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Abstract—The exponential growth of data across various domains of

human society necessitates the rapid and efficient data processing. In many

contemporary data-intensive applications, similarity computation (SC) is

one of the most fundamental and indispensable operations. In recent

years, In-memory computing (IMC) architectures have been designed to

accelerate SC by reducing data movement costs, however, they encounter

challenges with signal domain conversion, variation sensitivity, and limited

precision. This paper proposes a ferroelectric FET (FeFET) based time-

domain (TD) associative memory (AM) for energy efficient SC. Such TD

design can convert its output (i.e., time interval) to digits with relatively

simple sensing circuitry thus saves large amount of area and energy com-

pared with conventional IMC designs that process analog voltage/current

signals. The variable-capacitance (VC) delay chain structure in our design

supports quantitative SC and enhances robustness against variations.

Furthermore, by exploiting multi-domain ferroelctric FET (FeFET), our

design is capable of performing SC on vectors with multi-bit element,

enabling support for higher-precision algorithms. Simulation results show

that the proposed TD-AM achieves 13.8×/1.47× energy saving of our

design compared to CMOS/NVM based TD-IMC designs. Additionally,

our design exhibits good robustness in monte carlo simulation with

variation extracted from experimental measurements. Investigation on

precision of hyperdimensional computing (HDC) show that higher element

precision reduces the size of HDC model when considering to achieve same

accuracy, indicating an improved efficiency. Benchmarkings against GPU

demonstrate in general 2/3 orders of magnitude speedup/energy efficiency

improvement of our design. Our proposed multi-bit TD-AM promises

energy-efficient quantitative SC for diverse intensive data processing

application, especially in energy-constrained scenarios.

I. INTRODUCTION

Similarity computation (SC) has become an essential operation

in modern applications such as network routing [1], caches [2],

database [3], [4], bioinformatics [5], and, notably, in the field of

machine learning (ML) [6]–[9]. This operation typically involves

comparing one vector to another, measuring the differences between

vectors using various distance metrics, or detecting the vector that

is closest to the query among a set of vectors. Many efforts have

been dedicated to designing in-memory computing (IMC) circuits

and architectures for SC acceleration [10]–[12], as IMC significantly

alleviates the costly data movement in conventional Von Neumann

architectures. For example, some designs employ crossbars that per-

form multiplication-and-accumulation (MAC) operations to measure

cosine distance [6], [12], while others utilize binary/ternary content

addressable memories (B/TCAMs) for query searches [11], [13]–[15].

However, several issues hinder these technical routes from achieving

higher efficiency and accuracy: 1) most of IMC designs perform

computation in voltage or current domain, necessitating expensive

peripherals (e.g. ADCs) to convert the signals between analog and

digital domains, and incurring relatively high static power consumption

due to DC current in computing phase; 2) analog signals are more

vulnerable to variations, leading to trade-off between precision and ef-

ficiency; 3) in most AI applications, quantitative SC is required, while

many accelerator designs (e.g. CAMs) can only support identifying

full match or mismatches within a limited number of cells.

Time-domain (TD) computing is emerging as a promising al-

ternative computing paradigm to address the challenges mentioned

above [16]. In TD computing, computation results are represented as

cumulative signal propagation delays generated through a series of

cascading delay stages. The propagation delay of each delay stage

is modulated by the computing output, according to the basic delay

formula tdelay = RC, the computing output can be manifested as

either a change in capacitance or a change in resistance. Compared

to conventional analog IMC designs, TD-IMCs are mostly digital and

are thus more compatible to advanced process technologies and more

robust against variations. Moreover, time-digital conversions are more

energy efficient than analog-digital conversions. Additionally, TD-

IMCs can easily perform quantitative SC, making them an attractive

solution for energy-constrained SC application scenarios, including

edge AI, energy harvesting device and implantable device.

Many TD-IMC designs have been proposed, which employ SRAM

based IMC cell as their logic cells [17]–[20], however, the large SRAM

cell size and the need for additional delay circuity (e.g. buffer or

inverter) result in a loss of advantages in terms of area cost when

compared with other IMC designs. In recent years, breakthroughs

in many non-volatile memory (NVM) technologies have paved the

way for ultra-compact and efficient IMC cell and array designs.

Several previous studies explored the integration of NVMs into TD-

IMC designs, for example, [21] proposed a TD-IMC design using

spintronics device to accelerate MAC in neural networks, [22] utilized

ferroelectric FET (FeFET) for similar purposes, [23] proposed RRAM

based TD-CAM, and [24] presented a FeFET based TD-IMC design

capable of computing both MAC and hamming distance. However, it

is noteworthy that these TD-IMC works are still in the early stages of

development, primarily due to the lack of comprehensive robustness

analysis and algorithm/system-level benchmarking, furthermore, there

is ample room for optimization to fully exploit the capabilities of

NVMs in terms of storage density and other potential benefits.

To address these issues, we propose a FeFET-based TD associative

memory (AM) that performs quantitative SC based on Hamming dis-

tance for energy-constrained AI circumstance. Unlike prior works [21],

[22] that use IMC cells as variable resistors, our design has a novel

variable-capacitance (VC) delay chain structure, in which IMC cell

serves as a control unit for the delay stage, rather than being directly

placed in the signal propagation path. This design not only improves

the robustness against NVM variations but also maintains a strict linear

relationship between delay and the computing result, thus enabling

accurate and quantitative SC. We also propose a 2-step computation

principle for our TD-AM to maximizes hardware utilization and reduce

computation latency. Furthermore, by leveraging multi-domain FeFET
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Fig. 1. (a) Physical structure of FeFET. (b) Write pulse for multi-state FeFET
and the corresponding polarization in the FE layer. (c) ID − VG curves from
experimental device-to-device measurement on 60 devices [25]. (d) ID − VG

curves of FeFET simulation model [26].

device, we propose a 2-FeFET cell design that can support multi-

level storage and computing, further enhancing efficiency and enabling

higher-precision data processing.

We evaluate the performance of our design through SPICE sim-

ulations, the results demonstrate that our multi-bit TD-AM design

achieves 13.84× higher energy efficiency compared to other TD-IMC

designs. we also conducted Monte Carlo analysis using variation data

measured from FeFET prototype chips, demonstrating the robustness

of our design against variations. Moreover, we conducted application

benchmarking in emerging brain-inspired hyperdimensional comput-

ing (HDC) tasks, the data precision investigation on HDC shows

reduced dimensional can be achieved by our multi-bit TD-AM design,

and benchmarking results against GPU reveal 2 and 3 orders of

magnitude improvement on speed and energy efficiency, respectively.

The rest of this paper is organized as follows: Sec. II provides the

basics and a brief review of prior works related to this work. Sec. III

introduces the proposed FeFET-based multi-bit TD-AM cell and array

design. Sec. IV presents the experimental results of the proposed

design and benchmarks it for HDC applications. Sec. V concludes

the paper.

II. BACKGROUND

A. FeFET basics

FeFET has gradually emerged as an attractive candidate device in

IMC research, thanks to its promising characteristics, including non-

volatility, CMOS compatibility, and high ON/OFF ratio. As illustrated

in Fig. 1(a), the structure of FeFET resembles that of a MOSFET,

with the addition of a ferroelectric (FE) layer on its gate, the coupling

between the FE capacitance CFE and MOSFET gate capacitance CG

provides FeFET with tunable hysteresis, resulting in non-volatility. The

development of higk-κ FE materials (e.g. HfO2) has further facilitated

the integration of FeFET into advanced technology nodes, such as

28nm bulk [27] and 22nm FDSOI [28]. Information is written into

FeFET by applying different write voltages, VGS , resulting in different

threshold voltage VTH , as illustrated in Fig. 1(b). Experimental

validation has shown that FeFETs can be programmed to exhibit

four distinct states [25], the ID − VG curves from device-to-device

measurement on 60 devices are shown in Fig. 1(c). To capture the non-

volatility and multi-state characteristics, an experimentally calibrated

multi-domain Preisach FeFET simulation model was proposed by [26],

and the simulated ID − VG curves are shown in Fig. 1(d).

B. IMC Designs for Similarity Computation

Due to its widespread utilization in numerous applications, con-

siderable research efforts have been directed towards designing IMC

circuits and architectures for accelerating similarity computation. A

typical representative is CAM [29], which performs parallel associative

search between the vectors stored in the array and the input query.

Recently, leveraging emerging NVM has significantly improved the

density and efficiency of CAMs compared to conventional 16-T

TCAM, examples include TCAMs based on 2T-2R cell [30], 1T-1MTJ

cell [31], and 2-FeFET cell [32], and such CAM designs have garnered

increasing interest due to their demonstrated utility in pattern search

during neural network inference phase [15]. FeFET based designs have

further evolved to support multi-bit encoding and search [11], [25],

[33], [34]. However, these CAMs only identify full match or cases

with very few mismatch cells, i.e., do not support quantitative SC,

limiting their implementation in more complex application such as

deep learning, where full match are rare due to statistical properties.

Some other works designed crossbar arrays for quantitative and

parallel SC, for instance, [25] presented a 1-FeFET crossbar based

multi-bit CAM design capable of computing the Hamming distances

between the query and stored vectors by sensing the mismatch

current. However, the current-domain computation leads to high static

power, and the cost of sensing unit (i.e., ADC) was not discussed.

COSIME [12] employs translinear circuit and winner-take-all circuits

with a crossbar, enabling the identification of the vector with the

largest cosine similarity to the input query. However like other

crossbar-based designs, it inevitably incurs high static power con-

sumption. Furthermore, this design does not output the exact similarity

result, which is crucial for parameter update in some machine learning

algorithms [35].

C. Motivation of TD-IMC and Related Works

The concept of TD computation was first introduced by [16], to

address the challenges encountered by hybrid signal system on chips

(SoCs), including: 1) high energy and area cost associated with signal

conversion; 2) difficulties in analog circuit design automation and

fabrication using advanced technology. TD computation simplifies

A/D interface by employing time-digital converter (TDC), and replaces

complex voltage/current-domain analog computation cores with TD

computing stages that highly compatible to digital circuits. Due to

space limitations, for further details, please refer to [16]. As IMC has

gained research interests in recent years, some works have attempted to

combine these two technical routes for more efficient computing. [17]

proposed an SRAM-based TD-IMC design capable of binary MAC

for Binary Neural Network (BNN) acceleration, multiplications are

executed in TD stages, and summation is achieved by cascading TD

stages. Another SRAM-based TD-IMC design, TIMAQ [20] extended

support for arbitrary data precision and improved the density of TD

stages. However, SRAM still consumes significant area and energy,

making it inefficient.

Several recent works have explored the use of NVMs for denser

and more efficient TD-IMC. [21] presents a spintronics memory-

based design for neural network acceleration, featuring a TD-IMC

multi-addend adder. However, the D Flip-Flop based TDC design in

this work is much more complex than conventional TDCs due to

the adoption of parallel TD units connections rather than cascading,

resulting in non-linear time outputs. [22] proposed a FeFET based

compact design for MAC operation, the delay stages in this design is

similar to [20] but contains only 1 FeFET and 2 MOS by leveraging

unique characteristics of FeFET. However, directly connecting FeFETs

into the pull-down path and using them as tunable resistors amplify
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Fig. 2. (a) The proposed multi-bit IMC cell. VTH and VSL configuration for
(b) FA and (c) FB . (d-f) Voltages and status of a cell storing ‘1’ with different
input values.

the impact of FeFET variations, as a slight error on FeFET VTH

leads to significant resistance change. Furthermore, due to the large

ON/OFF ratio of FeFET, FeFETs in OFF state can fully interrupt

signal propagation, resulting in computation failures. [24] partially

addressing the above issues by designing a variable capacitance

delay chain, and this design can be configured to support MAC

and Hamming distance based similarity computation. However, the

IMC cell in this work only supports binary operations and does not

fully utilize the multi-domain FeFET characteristics. In this paper, we

present a FeFET-based TD-AM which can support multi-bit similarity

computation based on hamming distance.

III. MULTI-BIT TD-AM DESIGN

A. Multi-Bit IMC Cell

The structure of our proposed multi-bit IMC cell is illustrated in

Fig. 2(a), it consists of 2 FeFETs, referred to as FA and FB , connected

in parallel, along with a PMOS for precharging. The gates of the

FeFETs are connected to the Search Lines (SLs), and the output of

the computation is reflected by the drains of FeFETs, referred to as

Match Node (MN). The cell operates in two phases: precharge and

compute. In the precharge phase, the PMOS is turned on, charging the

MN voltage VMN to VDD . In the compute phase, voltages are applied

on SLA and SLB according to the input operand, the VMN either

remains at VDD or drops to GND, depending on the computing result.

We illustrate the working principle of this cell using a 2-bit encoding

example. For FA, we define four threshold voltage VTH0 ∼ VTH3 to

store the 4 values of a 2-bit number, i.e., ‘0’, ‘1’, ‘2’, ‘3’, as shown in

Fig. 2(b), with corresponding SL voltages are VSL0 ∼ VSL3. For FB ,

the stored and input values represented by VTH and VSL are reversed

compared to FA, as shown in Fig. 2(c). In this configuration, when

the input value and the stored value are equal (indicating a match),

both FA and FB remains non-conductive and MN remains at VDD ,

otherwise, FA/FB will be turned on, and discharges MN to GND if

the input value is larger/smaller than the stored value. Examples of a

match (input ‘1’) and mismatches (input ‘0’ and input ‘2’) on a cell

storing ‘1’ are provided in Fig. 2(d-f).

……

·
·

·
·……

Fig. 3. (a) Structure of the proposed TD-AM. Delay chain status and pulse
propagation in (b) step I and (c) step II of the proposed 2-step operation scheme,
in which even and odd stages are processed, respectively.

B. TD-AM array

Building upon the 2-FeFET multi-bit IMC cell described above,

we have designed the TD-AM array as depicted in Fig. 3(a). The

fundamental building block of this array is a delay stage, which

compare its stored multi-bit number Di,j with an input multi-bit

number qj , the propagation delay of delay stage is modulated by the

comparison result, if it is a match (i.e., Di,j = qj), the delay is short;

otherwise it incurs a long delay. N stages are cascaded in rows to

form a delay chain. Therefore, the accumulated delay of a delay chain

represents the similarity between the input vector Q and a stored vector

Di, both consist of multi-bit elements. The input vector is shared by all

delay chains in the TD-AM array through vertical search lines (SLs),

enabling the parallel SC between Q and a set of vectors D1 ∼ DM .

The structure of the delay stage can be seen in Fig. 3(b), it comprises

an inverter, a load capacitor (C), a PMOS and a 2-FeFET IMC cell as

described in Sec. III-A, the MN of the IMC cell connects to the PMOS

gate. If the 2FeFET cell outputs a mismatch, MN will be discharged to

GND, turning the PMOS on, and the load capacitance will be added to

the inverter’s output node, introducing an additional signal propagation

delay dC in this stage. In the case of a match, the PMOS will be off,

blocking the load capacitor, and the propagation delay of this stage

will be the inverter’s intrinsic delay dINV .

However, because inverter flip the edge of the input signal, for the

inverter-based delay stage, the input signals of two adjacent stages

have different edges, resulting in different propagation delays due to

the speed mismatch of PMOS and NMOS. Moreover, the output pulse

of a mismatched delay stage is not steep enough, and directly using

this pulse as the input pulse of the next stage will introduce an error its

its delay, this error is exacerbated at multiple consecutive mismatched

stages. A straightforward solution is to replace the inverters with
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Fig. 4. Transient waveforms of (a) rising/(b) falling edge of output pulse with
varying number of mismatch stages. (c) The total delay is linearly dependent
on the number of mismatch stages.

buffers, but this would introduce additional area and energy costs. To

address these issues, we propose a 2-step operation scheme. In step

I, as shown in Fig. 3(a), we process rising edge of the input pulse,

all odd stages are deactivated by assigning both SLA and SLB of

all odd stages to VSL0, consequently, all FeFETs in these stages are

non-conductive, and the MN voltage of these stages remains VDD ,

equivalent to a match that incurs no additional delay. For the even

stages, if a stage mismatches (e.g., stage 2 in our example shown in

Fig. 3(b)), the smoothly changing output pulse can be sharpened by

the next odd stage (i.e., an inverter), therefore avoids delay error. The

rising edge delay contributed by even stages is given by

drising,even = Ntot · dINV +Neven,mis · dC

where Ntot is the total number of stages in a delay chain, and

Neven,mis is the number of mismatched even stages. Similarly, the

falling edge is processed in step II, the falling edge delay is contributed

by odd stages while all even stages are disabled. The total delay, i,e.,

the similarity computation result SC(Q, Di), is obtained by adding the

rising edge and falling edge delays together.

dtot = drising,even + dfalling,odd = 2 ·Ntot · dINV +Nmis · dC

IV. EVALUATION

In this section, we evaluate and validate our proposed design at both

circuit level and system level, then we compare the evaluation results

with other IMC/TD-IMC works which can perform SC.

A. Circuit-Level Evaluation

We conducted SPICE simulations on the proposed TD-AM using

Cadence Spectre Simulator. We employed the compact multi-domain

FeFET model proposed by [26], while MOSFET, capacitor and

other devices models were obtained from the 40nm UMC processing

development kit (PDK). The load capacitor in each stage was set

to 6fF unless explicitly mentioned. The FeFET threshold voltages

VTH0 ∼ VTH3 shown in Fig. 2(b)(c) are selected as 0.2V, 0.6V, 1.0V

and 1.4V. We adopted the write method from [36] to program these

VTH values. The search line voltages VSL0 ∼ VSL3 were set to 0V,

0.4V, 0.8V and 1.2V.

To verify the relationship between delay and SC result, we con-

structed a 32-stage delay chain and fed the input vectors with varying

similarity (ranging from 0 to 32) to the stored one. The waveforms of

the input pulse and the delayed output pulses are shown in Fig. 4(a)(b),

it is evident that the greater the number of mismatched even/odd stages

is, the longer the rising/falling edge of the output pulse is delayed.

Furthermore, as shown in Fig. 4(c), the total delay is linearly related to
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Fig. 5. (a) Energy and (b) delay of the proposed TD-AM array with different
array sizes and different load capacitor values. (c) Energy and (c) latency of
delay chains with 32/64/128 stages under supply voltage scaling.

the number of mismatched stages, thus demonstrating that our design

supports quantitative SC.

We evaluated the performance of our design by measuring the

energy and delays for different load capacitor values (ranging from 6fF

to 1280fF) and different numbers of stages in a delay chain (ranging

from 1 to 64), the measurement results are illustrated in Fig. 5(a)(b),

the contour lines that represent a fixed energy consumption or delay

are in the diagonal direction, indicating that energy and delay are

proportional to the product of the load capacitor value and number

of mismatch stages, This relationship also ensures linear relationship

between delay and the number of mismatch stages under different

load capacitor values, thus demonstrating scalability of our design

with respect to array size and load capacitor value. As the load

capacitor values grows, both energy and delay increase, suggesting

a preference for small load capacitor. However, shorter delay requires

sensing unit (e.g., a counter to convert the analog delay to a digital

value) to have higher resolution, which typically entails a more

complex sensing unit structure and higher energy and area costs.

Furthermore, different applications/algorithms may require different

computing precision, such as binarized precision for highly quantized

models [37]. Therefore, there is a trade-off exists between delay

and energy consumption of delay chain, sensing unit complexity and

application requirements.

We conducted additional investigations into the performance of our

design by varying the supply voltage (VDD). Fig. 5(c)(d) show the

average energy and computational latency results for 32/64/128-stage

delay chains. The results demonstrate that scaling down VDD leads to

a substantial reduction in energy consumption, with a slight increase in

delay. Consequently, scaling down VDD is viable method for further

improving the energy efficiency. The maximum energy efficiency

achieved by our design was recorded as 0.159 fJ/bit. We compared

our result with other IMC similarity computation designs, the results

are summarized in Table I. Our design achieves 2∼3× higher energy

efficiency than CAMs [15], [29] while also offering the capability for

quantitative SC. In the realm of TD-IMC counterparts, our proposed

design exhibits significantly superior energy efficiency when compared

to both CMOS-based designs [20] and even prior FeFET-based de-

sign [24]. The enhanced energy efficiency of our design is attributed to

its multi-bit capabilities. [22] reports ultra-low energy consumption per

bit, it is primarily due to its utilization of advanced 14nm technologies

and an optimized measurement configuration, which may not directly
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TABLE I
COMPARISON OF THE PROPOSED TD-AM WITH STATE-OF-THE-ART TD-IMC DESIGN.

Designs Signal domain Device Cell/Stage size SC Type Energy per bit (fJ) Techonology (nm)

16T TCAM [29] Voltage CMOS 16T Hamming distance, non-quantitative 0.59 (×3.71) 45
Nat. Electon.’19 [15] Voltage FeFET 2FeFET Hamming distance, non-quantitative 0.40 (×2.52) 45

JSSC’21 [20] Time CMOS 20T+4MUX MAC/Cosine distance, quantitative 2.20 (×13.84) 28
IEDM’21 [22] Time FeFET 2T-1FeFET MAC/Cosine distance, quantitative 0.039 (×0.245) 14

Work [24] Time FeFET 3T-2FeFET MAC/Hamming distance, quantitative 0.234 (×1.47) 40
This work Time FeFET 4T-2FeFET Hamming distance, quantitative 0.159 (×1) 40
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translate to realistic conditions.

The impact of NVM variations was also analysed through Monte

Carlo simulation. We modeled the effect of all FeFET variations as a

shift in VTH , which we will refer to as VTH variation for the sake of

later discussion. We verified the robustness of our design by introduc-

ing different levels of FeFET VTH variations into the delay chain and

examined the resulting delay variability in the worst scenario: all stages

are mismatched. The results are shown in Fig. 6. As the variation

level or the length of delay chain increases, the delays become more

widely distributed. Nonetheless, even when considering FeFET VTH

variation up to 60mV, the delays of vast majority of Monte Carlo

runs remain within the sensing margin. For reference, we derived the

VTH variation values from experimentally measured data [25] and

fitted them with standard distributions, the standard deviation values

for VTH0 ∼ VTH3 are found to be 7.1mV, 35mV, 45mV and 40mV,

respectively. Therefore, our design demonstrated sufficient robustness

to NVM variations, and also revealed an intriguing potential of our

design for supporting higher precision, e.g., 3- or 4-bit storage and

computation.

B. Case study: HDC

In the ever-changing realm of ML, we grapple with a key challenge:

hardware and computational constraints. Conventional ML models,

while delivering top-tier performance, can be resource-intensive, hin-

dering their scalability across diverse devices. To tackle this issue,

a new field called brain-inspired learning or hyperdimensional com-

puting (HDC) [7] aims to emulate the brain’s remarkable abilities and

incorporate them into various aspects of the computational framework.

HDC excels in various tasks, spanning graph memorization, reasoning,

classification, clustering, and genomic detection [38]–[40]. HDC and
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Fig. 8. (a) Energy efficiency and (b) speedup comparison between GPU and
our IMC architecture at 0.6V and 128 stages.

IMC devices share a common goal: enhancing the unique qualities

that distinguish our brains from conventional computers. While HDC

elevates learning and representation capabilities, IMC seamlessly

integrates computation and memory, offering functionalities absent in

traditional ML software and hardware. Although AI models aspire

to excel in IMC devices, they grapple with constraints like limited

bit precision (typically 4 or 8 bits) and inherent noise. Nevertheless,

HDC’s holographic nature and noise resilience position it as an ideal

companion for IMC architectures [41].

In our quest to demonstrate the effectiveness of an HDC architecture

tailored for IMC devices, we undertook a comprehensive case study.

We generated two models—one utilizing the traditional full-precision

32-bit model as a reference point [35]. The quantization process

was intricately designed to minimize information loss during the

transition from 32-bit to the n-bit design of the IMC circuit. By

thoroughly mapping the class hypervector values based on probability

distributions into 2
n blocks of equal areas, we achieved a nuanced

representation, allocating smaller widths to more significant values.

Our experimentation extended to the testing phase across three

diverse datasets—face detection (FACE) [42], voice recognition (ISO-

LET) [43], and activity recognition (UCIHAR) [44]. Each experiment

was executed thrice, utilizing varying bit-precision (ranging from

32 bits for ideal conditions down to 4, 3, 2, and 1-bit configu-

rations) and dimensions (512, 1024, 2048, 5120, and 10240). The

results were satisfactory, as shown in Fig. 7, with the reduced-bit

models consistently demonstrating performance on par with the 32-

bit model, particularly in higher dimensionalities. Our experimental

findings reveal an intriguing connection between bit precision and

dimensionality in our quantized models. Specifically, we’ve observed

that as we increase the bit precision from 1 to 4 bits, the dimensionality

requirements to match the maximum accuracy of the full precision

model (at 32 bits) steadily diminish. This trend holds true for most

scenarios, although exceptions exist where achieving peak accuracy

with just a single bit proves non-successful, such as that of UCIHAR.

Furthermore, the augmentation of bit precision provides us with the

opportunity to achieve significant reductions in hypervector dimen-

sionality. This, in turn, translates into substantial memory savings, a

critical factor that can help reduce latency and boost energy efficiency.

To illustrate, in the case of the ISOLET dataset, both the full precision

and 2-bit quantized models converge at an optimal dimensionality of a

mere 2048. In stark contrast, the 1-bit quantized model necessitates a

dimensionality five times larger (10240) to attain the same maximum
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accuracy, highlighting the profound influence of bit precision on

dimensionality, memory demands, and overall system performance.

In our experiments, we studied the temporal and energy expenses

associated with our GPU (NVIDIA GeForce RTX 4070). To ensure

seamless compatibility with PyTorch, we embarked on the develop-

ment of novel code and software, facilitating seamless integration

within our framework. Our empirical findings, presented in Fig. 8(b),

show the speedup between the GPU and the IMC system with the

configuration of 128 stages, running at 0.6V. This encompassed several

dimensionalities and spanned three distinct datasets. Of particular note,

for smaller dimensionalities, we observe high speedup enhancements,

with gains ranging from 194× in the ISOLET dataset to an impressive

287× in the FACE dataset. However, as we ventured into the realm of

higher dimensionalities with 128 stages, a substantial delay emerged,

resulting in a gradual attenuation of the speedup effect. Ultimately, this

resulted in an average speedup factor of 11.65×, which, though dimin-

ished, remains appreciable. Note that even under the circumstances of

3 to 4-bit precision, where we accomplished maximum accuracy across

all three datasets with 1024 dimensions, an enduring average speedup

of 124.8× was maintained, reaffirming the importance of having an

IMC with higher bit-precision.

Regarding GPU energy expenses, we tracked the energy consump-

tion throughout the software’s operation. The detailed outcomes and

graphical representation of this data can be conveniently located

in Fig. 8(a). In tandem with the speedup outcomes, we observed

advancements in energy efficiency for smaller dimensionalities, with

efficiency enhancements ranging from an astounding 5061× in the

ISOLET dataset to an astonishing 5790× for the FACE dataset.

Notably, even in the context of the highest dimensionality setting,

a resolute average energy efficiency factor of 303× was sustained.

Significantly, in the scenario of 3 and 4-bit precision, where maximum

accuracy materialized with only 1024 dimensions across all three

datasets, enduring average energy efficiency of 2837× persisted,

showing substantial efficiency improvements.

V. CONCLUSION

In this paper, we presented a novel FeFET based TD-AM for

efficient and quantitative similarity computation. Leveraging multi-

domain FeFET, our 2-FeFET IMC cell demonstrated its ability for

multi-bit storage and computation. A variable capacitance delay chain

was proposed to support quantitative, reliable, parallel and energy

efficient similarity computation between a multi-bit input vector and

a multi-bit stored vector. Evaluation results show that our design

outperform other IMC based counterparts, with remarkable robust-

ness to NVM variation. Benchmarking for HDC application against

GPUs reveals substantial performance improvements and suggests the

potential of our design in diverse energy-constrained scenarios.
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