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Abstract—Rapid advancements in artificial intelligence have
given rise to transformative models, profoundly impacting our
lives. These models demand massive volumes of data to operate
effectively, exacerbating the data-transfer bottleneck inherent in
the conventional von-Neumann architecture. Compute-in-memory
(CIM), a novel computing paradigm, tackles these issues by seam-
lessly embedding in-memory search functions, thereby obviating
the need for data transfers. However, existing non-volatile memory
(NVM)-based accelerators are application specific. During the
similarity based associative search operation, they only support
a single, specific distance metric, such as Hamming, Manhattan,
or Euclidean distance in measuring the query against the stored
data, calling for reconfigurable in-memory solutions adaptable
to various applications. To overcome such a limitation, in this
paper, we present FeReX, a reconfigurable associative memory
(AM) that accommodates various distance metrics including
Hamming, Manhattan, and Euclidean distances. Leveraging multi-
bit ferroelectric field-effect transistors (FeFETs) as the proxy
and a hardware-software co-design approach, we introduce a
constrained satisfaction problem (CSP)-based method to auto-
mate AM search input voltage and stored voltage configurations
for different distance based search functions. Device-circuit co-
simulations first validate the effectiveness of the proposed FeReX
methodology for reconfigurable search distance functions. Then,
we benchmark FeReX in the context of k-nearest neighbor (KNN)
and hyperdimensional computing (HDC), which highlights the
robustness of FeReX and demonstrates up to 250× speedup and
10

4 energy savings compared with GPU.

I. INTRODUCTION

The artificial intelligence (AI) models yield a profound influ-

ence over various aspects of our lives. These models, however,

frequently require vast amounts of data for their operation,

thus exacerbating the data-transfer bottleneck inherent in the

traditional von Neumann architecture. Consequently, there is

a growing demand for a departure from the conventional

computing paradigm, one that seamlessly integrates the critical

functionalities of emerging AI models within the memory itself.

This shift is not only desirable but also essential to keep pace

with the demands of modern computing.

Compute-in-memory (CIM) has emerged as an alternative

computing paradigm that integrates the separated comput-

ing unit and memory that exists in Von Neuman machine

altogether [1]–[5]. Several CIM primitives, i.e., associative

memories (AMs) that support various distance metric compu-

tations between input and stored vectors have demonstrated

their potential for accelerating similarity based inferences in

novel machine learning algorithms [6]–[12]. Hamming distance

(HD)-based CIM design has been originally proposed [13] for

memory-augmented neural networks (MANN), but it suffers

from non-negligible classification accuracy degradation. Re-

cently, CIM design that implements Manhattan distance for

MANN classification has been experimentally verified [14],

and CIM design realizing Euclidean distance for hyperdimen-

sional computing (HDC) has been demonstrated at the device

level [15]. These CIM based AM designs aim to address the

non-negligible algorithmic accuracy degradation with complex

distance functions used in a certain application. However,

existing non-volatile memory (NVM)-based AMs are limited

to a specific classification task, as one AM design can only

support a single distance computation, such as Hamming [13],

[16], [17], Manhattan [14], Euclidean [15], and sigmoid [18]. A

CIM search engine that can achieve a reconfigurable distance

function is highly desirable. Based on the nature of various

applications, different distance functions may be used during

the similarity based search, and, within a certain application,

several distance functions may be exploited for various datasets.

In this paper, we propose FeReX, a reconfigurable CIM-

based AM for Hamming, Manhattan, and Euclidean distance

searches, utilizing multi-bit ferroelectric field-effect transistor

(FeFET) devices as the proxy. We propose a hardware-software

co-design scheme to efficiently realize similarity searches be-

tween a query and stored vectors in terms of various distance

metrics. This involves constructing a matrix of target distance

values between the query and stored vectors based on the

given distance function. To accommodate this target matrix,

we formulate a constrained satisfaction problem (CSP), which

incorporates the FeFET device and crossbar constraints related

to the output currents, input voltages and stored threshold

voltages. By solving the CSP using backtracking and AC-3

algorithm, we find the optimal search input and stored voltage

configurations for the input query and stored vectors that align

the CSP formulation with the target distance matrix. In this

sense, FeReX can be readily configured to support a range

of distance functions in an automated way. FeReX incorpo-

rates a Loser-Take-All (LTA) circuit structure, enabling it to

support nearest neighbor search functionality. Our extensive
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Fig. 1. (a) 1FeFET1R structure. (b) multi-level I-V curve of 1FeFET1R, where
Vt0, Vt1, Vt2 represent different Vth stored in the FeFET, Vs0, Vs1, Vs2

represent different search voltage (i.e, Vgs) applied to the FeFET, and two
different Vds result in two level of ON currents.

performance assessment in the realms of k-nearest neighbor

(KNN) and HDC applications underscores the robustness and

efficacy of our design approach, highlighting its resilience and

efficiency. Notably, FeReX achieves up to 250× speedup and

104 energy savings compared to GPU implementations. To best

of our knowledge, this work represents the first reconfigurable

distance search implementation within NVM-based AM.

II. BACKGROUND

In this Sec., we review the FeFET characteristics that are

exploited within the FeReX. Then, recent AM designs for NN

search are briefly summarized.

A. FeFET Characteristics

Excellent CMOS compatibility, outstanding scalability, and

superior energy efficiency [19] of HfO2 ferroelectric materials

elucidate the competitiveness of Ferroelectric FET (FeFET)

among other NVMs. Based on the conventional CMOS tran-

sistor, a FeFET is made with ferroelectric materials integrated

into the CMOS gate stack. The stored value is represented by

the threshold voltage (Vth) of a FeFET, and can be altered

by applying a positive or negative voltage pulse at the device

gate, which in turn changes the polarization of the Fe layer.

Specifically, the value of Vth is determined by the duration and

magnitude of the applied voltage pulse [13]. For instance, if

the duration of a given positive voltage pulse increases, the

Vth will shift lower accordingly.

Recently, Soliman et al. propose a cell that integrates a

resistor with a single FeFET [20], as shown in Fig 1(a). It

is demonstrated in [20], [21] that by connecting a large resistor

at the source (or equivalently, drain) of the FeFET, the ON state

current Ids is significantly reduced and thus is independent of

Vth variation [20]. Saito et al. further demonstrate a back-end-

of-line (BEOL) 1FeFET1R structure, incurring no additional

area penalty with an MΩ resistor integrated with a FeFET

[22]. Given a Vds and resistance R, The conducting current

of a FeFET can be approximated as Min{Isat,Vds/R} due to

the fact that it is possible when Ids = Vds/R under a given Vgs,

the FeFET operates in the linear region. In this work, all Vds

values are integer multiples of the minimum Vds value, ensuring

that all Ids values are interger multiples of the minimum Ids

TABLE I
EXISTING AMS WITH DIFFERENT DISTANCE FUNCTIONS

Design NVM Cell structure MLC Distance function

Nat. Ele. [23] PCM 1PCM No Hamming
IEDM’20 [24] FeFET 2FeFET-1T Yes Best-match
TED’21 [14] RRAM 2RRAM Yes Manhattan
TC’21 [18] FeFET 2FeFET Yes Sigmoid
SR’22 [15] FeFET 2FeFET Yes Euclidean

FeReX (This work) FeFET 1FeFET-1R Yes HD/L1/L2
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Fig. 2. (a) FeReX AM overview. (b) LTA and (c) Interface circuit.

value. Fig. 1(b) illustrates a multi-level cell (MLC) 1FeFET1R

characteristics. When Vgs > Vth, various Vth and Vgs values

can be explored, where Ids is approximately equivalent to

Vds/R, while Ids approaches 0 if Vgs < Vth.

B. Existing AM Designs

AM has been deployed in a variety of scenarios such as

HDC [23], [25], [26], MANN [14], few-shot learning [18], and

so on. Table I summarizes existing AMs based on single-level

cell/multi-level cell (SLC/MLC) NVMs with different distance

functions. A matching-based MLC 2FeFET-1T AM has been

fabricated in [24]. To further achieve algorithmic level accuracy,

AMs with intricate distance functions utilizing MLC cells have

been proposed including sigmoid and Euclidean functions [15],

[18], etc. However, these efforts are typically designed for a

fixed distance function. In this work, FeReX is able to support

multiple distance functions as shown in Tab. I. Below we

elaborate on the designed AM and its peripherals first. Then,

the proposed encoding scheme for selecting the search input

voltages and programming the Vth voltages is elucidated in

Sec. III-B.

III. FEREX: RECONFIGURABLE IN-MEMORY SEARCH

ENGINE

A. FeReX Circuit Design

In this subsection, we briefly describe FeReX, the FeFET-

based AM design along with its distance sensing peripherals.

The peripherals for the array includes the level shifters for high

write voltages, column switch matrix for selecting columns and

input decoder (or digital-to-analog converter) [27]. Fig. 2 shows

the detailed circuit schematic of the proposed FeReX. FeReX

consists of a 1FeFET1R based crossbar array with the drain

voltage selector and the interface sensing circuit blocks for each

row. The loser-take-all (LTA) circuitry compares the currents
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Fig. 3. Workflow of FeReX’s encoding scheme.

from array rows to perform nearest neighbor search operation.

The search lines (SLs) and drain lines (DLs) are shared by the

FeFETs within the same column, and the source lines (ScLs)

link the FeFETs within the same row, as shown in Fig. 2(a).

During the write/erase phase, the MUX of interface circuit

selects row lines (RLs), and VScL = VRL. In this configuration,

the RL voltage of the selected row is 0V, while the RL voltage

of the unselected rows is raised to half of Vwrite/Verase.

Such writing inhibition scheme prevents write disturbance [28].

During the search phase, search voltages are applied to FeFET

gates through SLs, and the MUX in the interface circuit selects

the op-amp, setting all voltages on ScLs to Vs. As can be

seen from Fig. 1, the FeFET’s ON state current flows from

the DL to the ScL only when the applied search voltage

Vsearch at the gate exceeds the stored threshold voltage Vth.

Otherwise, the FeFET remains in the cut-off state. The ON

current ION through the FeFET is determined by the voltage

drain-source voltage Vds, as discussed in Sec. II. Given that

all FeFETs sharing the same DL experience the same Vds,

the ON currents ION through the activated FeFETs within

the same column are identical. The currents flowing through

FeFETs in the same row are aggregated at ScL and sensed by

interface circuit. The op-amps of all rows are used to inhibit

ScL voltage fluctuation, as the change in Vds of FeFETs will

alter the ION accordingly, resulting in inaccurate LTA sensing.

LTA circuit compares the row currents and indicates the rwo

with the minimal current. The operation of current domain LTA

circuitry is similar to winner-take-all (WTA), which has been

utilized for NN detection as well. Readers interested in detailed

explanations can refer to [29].

B. FeReX Encoding Algorithm

Fig. 3 depicts the overview of our proposed encoding algo-

rithm that finds the search and stored voltage configurations

for FeReX array given a distance function. The target distance

values between the query and stored vectors are first con-

structed as a function table matrix. Then a CSP incorporating

the FeFET constraints is formulated to determine whether the

target distance matrix can be achieved using FeReX array.

The query and stored voltage configurations are encoded by

addressing the CSP to align with the target distance matrix.

Unlike conventional AM designs that consist of a fixed

number of NVM devices per cell, FeReX flexibly configures

the number of FeFETs in each AM cell to represent the

data vectors. The distance metrics can be represented by the

Distance Matrix (DM). Within the matrix, columns stand for

stored values, and rows correspond to various search values,

with each element in the matrix denoting the distance between

a stored value and a search value. Fig. 4(a) shows the DM

corresponding to a 2-bit Hamming distance, i.e., the distance

between the input search vector ‘00’ and store vector ‘11’ is 2.

Fig. 4(b) illustrates the search and stored data encoding to the

FeReX circuit. The stored encoding is represented by Vth value

in each FeFET device, while the search encoding consists of

the FeFET’s Vds and Vgs voltages. Vds determines the current

flowing through the FeFET when the FeFET is activated as

shown in Fig. 1(b). The total current flowing through a cell

of FeReX represents the distance value between the stored

value and input value, i.e., the DM element value. In order

to implement the DM using the FeReX cell, we need to figure

out the search and stored encoding configuration within a cell.

Without loss of generality, the number of FeFETs per cell

is k, the DM element value at row sch and column sto is

denoted as Isch,sto, and the current flowing through the FeFET

i under search sch and stored sto value condition is Isch,sto,i.
Implementing the DM based on a FeReX cell involves solving

a constrained satisfaction problem (CSP) with three constraints.

Fig. 4(c) illustrates the representation of a DM element

Isch,sto ‘2’ by the currents of a set of FeFETs DMCurs[sch,

sto] (three FeFETs are used in this example). The implementa-

tion decomposes the element Isch,sto into decomposed values,

i.e., Isch,sto =
∑k

i=1
Isch,sto,i, where Isch,sto,i=‘0’ indicates

FeFET i is at OFF-state, and Isch,sto,i=‘1/2’ indicates that

FeFET i is activated with multi-level Vdss as shown in Fig. 1(b).

Since the current of FeFET i under stored sto and search sch
condition, i.e., Isch,sto,i represents the value between ’0’ and

the maximal DM value, and the number of possible Isch,sto,i
values is limited per FeFET’s operating condition, the possible

FeFET currents Isch,sto,i representing DM element Isch,sto are

constrained, forming the set DMCurs[sch, sto]. We refer to

this constraint as the first constraint.

Secondly, considering that the FeFET i under search sch
condition should either conduct the identical ON current, or

be at OFF state, the current of this FeFET under different

sto conditions should be the same or 0, i.e., Isch,stoa,i =
Isch,stob,i or 0, ∀a, b ∈ sto. For example, as shown in Fig. 4(d),

ISearch11,Store00,1 must be equal to ISearch11,Store01,1 or 0.

We refer to this as the second constraint.

The third constraint arises from the multi-level nature of

FeFETs and can be expressed as follows: The FeFET only

turns ON when its Vgs > Vth, therefore, if applying the same

search sch but different store sto conditions results in different

conducting states,i.e., Isch,stoa,i ̸= 0 and Isch,stob,i = 0, then

the voltages corresponding to the search and store conditions

must satisfy: Vstoa < Vsch < Vstob . This stored threshold volt-

age relation must be satisfied when applying different search

sch′ condition, i.e., Isch′,stoa,i g Isch′,stob,i. For example,

the DMcurs values for the 2 FeFET under Search11Store00,

Search11Store01, Search00Store00, Search00Store01 as

shown in Fig. 4(e) results in a conflict, i.e., Vsearch,00 <
Vsearch,00. We refer to this as the third constraint.

The implemented CSP with above three constraints has many

classical solution methods. Here, we choose Backtracking [30]
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Fig. 4. (a) DM of 2-bit Hamming Distance. (b) Encoding with FeReX circuit. The stored encoding corresponds to programmed Vth values, while the search
encoding corresponds to FeFET’s Vds and Vgs voltages. (c) DM element decomposition process based on the number of FeFETs in an AM cell. (d) and (e)
The two constraint examples, where (d) for the same search voltage, the current of an FeFET must either be identical or 0, and (e) if FeFETSearch11,Store00,2

is ON, FeFETSearch11,Store01,2 is OFF, a conflict occurs if FeFETSearch00,Store00,2 is OFF and FeFETSearch00,Store01,2 is ON.

INPUT: The M × N Distance Matrix DM to be

implemented by each cell, which includes K FeFETs,

with a current range CR = [C1, C2, · · ·Cn] allowed to

flow through each FeFET

OUTPUT: Feasible Region or False

for i from 0 to M-1 do

for j from 0 to N-1 do
DMCurs[i, j]← DecomposeDM(K, DM[i, j], CR)

end

Searchlines[i] ← Backtracking(DMCurs[i])
end

FeasibleRegion ← AC3(Searchlines)

if Feasible Region not exist then
return False

end

return Feasible Region

Algorithm 1: FeReX Feasibility Detection Algorithm

and AC3 [31], [32] to determine whether a set feasible FeFET

currents under all sch and sto conditions exists, as illustrated

in Alg. 1. The initial current set DMCurs is enumerated per

the first constraint, and Backtracking and AC3 are utilized

to effectively address the second and the third constraints,

respectively. If the objective is to obtain all possible current

sets, AC3 can be replaced by backtracking. The output of the

algorithm is the Feasible Region, which consists of the filtered

Fig. 5. Encoding Feasible Region from algorithm. 1 to the store/search voltage
configurations for a single FeFET device.

sets DMCurs satisfying the three constraints.

Fig. 5 demonstrates the post processing of the output Feasi-

ble Region to obtain all the possible search and stored voltage

encoding configurations for a single FeFET. For a feasible set

DMCurs, during the stored sto encoding process, the numbers

of ON states in all sto columns are counted and sorted. The sto
columns with higher ranks correspond to lower Vth voltages.

During the search sch encoding process, similarly, the numbers

of OFF states in all sch rows are counted and sorted. The sch
rows with higher ranks correspond to lower Vsearch voltages.

The Vds encoding corresponds to non-zero values in DMCurs.

Tab. II summarizes the encoding results for 2-bit Hamming

Distance with the proposed FeReX circuit. FeReX iteratively

increases the number of FeFETs within a cell, and determines

that a 3FeFET3R cell structure is the optimal solution for
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TABLE II
3FEFET3R 2BIT HAMMING DISTANCE ENCODING TABLE

Store Encoding Search Encoding

Vth,FET1
Vth,FET2

Vth,FET3
Vg,FET1 Vg,FET2 Vg,FET3 Vds,FET1

Vds,FET2
Vds,FET3

”00” V t2 V t2 V t0 V s2 V s2 V s0 V V V

”01” V t2 V t0 V t2 V s1 V s0 V s2 2V V V

”10” V t0 V t2 V t2 V s0 V s1 V s2 V 2V V

”11” V t1 V t1 V t1 V s1 V s1 V s1 V V 2V

Fig. 6. Search energy and delay of FeReX: (a) Energy per bit and (b) delay
with varying number of rows and dimensions.

the DM of 2-bit Hamming Distance. The FeFET is ON only

if Vti < Vsj , where i < j, i, j ∈ {0, 1, 2}. This encoding

scheme has also been extended to other distance functions such

as multi-bit Manhattan and multi-bit Euclidean. We leverage

encoding of multi-bit Manhattan and multi-bit Euclidean in

Sec. IV-B for benchmarking.

IV. EVALUATION & BENCHMARKING

In this section, we evaluate the FeReX using Cadence Virtu-

oso in terms of accuracy, robustness, and power consumption.

The Preisach FeFET model [33] was adopted for FeFETs, while

the 45nm PTM model [34] was used for all MOSFETs. Wiring

parasitics for the 45nm technology node were extracted from

DESTINY [35]. The operational amplifier (op-amp) was based

on the design from [36] and scaled down to 45nm technology.

A. Array Evaluation

Fig. 6(a) demonstrates that increasing the number of rows in

the FeReX can reduce the average energy consumption per bit,

since the power consumption of LTA grows insignificantly as

the number of rows increases. The search delay consists of two

parts. About 60% of the total delay comes from ScL voltage

stabilization associated with the op-amp, which is constrained

by the op-amp’s slew rate. The remaining delay associates

with the LTA circuitry. As shown in Fig. 6(b), the total delay

increases gradually as the FeReX array scales.

To further validate the effectiveness of the proposed FeReX,

we conduct Monte Carlo (MC) simulation in the context of

KNN, by taking device-to-device variation into account. Then,

we benchmark FeReX with the vector-symbolic architecture

(VSA) framework [37], also known as the hyperdimensional

computing (HDC). Fig. 7 illustrates the MC simulations of

FeReX with 100 runs. The device-to-device variation for the

FeFET threshold voltage was set to 54mV [20], and the

resistance variation for the 1FeFET1R structure was extracted

Fig. 7. Monte Carlo simulations considering device-to-device variations:
FeReX achieves 90% accuracy in the worst search case of KNN workloads.

TABLE III
DATASETS (n: FEATURE SIZE, K : NUMBER OF CLASSES)

Dataset n K

Train
Size

Test
Size Description

ISOLET 617 26 6,238 1,559 Voice Recognition [38]
UCIHAR 561 12 6,213 1,554 Physical Activity Monitoring [39]
MNIST 784 10 60,000 10,000 Handwritten Recongition [40]

from fabricated data [22], set to 8%. The FeReX array level

results demonstrate 90% search accuracy when comparing

the stored vectors with Hamming distances 5 and 6 to the

query, representing the most challenging search casesof KNN

when executing MNIST. This performance results in only a

0.6% accuracy degradation compared to the software-based

implementation.

B. Application Benchmarking

we briefly discuss the advantages of HDC benchmarking

and its algorithmic flow. In HDC, low dimensional features

are initially projected to high dimensional representations ran-

domly, enabling holographicness across the high dimensional

feature vectors. HDC is pre-defined through a set of transparent

operations, and due to its holographicness, it has been reported

to be robust against hardware noise [41].

The algorithmic flow of HDC can be categorized into three

steps: first, data is projected to high dimension, as mentioned

above. Second, single-pass training is performed, where the

encoded high-dimensional vectors of a certain class are aggre-

gated. Iterative training are conducted for higher algorithmic

accuracy. Finally, during the inference phase of classification,

the predicted class vector that has closest distance to the query

vector is output using the configured FeReX distance function.

Here, we benchmark the proposed FeReX in the context of

HDC with Nvidia 3090 GPU [42] over three large-scale datasets

given in Tab. III. By extracting the latency of the inference oper-

ations through Pytorch Profiler package, the energy is obtained

with the Nvidia System Management Interface. Fig. 8(a) shows

the accuracy of the reconfigurable search engine. Conventional

CIM-based HDC accelerator implements Hamming distance,
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(a) (b) (c)

Fig. 8. (a) Classification accuracy with different FeReX distance metrics. (b) Computation speedup and (c) energy efficiency improvement over GPU
implementation.

yet different distance metrics may result in better accuracy

across different datasets. Fig. 8(b) and (c) show the efficiency

of the proposed FeReX, showcasing up to 250x speedup and

104 energy improvement over the GPU implementation.

V. CONCLUSION

In this paper, we propose FeReX, a FeFET-based AM for

reconfigurable distance NN search. Based on derived FeFET

device and circuit constraints, FeReX filters and encodes fea-

sible search and stored voltage configurations to implement a

distance matrix of the target distance function by addressing

the constraint satisfaction problem. Evaluations at array level

validate the functionality and efficiency of the proposed FeReX,

and benchmarking results illustrate the improvement of FeReX

implementation over GPU. To the best of our knowledge, this

is the first NVM based AM with reconfigurable search distance

function, which will pave the way towards reconfigurable AM

designs for broader ranges of emerging applications.
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