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ON THE CANONICAL BUNDLE FORMULA AND ADJUNCTION
FOR GENERALIZED KÄHLER PAIRS

CHRISTOPHER HACON AND MIHAI PĂUN

Abstract. In this article we prove analogs of Kawamata’s canonical bundle for-
mula, Kawamata subadjunction and plt/lc inversion of adjunction for generalized
pairs on Kähler varieties. We also show that a conjecture of [BDPP13] in dimension
n− 1 implies that the cone theorem holds for any n-dimensional Kähler generalized
klt pair (X,B + β).
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Generalized pairs have been playing an increasingly prominent role in higher dimen-
sional birational geometry (see eg. [Birkar21] and references therein). Their analytic
counterparts were introduced in [DHY23] (see Definition 1.1) where it is shown that
the minimal model program for compact Kähler generalized klt 3-fold pairs holds.
Note that even in the projective case, Definition 1.1 is more general than the usual
definition of generalized pairs since the ”nef” part is only assumed to be a positive
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(1,1) form (instead of a nef divisor). This is extremely useful in the Kähler context
as, in many instances, we can replace the use of an arbitrary ample (or big) divisor by
a (modified) Kähler class. In particular, using this extra flexibility, [DHY23] shows
the finiteness of minimal models for compact Kähler generalized klt 3-fold pairs of
general type, and that klt Calabi-Yau Kähler 3-folds are connected by finite sequences
of flops. The theory of generalized pairs makes sense in all dimensions and it is hoped
that many results from the projective minimal model program will carry through to
this setting. In this paper we perform the first steps in this direction. We show that
adjunction and inversion of adjunction hold for generalized pairs (both in the plt and
lc cases), we prove a canonical bundle formula for generalized klt Kähler pairs and we
show that assuming the BDPP conjecture in dimension n− 1, then the cone theorem
for generalized pairs holds in dimension n (and in particular it holds unconditionally
in dimension 4). More precisely, we show the following.

Theorem 0.1. Let (X,B + β) be a generalized pair and S a component of B of
coefficient 1 with normalization ν : Sν → S. Then (X,B +β) is generalized lc (resp.
generalized plt) on a neighborhood of S iff (Sν , BSν + βSν) is generalized lc (resp. S
is normal and (S,BS + βS) is generalized klt).

Next we turn our attention to the following generalization of Kawamata’s adjunc-
tion theorem for generalized pairs (cf. [Kawamata98, Theorem 1]).

Theorem 0.2. Let (X,B+β) be a generalized log canonical pair such that (X,B′+β′)
is a generalized klt pair and W ⊂ X is a minimal log canonical center of (X,B +β).
Then W is normal and (KX +B + β)|W = KW +BW +βW is a generalized klt pair.

In order to prove this result, it is necessary to prove the following canonical bundle
formula (cf. Theorem 2.3).

Theorem 0.3. Let f : X → Y be a projective morphism of compact normal Kähler
varieties such that f∗OX = OY and (X,B +β) is a generalized klt (or generalized lc)
pair. If γ ∈ H1,1

BC(Y ) is such that [KX + B + βX ] = f ∗γ then γ = [KY + BY + βY ]
where (Y,BY + βY ) is a generalized klt (or generalized lc) pair.

Note that we expect semistable reduction to hold (unconditionally) for morphisms
of compact analytic varieties, however the necessary references are not yet available.
In the case of projective morphisms, we can deduce semistable reduction from the
algebraic case (see [AK00], [Karu99]). It is possible that the results of [BdSB23] are
already sufficient for our purposes, but the proof would appear to be more involved
and we do not pursue it here. The proof of this result heavily uses Theorem 6.2 (which
is a generalization of a result of Guenancia [Gue20]), which roughly speaking, states
that βY is pseudo-effective. By [DHP22, Theorem 2.36], to show that βY is b-nef, it
suffices to show that βY |Z is pseudo-effective for any subvariety Z ⊂ X . This can be
checked by using semistable reduction and applying Theorem 6.2.

Finally, assuming a key conjecture of Boucksom-Demailly-Paun-Peternell [BDPP13,
Conjecture 0.1], we show that the cone theorem for generalized klt pairs holds in ar-
bitrary dimension (and unconditionally for pseudo-effective pairs in dimension ≤ 4).
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This provides some evidence that the minimal model program holds in arbitrary di-
mension for generalized klt pairs. We refer the reader to [DHY23] for the generalized
klt minimal model program in dimensions ≤ 3.

Conjecture 0.4. Let X be a compact Kähler manifold. Then the canonical class KX

is pseudoeffective if and only if X is not uniruled (i.e. not covered by rational curves).

Note that the above conjecture is known to hold in dimension ≤ 3. Following ideas
from [CH20] and using Theorem 0.3 we then prove the following result.

Theorem 0.5. Assume that Conjecture 0.4 holds in dimension n (resp. in dimension
n − 1). Let X be a compact Q-factorial Kähler variety of dimension n such that
(X,B +β) is generalized klt (resp. and KX +B+βX is pseudo-effective), then there
are at most countably many rational curves {Γi}i∈I such that

NA(X) = NA(X)KX+B+βX≥0 +
∑

i∈I

R+[Γi],

where 0 < −(KX + B + βX) · Γi ≤ 2n. Moreover, if B + βX (or KX + B + βX) is
big, then I is finite.

We now turn to a more detailed description of some of the key results in this paper.
The most important results in this paper concern versions of the canonical bundle
formula (see Theorems 0.3 and 5.2). The typical set up for the canonical bundle
formula is an algebraic fiber space f : X → Y where say X, Y are normal projective
varieties, f∗OX = OY , and a log canonical pair (X,B) such that KX +B ∼Q,Y 0. We
can then write

KX +B ∼Q f ∗(KY +BY +MY )

where BY is the boundary part that measures the singularities of f , and the moduli
part MY is a Q-divisor class which measures the variation of the fibers of f . For
example if f is an elliptic fbration, then MY = j∗OP1( 1

12) where j denotes the j
function, and if XP is a smooth fiber of multiplicity m over a codimension 1 point
P ∈ Y and B = 0, then the coefficient of BY along P is 1− 1

m .
The canonical bundle formula, roughly speaking, states that if the morphism f is

sufficiently well prepared (eg. B = 0 and all fibers have simple normal crossings), then
(Y,BY ) is log canonical and the the moduli part MY is a nef Q-divisor. In particular
(Y,BY ) is a generalized log canonical pair (and in fact this is the key motivation for
introducing generalized pairs [BZ16]).

Results along this line are established in [Kawamata98], see [Kollar07] for a detailed
discussion. The positivity of the nef part is deduced from general positivity proper-
ties of pushforwards of the canonical bundle (see [Kollar86]). The intuition here is
that after performing several reductions, we can in fact assume that the moduli part
coincides with f∗ωX/Y .

While the canonical bundle formula has a large number of extremely important
applications (eg. to sub-adjunction [Kawamata98]), it is clear that in order to run
proofs by induction on the dimension, it is important to establish versions of the
canonical bundle formula that work for generalized pairs of the form (X,B + M).
This is achieved in [Fil20]. Note that on projective varieties, nef classes are limits of
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ample divisors and hence one hopes the result for generalized pairs [Fil20] follow as a
limit of the result for the usual pairs [Kawamata98].

In the Kähler context it is more practical to work with generalized pairs (X,B+β)
where β ∈ H1,1

BC(X) is a nef class (see Definition 1.1) and f : X → Y is a holomorphic
map of Kähler manifolds such that KX + B + β = f ∗γ for some γ ∈ H1,1

BC(Y ). One
can then define the boundary BY and moduli parts βY ∈ H1,1

BC(Y ) just as in the
projective case. Unluckily, it does not follow that β is a limit of Q-divisors and hence
the arguments from the projective case do not apply in the Kähler case.

Our strategy is to first prove an analog of the positivity of f∗ωX/Y . We show that
if KX +B + β = f ∗γ and (X,B+ β) is generalized log canonical, then KX/Y +B+ β
is pseudo-effective (the precise statement is contained in Theorem 2.2, which is an
easy consequence of Theorem 6.2 that generalizes [Gue20]). Once the morphism
f : X → Y is sufficiently prepared (and B is re-chosen appropriately), we have
KX/Y + B + β = f ∗βY and hence βY is also pseudo-effective. By [DHP22], it is
known that to show that βY is nef, it suffices to show that βY |W is nef where W is
(the normalization of) any subvariety of Y . To verify this we consider fW : XW → W
(where (. . .)W denotes restriction over W ) and then apply Theorem 2.2 to the induced
pair (XW , BW + βW ). For the details of the proof see Theorem 2.3. Note that for
technical reasons we have to assume that f is a projective morphism, but we expect
the result will hold without this assumption.

Therefore, the technical heart of this paper is Theorem 6.2 (which is the key ingre-
dient in the proof of Theorem 2.2). To gain some intuition, note that in the setting
of Theorem 6.2 we consider KX/Y +B+β ≡ f ∗γ+L where L is a Q-line bundle such
that κ(L|Xy) ≥ 0 for general y ∈ Y . Restricting over open subsets U ⊂ Y we may
trivialize γ and treat β|XU as a Q-line bundle FU = OXU (L−KX/Y − B). Following
[PT18], we construct a positive current ΘU ≥ 0 fiber-wise from the m-th root of the
sections of mL|Xy (for m > 0 sufficiently big and divisible). These currents then glue
together to give a positive current Θ ≡ KX/Y +B + β.

Finally, we remark that it is possible to give direct arguments with analytic tech-
niques to prove stronger versions of the canonical bundle formula Theorem 2.3. In
fact Theorem 5.2 shows that if we further assume that β contains a smooth positive
representative, then we can conclude the stronger fact that βY is a closed positive
current with zero Lelong numbers.

Acknowledgment. The authors would like to thank J. Cao, O. Das and M.
Temkin for useful communications. Thanks go equally to S. Boucksom and C.-M.
Pan for interesting discussions about Lelong numbers.

1. Preliminaries

Here we recall some definitions and results from [DHY23]. We will say that S is
relatively compact if S ⊂ S ′ is an open subset whose closure is compact. Similarly
π : X → S is a proper morphism to a relatively compact space S if there is a proper
morphism π′ : X ′ → S ′ where S ⊂ S ′ is an open subset whose closure is compact and
X = π′−1(S).
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Definition 1.1. Let π : X → S be a proper morphism of normal Kähler varieties such
that S is relatively compact and X is a normal compact Kähler variety, ν : X ′ → X
a resolution of singularities, B′ an R-divisor on X ′ with simple normal crossings
support, and β ′ ∈ H1,1

BC(X
′), such that

(1) B := ν∗B′ ≥ 0,
(2) [β ′] ∈ H1,1

BC(X
′) is nef over S, and

(3) [KX′ + B′ + β ′] = ν∗γ, where γ ∈ H1,1
BC(X).

Then we let β = ν∗β ′ and we say that ν : (X ′, B′ + β ′) → (X,B + β) is a generalized
pair (over S). We will often abuse notation and say that (X/S,B+β) (or (X,B+β))
is a generalized pair (over S) and ν : (X ′, B′ + β ′) → (X,B + β) is a resolution. If
moreover Ex(ν) is a divisor such that Ex(ν) + B′ has simple normal crossings, then
we say that ν is a log resolution and if Ex(ν) supports a relatively ample divisor, then
ν is projective. We will often assume that X = S and omit π : X → S.

Remark 1.2. Note that we can define the corresponding nef b-(1,1) form β := β ′

as follows. For any bi-meromorphic morphism p : X ′′ → X ′ we define βX′′ = p∗β ′

and for any bi-meromorphic morphism q : X ′′ → X ′′′ we let βX′′′ = q∗βX′′. Using
the projection formula, one easily checks that q∗βX′′ is well defined (i.e. βX′′′ does
not depend on the choice of the common resolution X ′′ of X ′ and X ′′′) and that for
any bi-meromorphic morphism r : X1 → X2 of birational models of X, we have
r∗βX1

= βX2
. We say that β ′ descends to X ′. Note that for any bi-meromorphic

morphism p : X ′′ → X ′, we also have β ′ = β ′′ where β ′′ = βX′′, and so β also
descends to X ′′.

Similarly, if ν : Y → X ′ is a proper morphism, then write KY +BY = ν∗(KX′+B′).
For any proper morphism µ : Y → Y ′ we have BY ′ = µ∗BY . In this way we have
defined a b-divisor B (whose trace BY on Y is BY ). Since the b-divisor K+B =
KX′ +BX′ and the b-(1, 1)-form β= βX′ descend to X ′, we say that the generalized
pair (X,B + β) descends to X ′.

We will often denote the generalized pair ν : (X ′, B′+β ′) → (X,B+β) by (X,B+β)
where β = β ′. Note that then β ′ = βX′ and B′ = ν∗(KX +B + β)− (KX′ + β ′).

We define the generalized discrepancies a(P ;X,B+β) = −multP (BY ), where P is a
prime divisor on a bimeromorphic model Y ofX . We say that (X,B+β) is generalized
klt or generalized Kawamata log terminal (resp. generalized lc or generalized log
canonical) if for any log resolution ν : X ′ → X , we have ⌊BX′⌋ ≤ 0, i.e. a(P ;X,B +
β) > −1 for all prime divisors P over X (resp. a(P ;X,B + β) ≥ −1 for all prime
divisors P over X). This can be checked on a single given log resolution. We say that
(X,B+β) is generalized dlt (divisorially log terminal) if there is an open subset U ⊂ X
such that (U, (B + β)|U) is a log resolution (of itself) and −1 ≤ a(P ;X,B + β) ≤ 0
for any prime divisor P on U and −1 < a(P ;X,B + β) for any prime divisor P over
X with center contained in X \ U .

Lemma 1.3. Let (X,B + β) be a generalized klt (resp. generalized dlt) variety. If
KX +B is Q-Cartier, then (X,B) is klt (resp. dlt).
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Proof. Let f : X ′ → X be a log resolution, KX′ + B′ + βX′ = f ∗(KX + B + βX),
where ⌊B′⌋ ≤ 0, as (X,B + β) is generalized klt. Let KX′ +B♯ = f ∗(KX +B), then

E := KX′ +B′ − f ∗(KX +B) ≡ f ∗βX − βX′

and so E is exceptional and −E is nef over X . By the negativity lemma E ≥ 0. But
then

B′ = E + f ∗(KX +B)−KX′ = B♯ + E

and so ⌊B♯⌋ ≤ 0, i.e. (X,B) is klt. The statement about dlt singularities follows
similarly. !

In dimension 2, the situation is particularly simple as shown by the following lemma.

Lemma 1.4. If (X,B + β) is a generalized klt, dlt, lc surface, then KX + B is
R-Cartier, (X,B) is klt, dlt, lc and βX is nef.

Proof. See [DHY23]. !

The next result shows that, working locally over X , generalized klt pairs behave
similarly to the usual klt pairs, and in particular they have rational singularities.

Theorem 1.5. Let (X,B+β) be a generalized klt pair, then X has rational singular-
ities and if we replace X by a relatively compact Stein open subset, then the following
hold:

(1) there exists a small bimeromorphic morphism µ : X♯ → X such that X♯ is
Q-factorial,

(2) if KX♯ +B♯+βX♯ = µ∗(KX +B+βX), then βX♯ ≡X ∆♯ so that (X♯, B♯+∆♯)
is klt, and

(3) if ∆ = µ∗∆♯, then (X,B +∆) is klt.

Proof. This follows from [DHY23] but we include a proof for the convenience of the
reader. Note that rational singularities is a local property and hence follows from (3)
and [Fuj22, Theorem 3.12].

(1-2) Let ν : X ′ → X be a projective log resolution of (X,B + β) and write
KX′ + B′ + β ′ = ν∗(KX +B + β) so that β = β ′. Let E be the reduced exceptional
divisor and for 0 < ϵ ≪ 1, let B∗ = (B′)>0 + ϵE and F = (B′)<0 + ϵE, then
KX′ + B∗ + β ′ = ν∗(KX + B + β) + F where the support of F equals the set of
all exceptional divisors, and (X ′, B∗ + β ′) is generalized klt. In particular β ′ ≡X

F − (KX′ +B∗) where F − (KX′ +B∗) is an R-divisor, nef over X . As ν is projective
and X is Stein, we may assume that F −(KX′ +B∗) is big. But then β ′ ≡X ∆′, where
∆′ > 0 is an effective R-divisor such that (X ′, B∗ +∆′) is klt. We may therefore run
the relative KX′ + B∗ + ∆′ mmp ([Fuj22] and [DHP22]) and hence we may assume
that we have a birational map ψ : X ′ ""# X♯ such that if F ♯ = ψ∗F , B♯ = ψ∗B∗,
β♯ = ψ∗β ′ and ∆♯ = ψ∗∆′, then

F ♯ ≡X KX♯ +B♯ + β♯ ≡X KX♯ +B♯ +∆♯

is nef over X so that F ♯ = 0 by the negativity lemma. Therefore µ : X♯ → X is a small
bimeromorphic morphism, B♯ = µ−1

∗ B and X♯ is Q-factorial. Clearly (X♯, B♯ + ∆♯)
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is klt. Note that each step of the above mmp preserves the numerical equivalence
β♯ ≡X ∆♯, and in particular KX♯ +B♯ + β♯ = µ∗(KX +B + β).

(3) By the base point free theorem [Nak87, Theorem 4.8], we have KX♯ + B♯ +
∆♯ ∼Q,X 0 and the claim follows. !

The following result is a technical result that is useful in many situations, especially
when proving results by induction on the dimension. It shows that up to replacing X
by a higher model, the locus of non-klt singularities is contained inside the reduced
boundary of a carefully chosen strongly Q-factorial dlt pair. Recall that a Q-line
bundle is a reflexive rank 1 sheaf such that there exists a positive integer m such
that the reflexive hull L[m] := (L⊗m0)∨∨ is a line bundle. A variety X is strongly
Q-factorial if every reflexive rank 1 sheaf is a Q-line bundle.

Theorem 1.6 (DLT models). Let (X,B + β) be a generalized pair, where X is rela-
tively compact Stein. Then there exists a projective birational morphism fm : Xm →
X such that Xm is strongly Q-factorial, all exceptional divisors P have discrepancy
a(X,B + β, P ) ≤ −1 and (Xm, (fm)−1

∗ B + Ex(fm)) is generalized dlt.

Proof. The proof is similar to the proof in the case of the usual generalized pairs (see
[Fil20, Theorem 3.2]), which in turn is based on ideas of Hacon (see [KK10]). We
include the argument for the convenience of the reader. Recall that X is strongly
Q-factorial if for every reflexive rank 1 sheaf F there exists an integer m > 0 such
that (F⊗m)∗∗ is locally free (see [DH20, Definition 2.2]).

Let f : X ′ → X be a log resolution of the generalized pair (X,B + β) and write
KX′ +B′ + β ′ = f ∗(KX +B + β) where β = βX and β ′ = βX′. We may assume that
f is defined by a sequence of blow ups over centers of codimension ≥ 2 in X , and
hence f is a projective morphism and so we have C ≥ 0 an f -exceptional divisor such
that −C is relatively ample. We write B′ = f−1

∗ {B} + E+ + F − G where E+, F, G
are supported on the divisors of discrepancy a ≤ −1, −1 < a < 0, a > 0 respectively
and we let E = red(E+) be the reduced divisor with the same support as E. For any
0 < ϵ, µ, ν < 1, we have

E + (1 + ν)F − µC + β ′ = (1− ϵµ)E + (1 + ν)F + µ(ϵE − C) + β ′.

Note that −µC+β ′ ≡X −µC− (KX′ +B′) is an ample R-divisor (over X) and hence
for 0 < ϵ ≪ 1, µ(ϵE − C) + β ′ is also numerically equivalent to an ample R-divisor
(over X). Since X is Stein, we may write

−µC + β ′ ≡X H1 and µ(ϵE − C) + β ′ ≡X H2

where B′ +H1 +H2 has simple normal crossing support and ⌊H1⌋ = ⌊H2⌋ = 0. Let

∆ϵ,µ,ν := f−1
∗ {B}+ (1− ϵµ)E + (1 + ν)F +H2 ≡X f−1

∗ {B}+ E + (1 + ν)F +H1,

then (X ′,∆ϵ,µ,ν) is klt for 0 < ν ≪ 1, and by [DHP22] there is a Q-factorial minimal
model ψ : X ′ ""# Xm

ϵ,µ,ν over X so that KXm
ϵ,µ,ν

+∆m
ϵ,µ,ν is nef over X . By the equations

above, this is also a minimal model for the dlt pair (X ′, f−1
∗ {B}+E+(1+ν)F +H1).

Let Bm
ϵ,µ,ν = ψ∗(f−1

∗ {B}+E+F ), then∆m
ϵ,µ,ν = Bm

ϵ,µ,ν+ψ∗(νF+H1), and (Xm
ϵ,µ,ν , B

m
ϵ,µ,ν)

is dlt. Define

N := KXm
ϵ,µ,ν

+Bm
ϵ,µ,ν + νFm

ϵ,µ,ν +Hm
1,ϵ,µ,ν ≡X KXm

ϵ,µ,ν
+∆m

ϵ,µ,ν
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T := KXm
ϵ,µ,ν

+Bm
ϵ,µ,ν + (E+ − E)mϵ,µ,ν −Gm

ϵ,µ,ν + βm
ϵ,µ,ν ≡X 0.

We then have

T −N ≡X µCm + (E+ −E)mϵ,µ,ν −Gm
ϵ,µ,ν − νFm

ϵ,µ,ν =: Dm
ϵ,µ,ν,

where −Dm
ϵ,µ,ν is nef and the pushforward of Dm

ϵ,µ,ν to X is effective. By the negativity
lemma, Dm

ϵ,µ,ν ≥ 0. The divisors C, E+ − E, F and G are independent of ϵ, µ, ν,
thus if 0 < µ ≪ ν ≪ 1, then Gm

ϵ,µ,ν = νFm
ϵ,µ,ν = 0. Then let Xm := Xm

ϵ,µ,ν, then Xm

is strongly Q-factorial as it is the output of a minimal model program (see [DH20,
Lemma 2.5]) and (Xm, (fm)−1

∗ B + Ex(fm)) is generalized dlt. !

1.1. Boundary and moduli parts. Throughout this section we will assume that
π : Z → S is a proper morphism of relatively compact normal analytic varieties,
f : X → Z is a proper morphism of normal Kähler varieties such that f∗OX = OZ

and (X/S,B + β) a generalized pair which is generalized log canonical over an open
subset of Z. Recall that by assumption there is a log resolution ν : X ′ → X of
(X,B + β), i.e.

(1) β = βX′ (that is β descends to X ′),
(2) βX′ is nef over S,
(3) Ex(ν) is a divisor and ν−1(B) ∪ Ex(ν) has simple normal crossings.

We let KX′ + BX′ + βX′ = ν∗(KX + B + βX) and we say that KX′ + BX′ + βX′ is
the log-crepant pull-back of KX +B + βX .

Definition 1.7. For any prime divisor Q on Z, let

aQ = aQ(X,B + β) = sup{t ∈ R|(X,B + tf ∗Q + β) is glc over ηQ}.

In this definition ”glc” means that there is an analytic open subset Z0 ⊂ Z intersecting
Q such that (X,B+aQf ∗Q+β) is glc but not gklt over Z0. Note that as Z is normal,
Zsing has codimension at least 2 and so Q is Cartier in codimension 1. Since (X,B+β)
is a generalized log canonical pair, f is proper, and Z is relatively compact, it is easy
to see that aQ = 1 for all but finitely many divisors Q ⊂ Z. We can then define the
boundary divisor BZ = B(X/Z,B + β) =

∑
(1− aQ)Q.

Remark 1.8. If η : X ′ → X and µ : Z ′ → Z are proper bimeromorphic maps of
normal varieties and f ′ : X ′ → Z ′ is holomorphic, KX′+B′+βX′ = η∗(KX+B+βX),
then we say that (X ′, B′ +β) is the induced generalized pair. If Q′ = µ−1

∗ Q, then it is
easy to see that aQ(X,B+β) = aQ′(X ′, B′+β). In particular, if BZ′ is the boundary
divisor for (X ′, B′ + β), then µ∗BZ′ = BZ , i.e. the boundary divisor defined by the
above formula is in fact a b-divisor which we denote by BZ (so that BZ = BZ

Z and
BZ′ = BZ

Z′).

Definition 1.9. If KX +B + βX ≡ f ∗γ for some ∂̄, ∂ closed form γ, then we define
the moduli part βZ := γ − (KZ + BZ) of (X/Z,BX + βX). If KY + BY + βY is the
log-crepant pull-back of KX+B+βX and βZ′ is the moduli part of (X ′/Z ′, BX′+βX′),
then it is easy to see that µ∗βZ′ = βZ and so we have a b-(1,1) form βZ such that
βZ = βZ

Z .
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Definition 1.10. The pair (X/Z,B+β) is said to be BP stable (over Z) if K+B =
(KZ +BZ) i.e. if KZ + BZ is R-Cartier and for any contraction f ′ : X ′ → Z ′

which is birationally equivalent to f and such that the induced maps µ : Z ′ → Z and
η : X ′ → X are projective birational morphisms, then KZ′ + BZ

Z′ = µ∗(KZ + BZ
Z).

Note that if KX+B+βX ≡ f ∗γ, then the moduli part also descends to Z i.e. βZ = βZ

Suppose now that η : X ′ → X is a proper generically finite morphism. We define
the pull-back β′ := η∗β as follows. Let ν : Y → X be a log resolution of (X,B + β)
and Y ′ be a resolution of the normalization of the main component of Y ×X X ′ so
that ρ : Y ′ → Y is a generically finite holomorphic map and ν ′ : Y ′ → X ′ is a
bimeromorphic map. Then let β′ = (ρ∗βY ) and KY ′ + BY ′ = ρ∗(KY + BY ). Since
β′

Y ′ = ρ∗βY is nef over S, (Y ′, BY ′ + β′/S) defines a generalized pair. Now let
B′ = ν ′∗BY ′, then

KX′ +B′ + β′
X′ = ν ′∗(ρ

∗(ν∗(KX +BX + βX))) = η∗(KX +BX + βX)

by the projection formula. We will say that (X ′, B′ + β′) is the log crepant pull-back
of (X,B + β).

Lemma 1.11. If β descends to X, then β′ descends to X ′.

Proof. By assumption ν∗βX = βY . Then

ν ′∗(η∗βX) = ρ∗ν∗βX = ρ∗βY = β′
Y ′.

Thus β′ = η∗βX , i.e. β
′ descends to X ′. !

Given a generically finite map µ : Z ′ → Z and h : X ′ → X ×Z Z ′ a proper
bimeromorphic map from a normal variety to the main component, then we obtain a
base change diagram

(1)
X ′ X

Z ′ Z

η

f ′ f

µ

Lemma 1.12. Let BZ = B(X/Z,B+β) be the boundary divisor for f : (X,B+β) →
Z and BZ′ = B(X ′/Z ′, BX′ +β′) be the boundary divisor for f ′ : (X ′, BX′ +β′) → Z ′

where β′ = η∗β and KX′ + BX′ + βX′ is the log-crepant pull-back of KX + B + βX .
If µ is finite, then KZ′ +BZ′ = µ∗(KZ +BZ).

Proof. See [Amb99, Theorem 3.2]. !

Definition 1.13. A morphism f : X → Z is weakly semistable [AK00, Definition
0.1] if

(1) X and Z admit toroidal structures UX ⊂ X and UZ ⊂ Z, with UX = f−1(UZ);
(2) with this structure, the morphism f is toroidal;
(3) the morphism f is equidimensional;
(4) all the fibers of the morphism f are reduced; and
(5) Z is nonsingular.
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See [AK00, Section 1] for a discussion on toroidal morphisms. If (X,B) is a pair,
then we say that (X,B) has good horizontal divisors if for every x ∈ X there exists a
local model Xσ = Xσ′ ×Al where the horizontal divisors (i.e. the divisors dominating
Z) are exactly the pull-backs of the coordinate hyperplanes in Al [Karu99, Definition
9.1].

We recall the following facts.

Theorem 1.14. (1) Weak semistability is preserved by base change (see [Karu99,
Lemma 8.3]).

(2) Let f : X → Z be a projective morphism of quasi-projective varieties and
W ⊂ X a closed subset a proper subscheme, then there exists a diagram

(2)

UX′ ⊂ X ′ X

UZ′ ⊂ Z ′ Z

µX

f ′ f

µZ

such that X ′, Z ′ are nonsingular, µZ and µX are birational, f ′ is toroidal and
f−1(W ) ⊂ X ′ \ UX′ is a snc divisor [AK00, Theorem 2.1].

(3) There exists a finite surjective morphism Z ′′ → Z ′ such that denoting by X ′′ the
normalization of X×Z′Z ′′, we have that UX′′ ⊂ X ′′ and UZ′′ ⊂ Z ′′ are toroidal
embeddings, the projection f ′′ : X ′′ → Z ′′ is an equidimensional toroidal mor-
phism with reduced fibers, and (f ′′)−1(UZ′′) = UX′′. If (X,B) is a pair, then
we may assume (X ′′, B′′) → Z ′′ is weakly semistable with good horizontal di-
visors where B′′ is the support of the inverse image of B and the X ′′ → X
exceptional divisors see [AK00, Proposition 5.1] and [Karu99, Theorem 9.5].

Lemma 1.15. Suppose that (X/Z, Supp(B)) is weakly semistable with good hori-
zontal divisors, β descends to X and (Z,Σ) is a simple normal crossings pair such
that f(Bv) ⊂ Σ. Then, the corresponding boundary divisor BZ descends to Z, i.e.
(X/Z,B) is BP-stable.

Proof. Since β descends to X , we can disregard β, and the claim follows from the
usual argument for pairs, see eg. [Fil20, 4.13]. !

Proposition 1.16. Let f : (X,B + β) → Z be a locally projective morphism of
relatively compact normal analytic varieties such that (X,B + β) is a pair which is
glc over an open subset of Z. Then BZ descends to some model Z ′ i.e. if f ′ : X ′ → Z ′

is bimeromorphic to f : X → Z and (X ′, B′ + β) is the induced pair, β = βX′ then
(X ′/Z ′, B′) is BP-stable.

Proof. We may assume that β descends to X and hence we may disregard β in what
follows. The question is local over Z and hence we may assume that f is projective
and Z is relatively compact and Stein. By GAGA (see [AT19, Apendix B, C] for the
details) we may assume that f : X → Z is a projective morphism of quasi-projective
varieties.

Let f ′ : X ′ → Z ′ and f ′′ : X ′′ → Z ′′ be the morphisms defined by Theorem
1.14. We may assume that π−1

X (Supp(B)) + Ex(πX) has good horizontal divisors
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(over Z ′′) where πX : X ′′ → X . Let KX′′ + B′′ = π∗
X(KX + B), then (X ′′/Z ′′, B′′)

is BP-stable by Lemma 1.15. We must show that if νZ′ : Z ′
1 → Z ′ is any birational

map, then KZ′
1
+ BZ′

1
= ν∗Z′(KZ′ + BZ′) where BZ′

1
is the corresponding boundary

divisor. Since Z ′′ → Z ′ is finite, then KZ′′ + BZ′′ = µ∗
Z′(KZ′ + BZ′) by Lemma

1.12 (where µZ′ : Z ′′ → Z ′ and BZ′′ is the corresponding boundary divisor). Let
Z ′′

1 be the normalization of Z ′′ ×Z′ Z ′
1, then µZ′

1
: Z ′′

1 → Z ′
1 is finite and hence

µ∗
Z′
1
(KZ′

1
+ BZ′

1
) = KZ′′

1
+ BZ′′

1
. Let νZ′′ : Z ′′

1 → Z ′′. Since (X ′′/Z ′′, B′′) is BP-stable
and µZ′ ◦ νZ′′ = νZ′ ◦ µZ′

1
, then

µ∗
Z′
1
(KZ′

1
+BZ′

1
) = KZ′′

1
+BZ′′

1
= ν∗Z′′(KZ′′+BZ′′) = ν∗Z′′(µ∗

Z′(KZ′+BZ′)) = µ∗
Z′
1
(ν∗Z′(KZ′+BZ′)).

Pushing forward, it follows that KZ′
1
+BZ′

1
= ν∗Z′(KZ′ +BZ′).

!

Theorem 1.17. Let (X,B) be a pair and f : X → Z be a projective morphism
of compact complex manifolds with connected fibers, then there exists a birational
morphism Z ′ → Z and a finite morphism Z ′′ → Z ′ and a morphism f ′′ : X ′′ → Z ′′

birational to X×ZZ ′′ such that (X ′′/Z ′′, B′′) is weakly semistable with good horizontal
divisors where B′′ is the support of the inverse image of B and the X ′′ → X exceptional
divisors.

Proof. Let φ : (X ,B) → Z the corresponding component of the Hilbert scheme.
Replacing Z by a resolution of the image of Z and replacing Z by a higher model,
we may assume that Z → Z is surjective, generically finite of smooth manifolds, and
(X,B) = (X ,B)×Z Z over an open subset of Z. By Theorem 1.14, there are

(1) birational morphisms µZ : Z ′ → Z and µX : X ′ → X such that the induced
map φ′ : X ′ → Z ′ is a toroidal morphism of smooth varieties,

(2) a finite surjective morphism Z ′′ → Z ′ such that denoting by X ′′ the nor-
malization of X ′′ ×Z′ Z ′′ then φ′′ : X ′′ → Z ′′ is an equidimensional toroidal
morphism with reduced fibers and (X ′′,B′′) → Z ′′ is weakly semistable with
good horizontal divisors where B′′ is the support of the inverse image of B and
the X ′′ → X exceptional divisors.

We let Z ′ = Z ×Z Z ′ and Z ′′ be an appropriate resolution of Z ×Z Z ′′ (so that the
inverse image of Z ′′\UZ′′ is a divisor with simple normal crossings) andX ′′ = X×ZZ ′′,
B′′ = B ×Z Z ′′, then f ′′ : X ′′ → Z ′′ is weakly semistable and (X ′′, B′′) has good
horizontal divisors where B′′ is the inverse image of B plus the X ′′ → X exceptional
divisors. !

Remark 1.18. The morphism f ′′ : X ′′ → Z ′′ is quasi-smooth in the following sense
(see [Taka22] pages 1736-1737). For every x′′ ∈ X ′′, there exists an open subset
x′′ ∈ U ′′ ⊂ X ′′ such that (U ′′, Supp(D′′)|U ′′) = (Ũ ′′, DŨ ′′)/G where (Ũ ′′, DŨ ′′) is a log
smooth toric variety and G is a finite abelian group and f ′′ ◦ π : (Ũ ′′, DŨ ′′) → Z ′′

is toric and flat and π : Ũ ′′ → U ′′ is the quotient map. In particular we can pick
local coordinates (x1, . . . , xn+m) on U ′′ and (t1, . . . , tm) on Z ′′ such that (f ′′◦π)∗(ti) =∏

x
ki,j
j ) where the ki,j are non-negative integers such that ki,j ̸= 0 for at most one i

for each index j.
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2. Adjunction of generalized pairs

In this section we will prove a version of Kawamata’s canonical bundle formula and
of Kawamata’s sub-adjunction for generalized Kähler pairs. We will also prove plt
and log canonical inversion of adjunction in this setting.

2.1. Towards a canonical bundle formula. Let f : X → Z and Z → S be proper
morphisms of normal relatively compact Kähler varieties such that f∗OX = OZ and
(X/S,B + β) is a generalized pair. Suppose that KX +B + βX = f ∗γ for some ∂̄, ∂
closed current γ on Z. Let γ = γ so that γZ′ = µ∗γ for any bimeromorphic map
µ : Z ′ → Z. We define the boundary b-divisor BZ as above and for any base change
diagram (1), we define BZ′ accordingly. In particular if µ : Z ′ → Z is birational, then
BZ′ = BZ

Z′. We also define the moduli part βZ via

βZ = γ − (K+BZ), i.e. KZ′ +BZ
Z′ + βZ

Z′ = γZ′.

One expects, similarly to the algebraic case, that BZ ,βZ descend to some model Z ′,
(Z ′,BZ

Z′) is klt (lc) and that βZ
Z′ is nef. In other words we conjecture the following.

Conjecture 2.1. Let f : (X,B+β) → Z be a generalized klt (lc) pair as above, then
(Z,BZ + βZ) is a generalized klt (lc) pair.

We will prove this conjecture under additional conditions. As a first step, we prove
the following result which is a generalization of the main result of [Gue20].

Theorem 2.2. Let f : X → Z be a surjective projective map with connected fibers
between normal compact Kähler varieties, (X,B + β) a generalized pair which is log
canonical over an open subset of Z, Z is smooth, γ a real (1,1)-class on Z, and L a
Q-line bundle such that h0(Xz, L[m]|Xz) ̸= 0 for m ≫ 0 sufficiently divisible, z ∈ Z
general. If KX +B + βX = f ∗γ + L, then KX/Z +B + βX is pseudo-effective.

Proof. Let ν : X ′ → X be a resolution and writeKX′+B′+βX′ = ν∗(KX+B+βX)+E
where B′, E ≥ 0 are effective divisors with no common components. We may assume
that B′ has simple normal crossings support. Since E ≥ 0 is ν-exceptional, by the
projection formula it suffices to show that KX′/Z + B′ + βX′ is pseudo-effective. Let
B′ = Bh + Bv where the components of Bh dominate Z and the components of Bv

do not dominate Z. Note that (X,Bh) is log canonical and it suffices to show that
KX′/Z +Bh + βX′ is pseudo-effective. For every m > 0 we will write

mFm := ⌊Bh⌋+ {mBh} and mBm := m(Bh − Fm) = ⌊mBh⌋ − ⌊Bh⌋.
In particular (X ′, Bm) is klt and Fm has fixed support with coefficients in [0, 1/m].
Let H ′ be a relatively ample divisor and ω be a Kähler form on Z such that f ′∗ω+H ′

is Kähler. For any ϵ > 0 there is an m > 0 such that βm,ϵ := βX′+ϵ(f ′∗ω+H ′)+Fm is
Kähler and Lϵ := ν∗L+E−Bv+ϵH ′ is a Q-line bundle such that h0(X ′

z, (L
ϵ)[m]|X′

z
) ̸= 0

for m ≫ 0 sufficiently divisible, z ∈ Z general. We may write

KX′ +Bm + βm,ϵ = f ′∗(γ + ϵω) + Lϵ.

By Theorem 6.2, KX′/Z +Bm + βm,ϵ is pseudo-effective. Since being pseudo-effective
is a closed condition, and

KX′/Z +Bh + βX′ = lim
(
KX′/Z +Bm + βm,ϵ

)
,
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it follows that KX′/Z +Bh + βX′ is pseudo-effective. !

Theorem 2.3. Let (X,B + β) be a generalized klt (lc) pair, f : X → Z a surjective
projective morphism of normal compact Kähler varieties with connected fibers, such
that KX +B +βX = f ∗γ for some ∂̄, ∂ closed current γ on Z. Then (Z,BZ +βZ) is
a generalized klt (lc) pair, i.e.

(1) βZ is b-nef, that is βZ descend to some model Z ′ so that βZ
Z′ is nef, and

(2) (Z ′,BZ
Z′) is sub-klt (sub-lc).

The proof of this result is somewhat technical but the strategy that we will now
illustrate is fairly natural. We already know that the moduli part βZ descends to
some model, so assume for simplicity that it descends to Z. Similarly assume that
β = βX is nef and B has simple normal crossings. We must show that βZ := βZ

Z is nef.
By [DHP22], it suffices to show that βZ |W is pseudo-effective on (the normalization
of) any subvariety W ⊂ Z. When W = Z, this follows from Theorem 2.2. If W ̸= Z
the situation is more delicate. Assume further that f is weakly semistable and that
BZ is a reduced divisor supported on Z \ UZ (cf. Theorems 1.14, 1.17). If T is any
component of BZ , then there is a component S of B=1 dominating T . By adjunction
(KX +B + β)|S = KS + BS + βS = (f |S)∗(γ|T ) and so βT := β(S/T,BS + βS) is nef
by induction on the dimension. Since βZ |T = βT , then βZ|W is nef and hence pseudo-
effective for any W ⊂ T . Finally, suppose that W ̸⊂ Supp(BZ). Let XW = X ×Z W ,
then we expect that (XW , BW + βW ) is a generalized pair with mild singularities and
KXW + BW + βW = (f |W )∗(γ|W ) so that by induction on the dimension βZ |W =
β(XW/W,BW + βW ) is nef. Of course there are many technical issues that we will
have to address in the proof.

Proof of Theorem 2.3. By Proposition 1.16, the boundary b-divisor BZ for (X,B +
β/Z) descends to a model Z ′, and hence so does the moduli part βZ . It is well known
(and easy to see) that (Z ′,BZ

Z′) is sub-klt (sub-lc). Thus, it suffices to show that,
after possibly replacing Z ′ by a higher model, βZ

Z′ is nef.
Let f ′′ : X ′′ → Z ′′ and f ′ : X ′ → Z ′ be the bi-meromorphic models of f : X → Z

defined in Theorem 1.17 and let KX′′ + B′′ + βX′′ and KX′ + B′ + βX′ be the log
pull backs of KX + B + βX . We may assume that β descends to X ′. It suffices to
show that βZ′ is nef where βZ′ := βZ

Z′ is the moduli part of (X ′/Z ′, B′ + βX′). Let
BZ′′ and βZ′′ := βZ

Z′′ be the boundary and moduli parts of (X ′′/Z ′′, B′′ +βX′′). Since
µZ′ : Z ′′ → Z ′ is finite, then βZ′′ = µ∗

Z′βZ′ Thus it suffices to show that βZ′′ is nef (see
eg. [DHP22, Lemma 2.38]).

Let B′′ = B+ − B− where B+, B− are effective with no common components. We
may assume that BZ′′ is the reduced divisor supported on Z ′′ \ UZ′′ , and we let F
be the sum of the components of (f ′′)∗(BZ′′) that are not contained in ⌊B+⌋. Pick
0 < δ ≪ 1, H ′′ a relatively ample divisor and let ψ : X ′′ ""# X̄ be a relative minimal
model for (X ′′, B+ + δF + βX′′ + ϵH ′′) where 0 < ϵ≪ δ. We note here that

KX′′ +B+ + δF +Nϵ ≡ KX′′ +B+ + δF + βX′′ + ϵH ′′ ≡ B− + δF,

where Nϵ := −(KX′′ +B′′) + ϵH ′′ ≡Z′′ βX′′ + ϵH ′′ is a relatively ample Q-divisor and
hence the corresponding minimal model exists by [Fuj22].
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We claim that ψ∗(B− + δF ) = 0. To see this, note that since for general z ∈ Z,
KXz + Bz + βX |Xz ≡ 0, then KXz′′

+ B+
z′′ + βX′′ |X′′

z′′
≡ B−

z′′ where z′′ denotes a

preimage of z on Z ′′. As B−
z′′ is exceptional for X ′′

z′′ → Xz and Fz′′ = 0, then by
standard arguments ψ will contract every component of B−

z′′. In particular KX̄z′′
+

B̄z′′ +βX̄ |X̄z′′
≡ 0 and so KX̄z′′

+ B̄z′′ +βX̄ |X̄z′′
+ ϵH̄|X̄z′′

is nef for all 0 ≤ ϵ ≪ 1. Since
B̄− + F̄ is vertical, up to adding a vertical divisor which is ≡Z′′ 0, we may assume
that for any divisor P in the support of f̄∗(B̄− + F̄ ), every divisor Q dominating P
has multQ(B̄−+ F̄ ) ≥ 0 and multQ(B̄− + F̄ ) = 0 for one such component. By [Lai11,
Lemma 2.9], if multQ(B̄− + F̄ ) > 0 for one such Q, then there is a component Q′

dominating P which is contained in B−(B̄− + δF̄ /Z ′′). Since B̄− + δF̄ + ϵH ′′ is nef
over Z ′′ (for 0 < ϵ ≪ 1), it follows that no such divisor exists and hence B̄− + F̄ is
exceptional (over Z ′′). Since X ′′ → Z ′′ is weakly semistable, B̄− + δF̄ = 0 and so
KX̄ + B̄ + βX̄ ≡ f̄ ∗γ′′. Note that B̄ ≥ f̄ ∗BZ′′ .

By [DHP22, Theorem 2.36], it suffices to show that for any subvariety W ⊂ Z ′′

with normalization W ν → W , then βZ′′|W ν is pseudo-effective. Let T ⊂ Z ′′ be any
component of BZ′′ . There exists a component S of (B̄)=1 such that multS(B̄) = 1
and S dominates T . We replace S by a minimal stratum of (B̄)=1 dominating T .
Then S is normal and by adjunction (KX̄ + B̄ + βX̄)|S = KS + BS + βS where
(S,BS + βS) is generalized dlt, (KZ′′ + BZ′′)|T = KT + BT where (T,BT ) is log
canonical, BT = (BZ′′ − T )|T . Then

KS +BS + βS = g∗(KZ′′ +BZ′′ + βZ′′)|T = g∗(KT +BT + βT )

where βS = βX̄ |S, g = f̄ |S. By standard arguments (see for example the claim in
the proof of Theorem 1.1 of [FG14]), we may assume that g has connected fibers.
Since (KZ′′ + BZ′′)|T = KT + BT , it follows that βZ′′|T = βT is the mobile part of
(S,BS + βS/T ). By induction on the dimension, βT is nef.

Thus, we may now assume that W is not contained in Z ′′ \ UZ′′ . Replacing B̄
by B̄ − f̄ ∗BZ′′ we will also assume that BZ′′ = 0. It suffices to show that βZ′′|W̃ is
pseudo-effective where µW : W̃ → W is a resolution or equivalently that (KX̃′′/Z̃ +

BX̃′′ +βX̃′′)|X̃′′

W̃
is pseudo-effective (see Theorem 6.1.ii). We may assume that W̃ ⊂ Z̃

where µZ′′ : Z̃ → Z ′′ is a resolution. We write X̃ = X̄ ×Z′′ Z̃, X̃ ′′ = X ′′ ×Z′′ Z̃ and
X̃W̃ = X̄ ×Z′′ W̃ , X̃ ′′

W̃
= X ′′ ×Z′′ W̃ . We let µ∗

X̄(KX̄/Z′′ + B̄ +βX̄) = KX̃/Z̃ + B̃ +βX̃

and KX̃′′/Z̃ + B̃′′+βX̃′′ = ψ̃∗(KX̃/Z̃ + B̃+βX̃) where µX̄ : X̃ → X̄ and ψ̃ : X̃ ′′ ""# X̃ .

By our construction βX′′ is nef over Z ′′ and β = βX′′. Note that X̃ ′′
W̃

is not contained

in the support of B̃′′ and that X̃ ′′
W̃

and X̃W̃ are normal. This last claim follows since

X̃ ′′
W̃

and X̃W̃ are regular in codimension 1 and all corresponding fibers are S2. We
now let

(KX̃′′/Z̃ +BX̃′′ + βX̃′′)|X̃′′

W̃
= KX̃′′

W̃
/W̃ +BX̃′′

W̃
+ βX̃′′

W̃

where KX̃′′

W̃
/W̃ = KX̃′′/Z̃ |X̃′′

W̃
(see [Kollar22, Theorem 2.68]), BX̃′′

W̃
= BX̃′′ |X̃′′

W̃
and

βX̃′′

W̃
= βX̃′′ |X̃′′

W̃
is nef. Similarly we let (KX̃/Z̃+BX̃+βX̃)|X̃W̃

= KX̃W̃ /W̃+BX̃W̃
+βX̃W̃

.

Note that KX̃′′

W̃
/W̃ + BX̃′′

W̃
+ βX̃′′

W̃
= ψ∗

W̃
(KX̃W̃ /W̃ + BX̃W̃

+ βX̃W̃
) and so we have a
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generalized pair

ψW̃ : (X̃ ′′
W̃
, BX̃′′

W̃
+ βX̃′′

W̃
) → (X̃W̃ , (ψW̃ )∗(BX̃′′

W̃
+ βX̃′′

W̃
)).

Since (ψW̃ )∗(BX̃′′

W̃
) ≥ BX̃W̃

, then (X̃W̃ , (ψW̃ )∗(BX̃′′

W̃
+βX̃′′

W̃
)) is generalized log canon-

ical over an open subset of W̃ . By Theorem 2.2, KX̃′′

W̃
/W̃ + BX̃′′

W̃
+ βX̃′′

W̃
is pseudo-

effective. This concludes the proof. !

Remark 2.4. We believe that if moreover β admits a smooth positive representative,
then so does βZ (cf. Theorem 5.2).

2.2. Adjunction. In what follows, for ease of exposition, we will denote a generalized
pair (X/Z,B + β) simply by (X,B + β).

Definition 2.5. Suppose that (X,B +β) is a generalized pair and S is a component
of B of coefficient 1 with normalization ν : Sν → S, then we define a generalized pair

KSν +BSν + βSν
= (KX +B + β)|Sν

as follows. Let f : X ′ → X be a log resolution of (X,B + β) so that X ′ is smooth,
B′ has simple normal crossings, βX′ is nef, β descends to X ′, and KX′ +B′ +βX′ ≡
f ∗(KX + B + βX). Let S ′ = f−1

∗ S, then S ′ is smooth and by the usual adjunction
for sub-klt pairs, we can write KS′ + BS′ = (KX′ + B′)|S′ where BS′ = (B′ − S ′)|S′

has simple normal crossings. We may assume that β ′ is smooth and we let βSν
= βS′

where βS′ := β ′|S′ is the induced nef (1,1) form. Notice that [KS′ + BS′ + βS′] =
g∗(γ|Sν) where g : S ′ → Sν is the induced morphism and γ = [KX + B + β]. Let
KSν + BSν + βSν := g∗(KS′ + BS′ + βS′), then g : (S ′, BS′ + βS′) → (S,BSν + βSν )
defines a generalized pair; equivalently (S ′, BS′ + βS′

) is a generalized pair.

If KX + B is R-Cartier, then we will write KX′ + B♯ = f ∗(KX + B) and βX′ =
f ∗βX − E where E ≥ 0 is exceptional. Note however that ES′ := E|S′ may not be
g-exceptional where g : S ′ → Sν . If KSν +BSν = (KX +B)|Sν is the usual adjunction,
then

(KX +B + βX)|Sν = KSν +BSν + g∗ES′ + g∗βS′.

By Lemma 1.4, if (X,B + β) is generalized lc in codimension 2, then KX + B is R-
Cartier in codimension 2 and hence the above formula can always be used to compute
(KX +B + β)|Sν .

It is clear that if (X,B+β) is generalized log canonical (resp. generalized plt) then
(Sν , BSν +βSν ) is generalized log canonical (resp. generalized klt). We now will verify
that the reverse implication also holds. The following statement is often referred to
at plt inversion of adjunction.

Theorem 2.6. Let (X,B + β) be a generalized pair and S a component of B of
coefficient 1 with normalization ν : Sν → S. Then (X,B + β) is generalized plt on a
neighborhood of S iff S is normal and (S,BS + βS) is generalized klt.

Proof. Let f : X ′ → X be a log resolution of the generalized pair (X,B+β). We may
assume that f is a projective morphism. We write KX′+B′+βX′ = f ∗(KX+B+βX)
and S ′ = f−1

∗ S. We have a short exact sequence

0 → OX′(−⌊B′⌋) → OX′(−⌊B′⌋+ S ′) → OS′(−⌊B′⌋+ S ′) → 0.
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Since, −⌊B′⌋ ≡X KX′ + {B′} + βX′ where (X ′, {B′}) is klt and βX′ is nef (and big)
over X , then R1f∗OX′(−⌊B′⌋) = 0 and so we have a surjection

φ : f∗OX′(−⌊B′⌋+ S ′) → f∗OS′(−⌊B′⌋ + S ′).

If (X,B + β) is generalized plt (on a neighborhood of S), then −⌊B′⌋ + S ′ ≥ 0
is effective and exceptional (over a neighborhood of S) and hence ⌊BS′⌋ = (⌊B′⌋ −
S ′)|S′ ≤ 0 so that (Sν , BSν +βS) is generalized klt. We also have that f∗OX′(−⌊B′⌋+
S ′) = OX and so φ factors through

f∗OX′(−⌊B′⌋+ S ′) = OX → OS ⊂ ν∗OSν = f∗OS′ ⊂ f∗OS′(−⌊B′⌋ + S ′)

and therefore OS = ν∗OSν and S is normal.
If (S,BS+βS) is generalized klt (and in particular S is normal), then 0 ≤ −⌊BS′⌋ =

(−⌊B′⌋+S ′)|S′ and f∗OS′(−⌊B′⌋+S ′) = OS, and so we have a surjection f∗OX′(−⌊B′⌋+
S ′) → OS. Since f∗OX′(−⌊B′⌋+S ′) ⊂ OX , it follows that f∗OX′(−⌊B′⌋+S ′) = OX on
a neighborhood of S and so −⌊B′⌋+S ′ ≥ 0 over a neighborhood of S, i.e. (X,B+β)
is generalized plt on a neighborhood of S.

!

The following result is known as log canonical inversion of adjunction. In the usual
pair setting, it was first addressed in [Kawakita07] and refined in[Hacon14] and [Fil20].
The following proof is based on the ideas of [Hacon14].

Theorem 2.7. Let (X,B + β) be a generalized pair and S a component of B of
coefficient 1 with normalization ν : Sν → S. Then (X,B + β) is generalized lc on a
neighborhood of S iff (Sν , BSν + βSν

) is generalized lc.

Proof. Following the arguments above, it is easy to see that if (X,B+β) is generalized
lc on a neighborhood of S, then (Sν , BSν + βSν

) is generalized lc. Thus it suffices to
show that if (Sν , BSν + βSν

) is generalized lc, then (X,B + β) is generalized lc on a
neighborhood of S. The question is local over X and so we may assume that X is a
relatively compact Stein variety.

Let µ : Y → X be a generalized dlt model given by Theorem 1.6 so that µ is
projective, Y is Q-factorial, all exceptional divisors have discrepancy a ≤ −1, (Y,B′

Y +
β) is generalized dlt, and B′

Y := µ−1
∗ B + Ex(µ) ≤ BY where KY + BY + βY =

µ∗(KX +B + βX). Let SY := µ−1
∗ S, B′

Y = SY + Γ and BY = SY + Γ + Σ. Let H be
a sufficiently ample divisor and run the KY + SY + Γ+ βY mmp with scaling of H .

Claim 2.8. There is a sequence of flips and contractions φi : Yi ""# Yi+1 and real
numbers s0 = 1, si ≥ si+1 ≥ 0 such that KYi + Si + Γi + βYi

+ sHi is nef over X for
si ≥ s ≥ si+1. If the minimal model program terminates, then we may assume that
sn+1 = 0, otherwise the we have lim si = 0.

Proof. For any s > 0, βY + sH ≡X −(KY + BY ) + sH is an ample R-divisor and
hence

SY + Γ+ βY + sH ≡X ∆s

where (Y,∆s) is klt. By [DHP22] or [Fuj22], for any 0 < ϵ ≪ 1, we can run the
KY +∆ϵ mmp over X with scaling of (1− s)H . The claim now follows easily. !
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We may assume that for i ≫ i0, all φi are flips.

Claim 2.9. For any t > 0, there is an R-divisor Θt ≡X Γ + βY + tH such that
(Y, SY +Θt) is plt.

Proof. Since H is ample and βY is nef, then βY + tH ≡X −(KY + BY ) + tH is an
ample R-divisor and hence

SY + Γ+ βY + tH ≡X SY +Θt

where (Y, SY +Θt) is plt. !

If t ≤ si, then (Yi, Si + Θt,i) is plt and in particular Si is normal. Suppose that
Σi ∩ Si ̸= ∅, then
µ∗
i (KX +B + βX)|Si = (KYi + Si + Γi + Σi + βYi

)|Si = KSi +DiffSi(Γi +Σi) + βYi
|Si

where KSi + DiffSi(Γi + Σi) is not log canonical as multP (Γi + Σi) > 1, and this
implies that multQDiffSi(Γi + Σi) > 1 where Q is any component of Si ∩ P . But
then KSi + DiffSi(Γi + Σi) + βYi

|Si is not generalized log canonical and so neither is
(Sν , BSν + βSν

). Therefore Σi ∩ Si = ∅ for all i ≥ 0.
Fix m > 0 such that mΣ is an integral divisor and si >

1
m ≥ si+1. Then

Hi −mΣi − Si ≡X KYi +Θ 1
m ,i + (m− 1)(KYi + Si + Γi +

1

m
Hi + βYi

)

where KYi +Θ 1
m ,i is klt and KYi + Si + Γi +

1
mHi + βYi

is nef and big over X so that

R1(µi)∗OYi(Hi −mΣi − Si) = 0 and hence we have a surjection

(µi)∗OYi(Hi −mΣi) → (µi)∗OSi(Hi −mΣi) = (µi)∗OSi(Hi).

Note that as Yi0 ""# Yi is a small bimeromorphic map, then the sheaves

(µi)∗OYi(Hi −mΣi) = (µi0)∗OYi0
(Hi0 −mΣi0) ⊂ (µi0)∗OYi0

(Hi0)

are contained in IV · (µi0)∗OYi0
(Hi0) for m ≫ 0 where V = µi0(Σi0) and if V ∩S ̸= ∅,

then this contradicts the above surjection. Therefore µi0(Σi0)∩S = ∅ and so (X,B+β)
is generalized log canonical on a neighborhood of S.

!

Proof of Theorem 0.1. Immediate from Theorems 2.6 and 2.7. !

Proposition 2.10. Let (X,B+β) be a generalized log canonical pair and (X,B0+β0)
a generalized klt pair. If V a minimal log canonical center of (X,B + β), then V is
normal.

Proof. The question is local on X and hence we may assume that X is relatively
compact and Stein. By the usual tie breaking arguments, we may assume that there
is a unique log canonical place for (X,B+β) and that this place dominates V . Thus
there is a log resolution of (X,B + β), f : X ′ → X such that KX′ + B′ + βX′ =
f ∗(KX + B + β) where B′ = S ′ +∆′ and S ′ is the unique LC place for (X,B + β)
so that ⌊∆′⌋ ≤ 0 is an exceptional divisor. By the proof of Theorem 2.6, we have a
surjection

φ : f∗OX′(−⌊∆′⌋) → f∗OS′(−⌊∆′⌋).
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Since −⌊∆′⌋ is effective and exceptional, then f∗OX′(−⌊∆′⌋) = OX . Since S ′ is
smooth, S ′ → V factors through the normalization ν : V ν → V and so φ factors via
f∗OX′(−⌊∆′⌋) = OX → OV and the natural inclusions

OV ⊂ ν∗OV ν ⊂ f∗OS′ ⊂ f∗OS′(−⌊∆′⌋).
It follows that OV

∼= ν∗OV ν and hence V is normal. !

Theorem 2.11. Let (X,B+β) be a generalized log canonical pair then nklt(X,B+β)
is seminormal.

Proof. The corresponding result for log canonical pairs is contained in [Amb98]. We
will follow the approach of [Kollar07]. Let ν : X ′ → X be a log resolution of (X,B+β)
and write KX′ + B′ + βX′ = ν∗(KX + B + βX). If B′ = S − A + {B′} where S,A
are effective Weil divisors without common components, then S is seminormal as it
is a divisor with simple normal crossings and hence f |S : S → W factors through the
seminormilazation h : W sn → W via g : S → W sn. We have a short exact sequence

0 → OX′(A− S) → OX′(A) → OS(A|S) → 0.

Since A − S ≡X KX′ + {B′} + βX′ and βX′ is nef and big over X , it follows that
R1ν∗OX′(A − S) = 0 and hence ν∗OX′(A) → ν∗OS(A|S). Since A is ν-exceptional,
ν∗OX′(A) = OX and hence ν∗OS(A|S) = OW . But ν∗OS(A|S) ⊃ h∗g∗OS = h∗OW sn

and so h∗OW sn = OW i.e. h : W sn → W is an isomorphism. !

We will now prove that Theorem 0.2 follows from Theorem 0.3.

Proof of Theorem 0.2. We may assume that W has codimension ≥ 2. By Proposition
2.10, W is normal and by a standard tie breaking argument, we may assume that there
is a unique log canonical place for an auxiliary pair (X,B♯+β♯). Let f : X ′ → X be
the corresponding dlt model (Theorem 1.6), then f has a unique exceptional divisor
S ′ and f ∗(KX +B+βX) = KX′ +S ′ +B′ +βX′ where (X ′, S ′ +B′ +β′) is plt. Note
that by the proof of Proposition 2.10, S ′ → W has connected fibers. By Theorem 2.6,
(S ′, BS′ + βS′) is generalized klt where KS′ + BS′ + βS′ = (KX′ + S ′ + B′ + βX′)|S′.
Let ν : S ′ → W , then KS′ + BS′ + βS′ = ν∗((KX + B + βX)|W ) and so by Theorem
0.3, (KX +B+βX)|W ≡ KW +BW +βW where (W,BW +βW ) is generalized klt. !

Remark 2.12. The above arguments show that if (X,B + β) and (X,B′ + β′) are
generalized pairs, V ⊂ X is a subvariety and U ⊂ X an open subset such that
(U, (B+β)|U) is generalized lc, (U, (B′+β′)|U) is generalized klt and V ∩U is a minimal
log canonical center of (U, (B + β)|U), then (KX + B + β)|V ν = KV ν + BV ν + βV ν

where V ν → V is the normalization and (V ν , BV ν + βV ν
) is a generalized pair.

3. Cone Theorem for generalized klt pairs

The results in this section are inspired by [CH20]. They suggest that one of the main
obstructions to the higher dimensional minimal model program for Kähler varieties
is Conjecture 0.4.

Proposition 3.1. Assume Conjecture 0.4 in dimension ≤ n−1. Let X be a compact
Q-factorial Kähler n-fold such that (X,B + β) is generalized klt, KX + B + βX is
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pseudo-effective, and ω be a Kähler form such that α := [KX + B + βX + ω] is
nef and big but not Kähler. Then there is an α-trivial rational curve C such that
0 < −(KX +B + βX) · C = ω · C ≤ 2 dimX.

Proof. By Proposition 4.21 (see also [CT15, Theorem 1.1] and [Bou04, Theorem 3.17]
in the smooth case) the restricted non-Kähler locus Eas

nK(α) coincides with the null-
locus Null(α), and there exists a Kähler current η with weak analytic singularities in
the class α such that the Lelong set coincides with Eas

nK(α). Since α is not Kähler,
then Null(α) has a positive dimensional component. Let Z be a maximal dimensional
irreducible component of Null(α) and c be the log canonical threshold of (X,B+βX)
with respect to η on a neighborhood of general points of Z. This means that if we
pick a log resolution ν : X ′ → X such that KX′+BX′+βX′ = ν∗(KX+B+βX) where
βX′ is nef and ν∗η = η′ + F where F is an effective R-divisor, η′ ≥ 0 and F + BX′

has simple normal crossings, then Z is an irreducible component of ν((BX′ + cF )=1)
and Z is not contained in ν((BX′ + cF )>1). If η = η′, then Z is a generalized log
canonical center of the generalized pair (X,B + cν∗F + β + cη). By Remark 2.12,

(KX +B + cν∗F + β + cη)|Zν = KZν +BZν + γZν

where (Zν , BZν + γZν) is a generalized pair.
By assumption we have k := νnum(α|Zν) < dimZ so that (α|Zν)k ̸≡ 0 and (α|Zν)k+1 ≡

0. But then

(KZν +BZν + γZν) · αk
Zν · ωdimZ−k−1

Zν = −αk
Zν · ωdimZ−k

Zν < 0

where αZν = α|Zν and ωZν = ω|Zν . Since BZν ≥ 0 and γZν is pseudo-effective, then
KZν is not pseudo-effective and hence neither is KZ′ for any resolution Z ′ → Zν .

Consider now the MRC fibration Z ′ → Y , which is non-trivial as KZ′ is not pseudo-
effective. Passing to a higher model we may assume that it is a morphism with general
fiber F . Note that F is rationally connected and hence h2(OF ) = 0 and so F is
algebraic. Arguing as above, for any ϵ > 0 we have

(KZ′ +BZ′ + γZ′ + (1− ϵ)ωZ′ + tαZ′) · αk
Z′ · ωdimZ−k−1

Z′ =

(KZν +BZν + γZν + (1− ϵ)ωZν) · αk
Zν · ωdimZ−k−1

Zν = −ϵαk
Zν · ωdimZ−k

Zν < 0,

where ωZ′ = ω|Z′ and αZ′ = α|Z′. Since γZ′ is pseudo-effective and B<0
Z′ is Z ′ → Zν

exceptional, it follows that (KZ′ + (1− ϵ)ωZ′ + tαZ′) · αk
Z′ · ωdimZ−k−1

Z′ < 0 and hence
KZ′ + (1− ϵ)ωZ′ + tαZ′ is not pseudo-effective for any t > 0. Since Y is not uniruled,
KY is pseudo-effective and hence by [CH20, Theorem 5.2], KF + (1 − ϵ)ωF + tαF

is also not pseudo-effective for any t > 0 and in particular αF is not big. By the
cone theorem, there are finitely many KF + (1 − ϵ)ωF negative extremal rays, and
there is a non-empty finite collection of KF + (1 − ϵ)ωF negative extremal rays that
are α trivial. Let η : F → F̄ be the induced non-trivial morphism contracting this
face. Then αF = η∗αF̄ where αF̄ is ample on F̄ . If η is birational, then αF is
big which is a contradiction. Thus, η is of fiber type and hence F is covered by
αF -trivial rational curves C. Note that by bend and break, we may assume that
0 < −KF ·C ≤ 2 dimF and hence (1− ϵ)ωF ·C < 2 dimF . But then Z ′ is covered by
αF -trivial rational curves and finally Z is covered by α-trivial rational curves C such
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that 0 < ω · C < 2
1−ϵ dimX . Since these curves belong to finitely many numerical

classes, we may assume that 0 < ω · C ≤ 2 dimX . Finally, we observe that

0 < −(KX +B + βX) · C = ω · C ≤ 2 dimX.

!

Corollary 3.2. Let (X,B + β) be a compact Kähler 4-fold generalized klt pair such
that KX + B is pseudo-effective. Then there are at most countably many rational
curves {Γi}i∈I such that −(KX +B + βX) · Γi ≤ 8 for all i ∈ I and

NA(X) = NA(X)(KX+B+βX)≥0 +
∑

i∈I

R+[Γi].

Proof. This follows by standard arguments from Proposition 3.1 (see eg the proof of
[DH23, Theorem 1.3]). !

4. Null loci

In this section we generalize the main result of [CT15] to the singular setting. To
start with, we recall the notion of Lelong number of a closed positive current T ≥ 0 on
a normal complex space, since it plays a crucial role in the formulation of Proposition
4.21 below.

4.1. Closed positive currents on normal complex spaces. Let Ω ⊂ Cn be the
unit ball, and let φ be a psh function on Ω. Then

T :=
√
−1∂∂φ

defines a closed positive current of (1, 1)-type on Ω. For example, if we take φ =
log |f |2, with f holomorphic, then up to a multiple, T is equal to the current of
integration along the analytic set f = 0 (taking the multiplicities into account).
Thus, closed positive (1, 1) currents can be seen as natural generalizations of effective
divisors.

It turns out that the function
r → sup

|z|=r
φ(z)

is convex increasing of log r, i.e. if x := log r, then the function x → sup
|z|=ex

φ(z) is

convex increasing. It therefore follows that the limit

ν(T, 0) := lim inf
z→0

φ(z)

log |z|
exists, and it is called the Lelong number of T at z = 0. In the example above, this
is precisely the multiplicity of the divisor (f = 0) at 0. Moreover, one can see that
the equality

(3) ν(T, 0) = sup{ν ≥ 0|φ(z) ≤ ν log |z|+O(1)}
holds true.

We collect next a few facts about currents which will be needed later on.
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Theorem 4.1. [DeBook] Let X be a complex manifold, and let T ≥ 0 be a closed
positive current of (1, 1)-type on X. We consider an analytic hypersurface A ⊂ X,
and let χA be the characteristic function of A. Then the following assertions hold
true.

(1) The function a → ν(T, a) defined on the analytic set A is constant in the
complement of an at most countable union of analytic subsets of A, and it
defines the generic Lelong number of T along A.

(2) The currents χAT and χX\AT obtained by multiplying T with the characteris-
tic function of A and its complement, respectively are closed (and of course,
positive). Moreover, we have

χAT = ν(T,A)[A],

where ν(T,A) is the generic Lelong number of T along A.

Next, consider a surjective map f : X → Y between two compact complex manifolds.
Given a closed (1, 1) current T on the base Y , the pull-back f ⋆T is a well-defined,
closed current on X (this is not necessarily true for currents of other bi-degrees). The
following result clarifies the connection between the Lelong numbers of T and those
of its inverse image f ⋆T .

Theorem 4.2. [Fav99] Under the assumptions above, there exists a positive constant
C > 0 such that we have

Cν(f ⋆T, x) ≤ ν(T, y) ≤ ν(f ⋆T, x),

for all x ∈ X and y = f(x).

Note that the right-hand side inequality in Theorem 4.2 follows immediately form the
definition (3). Also, this sort of comparison inequalities is far from true in case of
currents obtained by direct images, i.e. if one wishes to compare the Lelong numbers
of a current Θ on X with those of its direct image f⋆Θ. For example, let f : X → Y
be the blow-up of a point y of Y . We assume that Y is Kähler; then given any Kähler
metric ω on X , the direct image f⋆ω has a positive Lelong number at y.
Still in this context (i.e. f is the blow-up at a point and T ≥ 0 is a closed positive
current on Y ), we have the equality

(4) f ⋆T = ν(T, y)[E] +R

where E is the exceptional divisor of the blow-up f , and R ≥ 0 is a closed positive
current whose generic Lelong number along E is equal to zero. In particular, we have

(5) χEf
⋆T = ν(T, y)[E].

Let f : X → Y be a surjective map between compact complex manifolds, and let ρ
be a real, (1, 1) cohomology class on the target manifold Y . We have the following
well-known remark.
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Lemma 4.3. Given any (1, 1) closed positive current

T ∈ f ⋆ρ,

there exists a (1, 1) closed positive current R on Y such that

(6) T = f ⋆R.

Proof. The matter is indeed clear: according to our hypothesis there exists an L1

function φ on X and a smooth representative a ∈ ρ such that the following equality

T = f ⋆(a) +
√
−1∂∂φ

holds. Now the restriction T |Xy of the current T to the general fibers Xy of f is a
well-defined, closed positive current. On the other hand, we have

T |Xy =
√
−1∂∂φ|Xy

which shows that φ|Xy must be constant on Xy. Therefore our assertion follows. !

The notion of Lelong number of a closed positive current on a normal space will be
needed in order to formulate the main result of this section. We recall it next.

Definition 4.4. [Dem82]. Let X be a normal complex space, and let T ≥ 0 be a
closed positive (1, 1)-current on X. We consider a positive function ϕ ∈ C2(X,R+),
such that logϕ is psh and such that Supp(T )∩ (ϕ < R) is relatively compact in X for
all 0 < R ≪ 1 sufficiently small. The limit

ν(T,ϕ) := lim
r→0

1

(2πr)2n−2

∫

ϕ<r

T ∧ (
√
−1∂∂ϕ)n−1

is called the Lelong number of T with respect to ϕ.

Let y ∈ X be an arbitrary point. If we consider an embedding

(7) (X, y) ↪−→ (CN , 0)

then the coordinate functions (zi)i=1,...,N on CN restricted to X induce a generating
system (gi)i=1,...,N of the maximal ideal of the ring OX,y. The function

(8) ϕy :=
∑

i

|gi|

is defined on some small open subset U containing x, and then the Lelong number of
T at y is defined as follows

(9) ν(T, y) := ν(T |U ,ϕy),

where T |U is the restriction of T to U , so the RHS is defined as in Definition 4.4.

Remark 4.5. It is not immediate that the limit in Definition 4.4 exists, but this
is a consequence of the Jensen formula established in [Dem82], Théorème 3. More-
over, note that the Lelong number ν(T, y) is independent of the embedding (7), as
consequence of Théorème 4 in loc. cit.

22



Let n be the dimension of X . By composing the embedding map (7) with a generic
linear projection on Cn, we obtain a proper, finite map

(10) p : (X, y) → (Cn, 0)

such that p−1(0) = y. The function

(11) ϕ̃y :=
∑

|pj |

(where pj are the components of p) verifies the inequalities

ϕM
y ≤ ϕ̃y ≤ Cϕy

locally near x, for some positive constants C and M . We can assume that it holds on
the open subset U . By the comparison theorem for Lelong numbers (cf. Théorème 4,
page 46 in [Dem82]), we have

(12)
1

M
ν(T, ϕ̃y) ≤ ν(T, y) ≤ ν(T, ϕ̃y).

Remark 4.6. If y ∈ X is a regular point, the equality

ν(T, y) = lim inf
z→y

ϕT

log |z − y|
holds, and it provides an alternative definition for the Lelong number of T at y, as
we have already mentioned. Simple examples ([BEGZ10], Appendix A) show that as
soon as y ∈ Xsing, the relation above is no longer verified in general. However, we

always have the inequality ν(T, y) ≥ lim inf
z→y

ϕT

log |z − y| .

In connection with these topics, the following result was obtained very recently in
[P24].

Lemma 4.7. [P24] Let X be a normal complex space, and let T ≥ 0 be a closed
positive current on X. The following equivalence

(13) ν(T, y) > 0 ⇐⇒ lim inf
z→y

ϕT

log |z − y| > 0

holds true for any point y ∈ X. In other words, the Lelong number of T at y and the
slope of its potential (i.e. the RHS of (13)) are simultaneously positive or zero.

Remark 4.8. Of course, one expects an inequality of type

(14) ν(T, y) ≤ C lim inf
z→y

ϕT

log |z − y|
to be true for some constant C > 0, uniform on compact subsets of X.

To finish this subsection we consider the following the set-up.

• X is a normal, compact Kähler space and π : X̂ → X is generically finite,
such that X̂ is also normal (and Kähler).
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• T = α +
√
−1∂∂ϕ is a closed current on X , where α is smooth and locally√

−1∂∂-exact, and such that

T ≥ γ

for some smooth locally
√
−1∂∂-exact (1, 1)-form γ.

• We assume moreover that π⋆T = [E] + θ+
√
−1∂∂ρ, where E is effective, ρ is

a bounded real function on X̂, and the form θ is locally given by the Hessian
of a function bounded from above.

Then we claim that the following inequality

(15) θ +
√
−1∂∂ρ ≥ π⋆γ

holds true (this will be useful in the next sections). This is seen as follows: we only
have to verify (15) locally near a point x0 ∈ Supp(E) in the support of the divisor E.
Let U be an open subset of X such that π(x0) ∈ U and such that γ restricted to U
is given by the Hessian of the smooth function fγ. Assume that there exists an open
subset V containing x0 such that we have

θ|V =
√
−1∂∂fθ

where fθ is bounded from above. It then follows that the function

(16) fθ − fγ ◦ π + ρ|V0

is psh, where V0 :=
(
V ∩π−1(U)

)
\SuppE. On the other hand, the function in (16) is

bounded from above on V0. Since X̂ is normal, it extends as psh function locally near
this point, by result due to Hartogs in the smooth case, see [Dem85], Théorème 1.7 for
the version we need here. This is the analogue of the fact that bounded holomorphic
functions on normal spaces extend.

In conclusion, the (1, 1)-current obtained by taking the
√
−1∂∂ of the function (16)

is positive – but this is simply

θ +
√
−1∂∂ρ− π⋆γ|V ,

and our claim is proved.

4.2. Main results. Prior to stating our results we set a few notations and conven-
tions.

Definition 4.9. Given a real (1, 1)-class α we denote by Null(α) the null locus of α,
which is given by the union of analytic subsets V ⊂ X such that

∫
V α

dimV = 0.

We next introduce and establish basic properties of a class of closed positive currents
on normal varieties which will play the role of Kähler currents in [CT15].
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4.2.1. Currents with admissible singularities. We introduce the following class of sin-
gularities.

Definition 4.10. Let X be a normal, compact Kähler space, and let ϕ : X →
[−∞,∞[ be a function on X. We say that ϕ has admissible singularities if

ϕ = max (ϕ1, . . . ,ϕk)

where each ϕj has analytic singularities in the sense of [Dem92] i.e. it can be locally
expressed as

γ log(
∑

|fk|2)
modulo a bounded function. In the expression above, γ ≥ 0 is a real number and the
functions (fk) are holomorphic.

A more flexible version of this notion reads as follows.

Definition 4.11. Let X be a normal, compact Kähler space, and let

T = α +
√
−1∂∂ϕ

be a closed positive current of type (1, 1) on X, where we denote by α a smooth, real
(1, 1)-form on X, which is locally

√
−1∂∂–exact. We say that T has weak analytic

singularities if there exists:

• a biholomorphic map π : X̂ → X such that X̂ is normal, and
• a closed positive current

T̂ = π⋆α +
√
−1∂∂ψ ≥ 0

on X̂ such that ψ has admissible singularities and such that we have π⋆T̂ = T.

Remark 4.12. As consequence of the fact that the current T̂ is assumed to belong to
the class π⋆α, we show that the function ψ above (in the second point of Definition
4.11) is constant on every connected component of positive dimensional fibers of π.
This can be seen as follows: assume that the restriction of ψ to a fiber F of π is not
identically −∞. Then by Théorème 1.10 in [Dem85] combined with the fact that ψ
has admissible singularities we infer that ψ|F is a psh function defined on a compact
analytic space – hence, it must be constant by the maximum principle. So, there exists
a function ϕ1 on X such that ϕ1◦π = ψ, and moreover, the difference ϕ−ϕ1 is smooth
(because it belongs to the kernel of the operator

√
−1∂∂).1 It follows that Definition

4.11 is equivalent to the existence of a birational map π : X̂ → X together with a
current T̂ = π⋆α +

√
−1∂∂ψ ≥ 0 on X̂ such that π⋆T = T̂ . In other words, the

”singular analogue” of Lemma 4.3 holds true.

It turns out that this class of currents behaves very well under a few natural operations
which will be needed in the proof of Proposition 4.21 below. In particular we have
the following statement.

1Since ψ has admissible singularities, we expect that this should be the case for ϕ1 (and ϕ) as
well, but it is not clear how such a statement can be proved.
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Lemma 4.13. Let X and Y be normal compact Kähler spaces, and let p : Y → X be
a holomorphic map. Let β be a smooth, real and closed (1, 1)–form on X. We have
the following assertions.

(a) Let T be a current with weak analytic singularities on X. Then the inverse
image p⋆T has weak analytic singularities.

(b) For i = 1, 2 let Ti := β+
√
−1∂∂ϕi be two currents with weak analytic singular-

ities in the class induced by the smooth form β. If we define ϕ := max(ϕ1,ϕ2),
then the current T := β +

√
−1∂∂ϕ has weak analytic singularities.

(c) Assume moreover that p is birational. If Θ ∈ p⋆(β) is a closed positive current
with weak analytic singularities in the class p⋆(β) on Y , then the direct image
T := p⋆Θ has weak analytic singularities.

Proof. Concerning the first point (a), consider the map πX : X̂ → X given in Defini-
tion 4.11, so that the inverse image

T̂ := π⋆XT

is a closed positive current on X̂ , whose potential has admissible singularities. We
can construct holomorphic maps

πY : Ŷ → Y, p̂ : Ŷ → X̂

such that the equality p◦πY = πX ◦p̂ holds, the space Ŷ is normal and πY is birational.
Consider the inverse image Θ := p̂⋆T̂ . By Definition 4.10, it is clear that Θ has

admissible singularities. On the other hand, by Remark 4.12, we may assume that

Θ = p̂⋆
(
π⋆XT

)
= π⋆Y (p

⋆T )

which shows that the current p⋆T has weak analytic singularities.

Point (b) is a direct consequence of (a), so we will not give any further details.

For assertion (c) we argue as follows. Given that Θ has weak analytic singularities,
there exist a map πY : Ŷ → Y and a closed positive current

Θ̂ ∈ π⋆Y (p
⋆β) = (p ◦ πY )⋆β

as in Definition 4.11, such that
πY ⋆Θ̂ = Θ

and moreover we have Θ̂ = (p ◦ πY )⋆β +
√
−1∂∂ψ for a function ψ with admissible

singularities. The map p ◦ πY : Ŷ → X is birational, and we clearly have

(p ◦ πY )⋆Θ̂ = p⋆Θ.

It therefore follows that the direct image p⋆Θ has weak analytic singularities. !

Remark 4.14. Assume that X is a manifold and that T ∈ α is a Kähler current
with weak analytic singularities. By the regularisation results in [Dem92], the class α
contains a current with analytic singularities, meaning that the equality

ϕ|Ui = γi log
(∑

α

|fiα|2
)
+ ψi
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holds, where the fiα are holomorphic and ψi is bounded. We expect that this still holds
in our context, i.e. in case X is a normal, compact Kähler space.

Remark 4.15. It follows from Lemma 4.13 that in the definition of a current with
weak analytic singularities (4.11) we can assume that the space X̂ is non-singular.

We prove next another property of currents with weak analytic singularities. In the
proof below, we use the generic notation ”C” for a constant that can change from one
line to another.

Lemma 4.16. Let T be a current with weak analytic singularities on a normal com-
pact Kähler space X. Then the set E+(T ) :=

⋃
c>0Ec(T ) is a closed, analytic subset

of X.

Proof. We are using the notations in the previous Remark 4.12. In particular we
assume that X̂ is non-singular, and moreover the set (ϕ = −∞) coincides with the
image of (ψ = −∞) via the map π, since we have

(17) ψ = ϕ ◦ π
modulo a bounded quantity. Given that ψ has admissible singularities, it follows that
we have the equality

(ψ = −∞) = E+(T̂ ),

and therefore we have E+(T ) ⊂ π
(
E+(T̂ )

)
, since E+(T ) ⊂ (ϕ = −∞) as a conse-

quence of upper-semicontinuity of ϕ.
Actually, more is true, namely the equality

E+(T ) = π
(
E+(T̂ )

)

holds. To see this, it would be enough to show the existence of a constant C > 0 such
that we have

(18) Cν(T, y) ≥ ν(π⋆T, x) = ν(T̂ , x)

where y ∈ X is an arbitrary point and x ∈ π−1(y). If we admit this for the moment,
the proof of our lemma is complete.

In order to establish inequality (18), we proceed as follows. Consider a local parametriza-
tion τ : (X, y) → (Cn, 0). It is a proper, finite map such that τ−1(0) = y (as sets). In
this context we have the following important estimate, cf. [Dem82], Théorème 6

(19) Cν(T, y) ≥ ν(Θ, 0),

which we have already mentioned in (12), where the constant C here is very explicit
(depending on a certain multiplicity associated to the map τ) and Θ := τ⋆T is the
direct image of T with respect to the proper map τ .
By the main result in [Fav99], we have

(20) Cν(Θ, 0) ≥ ν
(
(τ ◦ π)⋆Θ, x

)
,

which combined with (19) gives

(21) Cν(T, y) ≥ ν
(
(τ ◦ π)⋆Θ, x

)
.
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It would therefore be sufficient to show that the inequality

(22) τ ⋆(τ⋆T ) ≥ T,

because then it follows that ν
(
(τ ◦ π)⋆Θ, x

)
≥ ν(π⋆T, x).

Let T |U =
√
−1∂∂ϕT be the local expression of the current T . Then we have

τ⋆T =
√
−1∂∂ψ

where ψ(z) :=
∑

w∈τ−1(z)

ϕT (w) is the trace of the local potential ϕT of T . It follows

that the following formula

(23) τ ⋆(τ⋆T ) =
√
−1∂∂ψ ◦ τ ≥

√
−1∂∂ϕT ,

holds. Indeed, the difference

(24) ψ ◦ τ(w)− ϕT (w) =
∑

x∈F ⋆
w

ϕT (x)

is a psh function on U , where F ⋆
w := {x ∈ U : τ(x) = τ(w), x ̸= w}. The argument

for this last claim is as follows: on the unramified locus of τ things are clear, and
on the other hand the RHS of (24) is uniformly bounded from above. Our proof is
finished. !

Remark 4.17. The inequality (22) does not holds in general. For example, if instead
of being finite and proper the map τ is the blow-up of C2 at 0, then (22) certainly fails
in case T is the current of integration on the exceptional divisor.

Finally, we introduce the following notion.

Definition 4.18. Let X be a normal compact Kähler space, and let α be a nef and
big real (1, 1)-class on X (in the Bott-Chern cohomology). The restricted non-Kähler
locus of α is the following set

Eas
nK(α) :=

⋂

T∈α

E+(T )

where T above is assumed to be a Kähler current with weak analytic singularities,
and E+(T ) ⊂ X is the (analytic) subset of X for which the Lelong numbers of T are
strictly positive.

Remark 4.19. In the case of a non-singular Kähler space X, one defines EnK(α)
as the intersection of E+(T ) for all Kähler currents T ∈ α. Thus, the difference
between Eas

nK(α) and EnK(α) is that in the definition of the former we restrict our-
selves to currents with weak analytic singularities. If X is non-singular, then we have
Eas

nK(α) = EnK(α), thanks to the regularisation results in [Dem92]. In the general
case of a normal space, things are less clear, but we can at least say that

EnK(α) ⊂ Eas
nK(α) ⊂ EnK(α) ∪Xsing

holds true. We actually expect the first inclusion to be an equality.

The following statement will be important in what follows.
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Corollary 4.20. Let X be a normal compact complex Kähler space, and let α be a nef
and big (1, 1)-class. Then Eas

nK(α) is an analytic subset of X, and there is a Kähler
current with weak analytic singularities T ∈ α such that E+(T ) = Eas

nK(α).

Proof. By (b) of Lemma 4.13, given two Kähler currents with weak analytic singular-
ities Ti ∈ α, we can construct T ∈ α such that

E+(T ) ⊂ E+(T1) ∩ E+(T2)

and moreover T is again a Kähler current with weak analytic singularities. We can
therefore construct a sequence Tk ∈ α of such currents, for which the following asser-
tions

E+(Tm+1) ⊂ E+(Tm), Eas
nK(α) ⊂

⋂

k

E+(Tk)

are true for each m ≥ 1. Since X is compact and E+(Tm) are analytic sets, the
corollary follows because by notherian induction there exists an integer m0 such that
E+(Tm+1) = E+(Tm) for all m ≥ m0. !

In this context, we have the following statement, which represents the main result of
this section.

Theorem 4.21. Let X be a compact normal Kähler variety, and let α be a smooth
(1,1)-form, which is locally

√
−1∂∂-exact and such that the corresponding class is nef

and big. Then Eas
nK(α) = Null(α). In particular, the set Null(α) is analytic.

Remark 4.22. As we have already mentioned in Remark 4.6, in singular setting the
Lelong number of a positive current can be different from the slope of its potential at a
given point. Therefore one might wonder why the former notion appears in Proposition
4.21 and not the latter. The explanation is given by Lemma 4.7: considering slopes
instead of Lelong numbers would lead to the same set Eas

nK(α).

Proof. The arguments which will follow combine [CT15] (where this statement is
established in case X is a manifold), with additional inputs from [DHP22].

Step 1: the inclusion Null(α) ⊂ Eas
nK(α) holds. Indeed, let V ⊂ X be an irreducible

component of Null(α) so that

(25)

∫

Vreg

αd = 0,

where d is the dimension of V . If V ̸⊂ Eas
nK(α), then by the definition of this subset,

there exists a Kähler current Θ ∈ α, whose potentials have weak analytic singularities
and whose Lelong number at a generic point of V is equal to zero. These two properties
show that the restriction Θ|V is a Kähler current, so in particular α|V is nef and big.
This contradicts the equality (25).

Step 2: the set Eas
nK(α) does not have isolated points. Let

T := α+
√
−1∂∂φ

be a Kähler current in the class α (in the equality above we abusively denote by ”α”
a smooth representative of this class). Assume that the function φ has weak analytic
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singularities and moreover x ∈ X is an isolated point in the set φ−1(−∞). Then we
can remove the pole of φ at x as follows (see [Dem92] and the references therein).

Consider (X, x) ⊂ U ⊂ (CN , 0) a local embedding of X , such that

α|U∩X =
√
−1∂∂τx

for some smooth function τx. The sum τx+φ is the restriction of a function ψ defined
on U and whose Hessian is bigger than a positive multiple of the Euclidean metric on
CN . We now define

ψ̃ := max(ψ, C1∥Z∥2 − C2)

where C1 is strictly positive and C2 ≫ 0 is large enough, so that

ψ|∂(U∩X) > (C1∥Z∥2 − C2)|∂(U∩X)

holds. This is indeed possible, since the restriction of ψ to a small enough neighbor-
hood of the boundary of U∩X in X is smooth. We have denoted by Z the coordinates
in CN and for each open set Ω we denote by ∂(Ω) its boundary.

We then define φ̃ the function on X given by ψ̃|U∩X − τx on U ∩X and φ on X \U .
This function has weak analytic singularities, and the current

T̃ := α +
√
−1∂∂φ̃

is greater than a small multiple of the Kähler metric on X . Moreover, x ̸∈ φ̃−1(−∞).
Therefore, the set Eas

nK(α) cannot contain isolated points, all its irreducible compo-
nents must have dimension at least one.

Step 3: the inclusion Eas
nK(α) ⊂ Null(α) holds. Let V ⊂ Eas

nK(α) be any irreducible

component. We have to show that

∫

Vreg

αd = 0, where d ≥ 1 is the dimension of V .

Assume that this equality does not hold. Then given that the restriction α|V is nef,
the only alternative is

(26)

∫

Vreg

αd > 0

and we show next that (26) leads to a contradiction. This will be done if we are
able to construct a Kähler current in the class α, whose potential has weak analytic
singularities and such that it is bounded locally at some point of V .

A first important reduction is that we can assume that V is non-singular. Indeed, as
shown in the proof of [DHP22, Theorem 2.29] there exists a modification p : X̂ → X
such that the following hold.

• The complex Kähler space X̂ is normal.
• The proper transform V̂ of V is a smooth submanifold of X̂ .
• The map p is an isomorphism locally over an open subset of V .

If we are able to construct a Kähler current Θ ∈ p⋆α with weak analytic singularities
such that Θ is bounded locally at a very general point of V̂ , then we are done by
considering the direct image p⋆Θ, cf. Lemma 4.13, (b). Thus replacing X with X̂ , we
can assume from this point on that V is non-singular.
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Thanks to inequality (26), it follows that we can construct a Kähler current

ΘV := α|V +
√
−1∂∂f

such that f : V → [−∞, 0] has analytic singularities, cf. Remark 4.14.
On the other hand, the class α is nef and big on X , so there exists a Kähler current

Θ := α+
√
−1∂∂F

where F has weak analytic singularities along V ∪ Z, where Z ⊂ X is an analytic
subset of X which does not contain V .

The idea is to remove the singularities of Θ at the generic point of V (as we did
in Step 2) by using ΘV , so that the resulting current will provide the sought-after
contradiction. However, in the actual context additional complications arise due the
singularities of F .

A particular case. As ”warm-up” for the rest of the proof, we provide here an argu-
ment in case the function f is smooth. By the proof of [Dem90, Theorem 4] there
exists a smooth extension f̃ defined in an open subset U of V such that

α|U +
√
−1∂∂f̃

is a Kähler current on U . Let now ψZ be a quasi-psh function on X , with analytic
poles along Z. If δ0 > 0 is sufficiently small, then

(27) α|U +
√
−1∂∂(f̃ + δ0ψZ |U)

is a Kähler current on U , and it has poles along the analytic set Z ∩ U .
Next we will use the hypothesis ”α nef” in order to diminish the order of poles of

F . This is necessary, as otherwise we will be unable to glue Θ with the form in (27).
Indeed, for any positive ε > 0 there exists a smooth function Gε on X such that

Tε := α +
√
−1∂∂Gε ≥ −εωX

where ωX is a reference Kähler metric on X . Let δ1 > 0 be a strictly positive real
number such that Θ ≥ δ1ωX . The convex combination

Θε := (1− ε

δ1
)Tε +

ε

δ1
Θ

is a Kähler current in the class α. It is easy to check that it is greater or equal than

−ε(1− ε

δ1
)ωX +

ε

δ1
δ1ωX =

ε2

δ1
ωX .

On the other hand, the singularities of Θε are of order O(ε), in other words we
can make them as small as we want/need. Let Fε := (1 − ε/δ1)Gε + ε/δ1F be the
potential of Θε. It follows that given a point z ∈ Z \ V , there exists an open subset
Uz containing z such that the following inequality

(28) Fε > δ0ψZ

holds for all 0 < ε ≪ 1 small enough. This can be seen as consequence of Hilbert’s
Nullstellensatz, as follows.
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We recall that E+(Θ) is equal to Z ∪ V . Moreover there exists a birational map
π : X̂ → X such that π⋆Θ has admissible singularities, meaning in particular that
locally near w ∈ π−1(z) we have

F ◦ π|(X̂,w) = log(
∑

|fi|2ri) + b

where b is bounded, (fi) is a set of holomorphic functions and ri ≥ 0 are positive real
numbers.

In the proof of Lemma 4.16 we showed that E+(Θ) = π
(
E+(π

⋆Θ)
)
, which in par-

ticular implies that we have π−1
(
E+(Θ)

)
⊃ E+(π

⋆Θ). In fact, the equality

(29) π−1
(
E+(Θ)

)
= E+(π

⋆Θ)

holds: let x ∈ π−1
(
E+(Θ)

)
, so that ν

(
Θ, π(x)

)
> 0. We claim that ν(π⋆Θ, x) > 0 is

strictly positive as well. If this is not the case, the local potential of π⋆Θ is locally
bounded from below near x. By the analogue of (17) in our setting here, it follows
that the potential of Θ is equally locally bounded from below near π(x). But this
contradicts the fact that the Lelong number of Θ at π(x) is positive.

Consider next the ideal I = (fi) generated by the functions appearing in the
expression of F ◦ π above. We remark that the set of zeros of I is contained in
(π−1(Z), w) (this is only true because we are ”far” from V ). The function ψZ is
obtained by gluing functions of type log(

∑
|hj |2), where (hj) are the local equations

of Z and so there exists an integer N > 0 such that (hj ◦ π)N ∈ I. In particular we
have

∑
|hj ◦ π|2N ≤ C(

∑
|fi|2) for some positive constant C > 0. By arranging the

constants, and taking into account the fact that π−1(z) is a compact set, this implies
(28).

We fix a value, say ε0, of ε small enough, such that (28) holds true for every point
of ∂U ∩ Z: this is possible, since ∂U ∩ V = ∅. Then we claim that there exists a
positive constant C > 0 such that the inequality

(30) f̃ + δ0ψZ < F0 + C

holds true pointwise in a small open subset containing the boundary ∂U of U , where
F0 := Fε0.
In order to verify this claim, we note that ∂U is a compact set, and let x ∈ ∂U
be one of its elements. If x ∈ ∂U ∩ Z, we clearly have δ0ψZ < F0 locally near x,
as consequence of the inequality (28). Moreover, the function f̃ is non-singular, so
the existence of the constant ”C” such that (30) holds in a small open subset of x is
guaranteed. If x ̸∈ ∂U∩Z, then things are clear. By compactness, we have established
our claim.

The next claim is that the function

F̂ := max(f̃ + δ0ψZ , F0 + C)

is defined on the whole space X , is bounded at the generic point of V , and moreover

α +
√
−1∂∂F̂
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is a Kähler current. Indeed, near the boundary ∂U of the set U where f̃ is defined
the inequality (30) shows that F̂ = F0 + C, and thus we define F̂ = F0 + C on the
complement of U .

End of the proof. In general, the function f has no reason to be smooth, but never-
theless the line of arguments above remains valid, thanks to a very important remark
in [CT15]. The point is that instead of obtaining a smooth extension f̃ of f defined
on an open subset U ⊂ X as above, in the actual context we only get a function with
log poles f̃ and a ”pinched” neighborhood U of V \W , where W is an analytic subset
of V , such that the analog expression (27) is a Kähler current. In our context, this
can be seen as follows.

Consider finitely many open subsets (Ai) of X , such that each Ai is an analytic
subset the unit ball of some Euclidean space, and such that V ⊂ ∪Ai. We can assume
that the equality

f |Ai∩V = δi log(
∑

α

|giα|2) + τi

holds, where δi > 0, the functions giα defined on Ai ∩ V are holomorphic and τi are
bounded (given that f has analytic singularities). In particular, the equations giα = 0
define a global analytic set W contained in V .

Let IW ⊂ OV be the ideal sheaf of W , and let JW ⊂ OX be its pull-back via the
projection map OX → OV . Then there exists a birational map

π : X̂ → X

obtained by blowing-up smooth centres contained in V , such that the following hold.

(a) The space X̂ is normal and the proper transform V̂ of V is non-singular.
Moreover, the map π is biholomorphic near the general point of V̂ .

(b) The inverse image of JW via the restriction of π to V̂ is equal to OV̂ (−D),

where D is an effective divisor on V̂ whose support is snc.

For the construction of the map π we use the same argument as in [DHP22]. We start
by constructing a principalization of the ideal IW ⊂ OV : this is achieved by a finite
sequence of blow-ups

pk : Vk+1 → Vk

of smooth centres Σk ⊂ Vk, for k = 0, . . . , N − 1 with V0 := V . Next we interpret
Σ0 ⊂ V as analytic subspace of X , and we blow-up X along Σ0; let

π1 : X1 → X

be the corresponding map. We get a closed immersion V1 → X1 (whose image is
simply the proper transform of V ), and we repeat this operation with Σ1. Notice that
the space XN is not necessarily normal, but the map XN → X is biholomorphic at
the generic point of VN . Since X is normal, it follows that the complement of a proper
analytic subset of VN is contained in the set of normal points of XN . Therefore, the
normalization ν : X̂ → XN is biholomorphic near the proper transform V̂ of VN (cf.
[GR], Corollary, page 164). It follows that the map

π : X̂ → X
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obtained by composing the normalization of XN with the previous sequence of blow-
ups has all the properties we need.

Consider next the pull-back current (π|V̂ )⋆ΘV . Its singularities are concentrated

along the snc divisor D in V̂ , whose support is Λ1 + · · ·+ ΛN . For each i = 1, . . . , N
we denote by βi an arbitrary, smooth representative of the first Chern class of Λi. By
blowing up X̂ along Λi, we can add the following item to the properties of π above:

(c) There exists a set (ρi)i=1,...,N of smooth (1, 1)-forms on X̂ such that the equality

ρi|V̂ ≡ βi

holds for each i = 1, . . . , N , meaning that the restriction of ρi to V̂ belongs to
the class βi.

Indeed, locally analytically we blow up the non-singular set Λi in CN . The exceptional

set of C̃N → CN is a smooth divisor Fi → Λi. Then Ei := X̃ ∩ Fi where X̃ → X̂ is
the strict transform and even if Ei is neither reduced nor irreducible, it is nevertheless
a Cartier divisor. Then O(Ei) is locally free, and so we can endow it with a smooth
metric denoted by hi (this notion is defined precisely as in the usual case of a line
bundle on a manifold). The curvature form corresponding to hi will be our ρi, for
each index i. Moreover, notice that these additional transformations do not affect V̂ ,
since Λi has codimension one in V̂ .

Given the properties (a)–(c) above, we obtain the decomposition

(π|V̂ )
⋆ΘV = α1 +

∑
ai[Λi] +

√
−1∂∂f̂

where the notations/conventions are as follows:

• The same symbol e.g. α is used to denote a cohomology class and some
fixed representative contained in it (in case we do not intend to emphasize a
particular representative of the said class).

• Λi are the hypersurfaces of V̂ introduced before.
• The smooth (1, 1)-form α1 is defined as

α1 = (π|V̂ )
⋆(α|V )−

∑
aiρi|V̂ ,

where ρi are the forms in (c).
• The function f̂ is bounded.

We note that since ΘV is a Kähler current, the inequality

(π|V̂ )
⋆ΘV ≥ δ(π|V̂ )

⋆(ωX |V )

holds, for some δ > 0. It follows that we have

Θ̂V := α1 +
√
−1∂∂f̂ ≥ δ(π|V̂ )

⋆(ωX |V )

as well, since Θ̂V is smooth, and the inequality above holds in the complement of an
analytic set of V̂ .
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Then we claim that for each ε > 0 there exists an open subset Uε ⊂ X̂ containing
V̂ , together with a smooth function f̂ε : Uε → R such that

(31) π⋆(α)−
∑

aiρi +
√
−1∂∂f̂ε ≥ δπ⋆(ωX)− εωX̂

pointwise on Uε, where ωX̂ is a fixed Kähler metric on X̂. Indeed, this is done in two

steps: we first apply the regularisation result in [Dem92] on V̂ in order to convert f̂
to a smooth function. The price to pay is a loss of positivity, which can be assumed to

be of size
ε

2
ωX̂ |V̂ . Then by the argument in [DeBook] already used in the particular

case above, we obtain Uε and f̂ε.

The inequality (31) above is in particular true if we construct the metric ωX̂ as follows:

ωX̂ := π⋆ωX −
∑

εiρi

where εi > 0 are well-chosen real numbers. Then we take ε :=
δ

2
and if we denote by

U and f̃ the corresponding set and function, respectively, then all in all we have

(32) π⋆(α) +
√
−1∂∂

(
f̃ +

∑
(ai +

δ

2
εi) log |sEi|2hi

)
≥ δ

2
π⋆(ωX)

in the sense of currents on U .

On the other hand, we also have at our disposal the inverse image current π⋆Θ ≥
δ1π

⋆(ωX) which has log poles along V̂ ∪ Z, where Z ⊂ X̂ is an analytic set. The
procedure we have used in the previous particular case applies here: indeed, we have
only used the fact that f is smooth in order to construct the open subset U . Then
adding the function δ0ψZ to it has the effect of diminishing a bit more the lower bound
in (32), but we can afford this since δ > 0.

The current obtained after the gluing procedure on X̂ has log poles and it is non-
singular at the generic point of V̂ . But as we have already mentioned, the birational
map π is a biholomorphism at the general point of V , so the direct image of the said
current will be smooth at the generic point of V . Moreover, it has weak analytic
singularities by definition –actually this is the main reason why we have introduced
this class of singularities. !

5. On subadjunction and the canonical bundle formula

Let X be a compact Kähler manifold, and consider a real (1, 1)-class α on X . We
assume that α contains a closed positive current R ≥ 0 with admissible singularities.
This means that we can write

(33) R = α +
√
−1∂∂φ

where (abusing notation) α is a smooth representative of the class α and the function
φ verifies the conditions in Definition 4.10.
We denote by π : X̂ → X a log-resolution of the integral closure of the ideal generated
locally by the functions (fi) in Definition 4.10. The pull back of the current R admits
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the decomposition

(34) π⋆R = [D] +R0

where we denote by [D] the current of integration along the effective divisor D and
R0 ≥ 0 is a closed, smooth and semi-positive (1, 1)-form on X̂ . By analogy with the
case in which R is induced by an effective divisor we call such a map π a log-resolution
of R.

We assume next that there exists a log-resolution of R, such that the following addi-
tional requirements are satisfied.

(1) The support of the π-exceptional divisor E has simple normal crossings, and
π is obtained as composition of blow-ups of smooth centers.

(2) We have π⋆(KX + α) ≃ KX̂ + β + S + Ξ1 − Ξ2, where:
• The notation above means that the relative canonical class KX̂/X of π
plus the divisor S + Ξ1 − Ξ2 coincides with π⋆(α)− β.

• β is a nef (1, 1)-class on X̂ .
• S is a smooth hypersurface on X̂ whose image is denoted by T := π(S).
• The restriction π|S admits a decomposition

π|S = πW ◦ f

where πW : W → T is a desingularisation of T and f : S → W is
holomorphic.

• The Ξi’s are effective R-divisors on X̂ such that their supports do not
have common components, S +Ξ1 +Ξ2 is snc, (X̂, S +Ξ1) is plt and any
hypersurface Y contained in the support of Ξ2 is π-exceptional.

We let

(35) γ := π⋆W (KX + α)|T −KW ,

and we write

(36) f ⋆(γ) + Ξ2|S ≃ KS/W + (β + Ξ1)|S.

Note that the pair (X̂,Ξ := {Ξ1−Ξ2}) is klt and that T is the unique center of log
canonical singularities for the generalized pair (X̂, S + Ξ1 − Ξ2 + β). In particular T
is normal.

3. The class β contains a smooth, positive representative.
4. The coefficients of the divisors Ξi are rational.

A first result we establish here is the following.

Theorem 5.1. Assume that the requirements 1-4 above are satisfied. Then the class
KS/W + (β + Ξ1)|S contains a closed positive current Θ ≥ 0 such that:

(1) For each general fiber Sw = f−1(w), the restriction Θ|Sw is induced by the
space of sections of the line bundle associated to mΞ2|Sw , for m large and
sufficiently divisible.
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(2) Consider the divisor Ξ′
2 ≤ Ξ2|S obtained by discarding the components of Ξ2|S

whose image is contained in the singular subset of T . Then, Θ ≥ [Ξ′
2] – that

is to say, the current Θ is singular along the divisor Ξ′
2.

The following results can be seen as ”transcendental” versions of the canonical bundle
formula. They can be used to refine Theorem 5.1, but they are of independent interest
as they apply to a variety of other contexts.

Let f : S → W be a surjective map of compact Kähler manifolds. Let P :=
∑

Pi and
Q =

∑
Qj be two reduced, snc divisors on S and W , respectively such that moreover

f−1Q ⊂ P . We decompose the divisor P

P = P h + P v

into f -horizontal and f -vertical parts, and we assume moreover that the restriction
of f to the support of P h is relatively snc on the complement of the support of Q,
and moreover f(SuppP v) = Q.

Let B =
∑

diPi be a Q-divisor on S, and let β be a (1, 1)-class such that the following
requirements are satisfied.

(a) The pair (S,B) is sub-klt.
(b) The morphism OW → f⋆OS(⌈−B⌉) is surjective at general points of W .
(c) We have KS + B + β ≃ f ⋆γ and moreover β contains a smooth positive

representative.
(⋆) For any point z0 ∈ S and w0 = f(z0) ∈ W there exist local coordinates

(x1, . . . , xn+m) on S centred at z0 and (t1, . . . , tm) on W centred at w0 such

that ti ◦ f(x) =
∏

x
kij
j where the kij are non-negative integers such that

kij ̸= 0 for at most one i for each index j.

Then the following result holds true – the case β = 0 corresponds to the original
result of Y. Kawamata in [Kawamata98].

Theorem 5.2. Assume that conditions (a), (b), (c) as well as (⋆) hold. Then the
class {γ} can be decomposed as KW +BW +βW where BW is the discriminant divisor
and βW is a cohomology class containing a closed positive current with zero Lelong
numbers. In particular, βW is a nef class.

Remark 5.3. Note that the hypothesis (a), (b), (c) are very natural, identical to
the set-up in [Kawamata98]. We expect Theorem 5.2 to hold without the additional
hypothesis (⋆), but there are serious technical difficulties to overcome.

One could ask the same type of questions in a more flexible and natural context, in
which β is only assumed to be nef (so that we start with a nef class on S and the
”output” is a nef class onW ). It turns out that the situation is a bit more complicated
–the reason being that a perturbation of β could destroy the first hypothesis in (c)–,
and in order to treat the nef case we consider the following assumptions.

(d) There exists a Kähler metric ω on S such that

ω = f ⋆g + θ,
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where g is a Kähler metric onW and θ is a rational (1, 1)-form on S. Therefore,
for any coordinate subset Ω ⊂ W biholomorphic to a ball we have a Q-line
bundle AΩ on V := f−1(Ω) whose curvature equals ω|V .

(b’) For any fixed, sufficiently big and divisible integer m0 > 0, there is an integer
k0 such that the natural inclusion f⋆OV (m0AΩ + k0⌈−B⌉) ⊂ f⋆OV (m0AΩ +
k⌈−B⌉) is an isomorphism for all k ≥ k0 (i.e. the local sections vanish along
(k − k0)⌈−B⌉), where AΩ is defined above.

(c’) We have KS +B + β ≃ f ⋆γ and β is a nef class.

Theorem 5.4. Assume that conditions (a), (b’), (c’), (d), as well as (⋆) hold. Then
the class {γ} can be decomposed as KW + BW + βW where BW is the discriminant
divisor and βW is a nef class.

Remark 5.5. The proof of Theorem 5.1 will show that the hypothesis (b’) is quite nat-
ural, in the sense that if the map f : S → W is induced by a birational transformation
π, then these hypothesis hold true.

The content of the following sections is organized as follows. There are two techniques
of constructing closed positive currents in twisted relative classes of a map between
compact Kähler manifolds. One can either use fiberwise holomorphic sections (nor-
malized in a canonical manner), or fiberwise Kähler-Einstein metrics, cf. [Gue20] and
the references therein. Here we will use the former, since the latter is not sufficiently
general to be implemented in our context.

Indeed, given a holomorphic surjective map f : S → W between two Kähler manifolds
and a Hermitian line bundle (L, hL) → X , the spaces

H0
(
Sw, (KSw + L|Sw)⊗ I(hL|Sw)

)

of L2 sections (for w ∈ W general) can be ”pieced together” in order to construct a
metric on KS/W +L, which is semi-positively curved e.g. in case the curvature current√
−1Θ(L, hL) ≥ 0 is positive, cf. [BP08]. The same is true in the pluricanonical case,

i.e. we can construct a positively curved metric on mKS/W + L, by replacing the

L2 normalization with an L
2
m condition. As a result, the rational class KS/W +

1

m
L

contains a closed positive current, whose restriction to the general fiber of f is induced
by the subspace of sections of

H0
(
Sw, mKSw + L|Sw)

which satisfy an L
2
m integrability condition.

In section 6.1 we show that the same holds true if we replace 1
mL with a (1, 1)-class α,

provided that the we can still define the space above, i.e. the restriction α|Sw of our
class to the fibers of f is rational. This will settle the first part of Theorem 5.1. The
singularities of the current constructed are analyzed by using techniques borrowed
from extension of pluricanonical forms.

Concerning Theorem 5.2, recall that any nef class is pseudo-effective, but in general
the two cones are different. Nevertheless, if a (1, 1) class contains a closed positive
current whose Lelong numbers at each point of the ambient space are equal to zero,
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then the class in question is psef, cf. [Dem92]. The nefness of the moduli part (in
our notations, the class βW ) in the canonical bundle formula was established by S.
Takayama in [Taka22] along these lines. Here we will adopt the same strategy –i.e.,
we will conclude by showing that βW contains a closed positive current with zero
Lelong numbers–, and by the same token, simplify a little the arguments in loc. cit.

6. Positivity of the relative adjoint transcendental classes

We begin this section by recalling the following results.

Theorem 6.1. Let f : S → W be a surjective map between two compact complex
manifolds. Let α be a real class of type (1, 1) on W . Then

(1) α is nef if and only if f ⋆α is nef.
(2) α is nef if and only if α|Z is pseudo-effective for all irreducible proper subva-

rieties Z ⊂ W and f ⋆α is pseudo-effective.

Proof. (1) follows immediately from [DHP22, Lemma 2.38].
We will now show that (2) also follows from the proofs of [DHP22, Theorem 2.36,

Lemma 2.38]. By [DHP22, Theorem 2.36], we know that if Zν → Z is the nor-
malization of an irreducible proper subvariety of W , then α|Zν is nef. By [DHP22,
Corollary 2.39], it suffices to show that if ω is Kähler on W and dimW = d, then∫
W αk ∧ ωd−k ≥ 0 for 0 < k ≤ d. Suppose that α is not nef, then we let t > 0 be the
nef threshold so that α+ tω is nef but not Kähler. Clearly (α+ tω)|Zν is Kähler and
so by [DHP22, Corollary 2.39]

∫
W (α+ tω)k ∧ ωd−k = 0 for some 0 < k ≤ d. Let F be

a general fiber of S → W , η a Kähler class on S and λ =
∫
F η

n−d where n = dimS.
Then

λ·
∫

W

(α+tω)k∧ωd−k =

∫

S

f ∗((α+tω)k∧ωd−k)∧ηn−d ≥
∫

S

f ∗(tkωd)∧ηn−d = λtk·
∫

W

ωd

which is impossible as the LHS equals 0 and the RHS is strictly positive. Thus t = 0
and α is nef.

Another way of establishing the point (2) is by using [DHP22, Corollary 2.32] : this
shows that α contains a closed positive current, i.e. it is pseudo-effective. The con-
clusion follows by using [DHP22, Theorem 2.36]. !

Therefore, in order to show that the class βW in Theorem 5.2 is nef, it is sufficient
to show that this is true for its pull back via f . This will follow from the main
results in the next two subsections. In the first one we collect a few results about the
construction of closed positive currents.

6.1. Closed positive currents in twisted relative canonical classes. To start
with, we introduce the following set of notations, which will only be used in this
subsection.

(1) f : X → Y is a surjective map with connected fibers between compact Kähler
manifolds.
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(2) D =
∑

aiDi is an effective, snc divisor with rational coefficients 0 < a1 < 1
and L is a Q-line bundle on X . Thus there exists a positive integer m0 such
that the reflexive hull L[m0] := (L⊗m0)∨∨ is a genuine line bundle, and a metric

on L will simply be given by a collection of functions
( ϕi

m0

)

i∈I
, where (ϕi)i∈I

are the weights of a metric on L[m0]. By abuse of notation we will often denote
L[m0] by m0L.

(3) α and γ are real (1, 1)–classes on X and Y , respectively. Moreover, α contains
a smooth positive representative denoted by θ.

(4) The class f ⋆γ − α coincides with the first Chern class of KX/Y +D − L.

In this context we prove the next statement.

Theorem 6.2. Assume that conditions (1), (2), (3) and (4) hold and that for some
sufficiently big and divisible integer m > 0 we have H0(Xy, mL|Xy) ̸= 0 for general
y ∈ Y . Then the class

KX/Y +D + α

contains a closed positive current Θ ≥ 0 whose restriction to the general fiber of f is
(well-defined and) induced by the sections of mL restricted to the fibers of f .

Proof. To begin with, we remark that if D = 0 and if some multiple of α belongs to
H2(X,Z), then the matter is clear. Indeed, in this case we can choose a Q-line bundle
F on X whose Chern class is α and such that

(KX/Y +D + F )|Xy ≃ L|Xy

for all general y ∈ Y . The results proved in [PT18] show that the current Θ con-
structed fiber-wise by the mth root of the sections of mL|Xy is positive.

Even though α may not be a rational class, hypothesis (4) implies that this is the
case locally over Y . This will allow us to conclude via an approach similar to the one
in [PT18], [CH20] (with slight modifications). The details are as follows.

We denote by γ any closed, real (1, 1)-form contained in the class γ given by hypothesis
(3) -and apologize for the abuse of notation. As consequence of the hypothesis (4)
above, the (1, 1)-form µ defined by the equality

(37) µ := θ − f ⋆(γ)

is closed, real, and its corresponding class is rational.

Let h be a metric on L − (KX/Y + D) whose corresponding curvature form equals
µ (here we are using the convention in (2) above). We consider a finite open cover
(Ui)i∈I of Y such that

(38) γ|Ui = ddcτi

for some smooth real function τi defined on Ui.
For each index i we endow the restriction

(L− (KX/Y +D))|f−1(Ui)

with the metric hi := e−τi◦fh. The equality

(39) θ|f−1(Ui) = ddc(f ⋆τi) + µ|f−1(Ui)
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shows that the curvature corresponding to the metric hi is equal to θ|f−1(Ui).

All in all, we can define a Hermitian Q-line bundle (Fi, hi) on the inverse image
f−1(Ui) such that the following hold.

(a) For each i ∈ I the following holds

(40) (KX/Y +D)|f−1(Ui) + Fi ≃ L|f−1(Ui)

especially the sections of mL|Xy correspond to sections ofm(KX/Y +D+Fi|Xy)
for each general point y ∈ Ui, where Xy := f−1(y).

(b) We describe here more precisely the metric hi. Let (Vj)j∈J be an open covering
of X , such that the restriction of the bundles KX , f ⋆KY , mD,mL to each Vj

is trivial. Recall that we have fixed a metric h on L−KX/Y −D, and denote
by ρj its weight on the set Vj. Then the weight of the metric hi on the set
Vj ∩ f−1(Ui) is

ϕij := ρj |Vj∩f−1(Ui) + τi ◦ f |Vj∩f−1(Ui).

We stress the fact that the only ”non-global” part of the metric hi corresponds
to the pull-back of τi.

(c) It follows that we have

(41)
√
−1Θ(Fi, hi) = θ|f−1(Ui).

and remark that even if (Fi, hi) is only locally defined (with respect to the
base Y ), the corresponding curvature is a global form on X .

Relation (40) allows us to define a metric hX/Y,i on (KX/Y + D)|f−1(Ui) + Fi whose
corresponding curvature is positive. This was done in [PT18], and we recall next the
construction. Let x0 ∈ f−1(Ui) be an arbitrary point. We fix coordinates (tk) and
(zl) on Ui and near x0, respectively. Assume that f is smooth over Y \ Σ. For each
y ∈ Ui \ Σi and ξ ∈ Vm,y let

(42) ∥ξ∥
2
m
y,i :=

∫

Xy

|ξ|
2
m e−ϕD−ϕi

be the L2/m-seminorm on the space of sections

Vm,y := H0
(
Xy, mLy

)
= H0

(
Xy, m(KXy +Dy + Fi,y)

)

where the notations are explained below. The subscript (. . .)y denotes restriction
to the fiber Xy and m is assumed to be sufficiently divisible so that all divisors in
question are Cartier. In (42) the symbol e−ϕi means that we are using the metric hi

(cf. (b) above) on the bundle Fi. The section ξ in (42) is interpreted as a twisted
pluricanonical form, so that the quantity under the integral is a (n, n)–form.

Then the weight of the metric hX/Y,i at the point x0 is equal to

(43) eϕX/Y,i(x0) := sup
∥ξ∥y0,i=1

|ξ0(x0)|
2
m

where y0 := f(x0) and ξ0 is given by the equality

ξ ∧ f ⋆(dt⊗m) = ξ0dz
⊗m
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written locally near x0.

We have given such a detailed description of the metric hX/Y,i because thanks to it,
it is easy to deduce its dependence on the index i. Indeed, we assume that we choose
the same coordinates t and z on Ui ∩ Uk and near x0 ∈ Vj, respectively, where it is
understood that f(x0) ∈ Ui ∩ Uk. Notice that the space of holomorphic sections Vm,y

involved in the definition of the relative metric is independent of i, but this may be
not the case for the semi-norm (42). By (b) of (40), we can write

(44)

∫

Xy

|ξ|
2
m e−ϕD−ϕi = e−τi(y)

∫

Xy

|ξ|
2
m e−ϕD−ρj ,

where the notation is indicating the weight ϕD + ρj we are using on the set Vj ∩Xy.
This is a consequence of the definition of the metric hi in (b). Moreover, we remark
that the second factor of the product on the RHS of (44) is independent on the index
”i”.
Thus, by (42) we infer that the equality

(45) ∥ξ∥
2
m
y,i = eτk(y)−τi(y)∥ξ∥

2
m
y,k

holds for any point y ∈ Ui ∩ Uk and ξ ∈ Vm,y.
Moreover, we can assume that the difference

(46) τk − τi = ℜ(τik)

is the real part of some holomorphic function τik defined on the intersection Ui ∩ Uk,
since their respective Hessian forms coincide by (39).

It follows that

(47) sup
∥ξ∥y0,i=1

|ξ0(x0)| = sup
∥ξ∥y0,k=e−ℜ(τik(y0))

|ξ0(x0)| = e−mℜ(τik(y0)) sup
∥ξ∥y0,k=1

|ξ0(x0)| .

Finally, we get

(48) ϕX/Y,i(x0) = ϕX/Y,k(x0)−
1

2
ℜ(τik(y0))

and since the point x0 was arbitrary and y0 = f(x0) it follows that we have

(49) ϕX/Y,i = ϕX/Y,k −
1

2
ℜ(τik ◦ f)

locally near a fixed point on f−1(Ui ∩ Uk). In particular we obtain the equality

(50) ddcϕX/Y,i = ddcϕX/Y,k,

on the overlapping Ui’s.

In conclusion, (50) shows that the curvature currents we construct locally on the
base agree on the intersection of the corresponding sets, and the construction of Θ is
finished, since the positivity of this current was already established in [PT18, Theorem
4.2.7]. !
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6.2. Singularities of the metric. In order to prove Theorem 5.1 we can apply
Theorem 6.2 for the following data: X := S, Y := W,D = Ξ1 and L = Ξ2, together
with α := β. The output is a current

Θ ∈ c1(KS/W ) + (β + Ξ1)|S
with the properties stated in the point (1) of Theorem 5.1. The assertion (2) will be
established along the following lines.

Proof of Theorem 5.1, (2). To begin with, we recall an important class of manifolds
on which L2 methods can be applied.

Definition 6.3. A manifold/complex space X is called weakly pseudo-convex if it
admits a smooth, plurisubharmonic exhaustion function ψ, so that the closure of the
sets (ψ < C) $ X are compactly contained in X, for any constant C.

Obviously, compact holomorphic manifolds have this property, but this is equally the
case for any complex space which admits a proper map into a Stein manifold. In
particular, consider the map f : S → W given in Theorem 5.1; for any Stein open
subset U ⊂ W the inverse image f−1(U) ⊂ S is an example of weakly pseudo-convex
manifold which will be important in what follows.

Consider next the blow-up map π : X̂ → X introduced at the beginning of Section
5, and denote by E =

∑
Ej the corresponding exceptional divisor. We define the

following form

(51) ωX̂ := π⋆ωX +
∑

aiθi

where ωX is a Kähler metric on the base X , the coefficients ai are positive rational
numbers and the forms θi belong to the Chern class of OX̂(−Ei). By an appropriate
choice of the coefficients ai, we can assume that ωX̂ > 0 – so we have a Kähler metric

on X̂ for which the only ”transcendental” part is pulled-back from the base X .

Let w0 ∈ W be an arbitrary point, and let Ω ⊂ X be a Stein co-ordinate subset which
contains the image ιW (w0), cf. diagram (52) below.

(52)
S X̂

W X

ιS

f π

ιW

Consider the following sets

(53) X̂Ω := π−1(Ω), U := ι−1
W (Ω), SU := f−1(U)

contained in X̂ , W , and S, respectively. We have the following statement.

Lemma 6.4. There exist Hermitian line bundles (AΩ, h) → X̂Ω and (AU , h) → U on
X̂Ω and U , respectively such that the corresponding curvature forms are multiple of
Kähler forms, i.e.

√
−1Θ(AΩ, h) = NωX̂ |X̂Ω

,
√
−1Θ(AU , h) = NωW |U

where N is positive and sfficiently divisible.
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Proof. This follows by standard arguments. Since the restriction ωX |Ω is ddc-exact, it
can be interpreted as trivial bundle over Ω endowed with a non-trivial metric whose
corresponding curvature form is ωX |Ω. The rest follows as consequence of (51) – in
particular we only need the positive integer N in order to clear the denominators of
the coefficients ai. A similar argument applies for ωW . !

Remark 6.5. Note that we may assume ιW : W → X is given by a finite sequence of
blow ups whose centers are contained in the singular locus Tsing of T . The metric ωW

can be obtained by the same formula as in (51), so that the corresponding exceptional
divisors Ei ⊂ W map into the singular locus of the centre X.

After these preparations, we proceed with the second part of Theorem 5.1. Let Ω ⊂ X
be an open subset as above. By the same procedure as in the proof of Theorem 6.2,
we can construct a Q-line bundle (FΩ, hF ) → X̂Ω such that the following relations
hold

(54) KX̂ + S + Ξ1 + FΩ ≃ Ξ2,
√
−1Θ(FΩ, hF ) = β

on X̂Ω ⊂ X̂ .

On the other hand, let ρ be any non-singular (1, 1)-form on W , such that ρ ∈ c1(KW ).
We can assume that the constantN in Lemma 6.4 is large enough, so that the following
inequality

(55) ρ+NωW ≥ 0

holds point-wise on W . We then consider the closed positive current

(56) Θ+ f ⋆(ρ+NωW ) ≥ 0

which belongs to the class KS + (Ξ1 + β)|S +Nf ⋆(ωW ).
Next, given the expression of the metric ωW combined with Remark 6.5, there exist
integers ki and divisors Ei such that the current

(57) Θ̂ := Θ+ f ⋆(ρ+NωW ) +
∑

ki[Ei|S]

has the following properties

• It belongs to the cohomology class (KX + S + Ξ1 + β +Nπ⋆(ωX))|S
• The divisors Ei appearing in (57) project into Tsing.

When restricted to the set
SU = S ∩ π−1Ω

(cf. (53) for the notations), the class β corresponds to the line bundle FΩ|S, so by
abuse of notation we can write

(58) Θ̂|SU ≃ KX + S + Ξ1 + FΩ|SU

by which we mean that the bundle on the RHS admits a singular metric hθ = e−ϕθ

defined on SU whose curvature form is precisely the restriction Θ̂|SU .

For each k ≥ 1 sufficiently divisible we consider the line bundle

Lk := (k(KX + S + Ξ1 + FΩ) + AΩ)|SU
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and the corresponding Hilbert space of homolorphic sections

(59) Hk := {s ∈ H0(SU , Lk)/

∫

SU

|s|2e−kϕθ−ϕAdV < ∞}

in the multiplier ideal induced by the current kΘ̂|SU . Then we recall the following
result, basically proved in [Dem09, Section 13] and references therein.

Theorem 6.6. Let Θ̂k ≥ 0 be the closed positive current on SU given by a family of
orthonormal sections of Hk. Then we have

ν(Θ̂, x) = lim
k

1

k
ν(Θ̂k, x)

where x ∈ SU is an arbitrary point and where we denote by ν(Θ̂, x) the Lelong number
of Θ̂ at x.

Remark 6.7. We note that in loc. cit. the result above is established in the setting of
bounded pseudo-convex subsets in Cn, but the proof applies in the context of Theorem
6.6, so we will not reproduce it here. As a matter of fact, it is at this point that the
pseudo-convexity of the set SU (cf. Definition 6.3) is very important.

In other words, in order to evaluate the singularities of Θ̂ it would suffice to have a
uniform lower bound for the vanishing orders of the sections s ∈ Hk as k → ∞. To
this end, we recall that as a consequence of the results e.g. in [BP10] the following
local version of the invariance of plurigenera holds true.

Theorem 6.8. In the above set-up, any holomorphic section s of the bundle Lk ex-
tends to X̂Ω as section s̃ of k(KX + S + Ξ1|X̂Ω

+ FΩ) + AΩ.

We offer next a few explanations about 6.8 in the very particular case in which we
have to extend a section s of the bundle k(KXΩ + S +L)|SU , where (L, hL) is a semi-
positively curved line bundle, such that hL is non-singular and it is defined over XΩ′

for some Ω $ Ω′. As we have seen above, we have an ample line bundle AΩ over XΩ,
and thus, in order to construct the extension of s we need the following.

• A local version of the Ohsawa-Takegoshi extension theorem. The statement
we need is available, cf. [DemOT].

• A finite family of holomorphic sections for the bundles

(k + r)(KXΩ + S + L) + C(k)AΩ|XΩ

for r = 0, . . . , k such that for each r, their common set of zeroes is empty.
This is easy to see, despite of the fact that SU and XΩ are not compact: the
point is that all the bundles/metrics extend over XΩ′ and we construct our
sections by a quick compactness argument.

These two points granted, one follows the usual algorithm, see e.g.[BP10] and the
references therein.

However, in our case there is an additional level of difficulty, induced by the presence
of the Q-divisor Ξ1. This can also be treated by the known techniques (i.e. work by
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Hacon-McKernan, Ein-Popa ...), given the fact that S+Ξ1+Ξ2 is snc and the relation
(54) (and therefore the condition (7) in loc. cit. is automatically satisfied).

Now, by relation(54), the extension s̃ can be seen as section of the bundle kΞ2|X̂Ω
+AΩ.

Given that the support of Ξ2 is π-contractible and that the set X̂Ω is the inverse image
of Ω by the map π, it follows that the vanishing order of s̃ along Ξ2 is at least k − k0
(we ”loose” a fixed amount m0 because of the ample bundle AΩ).

In conclusion, it follows that we have

(60) Θ̂k ≥ (k − k0)[Ξ2]|SU

and the proof is finished by using Theorem 6.6. !

7. Proof of Theorem 5.2

The main steps of the proof of our version of the canonical bundle formula – Theorem
5.2 – are as follows. Let Ξ := {B} be the fractional part of B and we write B =
Ξ + ⌊B⌋ = Ξ − ⌈−B⌉ as difference of two effective Q-divisors. We assume that the
discriminant divisor BW is equal to zero (we can do this without altering any of our
hypothesis). We then have the numerical identity

KS/W + Ξ+ β ≃ f ⋆βW + ⌈−B⌉.
Next, we apply the methods already used in the proof of Theorem 5.1 in order to
construct a closed positive current Θ ≥ 0 in the class corresponding to the LHS of the
relation above. The said current is proved to be singular along ⌈−B⌉: this follows as
consequence of the hypothesis (b) (which replaces the fact that the map f : S → W
might not be induced by a log-resolution π).

The heart of the matter is to show the (highly non-trivial) fact that the Lelong
numbers of the difference

Θ− ⌈−B⌉
are equal to zero. To this end we adapt the method used in [Taka22] in our context.

We start with a general discussion –and a simple result– concerning fiber integrals.

7.0.1. Fiber integrals. Let p : X → Y be a proper, surjective holomorphic map, where
X is a (n+m)-dimensional Kähler manifold and Y is the unit disk in Cm. We denote
by Y0 ⊂ Y the set of regular values of p. Let t = (t1, . . . , tm) be coordinates on
Cm induced by a fixed base. Consider a Q-line bundle (L, hL) on the total space X ,
endowed with a metric hL eventually singular, but whose curvature is semi-positive.
Let s ∈ H0

(
X, k(KX + L)

)
be a pluricanonical form with values in kL, where k is a

positive, sufficiently divisible integer so that kL is a line bundle. For each y ∈ Y0 let
sy ∈ H0

(
Xy, k(KXy + Ly)

)
be the induced form on Xy, in the sense that

(61) s|Xy = sy ∧ p⋆(dt)⊗k.

In this setting we show that the following holds true.
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Lemma 7.1. We assume moreover that there exists a section σ of a line bundle Λ

such that the quotient
s

σ
is a holomorphic section of k(KX + L) − Λ. There exists a

positive constant C0 > 0 independent of s such that the inequality

(62)

∫

Xy

|sy|
2
k e−ϕL ≥ C0 sup

Xy

∣∣∣
s

σ

∣∣∣
2
k

holds for any y ∈ Y0 such that |y| < 1
2 . The norm on the RHS is with respect to a

fixed, smooth metric on k(KX + L)− Λ, and an upper bound for the constant C0 can
be obtained from the proof that follows.

Proof. Let z0 ∈ Xy be a point such that

sup
Xy

∣∣∣
s

σ

∣∣∣
2
k
=

∣∣∣
s

σ

∣∣∣
2
k
(z0)

and let y = f(z0) be its image. We take the local coordinates z = (z1, . . . , zn+m) and
t = (t1, . . . , tm) centred at z0 and y respectively. The t-coordinates are defined on some
open set Ω ⊂ Y , and the z-coordinates are defined on V ⊂ f−1(Ω) biholomorphic to
the unit ball in Cn+m. Let ω be an arbitrary Kähler metric on X .

Corresponding to this data we define the function ψ : V → R ∪ {−∞} as follows

(63) ωn ∧ f ⋆(
√
−1dt ∧ dt) = eψ

√
−1dz ∧ dz

where we use the notations

√
−1dt ∧ dt :=

m∏

i=1

√
−1dti ∧ dti,

√
−1dz ∧ dz :=

m+n∏

i=1

√
−1dzi ∧ dzi.

Therefore, the restriction of the form e−ψωn to the fiber Xy∩V is equal to the measure

sometimes denoted with

∣∣∣∣
dz

f ⋆dt

∣∣∣∣
2

on Xy.

We assume that the bundles L and Λ are trivial when restricted to V , and let u ∈ O(V )
be the local holomorphic function corresponding to the section s|V . Then we clearly
have the inequality

(64)

∫

Xy∩V

|u| 2k e−ϕL−ψωn ≤
∫

Xy

|sy|
2
k e−ϕL .

On the other hand, by the L
2
k -version of the Ohsawa-Takegoshi theorem established

in [PT18], Proposition 1.2 there exists a function U ∈ O(V ) such that

(65) U |V ∩Xy = u|V ∩Xy ,

∫

V

|U | 2k e−ϕLdλ ≤ Cuniv

∫

Xy∩V

|u| 2k e−ϕL−ψωn,

where Cuniv is a numerical constant.

Let now σV ∈ O(V ) be the local holomorphic function induced by the section σ and
let N ≫ 0 be a large enough integer so that the integral

(66)

∫

V

dλ

|σV |
2
N

< ∞
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is convergent. The first part of (65) combined with the fact that z0 is the maximum
point and the mean-value inequality gives

(67) sup
Xy

∣∣∣
s

σ

∣∣∣
2
k ≤ C

∣∣∣∣
U

σV
(z0)

∣∣∣∣

1
kN

≤ C

∫

V

∣∣∣∣
U

σV

∣∣∣∣

1
kN

dλ

where the first constant is due to the fixed metric on k(KX + L) − Λ and it follows
-thanks to Hölder inequality- that

(68) sup
Xy

∣∣∣
s

σ

∣∣∣
2
k ≤ C0

∫

V

|U | 2k e−ϕLdλ,

where C0 depends on (67), and an upper bound for ϕL. This inequality, combined
with the estimate in (65) completes the proof of Lemma 7.1. !

7.0.2. Pseudo-effectivity. We remark that we can assume BW = 0, by simply replacing
B with B − f ⋆(BW ) and noticing that under the transversality hypothesis in our
statement, the new pair (S,B) is sub-klt and moreover the hypothesis (b) still holds.

Under the assumption that BW = 0, it follows from the hypothesis (c) of Theorem
5.2 that we have

(69) KS/W +B + β ≃ f ⋆βW .

Since the pair (S,B) is sub-klt, we can write B = {B} + ⌊B⌋ := Ξ − ⌈−B⌉ and
therefore we obtain

(70) KS/W + Ξ+ β ≃ f ⋆βW + ⌈−B⌉,
where (S,Ξ) is klt and ⌈−B⌉ is effective, with integer coefficients. We apply Theorem
6.2 to the following data: X := S, Y := W,α := β, γ := βW , L := OS(⌈−B⌉) and
finally D := Ξ. It follows that there is a closed positive current Θ ≥ 0 in the class
(70), induced by the sections of OS(⌈−B⌉)|Sw for w ∈ W general.

We then formulate our next assertion:

Claim 7.2. The inequality
Θ ≥ ⌈−B⌉

holds in the sense of currents on S, where the RHS is interpreted as current of inte-
gration on the divisor ⌈−B⌉.

Proof of the Claim. We start with a little comment: if a hypersurface Y ⊂ S belongs
to the support of the divisor ⌈−B⌉ is such that f(Y ) = W (i.e. Y is horizontal
with respect to the map f), then the hypothesis (c) together with the construction
of Θ show immediately that Θ ≥ µ[Y ], where µ is the multiplicity of ⌈−B⌉ along Y .
However, things are less clear for the vertical part of the support of ⌈−B⌉, since we
only have the explicit expression of Θ over general points of W . It is at this point
that the techniques from the subsection 7.0.1 come into play. The argument which
follows has its origins in [BP08], as well as in [CH20]. The reason why we review it
here is to show that it can be easily adapted to the pluricanonical case, needed a bit
later.
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Let w ∈ W be any regular value of the map f , and let w ∈ Ω ⊂ W be a coordinate
set of W , biholomorphic with the unit ball in Cm. Recall from the proof of Theorem
6.2 that there exists a Hermitian line bundle (F, hF ) defined over f−1(Ω), whose
associated curvature form is equal to β, and such that restricting to f−1(Ω) we have

(71) KS/W + Ξ+ F ≃ ⌈−B⌉.
Next, let u be any holomorphic section of KSw + (Ξ+ F )|Sw , such that

(72)

∫

Sw

|u|2e−ϕΞ−ϕF = 1.

As recalled in 7.0.1, there exists a section U of KS + Ξ+ F such that

(73) U |Sw = u ∧ f ⋆(dt),

∫

f−1(Ω)

|U |2e−ϕΞ−ϕF ≤ C0.

Since the canonical bundle of W is trivial when restricted to Ω, we can interpret U
as a section of KS/W + Ξ + F , which is the same as ⌈−B⌉|f−1(Ω) thanks to (71). In
particular, by (b) the quotient

τ :=
U

s⌈−B⌉

becomes a holomorphic function on f−1(Ω), where s⌈−B⌉ is the canonical section of
O(⌈−B⌉).
By Lemma 7.1 we infer the following inequality

(74) sup
Sw

|τ | ≤ C,

–because of the normalisation (72)– where the constant C in (74) is independent of
u.

As consequence of (72) combined with the definition of the relative metric we obtain

(75) ϕS/W ≤ C + log |s⌈−B⌉|2,
from which our claim follows. !

7.0.3. Lelong numbers. Next we show that the Lelong numbers of the closed positive
current

(76) T := Θ− ⌈−B⌉
are equal to zero. To this end we will use an important result due to S. Takayama.
Actually we will ”extract” from the proof in [Taka22] the result below (which will be
useful for the proof of Theorem 5.4 as well). To begin with, we recall the construction
of a natural metric on KS/W , cf. [MP12].

Let z0 ∈ S be an arbitrary point, and t0 = f(z0) be its image. We take coordinates
z = (z1, . . . , zn+m) and t = (t1, . . . , tm) centred at z0 and t0 respectively. The t-
coordinates are defined on some open set Ω ⊂ W , and the z-coordinates are defined
on V ⊂ f−1(Ω). Let ω be an arbitrary Kähler metric on S. Corresponding to this
data we define the function ψ as follows

(77) ωn ∧ f ⋆(
√
−1dt ∧ dt) = eψ

√
−1dz ∧ dz
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where we use the notations

√
−1dt ∧ dt :=

m∏

i=1

√
−1dti ∧ dti,

√
−1dz ∧ dz :=

m+n∏

i=1

√
−1dzi ∧ dzi.

We now consider a covering of S and W with coordinates sets as above. Given the
equality (77), the resulting functions e−ψ define a metric h on the relative canonical
bundle KS/W , which is general is singular. Let h0 = e−ψ0 be an arbitrary, smooth
metric on KS/W . The difference of the weights corresponding to the two metrics

ψf := ψ − ψ0

is a global function on S.

For each regular value t ∈ W of f we define the function

(78) F (w) :=

∫

Sw

e−ψf−φBωn

where φB := log |sB|2 is the log of the norm of the canonical section of the divisor B
(which we recall, is not necessarily effective).

We remark that so far the hypothesis (⋆) was not used in our arguments. It comes
into play through the following important result, established in [Taka22]. Although it
is not stated in this form explicitly, it is a direct consequence of the proof of Theorem
3.1 in loc. cit.

Theorem 7.3. [Taka22] Assume that the hypothesis of Theorem 5.2 are satisfied, as
well as the following.

• The divisor BW = 0 is zero.
• given any point z0 ∈ S and w0 = f(z0) ∈ W there exist local coordinates
(x1, . . . , xn+m) on S centred at z0 and (t1, . . . , tm) on W centred at w0 such

that ti ◦ f =
∏

x
kij
j where the kij are non-negative integers such that kij ̸= 0

for at most one i for each index j.

Then for any point w0 ∈ W the following inequality holds

F (w) ≤ C
∏

j

log
1

|wj|

where C > 0 is a positive constant and w are coordinates centred at any w0.

Remark 7.4. For the comfort of the readers, we will provide a complete proof of
Theorem 7.3 in the Appendix of this article.

Remark 7.5. We note that the inequality in Theorem 7.3 holds for any w such that
µW (w) belongs to the set of regular values of f , and the constant C is uniform.

50



Consider z0 ∈ S and w0 := f(z0), together with the corresponding local coordinates
chosen as in Theorem 7.3. By the definition of the relative metric we have

(79) eϕS/W (z) ≥
|f⌈−B⌉|2∫

Sw
|s⌈−B⌉,w|2e−ϕΞ−ϕF

where we denote by s⌈−B⌉,w the restriction of the section s⌈−B⌉ to the fiber Sw, so that
all in all the expression |s⌈−B⌉,w|2e−ϕΞ−ϕF is a volume form on Sw.
Moreover, given the definition of the divisors Ξ and ⌈−B⌉, we have

(80) |s⌈−B⌉,w|2e−ϕΞ−ϕF ≤ Ce−ψf−φBωn|Sw

for some constant C > 0 (remark that the proximity of w to the singular loci of f is
luckily irrelevant for the uniformity of C).

Then we have the following inequality for the potential ϕT of the current T introduced
in (76)

(81) eϕT (z) ≥ C

F (w)

where w = f(z). The second bullet in Theorem 7.3 together with the upper bound
for the function F provided by this result show that

(82) ν(T, z0) = 0,

and therefore Theorem 5.2 is completely proved, modulo the regularisation theorem
in [Dem92] (a class containing a closed positive current whose Lelong numbers are
equal to zero is nef)

Remark 7.6. In general, a nef cohomology class does not necessarily contain a closed
positive current with zero Lelong numbers. Therefore, the property we are establishing
in the proof of Theorem 5.2 is stronger than neffness. Moreover, we construct the
current T is a very explicit manner, so in principle it should be possible to further
analyze its singularities.

Remark 7.7. We expect that a more general form of Theorem 5.2 holds true, namely
one should obtain a version of this result in the absence of the hypothesis ⋆. This
promises to be a difficult problem (given the arguments invoked to prove it in [Taka22]).

8. Proof of Theorem 5.4

The main steps of the proof that follows are the same as in the previous subsection.
To begin with, recall that by hypothesis (d) we have a Kähler metric ω on S such
that

(83) ω = f ⋆g + θ,

where g is a Kähler metric on W and θ is a rational (1, 1)-form on S.
Consider a positive integer m0 divisible enough such that m0θ ∈ H2(S,Z). For each
k ≥ 1 the class

(84) βk := β +
m0

k
ω
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contains a positive representative, since β is nef. Therefore, we can write

(85) KS/W +B + βk = f ⋆(γk) + Ak

where

γk := γ +
m0

k
g,

m0

k
θ ∈ c1(Ak)

i.e. Ak is a Q-bundle such that kAk becomes a holomorphic line bundle which admits
a metric hk whose curvature is precisely m0θ.

We therefore find ourselves in the framework of Theorem 6.2: we obtain a closed
positive current Θk belonging to the class KS/W + Ξ + βk, constructed by using the
global sections of

k(Ak + ⌈−B⌉)|Sw

for w ∈ W generic.

Moreover, by hypothesis (b’) together with the arguments in sub-section 7.0.1 and
the Claim 7.2, we infer that we have

(86) Θk ≥ (1− δk)⌈−B⌉

where δk → 0 as k → ∞.
Finally, we analyse next the the singularities of the closed positive current

(87) Tk := Θk − (1− δk)⌈−B⌉, Tk ∈ KS/W +B + βk + δk⌈−B⌉.

To this end, we first observe that for each co-ordinate ball Ω ⊂ W the restriction

(88) kAk|V
admits a metric whose curvature is equal to m0ω|V , where V := f−1(Ω). We can
assume that m0 is large enough, so that the bundle in (88) is generated by its global
sections.
As in the proof of Theorem 5.2 assume that the morphism f satisfies the additional
hypothesis in the statement of Theorem 7.3. We consider z0 ∈ S such that w0 :=
f(z0) ∈ Ω, and let x and t be coordinates having the second bullet property in
Theorem 7.3. Let u be a holomorphic section of the bundle kAk|V , such that z0 ̸∈
(u = 0). The product

ρ := u⊗ s⊗k
⌈−B⌉

can be interpreted as section of k(KS/W + Ξ + Fk|V ) (notations as in Section 6) and
by the definition of the L2/k-metric we get

(89) eϕS/W (z) ≥ |fρ(z)|
2
k

∫
Sw

|ρw|
2
k e−ϕΞ−ϕF

for any point z near z0 and w := f(z). In (88) we denote by fρ the local holomorphic
function corresponding to the section ρ.
Inequality (80) still applies, so we infer that

(90) ν(Tk, z0) ≤ δkν(⌈−B⌉, z0)
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given the definition of ρ, provided that we assume beforehand that BW = 0 so that
we can use Theorem 7.3. Now the quantity δk is independent of the point z0, and it
follows that

(91) sup
z∈Z

ν(Tk, z) ≤ δkC,

where C is the maximum multiplicity of the divisor ⌈−B⌉ at points of S.
We next use [Dem92] in order to obtain a smooth representative T̃k ∈ KS/W + B +
βk + δk⌈−B⌉ such that

T̃k ≥ −CSδkω

where the constant CS only depends on the geometry of (S,ω). Since k was arbitrary,
it follows that the class

KS/W +B + β = f ⋆γ

is nef, hence the same is true for γ by Theorem 6.1.

9. Appendix

The main result of this subsection is a direct argument for Theorem 7.3. We first fix
a few notations:

• U ⊂ S is an open subset of S small enough so that we have the coordinates
x = (x1, . . . , xn+m) on U with the property that

f1(x) =
l1∏

i=1

xai
i , f2(x) =

l2∏

i=l1+1

xai
i , . . . , fm(x) =

lm∏

i=lm−1+1

xai
i

where ai ≥ 1 and 0 = l0 < l1 < · · · < lm ≤ n + m and fi := ti ◦ f for
i = 1, . . . , m.

• For every multi-index I := (i1, . . . , im) such that ik ∈ Jk := {lk + 1, . . . lk+1}
we define a form of by-degree (n, n) through the formula

√
−1dxI ∧ dxI :=

( m∏

k=1

∏

i∈Jk,i ̸=ik

√
−1dxi ∧ dxi

)
∧

n+m∏

i=lm+1

√
−1dxi ∧ dxi

• ω :=
∑

i

√
−1dxi ∧ dxi is the local version of the reference Kähler metric. We

set
ωl :=

∑

I

√
−1dxI ∧ dxI

and up to a constant, we see that we have

ωl =
( l1∑

i=1

√
−1dxi∧dxi

)l1−1∧ · · ·∧
( lm∑

i=lm−1+1

√
−1dxi∧dxi

)lm−1∧
n+m∧

i=lm+1

√
−1dxi∧dxi

We now proceed to the evaluation of the function ψ defined in (77). The first remark
is that

(92)
dfi
fi

=
li∑

j=li−1+1

ai
dxi

xi
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and therefore a few simple calculations that we skip show that we have

(93) eψ ≃
( m∏

i=1

|fi|2
) m∏

k=1

lk∑

i=lk−1+1

1

|xi|2

where the symbol ” ≃ ” in (93) means that the quotient of the two functions is
two-sided bounded away from zero.

The hypothesis BW = 0 shows that the inequality

(94) e−ψ−φB ≤ C
m∏

k=1

1

|Xk|2dk−2

∏

j∈J

1

|xj |2−2βj
=: Λ(x)

holds, where dk := lk − lk−1 and |Xk|2 :=
lk∑

i=lk−1+1

|xi|2. Moreover, we have J ⊂

{lm + 1, . . . , m+ n} and βj > 0 for each j.

On the other hand, by the Poincaré-Lelong formula, the local version of the quantity
we have to analyse equals

(95) FU(t) :=

∫

U

θ(x)e−ψ−φB
m∧

i=1

ddc log |ti − fi(x)|2 ∧ ωn

where θ is a truncation function defined as follows

θ(x) := θ(|X ′|2)
m∏

i=1

θ(|Xi|2)

and |X ′|2 :=
n+m∑

i=lm+1

|xi|2.

Now, given the expression of the functions fi, we infer that the integral (95) is bounded
by the following expression

(96)

∫

U

θ(x)Λ(x)ωl ∧
m∧

i=1

ddc log |ti − fi(x)|2

up to a constant independent of t, where we recall that the function Λ was defined in
(94). Indeed, the equality

m∧

i=1

ddc log |ti − fi(x)|2 ∧ ωn = ωl ∧
m∧

i=1

ddc log |ti − fi(x)|2

holds modulo a constant, because fi only depends on the variables xli−1+1, . . . , xli.

In order to evaluate (96) we use integration by parts: this expression is the same as

(97)

∫

U

log |t1 − f1(x)|2ddc
(
θΛ

)
∧ ωl ∧

m∧

i=2

ddc log |ti − fi(x)|2

and we will consider first the term containing θ(x)ddcΛ.
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Since dxα ∧ dxβ ∧ ωl ∧
m∧

i=2

ddc log |ti − fi(x)|2 = 0 if max(α, β) ≥ l1 + 1, we see that

the integral

ddcΛ ∧ ωl ∧
m∧

i=2

ddc log |ti − fi(x)|2

is equal to

(98)
m∏

k=2

1

|Xk|2dk−2

∏

j∈J

1

|xj |2−2βj
ddc

1

|X1|2d1−2
∧ ωl ∧

m∧

i=2

ddc log |ti − fi(x)|2.

We recall that we have the equality

ddc
1

|X1|2d1−2
∧ ddc|X1|2 = δ0,

the Dirac distribution at the origin in Cl1 , so that we have

(99)

∫

U

log |t1 − f1(x)|2θddc
(
Λ
)
∧ ωl ∧

m∧

i=2

ddc log |ti − fi(x)|2 =

log
1

|t1|2

∫

U ′

θ1Λ1

m∧

i=2

ddc log |ti − fi(x)|2 ∧ ωl′

where U ′ ⊂ Cn+m−l1 is the unit ball, x′ = (xl1+1, . . . , xn+m) and

θ1(x
′) := θ(|X ′|2)

m∏

i=2

θ(|Xi|2), l′ = (l2, . . . , lm), Λ1 :=
m∏

k=2

1

|Xk|2dk−2

∏

j∈J

1

|xj|2−2βj
.

A quick argument by induction gives the expected estimate for the RHS of (99).

The remaining terms involve the differential of X1 → θ(|X1|2), on the support of

which
1

|X1|2d1−2
is smooth.

In conclusion, after the first integration by parts we get
(100)
∫

U

θ1(X1)ψ1(X1) log |t1 − f1(x)|2θ1(x)Λ1(X)
l1∧

i=1

ddc|X1|2 ∧ ωl′ ∧
m∧

j=2

ddc log |tj − fj(x)|2

modulo the terms (99).

We now repeat this procedure, integrating by parts using the factor ddc log |t2−f2(x)|2.

Notice that, because of the form
l1∧

i=1

ddc|X1|2 the derivatives of the function

θ1(X1)ψ1(X1) log |t1 − f1(x)|2

don’t come into play.
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Thus, after a finite number of steps the last term we still have to deal with equals

(101)

∫

U

θ(x)ψ(x)
m∏

i=1

log |ti − fi(x)|2
dλ∏

j∈J |xj |2−2βj

where ψ is a truncation function. Since βj > 0, the integral (101) is uniformly bounded
as soon as we fix a bound for |t|. Collecting all the terms, Theorem 7.3 is proved.

Remark 9.1. We consider the function

f : C3 → C2, f(z) = (z1z2, z1z3).

Let θ be a truncation function which equals 1 near the origin of C3. A simple calcu-
lation shows that we have∫

C3

θe−ψddc log |t1 − f1(x)|2 ∧ ddc log |t2 − f2(x)|2 ∧ ω ≃ 1

|t1|2 + |t2|2

therefore the hypothesis (⋆) is crucial.

Remark 9.2. Let f : S → W be a morphism such that all the hypothesis of Theorem
5.2 except perhaps for (⋆) are satisfied. Then the techniques developed in our article
show that the current T in (76) can only have positive Lelong numbers along an
analytic subset of X which projects in codimension two. The reason is that one can
construct a subset W0 ⊂ W whose codimension is at least two, and such that the
morphism f satisfies (⋆) in the complement of W0. It follows that if dimW = 2,
Theorem 5.2 holds true for morphisms which only satisfy the assumptions (a), (b),
(c), thanks to the following general fact.

Theorem 9.3. [Dem92] Let X be a compact complex manifold, and let T be a (1, 1)–
closed positive current on X. If the level sets

Ec(T ) := {x ∈ X : ν(T, x) ≥ c}
have dimension zero for any c > 0, then the cohomology class of T is nef.
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