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Abstract—The exponential growth of data across various domains of
human society necessitates the rapid and efficient data processing. In many
contemporary data-intensive applications, similarity computation (SC) is
one of the most fundamental and indispensable operations. In recent
years, In-memory computing (IMC) architectures have been designed to
accelerate SC by reducing data movement costs, however, they encounter
challenges with signal domain conversion, variation sensitivity, and limited
precision. This paper proposes a ferroelectric FET (FeFET) based time-
domain (TD) associative memory (AM) for energy efficient SC. Such TD
design can convert its output (i.e., time interval) to digits with relatively
simple sensing circuitry thus saves large amount of area and energy com-
pared with conventional IMC designs that process analog voltage/current
signals. The variable-capacitance (VC) delay chain structure in our design
supports quantitative SC and enhances robustness against variations.
Furthermore, by exploiting multi-domain ferroelctric FET (FeFET), our
design is capable of performing SC on vectors with multi-bit element,
enabling support for higher-precision algorithms. Simulation results show
that the proposed TD-AM achieves 13.8x/1.47x energy saving of our
design compared to CMOS/NVM based TD-IMC designs. Additionally,
our design exhibits good robustness in monte carlo simulation with
variation extracted from experimental measurements. Investigation on
precision of hyperdimensional computing (HDC) show that higher element
precision reduces the size of HDC model when considering to achieve same
accuracy, indicating an improved efficiency. Benchmarkings against GPU
demonstrate in general 2/3 orders of magnitude speedup/energy efficiency
improvement of our design. Our proposed multi-bit TD-AM promises
energy-efficient quantitative SC for diverse intensive data processing
application, especially in energy-constrained scenarios.

I. INTRODUCTION

Similarity computation (SC) has become an essential operation
in modern applications such as network routing [1], caches [2],
database [3], [4], bioinformatics [5], and, notably, in the field of
machine learning (ML) [6]-[9]. This operation typically involves
comparing one vector to another, measuring the differences between
vectors using various distance metrics, or detecting the vector that
is closest to the query among a set of vectors. Many efforts have
been dedicated to designing in-memory computing (IMC) circuits
and architectures for SC acceleration [10]-[12], as IMC significantly
alleviates the costly data movement in conventional Von Neumann
architectures. For example, some designs employ crossbars that per-
form multiplication-and-accumulation (MAC) operations to measure
cosine distance [6], [12], while others utilize binary/ternary content
addressable memories (B/TCAMs) for query searches [11], [13]-[15].
However, several issues hinder these technical routes from achieving
higher efficiency and accuracy: 1) most of IMC designs perform
computation in voltage or current domain, necessitating expensive
peripherals (e.g. ADCs) to convert the signals between analog and
digital domains, and incurring relatively high static power consumption
due to DC current in computing phase; 2) analog signals are more
vulnerable to variations, leading to trade-off between precision and ef-
ficiency; 3) in most Al applications, quantitative SC is required, while

many accelerator designs (e.g. CAMs) can only support identifying
full match or mismatches within a limited number of cells.

Time-domain (TD) computing is emerging as a promising al-
ternative computing paradigm to address the challenges mentioned
above [16]. In TD computing, computation results are represented as
cumulative signal propagation delays generated through a series of
cascading delay stages. The propagation delay of each delay stage
is modulated by the computing output, according to the basic delay
formula tgeiay = RC, the computing output can be manifested as
either a change in capacitance or a change in resistance. Compared
to conventional analog IMC designs, TD-IMCs are mostly digital and
are thus more compatible to advanced process technologies and more
robust against variations. Moreover, time-digital conversions are more
energy efficient than analog-digital conversions. Additionally, TD-
IMCs can easily perform quantitative SC, making them an attractive
solution for energy-constrained SC application scenarios, including
edge Al energy harvesting device and implantable device.

Many TD-IMC designs have been proposed, which employ SRAM
based IMC cell as their logic cells [17]-[20], however, the large SRAM
cell size and the need for additional delay circuity (e.g. buffer or
inverter) result in a loss of advantages in terms of area cost when
compared with other IMC designs. In recent years, breakthroughs
in many non-volatile memory (NVM) technologies have paved the
way for ultra-compact and efficient IMC cell and array designs.
Several previous studies explored the integration of NVMs into TD-
IMC designs, for example, [21] proposed a TD-IMC design using
spintronics device to accelerate MAC in neural networks, [22] utilized
ferroelectric FET (FeFET) for similar purposes, [23] proposed RRAM
based TD-CAM, and [24] presented a FeFET based TD-IMC design
capable of computing both MAC and hamming distance. However, it
is noteworthy that these TD-IMC works are still in the early stages of
development, primarily due to the lack of comprehensive robustness
analysis and algorithm/system-level benchmarking, furthermore, there
is ample room for optimization to fully exploit the capabilities of
NVMs in terms of storage density and other potential benefits.

To address these issues, we propose a FeFET-based TD associative
memory (AM) that performs quantitative SC based on Hamming dis-
tance for energy-constrained Al circumstance. Unlike prior works [21],
[22] that use IMC cells as variable resistors, our design has a novel
variable-capacitance (VC) delay chain structure, in which IMC cell
serves as a control unit for the delay stage, rather than being directly
placed in the signal propagation path. This design not only improves
the robustness against NVM variations but also maintains a strict linear
relationship between delay and the computing result, thus enabling
accurate and quantitative SC. We also propose a 2-step computation
principle for our TD-AM to maximizes hardware utilization and reduce
computation latency. Furthermore, by leveraging multi-domain FeFET
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Fig. 1. (a) Physical structure of FeFET. (b) Write pulse for multi-state FeFET

and the corresponding polarization in the FE layer. (c) Ip — Vg curves from

experimental device-to-device measurement on 60 devices [25]. (d) Ip — V&

curves of FeFET simulation model [26].

device, we propose a 2-FeFET cell design that can support multi-
level storage and computing, further enhancing efficiency and enabling
higher-precision data processing.

We evaluate the performance of our design through SPICE sim-
ulations, the results demonstrate that our multi-bit TD-AM design
achieves 13.84x higher energy efficiency compared to other TD-IMC
designs. we also conducted Monte Carlo analysis using variation data
measured from FeFET prototype chips, demonstrating the robustness
of our design against variations. Moreover, we conducted application
benchmarking in emerging brain-inspired hyperdimensional comput-
ing (HDC) tasks, the data precision investigation on HDC shows
reduced dimensional can be achieved by our multi-bit TD-AM design,
and benchmarking results against GPU reveal 2 and 3 orders of
magnitude improvement on speed and energy efficiency, respectively.

The rest of this paper is organized as follows: Sec. II provides the
basics and a brief review of prior works related to this work. Sec. III
introduces the proposed FeFET-based multi-bit TD-AM cell and array
design. Sec. IV presents the experimental results of the proposed
design and benchmarks it for HDC applications. Sec. V concludes
the paper.

II. BACKGROUND
A. FeFET basics

FeFET has gradually emerged as an attractive candidate device in
IMC research, thanks to its promising characteristics, including non-
volatility, CMOS compatibility, and high ON/OFF ratio. As illustrated
in Fig. 1(a), the structure of FeFET resembles that of a MOSFET,
with the addition of a ferroelectric (FE) layer on its gate, the coupling
between the FE capacitance Crr and MOSFET gate capacitance Cg
provides FeFET with tunable hysteresis, resulting in non-volatility. The
development of higk-x FE materials (e.g. HfO2) has further facilitated
the integration of FeFET into advanced technology nodes, such as
28nm bulk [27] and 22nm FDSOI [28]. Information is written into
FeFET by applying different write voltages, Vs, resulting in different
threshold voltage Vrg, as illustrated in Fig. 1(b). Experimental
validation has shown that FeFETs can be programmed to exhibit
four distinct states [25], the Ip — Vi curves from device-to-device
measurement on 60 devices are shown in Fig. 1(c). To capture the non-
volatility and multi-state characteristics, an experimentally calibrated
multi-domain Preisach FeFET simulation model was proposed by [26],
and the simulated /p — Vi curves are shown in Fig. 1(d).

B. IMC Designs for Similarity Computation

Due to its widespread utilization in numerous applications, con-
siderable research efforts have been directed towards designing IMC
circuits and architectures for accelerating similarity computation. A
typical representative is CAM [29], which performs parallel associative
search between the vectors stored in the array and the input query.
Recently, leveraging emerging NVM has significantly improved the
density and efficiency of CAMs compared to conventional 16-T
TCAM, examples include TCAMs based on 2T-2R cell [30], 1T-IMTJ
cell [31], and 2-FeFET cell [32], and such CAM designs have garnered
increasing interest due to their demonstrated utility in pattern search
during neural network inference phase [15]. FeFET based designs have
further evolved to support multi-bit encoding and search [11], [25],
[33], [34]. However, these CAMs only identify full match or cases
with very few mismatch cells, i.e., do not support quantitative SC,
limiting their implementation in more complex application such as
deep learning, where full match are rare due to statistical properties.

Some other works designed crossbar arrays for quantitative and
parallel SC, for instance, [25] presented a 1-FeFET crossbar based
multi-bit CAM design capable of computing the Hamming distances
between the query and stored vectors by sensing the mismatch
current. However, the current-domain computation leads to high static
power, and the cost of sensing unit (i.e., ADC) was not discussed.
COSIME [12] employs translinear circuit and winner-take-all circuits
with a crossbar, enabling the identification of the vector with the
largest cosine similarity to the input query. However like other
crossbar-based designs, it inevitably incurs high static power con-
sumption. Furthermore, this design does not output the exact similarity
result, which is crucial for parameter update in some machine learning
algorithms [35].

C. Motivation of TD-IMC and Related Works

The concept of TD computation was first introduced by [16], to
address the challenges encountered by hybrid signal system on chips
(SoCs), including: 1) high energy and area cost associated with signal
conversion; 2) difficulties in analog circuit design automation and
fabrication using advanced technology. TD computation simplifies
A/D interface by employing time-digital converter (TDC), and replaces
complex voltage/current-domain analog computation cores with TD
computing stages that highly compatible to digital circuits. Due to
space limitations, for further details, please refer to [16]. As IMC has
gained research interests in recent years, some works have attempted to
combine these two technical routes for more efficient computing. [17]
proposed an SRAM-based TD-IMC design capable of binary MAC
for Binary Neural Network (BNN) acceleration, multiplications are
executed in TD stages, and summation is achieved by cascading TD
stages. Another SRAM-based TD-IMC design, TIMAQ [20] extended
support for arbitrary data precision and improved the density of TD
stages. However, SRAM still consumes significant area and energy,
making it inefficient.

Several recent works have explored the use of NVMs for denser
and more efficient TD-IMC. [21] presents a spintronics memory-
based design for neural network acceleration, featuring a TD-IMC
multi-addend adder. However, the D Flip-Flop based TDC design in
this work is much more complex than conventional TDCs due to
the adoption of parallel TD units connections rather than cascading,
resulting in non-linear time outputs. [22] proposed a FeFET based
compact design for MAC operation, the delay stages in this design is
similar to [20] but contains only 1 FeFET and 2 MOS by leveraging
unique characteristics of FeFET. However, directly connecting FeFETs
into the pull-down path and using them as tunable resistors amplify
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the impact of FeFET variations, as a slight error on FeFET Vg
leads to significant resistance change. Furthermore, due to the large
ON/OFF ratio of FeFET, FeFETs in OFF state can fully interrupt
signal propagation, resulting in computation failures. [24] partially
addressing the above issues by designing a variable capacitance
delay chain, and this design can be configured to support MAC
and Hamming distance based similarity computation. However, the
IMC cell in this work only supports binary operations and does not
fully utilize the multi-domain FeFET characteristics. In this paper, we
present a FeFET-based TD-AM which can support multi-bit similarity
computation based on hamming distance.

III. MULTI-BIT TD-AM DESIGN
A. Multi-Bit IMC Cell

The structure of our proposed multi-bit IMC cell is illustrated in
Fig. 2(a), it consists of 2 FeFETs, referred to as F'4 and F'p, connected
in parallel, along with a PMOS for precharging. The gates of the
FeFETs are connected to the Search Lines (SLs), and the output of
the computation is reflected by the drains of FeFETs, referred to as
Match Node (MN). The cell operates in two phases: precharge and
compute. In the precharge phase, the PMOS is turned on, charging the
MN voltage Vv to Vpp. In the compute phase, voltages are applied
on SL4 and SLp according to the input operand, the Vi n either
remains at Vpp or drops to GN D, depending on the computing result.
We illustrate the working principle of this cell using a 2-bit encoding
example. For F4, we define four threshold voltage Vo ~ Vrus to
store the 4 values of a 2-bit number, i.e., ‘0°, ‘1’, ‘2’, *3’, as shown in
Fig. 2(b), with corresponding SL voltages are Vsro ~ Vsrs. For Fiz,
the stored and input values represented by Vg and Vsy, are reversed
compared to F4, as shown in Fig. 2(c). In this configuration, when
the input value and the stored value are equal (indicating a match),
both F'y and Fp remains non-conductive and MN remains at Vpp,
otherwise, F'a/Fp will be turned on, and discharges MN to GN D if
the input value is larger/smaller than the stored value. Examples of a
match (input ‘1’) and mismatches (input ‘0’ and input ‘2’) on a cell
storing ‘1’ are provided in Fig. 2(d-f).
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Fig. 3. (a) Structure of the proposed TD-AM. Delay chain status and pulse

propagation in (b) step I and (c) step II of the proposed 2-step operation scheme,
in which even and odd stages are processed, respectively.

B. TD-AM array

Building upon the 2-FeFET multi-bit IMC cell described above,
we have designed the TD-AM array as depicted in Fig. 3(a). The
fundamental building block of this array is a delay stage, which
compare its stored multi-bit number D; ; with an input multi-bit
number g;, the propagation delay of delay stage is modulated by the
comparison result, if it is a match (i.e., D; ; = g;), the delay is short;
otherwise it incurs a long delay. N stages are cascaded in rows to
form a delay chain. Therefore, the accumulated delay of a delay chain
represents the similarity between the input vector () and a stored vector
D;, both consist of multi-bit elements. The input vector is shared by all
delay chains in the TD-AM array through vertical search lines (SLs),
enabling the parallel SC between Q) and a set of vectors D1 ~ Djy.

The structure of the delay stage can be seen in Fig. 3(b), it comprises
an inverter, a load capacitor (C), a PMOS and a 2-FeFET IMC cell as
described in Sec. III-A, the MN of the IMC cell connects to the PMOS
gate. If the 2FeFET cell outputs a mismatch, MN will be discharged to
GND, turning the PMOS on, and the load capacitance will be added to
the inverter’s output node, introducing an additional signal propagation
delay dc in this stage. In the case of a match, the PMOS will be off,
blocking the load capacitor, and the propagation delay of this stage
will be the inverter’s intrinsic delay drnv .

However, because inverter flip the edge of the input signal, for the
inverter-based delay stage, the input signals of two adjacent stages
have different edges, resulting in different propagation delays due to
the speed mismatch of PMOS and NMOS. Moreover, the output pulse
of a mismatched delay stage is not steep enough, and directly using
this pulse as the input pulse of the next stage will introduce an error its
its delay, this error is exacerbated at multiple consecutive mismatched
stages. A straightforward solution is to replace the inverters with
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Fig. 4. Transient waveforms of (a) rising/(b) falling edge of output pulse with
varying number of mismatch stages. (c) The total delay is linearly dependent
on the number of mismatch stages.

buffers, but this would introduce additional area and energy costs. To
address these issues, we propose a 2-step operation scheme. In step
I, as shown in Fig. 3(a), we process rising edge of the input pulse,
all odd stages are deactivated by assigning both SL4 and SLp of
all odd stages to Vsro, consequently, all FeFETs in these stages are
non-conductive, and the MN voltage of these stages remains Vpp,
equivalent to a match that incurs no additional delay. For the even
stages, if a stage mismatches (e.g., stage 2 in our example shown in
Fig. 3(b)), the smoothly changing output pulse can be sharpened by
the next odd stage (i.e., an inverter), therefore avoids delay error. The
rising edge delay contributed by even stages is given by

d'rising,even - Ntot . dINV + Neven,mis . dC

where Nio: is the total number of stages in a delay chain, and
Neven,mis is the number of mismatched even stages. Similarly, the
falling edge is processed in step II, the falling edge delay is contributed
by odd stages while all even stages are disabled. The total delay, i.e.,
the similarity computation result SC(Q, D;), is obtained by adding the
rising edge and falling edge delays together.

dtot = drising,even + dfalling,odd =2. Ntot : dINV + Nmis . dC

IV. EVALUATION

In this section, we evaluate and validate our proposed design at both
circuit level and system level, then we compare the evaluation results
with other IMC/TD-IMC works which can perform SC.

A. Circuit-Level Evaluation

We conducted SPICE simulations on the proposed TD-AM using
Cadence Spectre Simulator. We employed the compact multi-domain
FeFET model proposed by [26], while MOSFET, capacitor and
other devices models were obtained from the 40nm UMC processing
development kit (PDK). The load capacitor in each stage was set
to 6fF unless explicitly mentioned. The FeFET threshold voltages
Vrro ~ Vras shown in Fig. 2(b)(c) are selected as 0.2V, 0.6V, 1.0V
and 1.4V. We adopted the write method from [36] to program these
Vru values. The search line voltages Vsro ~ Vsr3 were set to OV,
0.4V, 0.8V and 1.2V.

To verify the relationship between delay and SC result, we con-
structed a 32-stage delay chain and fed the input vectors with varying
similarity (ranging from O to 32) to the stored one. The waveforms of
the input pulse and the delayed output pulses are shown in Fig. 4(a)(b),
it is evident that the greater the number of mismatched even/odd stages
is, the longer the rising/falling edge of the output pulse is delayed.
Furthermore, as shown in Fig. 4(c), the total delay is linearly related to
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Fig. 5. (a) Energy and (b) delay of the proposed TD-AM array with different
array sizes and different load capacitor values. (c) Energy and (c) latency of
delay chains with 32/64/128 stages under supply voltage scaling.

the number of mismatched stages, thus demonstrating that our design
supports quantitative SC.

We evaluated the performance of our design by measuring the
energy and delays for different load capacitor values (ranging from 6fF
to 1280fF) and different numbers of stages in a delay chain (ranging
from 1 to 64), the measurement results are illustrated in Fig. 5(a)(b),
the contour lines that represent a fixed energy consumption or delay
are in the diagonal direction, indicating that energy and delay are
proportional to the product of the load capacitor value and number
of mismatch stages, This relationship also ensures linear relationship
between delay and the number of mismatch stages under different
load capacitor values, thus demonstrating scalability of our design
with respect to array size and load capacitor value. As the load
capacitor values grows, both energy and delay increase, suggesting
a preference for small load capacitor. However, shorter delay requires
sensing unit (e.g., a counter to convert the analog delay to a digital
value) to have higher resolution, which typically entails a more
complex sensing unit structure and higher energy and area costs.
Furthermore, different applications/algorithms may require different
computing precision, such as binarized precision for highly quantized
models [37]. Therefore, there is a trade-off exists between delay
and energy consumption of delay chain, sensing unit complexity and
application requirements.

We conducted additional investigations into the performance of our
design by varying the supply voltage (Vpp). Fig. 5(c)(d) show the
average energy and computational latency results for 32/64/128-stage
delay chains. The results demonstrate that scaling down Vpp leads to
a substantial reduction in energy consumption, with a slight increase in
delay. Consequently, scaling down Vpp is viable method for further
improving the energy efficiency. The maximum energy efficiency
achieved by our design was recorded as 0.159 fJ/bit. We compared
our result with other IMC similarity computation designs, the results
are summarized in Table I. Our design achieves 2~3 X higher energy
efficiency than CAMs [15], [29] while also offering the capability for
quantitative SC. In the realm of TD-IMC counterparts, our proposed
design exhibits significantly superior energy efficiency when compared
to both CMOS-based designs [20] and even prior FeFET-based de-
sign [24]. The enhanced energy efficiency of our design is attributed to
its multi-bit capabilities. [22] reports ultra-low energy consumption per
bit, it is primarily due to its utilization of advanced 14nm technologies
and an optimized measurement configuration, which may not directly

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:05:15 UTC from IEEE Xplore. Restrictions apply.



TABLE I
COMPARISON OF THE PROPOSED TD-AM WITH STATE-OF-THE-ART TD-IMC DESIGN.

[ Designs | Signal domain  Device  Cell/Stage size SC Type Energy per bit (fJ)  Techonology (nm) |
16T TCAM [29] Voltage CMOS 16T Hamming distance, non-quantitative 0.59 (x3.71) 45
Nat. Electon.’19 [15] Voltage FeFET 2FeFET Hamming distance, non-quantitative 0.40 (x2.52) 45
JSSC’21 [20] Time CMOS 20T+4MUX MAC/Cosine distance, quantitative 2.20 (x13.84) 28
IEDM’21 [22] Time FeFET 2T-1FeFET MAC/Cosine distance, quantitative 0.039 (x0.245) 14
Work [24] Time FeFET 3T-2FeFET MAC/Hamming distance, quantitative 0.234 (x1.47) 40
This work Time FeFET 4T-2FeFET Hamming distance, quantitative 0.159 (x1) 40
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8.9 17.7
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Fig. 6. Distributions of delay of worst case computation in arrays with (a) 64
and (b) 128 stages, with varying levels of FeFET Vg variations.
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translate to realistic conditions.

The impact of NVM variations was also analysed through Monte
Carlo simulation. We modeled the effect of all FeFET variations as a
shift in Vg, which we will refer to as Vg variation for the sake of
later discussion. We verified the robustness of our design by introduc-
ing different levels of FeFET Vg variations into the delay chain and
examined the resulting delay variability in the worst scenario: all stages
are mismatched. The results are shown in Fig. 6. As the variation
level or the length of delay chain increases, the delays become more
widely distributed. Nonetheless, even when considering FeFET Vg
variation up to 60mV, the delays of vast majority of Monte Carlo
runs remain within the sensing margin. For reference, we derived the
Vru variation values from experimentally measured data [25] and
fitted them with standard distributions, the standard deviation values
for Vrgo ~ Vrms are found to be 7.1mV, 35mV, 45mV and 40mV,
respectively. Therefore, our design demonstrated sufficient robustness
to NVM variations, and also revealed an intriguing potential of our
design for supporting higher precision, e.g., 3- or 4-bit storage and
computation.

B. Case study: HDC

In the ever-changing realm of ML, we grapple with a key challenge:
hardware and computational constraints. Conventional ML models,
while delivering top-tier performance, can be resource-intensive, hin-
dering their scalability across diverse devices. To tackle this issue,
a new field called brain-inspired learning or hyperdimensional com-
puting (HDC) [7] aims to emulate the brain’s remarkable abilities and
incorporate them into various aspects of the computational framework.
HDC excels in various tasks, spanning graph memorization, reasoning,
classification, clustering, and genomic detection [38]-[40]. HDC and
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IMC devices share a common goal: enhancing the unique qualities
that distinguish our brains from conventional computers. While HDC
elevates learning and representation capabilities, IMC seamlessly
integrates computation and memory, offering functionalities absent in
traditional ML software and hardware. Although Al models aspire
to excel in IMC devices, they grapple with constraints like limited
bit precision (typically 4 or 8 bits) and inherent noise. Nevertheless,
HDC'’s holographic nature and noise resilience position it as an ideal
companion for IMC architectures [41].

In our quest to demonstrate the effectiveness of an HDC architecture
tailored for IMC devices, we undertook a comprehensive case study.
We generated two models—one utilizing the traditional full-precision
32-bit model as a reference point [35]. The quantization process
was intricately designed to minimize information loss during the
transition from 32-bit to the n-bit design of the IMC circuit. By
thoroughly mapping the class hypervector values based on probability
distributions into 2™ blocks of equal areas, we achieved a nuanced
representation, allocating smaller widths to more significant values.

Our experimentation extended to the testing phase across three
diverse datasets—face detection (FACE) [42], voice recognition (ISO-
LET) [43], and activity recognition (UCIHAR) [44]. Each experiment
was executed thrice, utilizing varying bit-precision (ranging from
32 bits for ideal conditions down to 4, 3, 2, and 1-bit configu-
rations) and dimensions (512, 1024, 2048, 5120, and 10240). The
results were satisfactory, as shown in Fig. 7, with the reduced-bit
models consistently demonstrating performance on par with the 32-
bit model, particularly in higher dimensionalities. Our experimental
findings reveal an intriguing connection between bit precision and
dimensionality in our quantized models. Specifically, we’ve observed
that as we increase the bit precision from 1 to 4 bits, the dimensionality
requirements to match the maximum accuracy of the full precision
model (at 32 bits) steadily diminish. This trend holds true for most
scenarios, although exceptions exist where achieving peak accuracy
with just a single bit proves non-successful, such as that of UCIHAR.

Furthermore, the augmentation of bit precision provides us with the
opportunity to achieve significant reductions in hypervector dimen-
sionality. This, in turn, translates into substantial memory savings, a
critical factor that can help reduce latency and boost energy efficiency.
To illustrate, in the case of the ISOLET dataset, both the full precision
and 2-bit quantized models converge at an optimal dimensionality of a
mere 2048. In stark contrast, the 1-bit quantized model necessitates a
dimensionality five times larger (10240) to attain the same maximum

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:05:15 UTC from IEEE Xplore. Restrictions apply.



accuracy, highlighting the profound influence of bit precision on
dimensionality, memory demands, and overall system performance.

In our experiments, we studied the temporal and energy expenses
associated with our GPU (NVIDIA GeForce RTX 4070). To ensure
seamless compatibility with PyTorch, we embarked on the develop-
ment of novel code and software, facilitating seamless integration
within our framework. Our empirical findings, presented in Fig. 8(b),
show the speedup between the GPU and the IMC system with the
configuration of 128 stages, running at 0.6V. This encompassed several
dimensionalities and spanned three distinct datasets. Of particular note,
for smaller dimensionalities, we observe high speedup enhancements,
with gains ranging from 194 x in the ISOLET dataset to an impressive
287 x in the FACE dataset. However, as we ventured into the realm of
higher dimensionalities with 128 stages, a substantial delay emerged,
resulting in a gradual attenuation of the speedup effect. Ultimately, this
resulted in an average speedup factor of 11.65 X, which, though dimin-
ished, remains appreciable. Note that even under the circumstances of
3 to 4-bit precision, where we accomplished maximum accuracy across
all three datasets with 1024 dimensions, an enduring average speedup
of 124.8x was maintained, reaffirming the importance of having an
IMC with higher bit-precision.

Regarding GPU energy expenses, we tracked the energy consump-
tion throughout the software’s operation. The detailed outcomes and
graphical representation of this data can be conveniently located
in Fig. 8(a). In tandem with the speedup outcomes, we observed
advancements in energy efficiency for smaller dimensionalities, with
efficiency enhancements ranging from an astounding 5061 in the
ISOLET dataset to an astonishing 5790x for the FACE dataset.
Notably, even in the context of the highest dimensionality setting,
a resolute average energy efficiency factor of 303x was sustained.
Significantly, in the scenario of 3 and 4-bit precision, where maximum
accuracy materialized with only 1024 dimensions across all three
datasets, enduring average energy efficiency of 2837x persisted,
showing substantial efficiency improvements.

V. CONCLUSION

In this paper, we presented a novel FeFET based TD-AM for
efficient and quantitative similarity computation. Leveraging multi-
domain FeFET, our 2-FeFET IMC cell demonstrated its ability for
multi-bit storage and computation. A variable capacitance delay chain
was proposed to support quantitative, reliable, parallel and energy
efficient similarity computation between a multi-bit input vector and
a multi-bit stored vector. Evaluation results show that our design
outperform other IMC based counterparts, with remarkable robust-
ness to NVM variation. Benchmarking for HDC application against
GPUs reveals substantial performance improvements and suggests the
potential of our design in diverse energy-constrained scenarios.
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