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Abstract—Hyperdimensional (HD) Computing is a lightweight
representation system that symbolizes data as high-dimensioned
vectors. HD computing has been growing in popularity in recent
years as an alternative to deep neural networks mainly due
to its simple and efficient operations. In HD-based learning
frameworks, the encoding of the high dimensional representations
are widely cited to be the most contributing procedure to
accuracy and efficiency. However, throughout HD computing’s
history, the encoder has largely remained static. In this work,
we explore methods for a dynamic encoder that yields better
representations as training progresses. Our proposed method,
SEP, achieves accuracies comparable to state-of-the-art HD-based
methods proposed in the literature; more notably, our solutions
outperform existing work at lower dimensions while maintaining
a relatively small dimension of D = 3, 000, which equates to an
average of 3.32× faster inference.

Index Terms—Hyperdimensional Computing

I. INTRODUCTION

Hyperdimensional (HD) computing, also known as Vector

Symbolic Architectures (VSAs), is a computing paradigm

modeled after human long-term memory [1]. HD comput-

ing has recently been gaining recognition as an attractive

alternative to traditional deep learning techniques primarily

because of its lightweight computations. However, we observe

a significant limitation in the retraining procedures within

HD learning models: the sole focus on fine-tuning class

hypervectors. This approach operates under the assumption

that the encoding process will yield sufficiently distinct hy-

pervectors for data associated with different labels. However,

this overlooks a critical aspect of HD computing, the role of

hypervector encoding in determining the overall accuracy of

the trained model. The projection matrices generated during

the encoding phase remain static throughout both the initial

training and subsequent retraining procedures and, as a result,

the resulting hypervector representations for any given data set

are immutable. To address the limitations associated with static

encoders in HD learning models, prior work have focused

on either preprocessing the data [2] or integrating neural

networks as inputs to the HD framework [3], [4]. While

these approaches can improve performance, they introduce

considerable computational overhead, and more critically, they

fail to resolve the inherently static nature of the HD encoder.

This rigidity can lead to two critical issues: (i) sub-optimal

hypervector representations; especially in scenarios involving

complex data, this culminates in ineffective learning, and (ii)

the use of excessive dimensions, e.g., D = 10, 000, to com-

pensate for the error incurred through ineffective projections
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Fig. 1: Overview of the SEP Procedure

of the raw data into high-dimensional space, resulting in high

computational burdens to perform HD computing.

In this paper, we introduce Stochastic Error Projection

(SEP), a novel framework for HD encoder training designed

to generate highly accurate hypervector representations learned

during the training process. SEP provides implicit feedback to

the encoder at each retraining iteration. Though it exhibits a

slightly slower convergence rate, it maintains high efficiency

and outperforms existing HD-based algorithms. We show an

overview of the proposed framework in Figure 1.

II. FORWARD-ONLY HD LEARNING METHOD

In this section, we present Stochastic Error Projection (SEP).

The fundamental intuition behind SEP is premised on the

idea that substantial updates to the base hypervectors are

needed when the current model displays a high classification

error. Unlike existing methods such as the MASS training

algorithm [5], which focuses on the classification errors that

originate from inaccuracies in the class hypervectors, we fur-

ther consider the contribution to inaccuracies caused by erro-

neous base hypervectors. In SEP, the magnitude of adjustments

to each element of the base hypervectors is stochastically

determined, that is, elements are perturbed with a higher

degree of randomness when elevated errors are observed for

current samples. In contrast, minimal adjustments are made to

the base hypervectors when the overall classification error is

low. This is done under the assumption that they are adequately

accurate. While the SEP approach bears similarities to the
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DFA [6] method proposed for deep learning, we introduce

a modification to address a critical shortcoming of DFA,

i.e., its tendency to overfit, thereby optimizing its efficiency

with higher robustness within the domain of HD computing.

Algorithm 1 details the SEP procedure.

Algorithm 1 Stochastic Error Projection (SEP)

1: for data x in a training dataset do

2: // •A Encoding

3:
−→
H ← P⊗ x

4: // •B Update class hypervectors C

5: ÷s← softmax(·(C,
−→
H ))

6: ÷e← y − ÷s

7: C← C⊕ »
−→
H÷e

8: // •C Update projection matrix P

9: updates← mean(÷e) · » · B
10: P← P⊕ updates
11: end for

Given a data sample x = {v1, v2, · · · , vF }, where F is the

number of feature values, the projection matrix is generated

as P = {
−→
P 1,

−→
P 2, · · · ,

−→
P F }

D, where D is dimensions and

each
−→
P is drawn from Gaussian distribution. Encoding (•A )

is computed as
−→
H = relu(v1×

−→
P 1+v2×

−→
P 2+· · ·+vF×

−→
P F ).

For the retraining procedure (•B ), encoded hypervectors,
−→
H ,

are compared for similarity with class hypervectors, C, and

normalized with the softmax function. We can then obtain the

per-class error, ÷e, with the ground truth one hot encodings,

y, and normalized similarities, ÷s. The class hypervectors are

updated by binding the encoded hypervector scaled with the

per-class errors and a learning rate, ».

To update our projection matrix (•C ), we generate an

additional hypermatrix, B, with the same dimensions as P. The

B hypermatrix is initialized with He uniform distribution [7],

B ∼ U(−
√

6

F
,+

√

6

F
), where F is the number of features.

This random B matrix can be fixed for subsequent iterations

of retraining. To update the encoder we simply bind to P the

B hypermatrix scaled with the per-class errors averaged and

», the learning rate.

In the back-propagation inspired TrainableHD [8], the pro-

jection matrix is given explicit feedback through class errors.

However, in SEP, the random hypermatrix B presents implicit

feedback to the encoder with only an approximate update

direction and angle through averaged errors, ÷e. A fixed B

matrix pushes updates to be guided by changes in the projec-

tion matrix P. Although convergence of the model, especially

during earlier iterations of training, may be slower than giving

explicit feedback, the updates quickly improve to be on par

with explicit updates.

Another method of implementing the B hypermatrix is

newly generating the random matrix at every iteration, unlike

the DFA method [6]. Because the matrix is not fixed, it is

slightly less sensitive to changes in the projection matrix and

therefore, is slower to converge. However, this method is more

robust and still manages to reach the same performance as the

fixed variant of SEP at the end of training.
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Fig. 2: SEP Accuracy Changes over Iterations

III. EXPERIMENTAL RESULTS

We implement the SEP and IMP procedures on an NVIDIA

GeForce RTX 2080 SUPER GPU with an Intel Core i9-

10900K CPU using the PyTorch framework. We evaluate the

two versions of the SEP algorithm, one with a fixed B (SEP

fixed) and another with a newly generated B at each iteration

(SEP var). For comparison, we chose TrainableHD [8] which

uses a backpropagation-like method to implement a dynamic

encoder. Each model is evaluated based on 50 retraining

iterations.

Figure 2 shows accuracy changes during training and in-

ference on the MNIST dataset for each retraining epoch. As

expected, both fixed and variable versions of SEP start off with

seemingly random updates and in the very initial iterations,

this is even more so with SEP var. However, as iterations

pass, both SEP models quickly find representations that best

fit data features and shows performance comparable to that of

TrainableHD 10K. SEP var and SEP fixed show final inference

accuracies of 96.99% and 96.87% while TrainableHD results

in 94.91% and 97.02% accuracy, respectively. SEP is able

to achieve this through implicit feedback of rough update

directions provided by the error projected matrix.
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