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Abstract—Targeting vision applications at the edge, in this
work, we systematically explore and propose a high-performance
and energy-efficient Optical In-Sensor Accelerator architecture
called OISA for the first time. Taking advantage of the promising
efficiency of photonic devices, the OISA intrinsically implements
a coarse-grained convolution operation on the input frames in an
innovative minimum-conversion fashion in low-bit-width neural
networks. Such a design remarkably reduces the power consump-
tion of data conversion, transmission, and processing in the con-
ventional cloud-centric architecture as well as recently-presented
edge accelerators. Our device-to-architecture simulation results on
various image data-sets demonstrate acceptable accuracy while
OISA achieves 6.68 TOp/s/W efficiency. OISA reduces power
consumption by a factor of 7.9 and 18.4 on average compared
with existing electronic in-/near-sensor and ASIC accelerators.

I. INTRODUCTION

While the Internet of Things (IoT) has become ubiquitous, it

still lacks inherent intelligence and heavily depends on cloud-

based decision-making. In such a cloud-centric scenario, a

substantial part of data generated by IoT’s sensors is left

unprocessed or unanalyzed [1], [2]. Vision sensors typically

convert light into electrical signals, which are then saved,

processed, transmitted, and utilized. This involves converting

all pixels into predetermined digital values with a constant

bit depth, such as 8 bits [2], [3]. Reportedly, the majority of

power consumption (over 96% [2], [3]) in traditional vision

sensors comes from pixel value conversion and storage. This is

primarily due to the memory and compute-intensive computing

algorithm and the lack of processing capabilities of current IoT

devices restricted by power and area factors [4]. To tackle these

challenges, a shift from a cloud-centric to a thing-centric (data-

centric) approach is required, where the IoT node processes the

sensed data locally [5].

Recently, there has been research into developing smarter

CMOS image sensors that can accelerate Deep Neural Net-

work (DNN) workloads. One method is to integrate CMOS

image sensors and processors on a single chip, referred to

as Processing-Near-Sensor (PNS) [6]–[8]. Another approach

involves integrating computation units with individual pixels

called Processing-In-Sensor (PIS). The PIS platform [2], [3],

[9], [10] processes pre-Analog-to-Digital Converter (pre-ADC)

data before transmitting it to the on/off-chip processor [1], [11].

However, they still suffer from energy-hungry ADC, DAC, and

sense amplifiers [2], [3]. Due to the limited resources of PIS,

it has not been feasible to deploy all DNN layers into the pixel

array. Therefore, most studies have focused on accelerating the

first layer in an analog or digital domain and submitting the

remaining layers to a digital accelerator. Nevertheless, three sig-

nificant challenges have yet to be addressed in current PIS/PNS

designs (i) Current designs still suffer from energy-hungry

peripherals and ADC/DAC units even reduced [2], [5], [12]

for sensing and computing; (ii) the in-/near-sensor computation

imposes a large area overhead and power consumption in more

recent PNS/PIS units and typically requires extra memory for

intermediate data storage [1], [3], [10]; and (iii) the compu-

tation speed has been constrained by the electronic systems

(operating at a few GHz) that inherently lack the capability

to support both high speeds and the extensive parallelism

found in optical systems approaching the photodetection rate

(>100GHz) [13]–[15].

While silicon photonics has already established its efficacy

in enabling high-throughput communication and computation

across various domains [13], [14], in this work, we systemati-

cally explore the potential of deploying it on edge devices. We

propose an Optical In-Sensor Accelerator architecture named

OISA that leverages the energy efficiency and low latency

features of photonic devices and minimizes signal conversion in

low-bit-width neural networks to eliminate the need for power-

hungry ADC and DACs. Our novel contributions to this work

are as follows. (1) For the first time, we develop an optical

in-sensor architecture that has been optimized to efficiently

process the 1st layer of DNNs with a centralized kernel-

based optical processing unit tuned with microring resonator

optical devices, resulting in improved energy-efficiency and

speed; (2) We design new microarchitectural and circuit-level

schemes for OISA supported by novel hardware partitioning

and mapping mechanisms; and (3) We create a bottom-up

device-to-architecture evaluation framework and extensively

analyze and compare the performance of the proposed designs

with prior PIS and ASIC designs.

II. BACKGROUND

In-Sensor Accelerators. Boosting throughput and intensify-

ing computation on resource-limited PIS/PNS devices result in

elevated temperature, higher power consumption, and increased

noise levels. These factors contribute to a decline in accuracy

[2], [3], [16]. MACSEN [2] as a PIS platform processes the 1st-

convolutional layer of Binary CNN with the correlated double

sampling procedure achieving 1000 FPS speed in computation

mode. However, it suffers from humongous area-overhead

and power consumption mainly due to the SRAM-based PIS
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Fig. 1. MR input and through ports’ spectra after imprinting a parameter onto
the signal. A directional coupler transfers the light from the waveguide into the
MR to be recombined. This recombination, influenced by the effective refractive
index in the MR which is also impacted by the MR’s circumference, induces
a phase shift in the combined wave. This phase shift leads to interference with
the original light’s intensity. Tunable range shows free resonance spectral range
of MR, where FMHW is full width at half maximum of resonance spectrum.

method. In [1], a PIS architecture is designed to support 8-

bit activation and weight intended for the first-layer DNN

acceleration through pulse modulation. Although the resource

utilization of the design improved considerably, the use of

power-hungry ADCs in each column, along with capacitors

for direct sampling, increased overall energy consumption and

area overhead. PISA [3] enables convolutional operations in

the first BNN layer by leveraging non-volatile memory to store

network weights. Notably, this architecture reduces the energy

consumed on data conversion and transmission. However, the

power-demanding write operations in non-volatile memories

and the use of ADC for data transfer elevate the overall

power consumption of the array. In [8], a PNS architecture

was introduced, enhancing resolution while minimizing area

overhead. However, PNS faces challenges in addressing the

under-utilization problem of the first layer, leading to reduced

accuracy. Additionally, the use of ADCs further raises power

consumption across the entire array. AppCiP [10] implements

a folded ADC to decrease comparator count, though the

collective power consumption of the ADC units remains an

issue. In [17], the PIS architecture leverages a combination of

pixel current and charge-sharing events to reduce the power

consumption of ADC to enable feature extraction and region-

of-interest detection through current-domain MAC operations.

However, the design is limited to row-wise computing rather

than performing computations across the entire array.

Silicon Photonics Accelerators. Offering notably elevated

operational bandwidth compared to electronic accelerators

along with addressing fan-in/fan-out problems make silicon-

photonic-based accelerators a promising candidate to accelerate

DNN and machine vision applications [14], [18]. Such accel-

erators can be broadly categorized into two primary designs:

coherent and non-coherent architectures. Within the coherent

category, a single wavelength is employed for operations, and

weight/activation parameters are incorporated into the electrical

field amplitude, phase, or polarization of an optical signal [19].

Conversely, the noncoherent designs [13], [14] employ multiple

wavelengths each of which capable of conducting computations

concurrently. Within coherent architectures, considered in this

work, the weight and input parameters are imprinted upon

the signal’s amplitude. To manipulate individual wavelengths

Microring Resonators (i.e., MRs, depicted in Fig. 1) can be

employed whose central frequency can be actively adjusted

(i.e., through tuning mechanisms using, e.g., microheaters or

PIN junctions) to selectively interact with specific wavelengths.

Fig. 2. OISA architecture with Global shutter CMOS imager, VCSEL-based
Activation Modulator (VAM), Optical Processing Core (OPC), and VSCEL-
based Output Modulator (VOM).

By appropriately tuning the MRs, the incoming light intensity

of a specific wavelength can be weighted. In the non-coherent

designs [13], [14], MRs as a fundamental component store

the weight and activation values to be utilized in the MAC

operation. During photonic MAC, incoming lights can be

multiplied by the value adjusted on the MRs (through applying

a tuning signal, see Fig. 1) of the same wavelength.

III. OISA ARCHITECTURE

We propose OISA as a scalable, high-performance, and

low-power solution for real-time image processing at edge

devices. OISA integrates sensing and processing phases and

intrinsically supports a low bit-width (2-bit (Ternary) acti-

vation and up to 4-bit weight) MAC operation of the 1
st-

layer in Multi-Layer Perceptron (MLPs) and Convolutional

Neural Networks (CNNs) while submitting the next layers to

an off-chip processor through ultra-fast optical transmitters.

The high-level overview of the proposed architecture, denoted

by node i in a multi-node IoT structure, is shown in Fig.

2 consisting of six key components: (i) an ADC-less global

shutter CMOS imager comprising a n×n conventional pixel

structure to capture frames; (ii) a Vertical-Cavity Surface-

Emitting Lasers (VCSEL)-based Activation Modulator (VAM)

that is dedicated to directly modulate every pixel’s voltage drop

value after exposure to light (activation) with a predetermined

wavelength and intensity proportional to the original light that

is absorbed by pixel; (iii) an Approximate Weight Converter

(AWC) to convert weight values stored on kernel banks to a

current driving MRs; (iv) an Optical Processing Core (OPC)

to execute parallel MAC operation between activation (A) and

weight (W) parameters in the photonic domain; (v) a VSCEL-

based Output Modulator (VOM) which is only used during the

MLP processing or large kernel processing to break down the

MAC operation when the number of elements in partial sum is

huge; and (vi) a controller to configure the timing and optical

banks to perform data-parallel intra-bank computations. In the

following, we elaborate on each component.
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Fig. 3. (a) Proposed VCSEL-based Activation Modulator (VAM) diagram, (b)
3T pixel structure and the voltage across PD plot in high illumination, (c) Sense
amplifier for thresholding, and (d) VCSEL Driver.

A. Microarchitectural Design

ADC-Less Imager. The imager consists of pixels with a

3-transistor-1-photodiode structure as shown in Fig. 3(b) with

a Photodiode (PD) as the primary sensing component, a reset

transistor (T1), discharge transistor (T2), and a source–follower

(T3). In the sensing mode, by initially setting Rst=‘low’ and

Dcharge=‘high’, the PD connected to the T2 transistor turns

into inverse polarization and fully charges the PD capacitor.

By turning off T1, PD generates a photo-current with respect

to the external light intensity which in turn leads to a voltage

drop (VPD) at the gate of T3.

VCSEL-based Activation Modulator. OISA benefits from

an optimized VSCEL driver for direct activation modulation

that offers power efficiency and low cost, eliminates the need

for external modulators, and provides ternary input for OPC. As

shown in Fig. 3(a), the VAM consists of two sense amplifiers,

a modified VCSEL driver (VDriver), and the VCSEL itself. In

the proposed design, the output signal from the pixel is utilized

to control the biasing current of the VCSEL. By appropriately

realizing one distinct reference voltage for each SA (Vref in

Fig. 3(c)), VOut1, and VOut2 (SA outputs) generate three states,

i.e., both are zero, VOut1 is VDD, and VOut2 is zero, or both

equal VDD. VOut1 and VOut2 are then used to control S1 and

S2 transistors which control the bising current of the VCSEL

as shown in Fig. 3(d). Completely turning off the VCSEL and

turning it on again to warm up imposes extra energy and delay

to the design [20]. To avoid that, another biasing transistor

controlled by Vbias is added to keep the VCSEL always on.

Thus, we have a non-returning-to-zero VCSEL implementation

to save time and energy. The output voltages of the SAs

determine the biasing current of the VCSEL and the light

intensity of the generated light by the VCSEL. Accordingly,

the output light intensity of the VCSEL won’t be raw light,

rather, it will carry ternary encoded data that corresponds to the

light intensity absorbed by the pixel. In this way, our activation

for the MAC operation is already modulated to the light by

controlling electrical signals that run the VCSEL.

Approximate Weight Converter. In the OISA architecture,

the weight parameters are initially held in on-chip kernel banks

to be mapped to the MR elements in the OPC core. For this

purpose, an approximate converter as shown in Fig. 4(a) is

utilized. AWC is responsible for tuning the MRs to the desired

weight values. Unlike prior optical accelerators that use area-

consuming and power-hungry DACs to convert digital weight

values to analog MRs’ tuning signals [13], [14], [21], we

propose an n-bit approximate weight converter (n ≤ 4). As

shown in Fig. 4(a), weight bits denoted by w0 to w3 are

connected to the gate of T1 to T4. The key idea of AWC is to

realize multi-level weighted current w.r.t. various weight values

to mimic DAC behavior. Based on our circuit-level analysis, we

have determined that increasing the width of transistors T1 to

T4 results in a reliably enhanced current doubling effect where

in the source node, all of these currents are summed. Thus,

according to the spatial value of the weight bits, as depicted

in Fig. 4(b), the AWC generates up to 16 levels (n = 4) of

current to be used for MR’s tuning purposes. We elaborate on

AWC latency and power consumption in Section IV.

Optical Processing Core & VCSEL Output Modulator.

The proposed OPC as shown in Fig. 2 is a non-coherent

photonic computing core composed of MRs that are arrayed in

arms. Each arm is comprised of 10 MRs and two waveguides

used for positive and negative weights. As shown in Fig. 2 1 ,

digital weights (W) of the DNN or MLP are converted to the

analog tuning control values by the AWC unit. Utilizing these

values, the weights are mapped to the MRs. This step is crucial

only when OISA takes a new set of weight kernels into the

processing core; once the weights are mapped, it can bypass this

step. In 2 , activation values coming from the pixel plane are

modulated to their respective wavelength using VCSELs in the

VAM unit. The resultant lights whose intensity corresponds to

the pixel’s output values are then applied to the MR banks in the

OPC. Inside the arms, each MR affects a specific wavelength

of the applied light and weights the intensity of that particular

wavelength. Thus, the multiplication operation of the weight

values stored in the MRs and the light coming from VCSELs is

conducted. At the end of each arm, two Balanced PhotoDiodes

(BPD), shown in Fig. 2, perform the summation operation of

both positive and negative lights resulting in an electrical output

voltage that represents the result of MAC operation between the

stored weights and the incoming light. In other words, BPDs

convert the optical values to the electrical signals representing

the sum of the dot products. Depending on the weight kernel

size, these values in 3 are either summed up using extra

optical summation arms or transmitted to the output of our

chip directly for further processing. In the case of the MLP, the

number of dot products is enormous. To reduce the complexity

(a) (b)

Fig. 4. (a) Approximate weight converter, (b) Transient simulation results.
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Fig. 5. (a) High-level hardware mapping to OISA, (b) Stride of a 3×3 Kernel
in convolution operation, (c) Implementing a stride in an arm.

of the calculations, the VOM unit is added to the architecture

that enables OISA to break the intensive MAC operations into

smaller parts and perform the calculations. It is noteworthy

that OISA uses off-chip resources to perform the non-linearity

(activation function).

MR Device Engineering. Increasing the MR resolution

ideally leads to higher weight/activation precision and accuracy.

However, it demands a reduction in the Quality Factor (Q-

factor), another pivotal characteristic of the MRs. The Q-factor

describes the resonance’s sharpness relative to the MR’s central

frequency. A higher Q-factor results in a sharper resonance

which can make the system more sensitive to noise, as even a

slight deviation in the central frequency can result in significant

losses. Here, a smaller Q-factor is preferred over a large one

[15]. Yet, achieving smaller Q-factors often entails enlarging

the dimensions of the MRs, which can, in turn, introduce sub-

stantial optical crosstalk noise and energy demands for tuning.

In this work, we tune and leverage the effective bit resolution

of 4-bit for MRs [14], [15] to make a balance among the above-

mentioned parameters. Using Lumerical tools, we designed an

MR with a radius of 5µm and a ring waveguide width of 760

nm. These dimensions resulted in a relatively small Q-factor (≈
5000) which provides sufficient differentiation levels to carry

out our intended multi-bit design. To tune MRs during weight

mapping, Thermo-Optic (TO) or Electro-Optic (EO) methods

are widely utilized. EO tuning is faster than TO but it can only

create a slight change in MR’s resonant wavelength. On the

other hand, TO tuning has the capability to largely shift the

MR’s resonant wavelength but at a cost of larger delay and

more power consumption. Similar to [14], a hybrid TO-EO

tuning method is utilized to leverage both methods’ advantages.

B. Hardware Mapping & Bank Allocation

Aiming to process the first layer of DNNs, OISA is equipped

with a correlated hardware mapping method to balance the

workload and increase the throughput. A high-level hardware

mapping is shown in Fig. 5(a), where the inputs from the

pixel plane are connected to their respective weight values

that are mapped to the MRs. A 3×3 kernel stride over a

pixel plane is shown in Fig. 5(b). To localize the kernel stride

computation in one arm, OISA supports a kernel size of 3×3

as seen by several well-known DNN models. Fig. 5(c) shows

the detailed implementation of a stride where weight values

related to a 3×3 kernel are mapped on the MRs in an arm.

Input activation values then are modulated on a light with

a wavelength according to the resonance wavelength of their

Fig. 6. Optical array partitioning and allocation of OISA.

corresponding weight. These input-modulated lights are then

multiplexed to a single light and are passed through the arm.

MRs affect the intensity of the light passing the arm and weight

the specific wavelength providing multiplication between 9

activation values and 9 weight values. Later a BPD at the end

of the arm will provide the optical summation of multiplication

results to conclude the MAC operation. We develop OISA

with 10 MRs in each arm that enables us to perform 9×9

(3×3 kernel values by 9 activation values) MAC operations.

However, in order to enhance the core’s efficiency in handling

5×5 and 7×7 kernels (25 and 49 weight values), we partition

the cores in the OPC hierarchy. As shown in Fig. 6, in our

core, each bank comprises 5 arms, each equipped with 10 MRs,

resulting in a total of 50 MRs per bank. With 80 banks in OPC,

OISA consists of 4000 MRs in total. Banks are grouped in

the 4 columns. Thus, each row has 40 MRs, and 40 AWC

units are assigned to map the weights to MRs. It is worth

pointing out that to completely map all the weight values to the

OPC, 100 iterations are required. In the case of 3×3 kernels,

the MAC result of each arm will represent a stride of the

convolution operation and can be directly transferred to the

output. Supporting 5×5 and 7×7 weight kernels, the output of

each bank will be further processed in the VOM unit to obtain

the final MAC results. According to this configuration, the total

number of MAC operations that can be processed in one cycle

(N m
cycle

) can be formulated as f × (nK2). Where f is the

number of banks, K ∈ {3, 5, 7} is the kernel size. We consider

n = 5 when K = 3, as 5 kernels with the size of 3×3 can

be mapped to each bank. Else n = 1 as only one 5×5 or 7×7

can be mapped to each bank. Thus, for K = 3, 5, 7, in each

cycle, OISA conducts 3600, 2000, and, 3920 MAC operations.

The total required cycles for performing convolution operation

depend on the number of weight kernels and their sizes.

IV. PERFORMANCE EVALUATION

Framework. The evaluation framework is created through a

bottom-up methodology as shown in Fig. 7. At the device level,

we fabricated and optimized the MR device and extracted the

circuit parameters to co-simulate with interface CMOS circuits

in Cadence Spectre and SPICE. At the circuit level, we first

implemented the OISA pixel’s array and peripheral circuitry

using the 45nm NCSU Product Development Kit (PDK) library

[22] in Cadence and extracted the output voltages and currents.

We then developed all OISA’s components except the kernel

banks (implemented in Cacti [23]) in Cadence Spectre. The

DNN weight parameters associated with the 1st layer need to

be quantized and mapped into the OPC, while the remaining

layers are processed with the off-chip processors. We trained

a PyTorch model w.r.t. the under-test datasets and extracted
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Fig. 7. Proposed bottom-up evaluation framework.

the 1st-layer weights. OISA’s MR elements are then adjusted

with these weights. For computation purposes, we developed

a custom in-house simulator for OISA. This simulator com-

putes the overall latency and power consumption required

for the network execution. It also offers flexibility in array

configuration and peripheral design selection. The results are

captured after processing the 1st convolution layer. We then

developed a Python-based behavioral DNN model to utilize

the computation outcomes and processes the 2nd-to-last layer

to calculate inference accuracy.

Functionality. Figure 8 shows the transient simulation wave-

forms of VAM’s thresholding to drive VCSEL depicted in

Fig. 3(a). In this figure, the t1 and t2 represent two outputs

corresponding to three distinct pixels denoted as Out1, Out2,

and Out3. Each pixel exhibits a unique voltage implying its

absorption of varying light intensities. Specifically, the voltage

levels for Out1− 3 are ascertained whenever the Clk signal is

low, observable within the time frame of 16 to 17 ns. Within this

interval, the voltage for Out1 surpasses both sense amplifier

thresholds, resulting in both t1 and t2 being set to 1. Conversely,

the voltage for Out2 resides between 0.16V and 0.32V, leading

to t1 equating to 1 and t2 being 0. As for Out3, its voltage is

less than 0.16V, thereby setting both t1 and t2 to 0.

Power Consumption & Performance. Here, we compare

the OISA with three DNN accelerators based on PIS and ASIC

as follows assuming a 1-to-4-bit width for the weight parameter.

For evaluation, we assume that all platforms process the 1st

layer of the ResNet18 model. Optical PIS: We designed a

Crosslight-like [14] platform with 80 banks, each consisting of

5 arms with 10 MRs. For a fair evaluation, we developed the

design from scratch using the proposed evaluation framework

Fig. 8. Transient simulation results of VAM’s thresholding to drive VCSEL.

Fig. 9. Normalized log-scaled power consumption of various accelerators.
From left to right: OISA, Crosslight, AppCip, and ASIC design.

and the in-house simulator to extract numbers. Note that

the Crosslight uses separate banks for weight and activation.

Electronic PIS: We developed an AppCip-like [10] accelerator

with non-volatile memory in HSPICE and NVSIM [24] from

scratch and extracted the performance parameters. ASIC: We

developed a DaDianNao-like [25] accelerator with 8×8 tile

version connected to a conventional 128×128 image sensor. We

synthesized the designs with the Design Compiler under the 45

nm process node. The eDRAM and SRAM performance was

estimated using CACTI [23]. Figure 9 shows the normalized

power consumption of the under-test platforms in various bit-

width configurations. From this figure, we observe the superior-

ity of OISA over various under-test platforms where it achieves

8.3×, 7.9×, and 18.4× reduction in power consumption on

average compared with Crosslight [14], AppCip [10], and ASIC

platforms, respectively. We report the breakdown of power

consumption for OISA and Crosslight platforms as well, where

we observe a remarkable reduction in power consumption

mainly due to ADC/DAC elimination in OISA as compared

with Crosslight. As for execution time, considering that the

activation and weight values are already mapped to the core,

in the OISA, and Crosslight-like designs, the utilized VCSEL

and BPD technologies have critical effects on the execution

time. To have a fair comparison same VCSEL [26] and BPD

[13] technologies have been used for OISA and corsslight-

like designs. The total execution time for performing one

architecture-wide MAC operation is 55.8 ps which results in 7.1

TOp/s. However, the most important difference between these

two designs is that in the OISA, all of the MRs in OPC are

allocated to weight values, while in the Crosslight-like design,

half of the MRs are considered to be mapped by activation

which cuts the total number of operations to half.

Table I presents a comparison of the structural and perfor-

mance characteristics of selective PIS implementations in the

electronic domain and OISA. Since these implementations are

tailored for specific domains, we conducted a fair assessment by

estimating and normalizing the power consumption considering

a scenario where all PIS units process the first layer of a

CNN. The OISA reaches the frame rate of 1000 and the

efficiency of ∼6.68 TOp/s/W as one of the most efficient

implementations. This comes from the massively-parallel OPC

banks and eliminating ADC/DAC for coarse-grained inference.

As for the area, according to the MR’s dimensions mentioned

in section III, and our architecture configurations, the total area

of the OISA is 1.92 mm2. The simulation results reported in

Table I demonstrate no modification on the pixel array.

Accuracy. We conduct experiments on OISA considering
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TABLE I
PERFORMANCE COMPARISON OF VARIOUS PIS/PNS/PIP UNITS. NOTE: OISA IS THE ONLY HYBRID IN-SENSOR ACCELERATOR.

Designs
Technology

(nm)
Purpose Comput. Scheme Memory NVM

Pixel Size

(µm2)
Array Size

Frame Rate

(frame/s)

Power

(mW)

Efficiency

(TOp/s/W)

[27] 180 2D optic flow est. row-wise Yes No 28.8×28.8 64×64 30 0.029 0.0041

[7] 180
edge*/blur/sharpen/

1st-layer CNN
row-wise No No 7.6×7.6 128×128 480

sensing: 77
processing: 91

0.777

[8] 60/90 STP† row-wise Yes No 3.5×3.5 1296×976 1000
sensing: 230

processing:363
0.386

[2] 180 1st-layer BNN entire-array Yes No 110×110 32×32 1000 0.0121 1.32

[6] 180 edge*/TMF‡ row-wise Yes No 32.6×32.6 256×256 100,000 1230 0.535

[3] 65 1st-layer BNN entire-array Yes Yes 55×55 128×128 1000
sensing: 0.025

processing: 0.0088
1.745

[9] 180 1st-layer BNN entire-array Yes No 35×35 32×32 156 0.00014 - 0.00053 9.4-34.6

[17] 65 2 - 64 Conv/ROI** row-wise No No 9×9 160×128 96 - 1072 0.042 - 0.206 0.15 - 3.64

[1] 180 1st-layer CNN entire-array No No 10×10 128×128 3840 0.45 - 1.83 1.41 - 3.37

[10] 45 1st-layer CNN entire-array Yes Yes 38×38 32×32 3000 0.00096 - 0.0028 1.37 - 4.12

OISA 65 1st-layer CNN entire-array Yes No 4.5×4.5 128×128 1000 0.00012-0.00034 6.68
∗Edge extraction. †Spatial Temporal Processing. ‡Thresholding Median Filter. ∗∗Region Of Interest.

various [Weight:Activation] configuration with several datasets,

including MNIST evaluated on LeNet, SVHN on ResNet18,

CIFAR-10 on ResNet18, and CIFAR-100 on VGG16 compared

with a software baseline, FBNA [28], AppCiP [10], and PISA

[3] as recent low bit-with accelerators. The comparison results

of classification accuracy are summarized in Table II. We find

that 1) OISA shows an acceptable accuracy while provid-

ing significant power-delay reduction as discussed compared

with other platforms. 2) Generally, our experiments show that

weights and inputs are progressively more sensitive to bit-width

changes. However, a higher weight bit-width does not necessar-

ily result in a higher accuracy as indicated in OISA [4:2] config.

This comes from the fact that AWC may not reliably provide

distinct current levels when the number of bits increases. 3)

The accuracy drop of OISA is because of the ADC-DAC-less

nature that allows processing the 1st convolutional layer with

1 to 4 bits approximated with a converter.
TABLE II

OISA’S ACCURACY (%) ON VARIOUS DATASETS.
Configuration MNIST SVHN CIFAR-10 CIFAR-100

baseline 99.6 97.5 91.37 78.4
FBNA [28] – 96.9 88.61 71.5

AppCiP [10] – 96.4 89.51 –
PISA [3] 95.12 90.35 79.80 61.6

OISA [4:2] 95.21 91.74 81.23 61.38
OISA [3:2] 96.18 94.36 84.45 66.89
OISA [2:2] 96.25 93.20 83.85 66.94
OISA [1:2] 95.75 93.16 83.64 66.06

V. CONCLUSION

In this work, we presented OISA as a high-performance and

energy-efficient optical in-sensor accelerator architecture. OISA

benefits from an innovative design and hardware mapping

method to remarkably reduce the power consumption of data

conversion, transmission, and processing in the conventional

cloud-centric architecture as well as recent edge accelerators.

Our results on various image data-sets show acceptable accu-

racy while OISA achieves 6.68 TOp/s/W efficiency.
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