traditional

checkpoint-based strategies are susceptible to internal and ex-

ternal inconsistencies in the event of a power failure. Internal

inconsistencies manifest when the execution context is only

partially retained in the NVM, while external inconsistencies

occur when power failures happen between successive check-

points. Previous implementations have suffered notably from

the computational and energy burdens of additional middleware

and checkpointing operations [11], [12]. Furthermore, these

traditional methods are prone to leakage between checkpoint

operations, particularly when utilizing volatile registers and

flip-flops in CMOS-only datapath designs. These challenges

necessitate a more comprehensive focus on life cycle energy

optimization, considering intermittent power supply and data

streams. Despite exhaustive studies employing conventional

checkpoint methods and intricate programming paradigms to

address intermittent computing pitfalls, our previous work

reveals that such techniques frequently encounter performance

bottlenecks and limitations in scalability [7].

This paper developed a cross-layer approach to address the

stated issues, which requires effective task scheduling and

power management systems. At the circuit level, power man-

agement is designed, establishing various thresholds to delin-

eate different operational zones. At the architecture level, a sys-

tematic Design Exploration of Intermittent-Aware Computing

(DIAC) methodology is devised, which minimizes overhead

while maximizing forward computational capabilities. The pro-

totyped DIAC design tool, when integrated with the proposed

finite-state machine, offers the core operations of an IoT node,

sense, compute, transmit, and sleep states, ensuring resilience

against power interruptions. By collaborating software and

hardware stages, the number of checkpoints is reduced, re-

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA

	

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 06,2024 at 20:38:14 UTC from IEEE Xplore. Restrictions apply.

ducing both power and delay overhead. In the final phase,

the system is deployed in a power-scarce environment, and

its performance is evaluated using a system-level in-house

framework, including a set of benchmarks.

II. INTERMITTENT COMPUTING REVIEW

Ambient energy sources like solar, kinetic, etc., play a vital

role in pursuing sustainable and renewable energy solutions.

They offer benefits such as abundance, decreased carbon emis-

sions, and cost savings [13]. When considering embedded sys-

tems, radio-frequency identification (RFID) is often preferred

as an ambient power source for several reasons, including its

self-powering mechanism, scalability, and cost-efficiency. RFID

technology uniquely draws power wirelessly from its reader,

a feature facilitated by electromagnetic induction [14]. Unlike

conventional devices that require internal batteries or wired

connections, when an RFID reader emits a signal, it induces a

current in the RFID tag’s antenna. This powers the tag, allowing

data transmission without needing batteries or regular mainte-

nance. Although this offers efficiency in applications such as

inventory management and access control, intermittent energy

bursts can cause operational interruptions, leading to data loss

or inconsistent results [15]. Our research focused on designing a

specialized architecture using RFID sources, making integration

into embedded systems more straightforward. Based on the

observed behavior of this energy source, we take into account

its intermittency and variability. Our objective is to optimize

energy utilization and minimize dependency on nonrenewable

resources by carefully designing our system to adapt to voltage-

level fluctuations.
Energy harvesting devices employ intermittent computing,

where short bursts of program execution are often interrupted

by power failures. Despite its challenges, many studies have

explored techniques to leverage this computing style at vari-

ous levels. Certain challenges must be considered during the

design time; the less energy used for computation, the more

tasks can be performed. Task execution times can vary, with

compute-intensive tasks sometimes interrupted by power losses,

potentially rendering data or computations obsolete before com-

pletion. System designers need robust language and software

support to interact with sensors despite fluctuating power [16].

They also need a deep understanding of the hardware and

behavior of energy harvesters. From a software-level point of

view, intermittent computing involves using checkpoints and

task-based programming models [17], [18]. Checkpointing en-

ables the preservation of volatile states in non-volatile memory

(NVM), allowing computation to resume after a power failure.

Meanwhile, task-based systems break programs into short tasks

and resume execution of the last completed task. Task-based

systems often employ various memory management techniques,

such as privatization and variable copying. However, check-

point approaches may suffer from internal and external incon-

sistencies after each power loss, and frequent checkpointing

results in performance degradation. Furthermore, there are

hardware modifications and approaches based on speculation

and watchdog timers to optimize data storage and restore tasks

during power failures. Programming languages like Chain [19]

and Mayfly [20] simplify intermittent computing by segmenting

programs into tasks and managing time and memory consis-

tency. Compiler-based approaches analyze program sections

and determine the minimum number of checkpoints needed

to prevent incompatibilities. The main disadvantages of this

model are its incompatibility with existing libraries and code

bases, its lack of importability across hardware platforms, and

the burden it places on the programmer. Architecture-level

techniques for intermittent computing offer various solutions to

overcome the challenges of power failures and optimize energy

efficiency [21]. Approximate computing techniques are used to

reduce the accuracy of computations to improve performance

and efficiency. Hardware solutions such as Clank track memory

access to detect write-after-read sequences, while Cascaded

Hierarchical Remanence Timekeeper (CHRT) provides resilient

timekeeping during power failures [22].

III. PROPOSED INTERMITTENT-AWARE SYSTEM

A. Hierarchical Design Exploration

Since the charge and discharge cycle – an intrinsic charac-

teristic of energy harvesting devices – may occur more than

hundreds of times per second, NV elements can maintain

their computation state and ensure forward progress in the

presence of unpredictable energy failures. Critical difficulties

encountered in prior research include the requirement for

intricate software that lacks scalability, performance overhead

introduced by NVM components, and system inconsistencies.

In this section, a co-design methodology is introduced to push

the boundaries of intermittent computing. This methodology

entails the development of a novel architecture and software

strategy that minimizes overhead while maximizing forward

progress. Figure 1 shows the design flow of our systematic

Design Exploration of Intermittent-Aware Computing (DIAC)

methodology to address power failure with minimum perfor-

mance overhead, offered by three complementary procedures:

1) Tree generator: The Tree Generator takes the high-

level program, in Step 1 , and synthesizes it to RTL-level

Hardware Description Language (HDL), SPICE netlists, etc.,

and generates an un-optimized tree, where nodes contain func-

tions and their power consumption, and edges indicate their

connections. In Step 2 , we calculate power consumption using

the commercial synthesis tool, including Synopsys DC and

HSPICE. Then, in Step 3 , the DIAC procedure will produce

a feature dictionary (Dict.) and a tree-based illustration. Each

node, e.g., node i in level j (ni
j), has one feature dictionary,

which contains the number of inputs from a lower level (fanin),

the number of outputs to an upper level (fanout), the node

level itself (j), and its power consumption. A modified tree-

based depiction of intermittency and peak harvested power

(Vpeak) will be derived using the following three strategies.

Policy1: Large components (functions) will be broken into

smaller tasks with lower power to meet the desired conditions

and criteria, including avg(Fpower) < Vth << Vpeak. Due to the

division’s nature, this provides the best resiliency at the cost

of performance overhead. Policy2: Small components will be

merged into larger components with a higher power to meet the

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 06,2024 at 20:38:14 UTC from IEEE Xplore. Restrictions apply.

Tree Generator

!
"

Commercial

Tool

Tree Illustration

#

!Optimized Tree

!Feature Dictionary

(Dict.)HDL

Design

High-Level

Design

RTL Level

Library

Insertion
Policy

Generated Code

Replacement & Code Generator

NVM
Models

Technology
Mapping

Harvested
Power

User-defined
Criteria

Validation

Timing
Violation

Meet Power
Budget

!"

!# $

$" $#

NV-enhanced Tree

%

Fig. 1. Design flow of the DIAC framework.

conditions, max(Fpower) << Vth and min(Fpower) = n%Max,

which provides best performance at the cost of lower resiliency,

resulting from larger components. Policy3: This option is

positioned between the first two policies and offers better

performance and resiliency than Policies 1 and 2, respectively.

Figure 2 depicts the original graph and its three representations

regarding different conditions and needs.

2) Replacement: The replacement procedure aims to assess

design feasibility and identify efficient replacement algorithms

to address power failure, focusing on minimizing area and

energy overheads. Applying Partitioning and NVM Insertion

modules to the produced tree ensures attestation function in-

tegrity and forward progress under various failures. The parti-

tioning is analogous to task-based methods existing in software

approaches; however, our approach allows us to partition the

netlist and ensure integrity statically. Given the modified tree

from Step 4a , power budget, and NVM features from Step

4b , prioritizing nodes and finding replacement points efficiently

requires weighing efficiency and resiliency. Generally, NVMs

have a higher write cost than volatile memory, like SRAM, so

reducing the number of NVMs’ writes reduces power and delay.

Three criteria define the replacement policy, realizing a more

power-efficient system: (I) Nodes in the upper level: If NVMs

are inserted in closer nodes to the output, the structure will be

more power efficient under power failure conditions. (II) Nodes

with higher power consumption: If NVMs are inserted in a node

or a cone of nodes with a total higher power consumption, the

system will be more power efficient. (III) Nodes with higher

fanin and/or fanout: If a node with more inputs and/or outputs

is integrated with NVMs, the total number of writes will be

reduced by a factor of 1/(fanin + fanout). Considering the above

criteria, traversing the tree starts from leaves (bottom, inputs)

upwards (roots, outputs) as follows: The total consumed power

(Ptotal) until arriving at a node (n) equals the summation of all

the previous nodes’ power consumption. By inserting an NVM

in the position, n, the previous power values are set to zero, and

the node’s Dict. is updated with the new power consumption =

Ptotal+Pn. Updates will be performed in parallel for all nodes

at the same level. These criteria will be assessed and modified

during the execution in Step 5 .

3) Code generator: After traversing all the levels and insert-

ing NVMs, the NV-enhanced tree will be formed in 6 . Finally,

Fig. 2. Tree illustrations of an 8-input/1-output design using different
approaches (a) original, (b) Policy1, (c) Policy2, and (d) Policy3.

in Step 7 , the generated code undergoes validation checks for

possible timing violations. To do so, this optimized tree will

first be converted to an HDL code and submitted to the com-

mercial tool. Upon passing, the design efficacy is determined

based on the proposed performance metrics models and in-

termittency behavior. Incorporating tree-based representations,

different designs, and power failure scenarios will exponentially

expand the design space. This will necessitate an efficient,

precise, automated design tool that seamlessly converts any

combinational and sequential designs into intermittent robust

architectures without human intervention.
B. Architectural States and Transitions

Batteryless systems can be broadly categorized into two

primary types. The first category can complete all computations

when the battery is fully charged. Conversely, the second type

has inadequate capacitor energy storage to satisfy all com-

putations. For the second type, storing intermediate registers

in NVMs is imperative. Herein, all operations, namely sense

(Se), compute (Cp), transmit (Tr), sleep (Sp), and backup

(Bk), are divided into atomic operations, which are executed

uninterrupted. These atomic operations are determined based on

the system’s maximum storage power and should only begin

when sufficient power is available. We will iteratively use three

policies to determine optimal atomic operations to maximize

efficiency. The finite state machine (FSM) of the system of-

fering the core operations of an IoT node, sense, compute,

transmit, and sleep states is depicted in Fig. 3 (a). Initially,

the system is in Sp and reverts to this state after completing

each atomic operation to conserve power for the next process.

Integrating DIAC’s produced design with the proposed FSM

forms an intermittent-aware sensor node, ensuring resilience

against power interruptions, shown in Fig. 3(b).

A detailed description of the required steps is illustrated in

Algorithm 1. The algorithm starts with the main while looping

in line 3. This loop runs according to the interval value in

line 33. As this loop is executed, the system’s state changes

depending on the Reg Flag and energy level (lines 6-11). The

system has four threshold voltages for each state (ThState),

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 06,2024 at 20:38:14 UTC from IEEE Xplore. Restrictions apply.

100

Sleep

100

Sp

Tr

Se

Bk

Cp

Reg_Flag:

R0 R1 R2

R0

R1

R2

Power_Interrupt

010

001

(a) (b)

Energy Harvesting

Rectifier
circuit

Energy
storage

Voltage
regulator

Power Management Unit

Harvester Controller…

Processing Unit

Accelerator NVM

µprocessor Image
Sensor

LTE

Wi-Fi…

Task
Scheduler

RFID

E
n

vi
ro

n
m

e
n

t
E

n
vi

ro
n

m
e
n

t

Fig. 3. (a) The proposed state machine description, and (b) an
intermittent-aware sensor node.

e.g.,ThCp, along with two more thresholds ThSafe Zone and ThOff.

The system can perform tasks in each state if and only if

criteria, including Reg Flag and enough power to complete

the desired operation (Energy>ThState), are satisfied. Once the

system transitions to either the Cp or Tr, it will stay in this

state until the power drops below the threshold defined by

ThSafe Zone (lines 17 and 27). The Safe Zone threshold creates

a narrow range that lies between the exit points of Cp or Tr

and the beginning of Bk state. The system can harvest further

energy within this range, allowing it to restore to its prior state

instead of reverting to Bk. The transition to the next state is

determined by modifying the value of the Reg Flag. However,

this progression can be halted at any state by setting the

Reg Flag to ‘0b000’. For example, in Cp, the Reg Flag stays

unchanged until the computation is done. Then, according to the

computation result (lines 20-23), the Reg Flag is set to Tr or

Sp and exits the loop. During either Cp or Tr, when the power

level falls below the Safe Zone, the system reverts to Sp (lines

25-32). There are two interrupt routines in our system. The first

interrupt is for the Timer (line 34), which is the maximum

sampling rate of the system. However, it is important to note

that this frequency can be reduced depending on the system’s

power. The second interrupt (Power) is generated by the power

management unit (line 38). Suppose the total energy of the

system is less than the threshold energy required for backup. In

that case, the power management unit triggers an interrupt, and

the backup unit stores all the necessary intermediate registers

based on the register flag (Reg Flag). Since the energy of the

system reduces in the Sp state (due to the standby energy), the

system requires an interrupt to change its state to Bk.

IV. RESULTS

A. Validation of DIAC Approach

As previously noted, Policy3 simultaneously provides ac-

ceptable resiliency and efficiency. Thus, we utilize it as a

replacement policy and the principal methodology in this

section. Figure 2(d) shows an example of this approach where

the upper and lower limits for power consumption are set

at 25mJ and 20mJ per operand, respectively. Consequently,

operands consuming more than 25mJ of power must be divided,

while those using less than 20mJ should be combined. Thus,

F5−8 are merged to be represented by F13. Conversely, F2

is broken down into smaller operands, i.e., F9−11. This step

is followed by creating a dictionary based on the operands’

number of inputs and outputs, delays, and power consumption.

Algorithm 1 State machine of the proposed system.

1: States = [Sp, Se, Cp, Tr, Bk] � Sleep, Sense, Compute, Transmission, and Backup.
2: Initialize State ← Sp

3: while (True)
4: if (State == Sp)
5: Reg ← Read (Reg Flag)
6: if (Reg == 0b100 & energy > ThSe) � The green arrow from Sp to Se.
7: State ← Se

8: elsif (Reg == 0b010 & energy > ThCp) � The green arrow from Sp to Cp.
9: State ← Cp

10: elsif (Reg == 0b001 & energy > ThTr) � The green arrow from Sp to Tr.
11: State ← Tr

12: if (State == Se)
13: Sample ← Sense()

14: State ← Sp

15: Reg ← 0b010

16: if (State == Cp)
17: while(energy > Safe Zone) � Dashed blue arrow in Cp.
18: Result ← Compute(Sample)
19: if (sample is completely processed)
20: if (transmission is require)
21: Reg ← 0b001

22: else

23: Reg ← 0b000

24: Break � Break the loop!
25: State ← Sp � The black arrow from Cp to Sp.
26: if (State == Tr)
27: while(energy > Safe Zone) � Dashed blue arrow in Tr.
28: Transmit (Result)
29: if (transmission is done)
30: Reg ← 0b000

31: Break � Break the loop!
32: State ← Sp � The black arrow from Tr to Sp.
33: Sleep (interval) � Interval is determined by the average charging rate.
34: interrupt_Timer() � Check the sensing interval is valid or not.
35: Reg ← Read Reg Flag (interval)
36: if (Reg == 0b000)
37: Reg ← 0b100

38: interrupt_power() � Power is scarce to perform any task!
39: State ← Bk

40: Backup() � Back up all intermediate values w.r.t. register value.
41: State ← Sp � The black arrow from Bk to Sp.

To accurately estimate the power and delay of each operation,

DIAC harnesses the output from HSPICE, considering delay,

static, and dynamic power for each operand, which comprises

multiple gates. We then devised a mathematical model to meet

diverse needs and estimate design-time evaluation parameters

before run-time. We approximated the dynamic energy using

≈ 2 ×

∑n

i=0
delayi × dynamic poweri, where n represents the

total number of gates in an operand, and the delay is determined

when both input and output equal VDD

2
. For a more accurate

energy consumption estimation, this delay is doubled. It is

essential to highlight that while one gate is in switching mode,

other gates remain inactive without any activities. Therefore,

the power consumption of these inactive gates is determined by

the critical delay path (CDP) multiplied by the total number of

gates (≈ CDP ×

∑n−1

i=0
static poweri), excluding the currently

active gate. A system-level in-house framework is developed

to verify our approach’s functionality. Firstly, we implement a

design by traversing its NV-enhanced tree generated by DIAC

and concerning the system’s parameters, including peripherals,

using HSPICE in the 45nm NCSU PDK library. The memory

controller and registers are designed and synthesized by Design

Compiler. Afterward, we incorporated the results from circuit-

level assessments and extensively modified CACTI at the

architecture level. Next, we integrated the architecture with

the proposed FSM and exported the performance to an in-

house cross-layer framework, taking the CACTI output and

application netlist as the inputs. At the application, we evaluated

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 06,2024 at 20:38:14 UTC from IEEE Xplore. Restrictions apply.

!

"

#

$%

&

"

%&

$&

!"
#$
%&
!"!
"#

$ %$$$ &$$$ '$$$ ($$$')*#!"##

'(!"'(#$
'(%&'(%'(&
'()*

'(+((

! " # $ %&

Fig. 4. Battery (EBatt) (top) and charging rate (bottom) of the system.

the performance of our proposed technique in the presence

of power outages using various benchmarks. To incorporate

the behavior of intermittency into our study, we adopted a

methodological approach that involved simulating an intermit-

tent power source characterized by a predetermined sequence of

voltage levels that cyclically repeat. To accurately represent the

behavior of intermittent power, we introduced a virtual energy

source within our simulation framework, designed to mimic

the functionality of a battery. This virtual energy source is

responsible for accumulating energy during power availability

and deducting energy consumption during periods of power

unavailability. Throughout the simulation process, we closely

monitored several key parameters to ensure an accurate rep-

resentation, including power/voltage levels, power availability,

and the level of the virtual energy source. Monitoring is

achieved by observing the behavior of the power source and

virtual battery, as well as tracking the power consumption as-

sociated with various computational operations. In the system,

a capacitance of 2mF is considered, and an operational voltage

of 5V is used. Therefore, the system can store a maximum

of EMAX = 25mJ of energy. Herein, we assume that the sense,

compute, and transmit operations consume 2mJ, 4mJ, and 9mJ,

respectively, all with a ±%10 uncertainty. Furthermore, the

ThSafe Zone region exceeds the backup threshold by 2mJ. In this

zone, the system enters sleep mode without requiring a backup.

However, if the battery energy drops below ThBk, the NVMs

save all essential registers.

Figure 4 illustrates the energy (EBatt) stored in the capacitor

concerning the system’s charging rate. In 1 , the charging

rate surpasses the system’s needs. Consequently, the energy

stored occasionally reaches its maximum capacity of EMAX, i.e.,

25mJ. This allows the system to operate at peak performance.

Conversely, in 2 , the charging rate is insufficient to meet the

system’s demands. The system remains in the Sp state until

EBatt surpasses ThCp. It then transitions to either Cp or Tr

states. During this phase, the system continues operations until

the energy drops below ThSafe Zone. In 3 , a sudden decline in

the charging rate is noted, falling below ThBk. Consequently,

the system backs up its registers to the NVMs. Following the

backup in 4 , a sustained low charging rate causes EBatt to drop

beneath ThOff, resulting in a complete system shutdown. Upon

accumulating sufficient power, the system then retrieves register

data based on the NVM values. As previously explained, the

ThSafe Zone threshold is crucial in minimizing NVM writes. As

exemplified in 5 , the system enters this zone thrice, main-

taining its state in Sp. Throughout these three instances, since

EBatt never fell below ThBk, no energy-intensive NVM writes

were needed. Subsequent efficient energy harvesting allowed

the system to transition back to an active domain, fetching states

directly from volatile storage and the Reg Flag. A different

scenario unfolds in 6 , where the charging source is interrupted,

prompting the system to revert to the Sp state. Despite being

in this state, a minimal leakage current persists, causing the

system’s energy to fall below ThBk. This triggers a backup

process. But the charging is restored before a complete power

outage, enabling the system to resume operations. Herein,

there’s no necessity to fetch register values from the NVMs.

B. Performance Evaluation

In this section, the developed design tool, including DIAC

and the FSM, is leveraged to implement large-scale circuit

benchmarks, including ISCAS-89, ITC-99, and MCNC. To

evaluate DIAC performance using the developed framework,

the power-delay-product (PDP) values for the four schemes are

considered. The NV-based method operates similarly to conven-

tional checkpointing, where flip-flops (FFs) are replaced by the

NV-FFs to store states. It provides the highest resiliency at the

cost of significant overhead. The second compared technique

is NV-Clusting, presented in [7]. In this approach, the authors

introduced a new concept, logic-embedded flip-flop (LE-FF),

which can realize Boolean logic functions and an inherent state-

holding capability. To make the evaluation more comprehen-

sive, we have considered two DIAC-based implementations,

excluding and including ThSafe Zone, denoting DIAC, and op-

timized DIAC designs, respectively. According to subsection

2.B, this state allows us to reduce power consumption and

delay by reducing the number of NVM writes required. Because

of this, the optimized DIAC process significantly reduces the

number of NVM writes as a costly operation. It is worth noting

that the safe zone varies based on the harvested energy. Figure

5 depicts the PDP results for all the mentioned approaches.

For various ISCAS-89, ITC-99, and MCNC benchmark cir-

cuits, these results exhibit an average of 36% (25%), 41%

(33%), and 34% (28%) PDP improvements, respectively, for the

DIAC based designs compared to NV-based (NV-clustering)

implementations. Further PDP improvements are achieved by

using the optimized DIAC methodology, which provides up to

61, 56, and 38 percent average PDP improvements compared to

NV-based, NV-clustering, and DIAC approaches, respectively.

The benefits are achieved because of the optimal NVM write

operations.

C. Conditions and Discussion

Two assumptions are considered when assessing the DIAC

methodology:(1) There is never enough energy in the sys-

tem to complete a process (instance). This means that using

conventional CMOS-based designs without NVMs will not

work. To ensure this condition, if a benchmark circuit, e.g.,

s27, consumes less energy than battery capacity, it is rerun

multiple times till the total energy exceeds the capacity. Then,

we considered all performed operations as one bigger and/or

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 06,2024 at 20:38:14 UTC from IEEE Xplore. Restrictions apply.

Gates 10 119 161 164 218 193 289 446 529 657 9772 19253 22 861 129 155 437 904 266 4444 2383 5763 744 490

Functions Logic PLD
4-bit

Multiplier
TLC

Fractional

Multiplier
PLD

Fractional

Multiplier
Logic Logic Logic Logic Logic

BCD

FSM

Elaborate

CM

S-to-S

Converter

Voting

System

Scramble

string

Guess a

sequence

I/F to

sensor

Viper

processor

Key

Encryption

Bus

Interface

Encryption

Circuit

Bus

Controller

ISCAS ITC MCNC

NV-Based

Fig. 5. Normalized PDP compared to intermittent-aware implementations for different benchmark circuits.

more complex task; (2) To make a fair comparison among

different intermittent robust computing systems, the same NVM

technology is leveraged. Extensive research has been conducted

on designing NVMs using different NV elements, such as

magnetic RAM (MRAM), resistive random access memory

(ReRAM), ferroelectric random-access memory (FeRAM), and

phase change memory (PCM). Due to the International Tech-

nology Roadmap for Semiconductors (ITRS) report, which

identifies spintronic devices as capable post-CMOS candidates,

we chose MRAM as our NVM technology. MRAM cells pro-

vide non-volatility, near-zero standby power, high integration

density, and radiation-hardness features. Moreover, MTJs can

be vertically integrated at the back-end CMOS fabrication

process, resulting in lower interconnect energy losses and less

area overhead. It is noteworthy that although varying NVM

technology changes (reduces/increases) the enhancement, the

overall improvement trend remains relatively stable. This is

achieved because the DIAC approach optimizes NVM writes as

an energy-hungry operation. For example, if ReRAMs replace

MRAM cells, the optimized DIAC exhibits higher efficiency

than the other examined techniques because the ReRAM write

consumes ∼ 4.4× more energy than MRAM.

V. CONCLUSION

This paper proposed the DIAC methodology to enhance

intermittent computing systems’ efficiency. This synthesis pro-

cess is intricately designed to ensure the progress of the tasks

while optimizing energy consumption. Coupled with a detailed

FSM that characterizes core IoT operations, the DIAC-based

design proved efficiency and resiliency against power disrup-

tions. Furthermore, a wide range of benchmark circuits has

showcased the DIAC’s superiority over the previous schemes,

with a significant PDP improvement.

ACKNOWLEDGMENTS

This work is supported in part by the National Science

Foundation under Grant No. 2303114.

REFERENCES

[1] H. Bauer et al., “Internet of things: Opportunities and challenges for
semiconductor companies,” Article by McKinsey’soctober, 2015.

[2] T.-H. Hsu et al., “Ai edge devices using computing-in-memory and
processing-in-sensor: from system to device,” in IEEE IEDM. IEEE,
2019, pp. 22–5.

[3] S. Liu et al., “Energy-aware mac protocol for data differentiated services
in sensor-cloud computing,” Journal of Cloud Computing, vol. 9, no. 1,
pp. 1–33, 2020.

[4] J. Malmodin and P. Bergmark, “Exploring the effect of ict solutions on
ghg emissions in 2030,” in EnviroInfo and ICT for Sustainability 2015.
Atlantis Press, 2015, pp. 37–46.

[5] M. Hayes et al., “Enables: European infrastructure powering the internet
of things,” in SSI; 13th International Conference and Exhibition on

Integration Issues of Miniaturized Systems. VDE, 2019, pp. 1–8.
[6] B. Ransford and B. Lucia, “Nonvolatile Memory is a Broken Time

Machine,” MSPC, pp. 5:1–5:3, 2014.
[7] A. Roohi and R. F. DeMara, “NV-Clustering: Normally-Off Computing

Using Non-Volatile Datapaths,” IEEE TC, vol. 67, no. 7, pp. 949–959,
July 2018.

[8] D. Chabi et al., “Ultra low power magnetic flip-flop based on checkpoint-
ing/power gating and self-enable mechanisms,” IEEE TCASI, vol. 61,
no. 6, pp. 1755–1765, 2014.

[9] N. Sakimura et al., “10.5 A 90nm 20MHz fully nonvolatile microcon-
troller for standby-power-critical applications,” in IEEE ISSCC. IEEE,
2014, pp. 184–185.

[10] S. Khanna et al., “An FRAM-Based Nonvolatile Logic MCU SoC
Exhibiting 100% Digital State Retention at VDD = 0 V Achieving Zero
Leakage With ¡ 400-ns Wakeup Time for ULP Applications,” IEEE JSSC,
vol. 49, no. 1, pp. 95–106, 2014.

[11] B. Ransford et al., “Mementos: System support for long-running com-
putation on RFID-scale devices,” in ACM Comput Archit News, vol. 39,
no. 1. ACM, 2011, pp. 159–170.

[12] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” ACM SIGPLAN Notices, vol. 50, no. 6,
pp. 575–585, 2015.

[13] A. Akella et al., “Social, economical and environmental impacts of
renewable energy systems,” Renewable energy, vol. 34, no. 2, pp. 390–
396, 2009.

[14] R. M. Ferdous et al., “Renewable energy harvesting for wireless sensors
using passive rfid tag technology: A review,” Renewable and Sustainable

Energy Reviews, vol. 58, pp. 1114–1128, 2016.
[15] J. Eriksson et al., “Mspsim–an extensible simulator for msp430-equipped

sensor boards,” in EWSN, Poster/Demo session, vol. 118, 2007.
[16] J. Hester and J. Sorber, “The future of sensing is batteryless, intermittent,

and awesome,” in SenSys, 2017, pp. 1–6.
[17] S. Umesh and S. Mittal, “A survey of techniques for intermittent com-

puting,” Journal of Systems Architecture, vol. 112, p. 101859, 2021.
[18] P. Singla et al., “A survey and experimental analysis of checkpointing

techniques for energy harvesting devices,” J. Syst. Archit., p. 102464,
2022.

[19] A. Colin and B. Lucia, “Chain: tasks and channels for reliable intermittent
programs,” in ACM OOPSLA - SPLASH, 2016, pp. 514–530.

[20] J. Hester et al., “Timely execution on intermittently powered batteryless
sensors,” in SenSys, 2017, pp. 1–13.

[21] S. Ruffini et al., “Norm: An fpga-based non-volatile memory emulation
framework for intermittent computing,” ACM JETC, vol. 18, no. 4, pp.
1–18, 2022.

[22] J. de Winkel et al., “Reliable timekeeping for intermittent computing,” in
ASPLOS, 2020, pp. 53–67.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 06,2024 at 20:38:14 UTC from IEEE Xplore. Restrictions apply.

