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ON THE CANONICAL BUNDLE FORMULA AND ADJUNCTION

FOR GENERALIZED KAHLER PAIRS

CHRISTOPHER HACON AND MIHAI PAUN

ABSTRACT. In this article we prove analogs of Kawamata’s canonical bundle for-
mula, Kawamata subadjunction and plt/lc inversion of adjunction for generalized
pairs on Kahler varieties. We also show that a conjecture of [BDPP13] in dimension
n — 1 implies that the cone theorem holds for any n-dimensional Kéhler generalized

klt pair (X, B + 8).
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Generalized pairs have been playing an increasingly prominent role in higher dimen-
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sional birational geometry (see eg. [Birkar21] and references therein). Their analytic
counterparts were introduced in [DHY23] (see Definition [[1]) where it is shown that
the minimal model program for compact Kahler generalized klt 3-fold pairs holds.
Note that even in the projective case, Definition [[.1] is more general than the usual
definition of generalized pairs since the "nef” part is only assumed to be a positive
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(1,1) form (instead of a nef divisor). This is extremely useful in the Kéhler context
as, in many instances, we can replace the use of an arbitrary ample (or big) divisor by
a (modified) Kéahler class. In particular, using this extra flexibility, [DHY23] shows
the finiteness of minimal models for compact Kahler generalized klt 3-fold pairs of
general type, and that klt Calabi-Yau Kahler 3-folds are connected by finite sequences
of flops. The theory of generalized pairs makes sense in all dimensions and it is hoped
that many results from the projective minimal model program will carry through to
this setting. In this paper we perform the first steps in this direction. We show that
adjunction and inversion of adjunction hold for generalized pairs (both in the plt and
lc cases), we prove a canonical bundle formula for generalized klt Kéhler pairs and we
show that assuming the BDPP conjecture in dimension n — 1, then the cone theorem
for generalized pairs holds in dimension n (and in particular it holds unconditionally
in dimension 4). More precisely, we show the following.

Theorem 0.1. Let (X, B + 8) be a generalized pair and S a component of B of
coefficient 1 with normalization v : S* — S. Then (X, B + 3) is generalized lc (resp.
generalized plt) on a neighborhood of S iff (S¥, Bsv + Bgv) is generalized lc (resp. S
is normal and (S, Bs + Bg) is generalized klt).

Next we turn our attention to the following generalization of Kawamata’s adjunc-
tion theorem for generalized pairs (cf. [Kawamata98, Theorem 1]).

Theorem 0.2. Let (X, B+03) be a generalized log canonical pair such that (X, B'+3')
is a generalized kit pair and W C X is a minimal log canonical center of (X, B + 3).
Then W is normal and (Kx + B+ 3)|w = Kw + Bw + By is a generalized klt pair.

In order to prove this result, it is necessary to prove the following canonical bundle
formula (cf. Theorem [2.3]).

Theorem 0.3. Let f : X — Y be a projective morphism of compact normal Kdhler
varieties such that f.Ox = Oy and (X, B+ ) is a generalized klt (or generalized lc)
pair. If v € HEL(Y) is such that [Kx + B + Byx] = f*y then v = [Ky + By + By]
where (Y, By + By) is a generalized kit (or generalized lc) pair.

Note that we expect semistable reduction to hold (unconditionally) for morphisms
of compact analytic varieties, however the necessary references are not yet available.
In the case of projective morphisms, we can deduce semistable reduction from the
algebraic case (see [AKO00], [Karu99]). It is possible that the results of [BASB23] are
already sufficient for our purposes, but the proof would appear to be more involved
and we do not pursue it here. The proof of this result heavily uses Theorem [6.2] (which
is a generalization of a result of Guenancia |[Gue20]), which roughly speaking, states
that By is pseudo-effective. By [DHP22, Theorem 2.36], to show that 3y is b-nef, it
suffices to show that By |7 is pseudo-effective for any subvariety Z C X. This can be
checked by using semistable reduction and applying Theorem [6.2]

Finally, assuming a key conjecture of Boucksom-Demailly-Paun-Peternell [BDPP13,
Conjecture 0.1], we show that the cone theorem for generalized kit pairs holds in ar-
bitrary dimension (and unconditionally for pseudo-effective pairs in dimension < 4).



This provides some evidence that the minimal model program holds in arbitrary di-
mension for generalized klt pairs. We refer the reader to [DHY23] for the generalized
klt minimal model program in dimensions < 3.

Conjecture 0.4. Let X be a compact Kdhler manifold. Then the canonical class Kx
is pseudoeffective if and only if X is not uniruled (i.e. not covered by rational curves).

Note that the above conjecture is known to hold in dimension < 3. Following ideas
from [CH20] and using Theorem [0.3] we then prove the following result.

Theorem 0.5. Assume that Conjecture|0.4] holds in dimension n (resp. in dimension
n—1). Let X be a compact Q-factorial Kdhler variety of dimension n such that
(X, B+ B) is generalized klt (resp. and Kx + B+ By is pseudo-effective), then there
are at most countably many rational curves {I';};cr such that

NA(X) = NA(X )y rmomz0 + 3R,
il
where 0 < —(Kx + B+ Bx) - I'i < 2n. Moreover, if B+ By (or Kx + B+ Bx) is
big, then I is finite.

We now turn to a more detailed description of some of the key results in this paper.
The most important results in this paper concern versions of the canonical bundle
formula (see Theorems and [.2). The typical set up for the canonical bundle
formula is an algebraic fiber space f : X — Y where say X,Y are normal projective
varieties, f,Ox = Oy, and a log canonical pair (X, B) such that Kx + B ~gy 0. We
can then write

Kx + B ~q [*(Ky + By + My)
where By is the boundary part that measures the singularities of f, and the moduli
part My is a Q-divisor class which measures the variation of the fibers of f. For
example if f is an elliptic fbration, then My = j*O]}ﬂ(%) where j denotes the j
function, and if Xp is a smooth fiber of multiplicity m over a codimension 1 point
P cY and B = 0, then the coefficient of By along P is 1 — -L.

The canonical bundle formula, roughly speaking, states that if the morphism f is
sufficiently well prepared (eg. B = 0 and all fibers have simple normal crossings), then
(Y, By) is log canonical and the the moduli part My is a nef Q-divisor. In particular
(Y, By) is a generalized log canonical pair (and in fact this is the key motivation for
introducing generalized pairs [BZ16]).

Results along this line are established in [Kawamata98], see [Kollar07] for a detailed
discussion. The positivity of the nef part is deduced from general positivity proper-
ties of pushforwards of the canonical bundle (see [Kollar86]). The intuition here is
that after performing several reductions, we can in fact assume that the moduli part
coincides with f.wx/y.

While the canonical bundle formula has a large number of extremely important
applications (eg. to sub-adjunction [Kawamata98)]), it is clear that in order to run
proofs by induction on the dimension, it is important to establish versions of the
canonical bundle formula that work for generalized pairs of the form (X, B + M).
This is achieved in [Fil20]. Note that on projective varieties, nef classes are limits of



ample divisors and hence one hopes the result for generalized pairs [Fil20] follow as a
limit of the result for the usual pairs [Kawamata98].

In the Ké&hler context it is more practical to work with generalized pairs (X, B+ 3)
where § € Hyb(X) is a nef class (see Definition [LT]) and f : X — Y is a holomorphic
map of Kihler manifolds such that Kx + B + § = f*y for some v € Hy,(Y). One
can then define the boundary By and moduli parts gy € Héé(Y) just as in the
projective case. Unluckily, it does not follow that [ is a limit of Q-divisors and hence
the arguments from the projective case do not apply in the Kahler case.

Our strategy is to first prove an analog of the positivity of f.wx/y. We show that
if Kx + B+ = f*y and (X, B+ ) is generalized log canonical, then Kx,y + B + 3
is pseudo-effective (the precise statement is contained in Theorem 2.2] which is an
easy consequence of Theorem that generalizes [Gue20]). Once the morphism
f X — Y is sufficiently prepared (and B is re-chosen appropriately), we have
Kx)y + B+ = f*By and hence By is also pseudo-effective. By [DHP22], it is
known that to show that 8y is nef, it suffices to show that Sy |y is nef where W is
(the normalization of ) any subvariety of Y. To verify this we consider fy : Xy — W
(where (...)w denotes restriction over W) and then apply Theorem 2.2 to the induced
pair (Xw, By + fBw). For the details of the proof see Theorem 2.3l Note that for
technical reasons we have to assume that f is a projective morphism, but we expect
the result will hold without this assumption.

Therefore, the technical heart of this paper is Theorem (which is the key ingre-
dient in the proof of Theorem [2.2)). To gain some intuition, note that in the setting
of Theorem we consider Kx/y + B+ 3 = f*y+ L where L is a Q-line bundle such
that x(L|x,) > 0 for general y € Y. Restricting over open subsets U C Y we may
trivialize v and treat |y, as a Q-line bundle Fy = Ox, (L — Kx;y — B). Following
[PT18], we construct a positive current Oy > 0 fiber-wise from the m-th root of the
sections of mL|x, (for m > 0 sufficiently big and divisible). These currents then glue
together to give a positive current © = Kx,y + B + £3.

Finally, we remark that it is possible to give direct arguments with analytic tech-
niques to prove stronger versions of the canonical bundle formula Theorem 2.3l In
fact Theorem shows that if we further assume that § contains a smooth positive
representative, then we can conclude the stronger fact that Sy is a closed positive
current with zero Lelong numbers.
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1. PRELIMINARIES

Here we recall some definitions and results from [DHY23]. We will say that S is
relatively compact if S C S is an open subset whose closure is compact. Similarly
m: X — S is a proper morphism to a relatively compact space S' if there is a proper
morphism 7’ : X’ — S’ where S C S’ is an open subset whose closure is compact and

X = 71(8).



Definition 1.1. Let 7 : X — S be a proper morphism of normal Kdahler varieties such
that S is relatively compact and X is a normal compact Kihler variety, v : X' — X
a resolution of singularities, B’ an R-divisor on X' with simple normal crossings
support, and 8 € HSL(X'), such that

(1) B:=v,B' >0,
(2) 8] € Hyo(X') is nef over S, and
(3) [Kx: + B' + '] = v*vy, where v € HyA(X).

Then we let = v." and we say that v : (X', B'+ ') — (X, B+ p) is a generalized
pair (over S). We will often abuse notation and say that (X/S, B+ ) (or (X, B+f))
is a generalized pair (over S) and v : (X', B'+ ') — (X, B + ) is a resolution. If
moreover Ex(v) is a divisor such that Ex(v) + B’ has simple normal crossings, then
we say that v is a log resolution and if Ex(v) supports a relatively ample divisor, then
v is projective. We will often assume that X = S and omit m: X — S.

Remark 1.2. Note that we can define the corresponding nef b-(1,1) form B = B’
as follows. For any bi-meromorphic morphism p : X" — X' we define By, = p*f’
and for any bi-meromorphic morphism q : X" — X" we let Bxw = q.Bxn. Using
the projection formula, one easily checks that q.Bx.» is well defined (i.e. Bxm does
not depend on the choice of the common resolution X" of X' and X"') and that for
any bi-meromorphic morphism r : X1 — Xs of birational models of X, we have
r.Bx, = Bx,- We say that B descends to X'. Note that for any bi-meromorphic
morphism p : X" — X', we also have B’ = " where B" = Byn, and so B also
descends to X".

Similarly, if v 1 Y — X' is a proper morphism, then write Ky + By = v*(Kx + B’).
For any proper morphism u Y — Y’ we have By, = u,By. In this way we have
defined a b-divisor B (whose trace By on Y is By ). Since the b-divisor K+ B =
Kx/ + Bx: and the b-(1,1)-form B= Bx: descend to X', we say that the generalized
pair (X, B + ) descends to X'.

We will often denote the generalized pairv : (X', B'+5") — (X, B+0) by (X, B+03)
where 3 = 3. Note that then 3 = By, and B' = v*(Kx + B+ B) — (Kx + /3.

We define the generalized discrepancies a(P; X, B4+3) = —multp(By ), where P is a
prime divisor on a bimeromorphic model Y of X. We say that (X, B+0) is generalized
klt or generalized Kawamata log terminal (resp. generalized lc or generalized log
canonical) if for any log resolution v : X’ — X, we have |Bx/| <0, i.e. a(P; X, B+
B) > —1 for all prime divisors P over X (resp. a(P;X,B + 3) > —1 for all prime
divisors P over X'). This can be checked on a single given log resolution. We say that
(X, B+P) is generalized dlt (divisorially log terminal) if there is an open subset U C X
such that (U, (B + B)|v) is a log resolution (of itself) and —1 < a(P; X, B+ 3) <0
for any prime divisor P on U and —1 < a(P; X, B + 3) for any prime divisor P over
X with center contained in X \ U.

Lemma 1.3. Let (X, B + 8) be a generalized kit (resp. generalized dlt) variety. If
Kx + B is Q-Cartier, then (X, B) is klt (resp. dlt).



Proof. Let f : X’ — X be a log resolution, Ky: + B' + By, = f*(Kx + B + Bx),
where | B'| <0, as (X, B + 3) is generalized klt. Let Kx: + B* = f*(Kx + B), then

E:=Kx +B — f*(Kx+B)= "By — By

and so F is exceptional and —F is nef over X. By the negativity lemma £ > 0. But
then
B =E+ f"(Kx+B)—- Ky =B'+E

and so |B*] < 0, ie. (X,B) is klt. The statement about dlt singularities follows
similarly. 0

In dimension 2, the situation is particularly simple as shown by the following lemma.

Lemma 1.4. If (X,B + B) is a generalized klt, dlt, lc surface, then Kx + B is
R-Cartier, (X, B) is klt, dlt, lc and By is nef.

Proof. See [DHY23]. O

The next result shows that, working locally over X, generalized klt pairs behave
similarly to the usual klt pairs, and in particular they have rational singularities.

Theorem 1.5. Let (X, B+ 3) be a generalized klt pair, then X has rational singular-
itres and if we replace X by a relatively compact Stein open subset, then the following

hold:

(1) there exists a small bimeromorphic morphism p : X* — X such that X* is
Q-factorial,

(2) if Kx: + B+ Bx: = u*(Kx + B+ By), then Bx: =x AF so that (X*, B + AF)
18 klt, and

(3) if A = u,Af, then (X, B+ A) is kit.

Proof. This follows from [DHY23] but we include a proof for the convenience of the
reader. Note that rational singularities is a local property and hence follows from (3)
and [Fuj22, Theorem 3.12].

(1-2) Let v : X’ — X be a projective log resolution of (X, B + () and write
Kx/ + B + ' = v*(Kx + B + 3) so that 8 = 3. Let E be the reduced exceptional
divisor and for 0 < ¢ < 1, let B* = (B')"" + ¢F and F = (B')<° + ¢FE, then
Kx + B*+ ' = v"(Kx + B + ) + F where the support of F' equals the set of
all exceptional divisors, and (X', B* + (') is generalized klt. In particular 5’ =x
F — (Kx/ + B*) where F — (K x/ + B*) is an R-divisor, nef over X. As v is projective
and X is Stein, we may assume that F'— (Kx/ + B*) is big. But then f’ =x A’, where
A’ > 0 is an effective R-divisor such that (X', B* + A’) is klt. We may therefore run
the relative Kx + B* + A’ mmp ([Fuj22] and [DHP22]) and hence we may assume
that we have a birational map ¢ : X’ --» X* such that if F* = ¢, F, B* = ¢, B*,
pt =), B and Af =, A, then

F'=x Kxi + B'+ p* =x Kx: + B + A

is nef over X so that F* = 0 by the negativity lemma. Therefore 1 : X* — X is a small
bimeromorphic morphism, B* = p; !B and X* is Q-factorial. Clearly (X* B* 4+ A¥)



is klt. Note that each step of the above mmp preserves the numerical equivalence
B* =x A% and in particular Ky: + B* + 8% = p*(Kx + B + B).

(3) By the base point free theorem [Nak87, Theorem 4.8], we have Ky: + B* +
A? ~@,x 0 and the claim follows. ]

The following result is a technical result that is useful in many situations, especially
when proving results by induction on the dimension. It shows that up to replacing X
by a higher model, the locus of non-klt singularities is contained inside the reduced
boundary of a carefully chosen strongly Q-factorial dlt pair. Recall that a Q-line
bundle is a reflexive rank 1 sheaf such that there exists a positive integer m such
that the reflexive hull L™ := (L®™0)¥V is a line bundle. A variety X is strongly
Q-factorial if every reflexive rank 1 sheaf is a Q-line bundle.

Theorem 1.6 (DLT models). Let (X, B+ 3) be a generalized pair, where X is rela-
tively compact Stein. Then there exists a projective birational morphism f™ : X™ —
X such that X™ 1is strongly Q-factorial, all exceptional divisors P have discrepancy

a(X,B+ B,P) < —1 and (X™, (f™)'B + Ex(f™)) is generalized dit.

Proof. The proof is similar to the proof in the case of the usual generalized pairs (see
[Fil20, Theorem 3.2]), which in turn is based on ideas of Hacon (see [KK10]). We
include the argument for the convenience of the reader. Recall that X is strongly
Q-factorial if for every reflexive rank 1 sheaf F' there exists an integer m > 0 such
that (F®™)** is locally free (see [DH20, Definition 2.2]).

Let f: X’ — X be a log resolution of the generalized pair (X, B + 3) and write
Kx'+ B +p'= f*(Kx + B+ f3) where § = By and ' = By,. We may assume that
f is defined by a sequence of blow ups over centers of codimension > 2 in X, and
hence f is a projective morphism and so we have C' > 0 an f-exceptional divisor such
that —C' is relatively ample. We write B’ = f;1{B} + ET + F — G where E*,F,G
are supported on the divisors of discrepancy a < —1, —1 < a < 0, a > 0 respectively
and we let £ = red(E™) be the reduced divisor with the same support as E. For any
0<ep,v<1, we have

EFE+(1+v)F—uC+p =(1—-en)E+(1+v)F+u(eE—C)+ 3.

Note that —uC' + ' =x —uC — (Kx + B’) is an ample R-divisor (over X) and hence
for 0 < e < 1, u(eE — C) + ' is also numerically equivalent to an ample R-divisor
(over X). Since X is Stein, we may write

—uC + ' =x Hy and w(eE — C) + B =x Hy
where B’ + H; + Hy has simple normal crossing support and | Hy| = | Hs| = 0. Let
Aoy =fYBY+ (A —e)E+ (1+v)F+ Hy=x f,'{B}+ E+ (1+v)F + Hy,

then (X', A, ) is klt for 0 < v <« 1, and by [DHP22] there is a Q-factorial minimal
model ¢ : X' --» X™ over X so that Kxm,  +Af,, is nef over X. By the equations

€U,V €U,V

above, this is also a minimal model for the dlt pair (X', f7{B}+ E+ (1+v)F+ H,).
Let B®, = . (frY{B}+FE+F), then A®, = B® +1,(vF+H,),and (X™, ,, B™ )

€U,V €U,V (31221 €1, €U,V

is dlt. Define
N = KXg)MV —|— Bm —|— I/Fm

&,V &1,V

m J— m
+ H1757M7V =X KX??,U,,V + A€7},L7V



T:= Kxm,  + B>, + (ET—-E)R,, —G:, , +85,, =x0.
We then have

T—N=xuC™+ (E*t —E)™ —G™ —vF™ = D"

€1,V 1,V €1,V €14,

where —DZ, , is nef and the pushforward of D, , to X is effective. By the negativity
lemma, D¢, , > 0. The divisors C', ET — E, F and G are independent of e, i, v,
thus if 0 < p < v < 1, then GZ, , = vF7, , = 0. Then let X™ := X . then X™
is strongly Q-factorial as it is the output of a minimal model program (see [DH20,

Lemma 2.5]) and (X™, (f™)'B + Ex(f™)) is generalized dlt. O

1.1. Boundary and moduli parts. Throughout this section we will assume that
m : Z — S is a proper morphism of relatively compact normal analytic varieties,
f X — Z is a proper morphism of normal Kahler varieties such that f.Ox = Oy
and (X/S, B + 3) a generalized pair which is generalized log canonical over an open
subset of Z. Recall that by assumption there is a log resolution v : X’ — X of
(X,B+B), ie.

(1) B = By (that is B descends to X'),
(2) By is nef over S,
(3) Ex(v) is a divisor and v~!(B) U Ex(v) has simple normal crossings.

We let Kx: + Bx: + By = v*(Kx + B + Bx) and we say that Kx/ + Bx + By is
the log-crepant pull-back of Kx + B + 3.

Definition 1.7. For any prime divisor QQ on Z, let
ag = aq(X, B+ B) =sup{t € R|(X,B+tf*Q + B) is glc over ng}.

In this definition "glc” means that there is an analytic open subset Z° C Z intersecting
Q such that (X, B+agf*Q+ ) is glc but not gkit over Z°. Note that as Z is normal,
Zsing has codimension at least 2 and so Q) is Cartier in codimension 1. Since (X, B+03)
1s a generalized log canonical pair, f is proper, and Z is relatively compact, it is easy
to see that ag = 1 for all but finitely many divisors Q C Z. We can then define the
boundary divisor By = B(X/Z, B+ 8) =Y (1 —ag)Q.

Remark 1.8. Ifn: X' — X and p : Z' — Z are proper bimeromorphic maps of
normal varieties and f' : X' — Z' is holomorphic, Kx/+B'+ 8y, = n*(Kx+B+8y),
then we say that (X', B' + 3) is the induced generalized pair. If Q' = u;'Q, then it is
easy to see that ag(X, B+ B) = ag/(X', B'+ B). In particular, if By is the boundary
divisor for (X', B' + B), then u.Bz = Bz, i.e. the boundary divisor defined by the
above formula is in fact a b-divisor which we denote by BZ (so that By = B% and
By = BZ,).

Definition 1.9. If Kx + B + By = f*y for some 0,0 closed form vy, then we define
the moduli part 57 := v — (Kz + Bz) of (X/Z,Bx + B). If Ky + By + By is the
log-crepant pull-back of Kx+ B+ By and Bz is the moduli part of (X'/Z', Bx:+Bx/),
then it is easy to see that p.fz = Pz and so we have a b-(1,1) form B% such that
Bz = B7.



Definition 1.10. The pair (X/Z, B+ 3) is said to be BP stable (over Z) if K+ B =
(Kz + Byz) i.e. if Kz + By is R-Cartier and for any contraction f' : X' — 7'
which is birationally equivalent to f and such that the induced maps pu: Z' — Z and
n: X' — X are projective birational morphisms, then Kz + BZ, = u*(K, + BZ).

Note that if Kx+B+8x = f*v, then the moduli part also descends to 7 i.e. 3% = By

Suppose now that 1 : X’ — X is a proper generically finite morphism. We define
the pull-back B := n*3 as follows. Let v : Y — X be a log resolution of (X, B + 3)
and Y’ be a resolution of the normalization of the main component of Y X x X’ so
that p : Y/ — Y is a generically finite holomorphic map and v/ : Y/ — X' is a
bimeromorphic map. Then let 3" = (p*By) and Ky+ + By = p*(Ky + By). Since
By, = p*By is nef over S, (Y',By: + 3'/S) defines a generalized pair. Now let
B’ = V. By, then

Kx' + B + 8% = V,(p"(v'(Kx + Bx + Bx))) =" (Kx + Bx + Bx)

by the projection formula. We will say that (X', B’ + 3') is the log crepant pull-back
of (X, B+ 3).

Lemma 1.11. If 3 descends to X, then 3" descends to X'.

Proof. By assumption v*3y = By. Then
V(" Bx) = p'V* Bx = p" By = By
Thus B = n*By, i.e. B descends to X'. O

Given a generically finite map p : 2/ — Z and h : X' — X xz Z' a proper
bimeromorphic map from a normal variety to the main component, then we obtain a
base change diagram

) e

(1) f’l lf

Ly

Lemma 1.12. Let By = B(X/Z, B+3) be the boundary divisor for f : (X, B+3) —
Z and By = B(X'/Z', Bx: + 3') be the boundary divisor for f': (X', Bx'+8') — 7'
where B = n*B and Kx + Bx' + B is the log-crepant pull-back of Kx + B + By.
If w is finite, then Kz + Bz = p*(Kz + By).

Proof. See [Amb99, Theorem 3.2]. O

Definition 1.13. A morphism [ : X — Z is weakly semistable [AK00, Definition
0.1] 4f
(1) X and Z admit toroidal structures Ux C X and Uz C Z, with Ux = f~1(Uy);
(2) with this structure, the morphism f is toroidal;
(8) the morphism f is equidimensional;
(4) all the fibers of the morphism f are reduced; and
(5) Z is nonsingular.



See [AK00, Section 1] for a discussion on toroidal morphisms. If (X, B) is a pair,
then we say that (X, B) has good horizontal divisors if for every x € X there exists a
local model X, = X, x Al where the horizontal divisors (i.e. the divisors dominating
7 ) are exactly the pull-backs of the coordinate hyperplanes in Al [Karu99, Definition
9.1].

We recall the following facts.

Theorem 1.14. (1) Weak semistability is preserved by base change (see [Karu99,
Lemma 8.3]).
(2) Let f : X — Z be a projective morphism of quasi-projective varieties and
W C X a closed subset a proper subscheme, then there exists a diagram

Uy C X 25 X

(2) r| lf

Uy cz -2 7

such that X', Z' are nonsingular, uy and px are birational, f' is toroidal and
f7Y W) C X'\ Ux: is a snc divisor JAKOQ, Theorem 2.1].

(8) There exists a finite surjective morphism Z" — Z' such that denoting by X" the
normalization of X X 7 Z", we have that Ux» C X" and Uzn C Z" are toroidal
embeddings, the projection f" : X" — Z" is an equidimensional toroidal mor-
phism with reduced fibers, and (f") Y (Uzn) = Uxn. If (X, B) is a pair, then
we may assume (X", B") — Z" is weakly semistable with good horizontal di-
visors where B" is the support of the inverse image of B and the X" — X
exceptional divisors see |[AK0Q, Proposition 5.1] and [Karu99, Theorem 9.5].

Lemma 1.15. Suppose that (X/Z,Supp(B)) is weakly semistable with good hori-
zontal divisors, 3 descends to X and (Z,X) is a simple normal crossings pair such
that f(BY) C X. Then, the corresponding boundary divisor By descends to Z, i.e.
(X/Z, B) is BP-stable.

Proof. Since 3 descends to X, we can disregard 3, and the claim follows from the
usual argument for pairs, see eg. [Fil20} 4.13]. O

Proposition 1.16. Let f : (X,B + 3) — Z be a locally projective morphism of
relatively compact normal analytic varieties such that (X, B + B) is a pair which is
glc over an open subset of Z. Then B? descends to some model Z' i.e. if f': X' — Z'
is bimeromorphic to f : X — Z and (X', B' + 3) is the induced pair, 3 = By then
(X'/Z', B'") is BP-stable.

Proof. We may assume that 3 descends to X and hence we may disregard B in what
follows. The question is local over Z and hence we may assume that f is projective
and Z is relatively compact and Stein. By GAGA (see |[AT19, Apendix B, C] for the
details) we may assume that f: X — Z is a projective morphism of quasi-projective
varieties.

Let f/ : X' — Z' and f” : X" — Z” be the morphisms defined by Theorem
[L14 We may assume that 7y (Supp(B)) + Ex(mx) has good horizontal divisors
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(over Z") where mx : X" — X. Let Kx» + B" = 7% (Kx + B), then (X"/Z", B")
is BP-stable by Lemma We must show that if vz : Z] — Z' is any birational
map, then Kz + Bz = v (Kz + Bz) where By is the corresponding boundary
divisor. Since Z"” — Z' is finite, then Kz + Bzr = u%,(Kz + Bz/) by Lemma
[L12 (where py : Z" — Z' and Byr is the corresponding boundary divisor). Let
Z{ be the normalization of Z” xz Zj, then ugz : Z — Zj is finite and hence
N};(KZi + Byz) = Kzp + Bzy. Let vgn : ZY — Z". Since (X"/Z", B") is BP-stable
and Mz OVgn = Vg O 'LLZi’ then

pz (Kz;+Bz;) = Kzp+Bzy = Vyn(Kzn4Bzr) = Vg (0 (Kzi+Bzr)) = pig (v (Kz+Bz)).

Pushing forward, it follows that Kz + Bz = vy, (Kz + Byz).
O

Theorem 1.17. Let (X, B) be a pair and f : X — Z be a projective morphism
of compact complex manifolds with connected fibers, then there exists a birational
morphism Z' — Z and a finite morphism Z" — Z' and a morphism f" : X" — Z"
birational to X x z Z" such that (X" /Z", B") is weakly semistable with good horizontal
divisors where B" is the support of the inverse image of B and the X" — X exceptional
divisors.

Proof. Let ¢ : (X,B) — Z the corresponding component of the Hilbert scheme.
Replacing Z by a resolution of the image of Z and replacing Z by a higher model,
we may assume that Z — Z is surjective, generically finite of smooth manifolds, and
(X, B) = (X,B) xz Z over an open subset of Z. By Theorem [L.14], there are

(1) birational morphisms puz : 2/ — Z and py : X’ — X such that the induced
map ¢’ : X’ — Z’ is a toroidal morphism of smooth varieties,

(2) a finite surjective morphism Z” — Z’ such that denoting by X” the nor-
malization of X” xz Z” then ¢" : X" — Z" is an equidimensional toroidal
morphism with reduced fibers and (X", B"”) — 2" is weakly semistable with
good horizontal divisors where B” is the support of the inverse image of B and
the X" — X exceptional divisors.

We let Z' = Z xz 2" and Z” be an appropriate resolution of Z xz Z” (so that the
inverse image of Z”\ Uz is a divisor with simple normal crossings) and X" = X x 2",
B" = B xz Z", then f"” : X" — Z" is weakly semistable and (X", B”) has good
horizontal divisors where B” is the inverse image of B plus the X" — X exceptional
divisors. U

Remark 1.18. The morphism " : X" — Z" is quasi-smooth in the following sense
(see |Taka22] pages 1736-1737). For every x” € X", there exists an open subset
a" € U" C X" such that (U”,Supp(D")|yn) = (U", Dg)/G where (U, Dg.) is a log
smooth toric variety and G is a finite abelian group and f" o w : (U”,DU,,) — 7"
is toric and flat and 7 : U" — U” is the quotient map. In particular we can pick
local coordinates (x1, ..., Tpim) on U" and (tq, ..., ty) on Z" such that (f"om)*(t;) =
fo”) where the k; ; are non-negative integers such that k; j # 0 for at most one 1
for each indez j.
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2. ADJUNCTION OF GENERALIZED PAIRS

In this section we will prove a version of Kawamata’s canonical bundle formula and
of Kawamata’s sub-adjunction for generalized Kahler pairs. We will also prove plt
and log canonical inversion of adjunction in this setting.

2.1. Towards a canonical bundle formula. Let f : X — Z and Z — S be proper
morphisms of normal relatively compact Kéhler varieties such that f,Ox = Oz and
(X/S, B + B) is a generalized pair. Suppose that Kx + B + By = f*y for some 9, 0
closed current v on Z. Let v = % so that v, = p*y for any bimeromorphic map
p: Z' — Z. We define the boundary b-divisor B? as above and for any base change
diagram ([IJ), we define By accordingly. In particular if p : Z/ — Z is birational, then
Bz = BZ,. We also define the moduli part B7 via

B =~—-(K+B?), ie  Kz+BZ+pB% =~,.

One expects, similarly to the algebraic case, that BZ, 8% descend to some model Z/,
(Z',B%) is kIt (Ic) and that 3%, is nef. In other words we conjecture the following.

Conjecture 2.1. Let f: (X, B+ 3) — Z be a generalized kit (Ic) pair as above, then
(Z,Bz + B%) is a generalized kit (Ic) pair.

We will prove this conjecture under additional conditions. As a first step, we prove
the following result which is a generalization of the main result of [Gue20)].

Theorem 2.2. Let f : X — Z be a surjective projective map with connected fibers
between normal compact Kdhler varieties, (X, B + 3) a generalized pair which is log
canonical over an open subset of Z, Z is smooth, v a real (1,1)-class on Z, and L a
Q-line bundle such that h°(X,, L™ |x.) # 0 for m > 0 sufficiently divisible, z € Z
general. If Kx + B+ Bx = f*y+ L, then Kx/; + B + B is pseudo-effective.
Proof. Let v : X’ — X be aresolution and write Kx.+B'+8y, = v*(Kx+B+8x)+E
where B’, E > 0 are effective divisors with no common components. We may assume
that B’ has simple normal crossings support. Since F > 0 is v-exceptional, by the
projection formula it suffices to show that Kx/,; + B’ 4 By, is pseudo-effective. Let
B’ = B" + BY where the components of B” dominate Z and the components of BY
do not dominate Z. Note that (X, B") is log canonical and it suffices to show that
Kxi /7 + B" + By, is pseudo-effective. For every m > 0 we will write

mF™ .= |B"| + {mB"} and  mB™:=m(B" - F™) = |mB"| - |B"].

In particular (X', B™) is klt and F™ has fixed support with coefficients in [0, 1/m)].
Let H' be a relatively ample divisor and w be a Kéahler form on Z such that f"*w+ H’
is Kéahler. For any € > 0 there is an m > 0 such that 8™ := By, +e(f“w+H')+F™is
Kihler and L€ := v*L+E—B’+eH’ is a Q-line bundle such that h°(X., (L¢)™|x,) # 0
for m > 0 sufficiently divisible, 2 € Z general. We may write

Kxi + B™+ ™ = f"(y+ ew) + L.
By Theorem 6.2, Kx/ /7 + B™ + 3¢ is pseudo-effective. Since being pseudo-effective
is a closed condition, and

Kxi )z —l—Bh—|—ﬁX, = lim (KX,/Z_FBm_'_BWE) ’
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it follows that Kx//z + B" 4 B is pseudo-effective. U

Theorem 2.3. Let (X, B+ 3) be a generalized kit (Ic) pair, f : X — Z a surjective
projective morphism of normal compact Kahler varieties with connected fibers, such
that Kx + B+ By = f*y for some 0,0 closed current vy on Z. Then (Z, By + 3%) is
a generalized klt (lc) pair, i.e.

(1) B? is b-nef, that is 3% descend to some model Z' so that B2, is nef, and
(2) (Z',BZ,) is sub-kit (sub-lc).

The proof of this result is somewhat technical but the strategy that we will now
illustrate is fairly natural. We already know that the moduli part 3% descends to
some model, so assume for simplicity that it descends to Z. Similarly assume that
3 = By is nef and B has simple normal crossings. We must show that 3z := B2 is nef.
By [DHP22], it suffices to show that 8z|w is pseudo-effective on (the normalization
of) any subvariety W C Z. When W = Z, this follows from Theorem tw#27
the situation is more delicate. Assume further that f is weakly semistable and that
By is a reduced divisor supported on Z \ Uy (cf. Theorems [L14] [L17). If T is any
component of By, then there is a component S of B=! dominating 7. By adjunction
(Kx + B+ B)|s = Ks+ Bs+ 8s = (f|s)*(v|r) and so Sy := B(S/T, Bs + (Bs) is nef
by induction on the dimension. Since 57|y = fr, then 57| is nef and hence pseudo-
effective for any W C T'. Finally, suppose that W ¢ Supp(Bz). Let Xy = X x5z W,
then we expect that (X, By + Ow) is a generalized pair with mild singularities and
Kx,, + Bw + Bw = (f|lw)*(7|w) so that by induction on the dimension Sz|lw =
B(Xw /W, By + pw) is nef. Of course there are many technical issues that we will
have to address in the proof.

Proof of Theorem[2.3. By Proposition [L16, the boundary b-divisor BZ for (X, B +
B/Z) descends to a model Z’, and hence so does the moduli part 87. It is well known
(and easy to see) that (Z’,BZ%,) is sub-klt (sub-lc). Thus, it suffices to show that,
after possibly replacing Z’ by a higher model, 8%, is nef.

Let f”: X" — Z" and ' : X' — Z' be the bi-meromorphic models of f : X — Z
defined in Theorem [[L.17 and let Kx» + B” + Bx» and Kx + B’ + By, be the log
pull backs of Kx + B + By. We may assume that 8 descends to X'. It suffices to
show that (z is nef where 5 = 3%, is the moduli part of (X'/Z', B’ + By,). Let
Byzn and Bzn := B2, be the boundary and moduli parts of (X”/Z", B” + Bxu). Since
pz : Z" — Z'is finite, then Sz = p%, Bz Thus it suffices to show that 5z~ is nef (see
eg. [DHP22, Lemma 2.38]).

Let B” = Bt — B~ where BT, B~ are effective with no common components. We
may assume that Bz~ is the reduced divisor supported on Z” \ Uz», and we let F
be the sum of the components of (f”)*(Bz») that are not contained in |B*]|. Pick
0 < d < 1, H" a relatively ample divisor and let 1 : X” --» X be a relative minimal
model for (X", BT + 0F + By, + eH") where 0 < ¢ < §. We note here that

Kxn+ Bt +8F + N.= Kxn+ B +6F + Bxn+e¢H" = B~ +6F,

where N, := —(Kx»+ B") + eH" =21 Bxn + eH" is a relatively ample Q-divisor and
hence the corresponding minimal model exists by [Fuj22].
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We claim that ¢.(B~ 4+ dF) = 0. To see this, note that since for general z € Z,
Kx, + B. + Bx|x. = 0, then Ky, + B}, + Bxnlxn, = B, where z” denotes a
preimage of z on Z"”. As B_, is exceptional for X, — X, and F.» = 0, then by
standard arguments ) will contract every component of B_,. In particular Kx , +
B.n +Bxlx., =0andso Kx , + B +Bxlx., +€H|XZ” is nef for all 0 < e < 1. Since
B~ + F is vertical, up to adding a vertical divisor which is =z~ 0, we may assume
that for any divisor P in the support of f,(B~ + F), every divisor () dominating P
has multy (B~ + F) > 0 and multo(B~ + F) = 0 for one such component. By [Laill,
Lemma 2.9], if multg(B~ + F) > 0 for one such @, then there is a component ()’
dominating P which is contained in B_ (B~ + §F/Z"). Since B~ + 6 F + ¢H" is nef
over Z" (for 0 < € < 1), it follows that no such divisor exists and hence B~ + F is
exceptional (over Z”). Since X” — Z” is weakly semistable, B~ + §F = 0 and so
Kg + B+ 8% = f*y". Note that B > f*Bn.

By [DHP22, Theorem 2.36], it suffices to show that for any subvariety W C Z”
with normalization W* — W then B,.|wv is pseudo-effective. Let T' C Z” be any
component of Bzs. There exists a component S of (B)~! such that multg(B) = 1
and S dominates T. We replace S by a minimal stratum of (B)~! dominating T
Then S is normal and by adjunction (K + B + B%)|s = Ks + Bs + (5 where
(S,Bs + fBs) is generalized dlt, (Kz» + Byzr)|r = Kp + Br where (T, Br) is log
canonical, By = (Bz» — T')|7. Then

Ks+ Bs+ s = g"(Kzn + Bzr + Bz0)|r = 9" (Kr + Br + Br)

where Bs = Bxls, g = fls. By standard arguments (see for example the claim in
the proof of Theorem 1.1 of [FG14]), we may assume that g has connected fibers.
Since (Kz» + Bgn)|lr = K + By, it follows that Sz/|r = PBr is the mobile part of
(S, Bs + Bs/T). By induction on the dimension, Sz is nef.

Thus, we may now assume that W is not contained in Z” \ Uz». Replacing B
by B — f*Bz» we will also assume that Bzs = 0. It suffices to show that B,y is
pseudo-effective where pyy : W — W is a resolution or equivalently that (K /7t

B+ Bgu)| 0 is pseudo-effective (see Theorem G.1lii). We may assume that W C Z
where pizn Z — Z" is a resolution. We write X = X x Z, X" = X" X g 7 and
XW =X X W, X” X" X0 W. We let W (Kx ) z0 +B+ﬁx) X/Z +B+ﬁx
and KX,,/Z+B"+ﬁX,, — % X/Z+B+[3X) where pg : X = X and ¢ : X" --» X.
By our construction By is nef over Z” and 8 = By.. Note that XW is not contained
in the support of B” and that X7; and Xj; are normal. This last claim follows since

)E"’/’V and XW are regular in codimension 1 and all corresponding fibers are S,. We
now let

(K + Bxn + Bsn)|zn = Kxn piir + By + Bz
where K~;1V/W = KX”/Z|X";V (see [Kollar22, Theorem 2.68]), BX‘,}_,V = BX“|X";V and
/BX// = ,BX'//‘X// iS nef Slmllarly we let (KX/Z+BX+,6X)|X - X .- /W+BXW+/6XW
Note that KX,, u i+ BX,, +6X,, = ¢ (Kx ow T Bz +B8x, ) and so we have a
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generalized pair
- (X 8 . \ - - _ .
Uy (XWangv +ﬁx";v) - (Xyp, (wW)*<BX%/ +ﬁx"}_'v))-
Since (¢Yyi)«(Bgn ) > By then (Xyir, (Vg5 )«(Bgn + Bxn ) is generalized log canon-
W 5 W W
ical over an open subset of W. By Theorem 2.2 K, w + Bgn + Bz is pseudo-
w w w
effective. This concludes the proof. O

Remark 2.4. We believe that if moreover 3 admits a smooth positive representative,
then so does B% (cf. Theorem[5.2).

2.2. Adjunction. In what follows, for ease of exposition, we will denote a generalized
pair (X/Z, B+ B) simply by (X, B + 3).

Definition 2.5. Suppose that (X, B+ 3) is a generalized pair and S is a component
of B of coefficient 1 with normalization v : S¥ — S, then we define a generalized pair

Kgv + Bsv + 8% = (Kx + B+ B)|sv

as follows. Let f : X' — X be a log resolution of (X, B + (3) so that X' is smooth,
B’ has simple normal crossings, By is nef, B descends to X', and Kx:+ B'+ By, =
[*(Kx + B+ By). Let 8" = f71S, then S’ is smooth and by the usual adjunction
for sub-klt pairs, we can write Kgr + Bs = (Kx/ + B')|s where By = (B' — 5')|s
has simple normal crossings. We may assume that 5 is smooth and we let 8% = Bs
where Bs = (' is the induced nef (1,1) form. Notice that [Ksr + Bs + Bs/] =
9" (v|sv) where g : S" — S¥ is the induced morphism and v = [Kx + B + (]. Let
Kgv + Bgv + Bgv 1= g*(Ksl + Bg + BS’); then g : (S/,BS/ + BS’) — (S, Bgv + Bsu)
defines a generalized pair; equivalently (S’, Bg + B° /) 1S a generalized pair.

If Kx + B is R-Cartier, then we will write Kx» + B* = f*(Kx + B) and By =
f*Bx — FE where E > 0 is exceptional. Note however that Fg := F|s may not be
g-exceptional where g : S" — S”. If Kgv+ Bgv = (Kx + B)|gv is the usual adjunction,
then

(Kx + B+ Bx)|s» = Ksv + Bsv + g« Esr + guBs.
By Lemma [L4 if (X, B + 3) is generalized lc in codimension 2, then Kx + B is R-
Cartier in codimension 2 and hence the above formula can always be used to compute
(Kx+ B+ B)s..

It is clear that if (X, B+ ) is generalized log canonical (resp. generalized plt) then
(SY, Bsv + fBsv) is generalized log canonical (resp. generalized klt). We now will verify
that the reverse implication also holds. The following statement is often referred to
at plt inversion of adjunction.

Theorem 2.6. Let (X, B + B) be a generalized pair and S a component of B of
coefficient 1 with normalization v : S¥ — S. Then (X, B + ) is generalized plt on a
neighborhood of S iff S is normal and (S, Bg + B°) is generalized kit.

Proof. Let f : X’ — X be a log resolution of the generalized pair (X, B+ 3). We may

assume that f is a projective morphism. We write Ky + B’ + 8y, = f*(Kx+B+8x)

and S’ = f1S. We have a short exact sequence

0— Ox/(—|B'|) » Ox/(=|B'] +5) = Os(—|B]+5)—0.
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Since, —|B'| =x Kx' +{B'} + By, where (X', {B'}) is klt and By, is nef (and big)
over X, then R'f,Ox/(—|B’|) = 0 and so we have a surjection

¢: [ Ox/(=|B'|+5) = fO0s(=|B'| + 5).

If (X, B+ 3) is generalized plt (on a neighborhood of S), then —|B'| + 5" > 0
is effective and exceptional (over a neighborhood of S) and hence |Bg/| = (|B'] —
S")|s» < 0'so that (S”, Bgw 4+ 8°) is generalized klt. We also have that f,Ox:(—|B’| +
S") = Ox and so ¢ factors through

fOx/(=[B'| +5) =0x = Os Cv.0sv = f.Og C f.Os(—|B'] +5)

and therefore Og = 1,Og. and S is normal.

If (S, Bs+fs) is generalized klt (and in particular S is normal), then 0 < —| By | =
(—|B'|4+95)|s and f.Og/(—|B'|+S") = Og, and so we have a surjection f,Ox/(—|B’|+
S") — Og. Since f,Ox:(—|B'|+S") C Oy, it follows that f,Ox/(—|B’'|+5’) = Ox on
a neighborhood of S and so —| B’| +.5" > 0 over a neighborhood of S, i.e. (X, B+ 3)
is generalized plt on a neighborhood of S.

U

The following result is known as log canonical inversion of adjunction. In the usual
pair setting, it was first addressed in [Kawakita07] and refined in[Hacon14] and [Fil20].
The following proof is based on the ideas of [Haconl14].

Theorem 2.7. Let (X, B + 8) be a generalized pair and S a component of B of
coefficient 1 with normalization v : S* — S. Then (X, B + 3) is generalized lc on a
neighborhood of S iff (S*, Bs» + B°) is generalized lc.

Proof. Following the arguments above, it is easy to see that if (X, B+/3) is generalized
lc on a neighborhood of S, then (S”, Bsv + 3° ") is generalized lc. Thus it suffices to
show that if (S, Bg + 8°) is generalized lc, then (X, B + 3) is generalized lc on a
neighborhood of S. The question is local over X and so we may assume that X is a
relatively compact Stein variety.

Let © : Y — X be a generalized dlt model given by Theorem so that p is
projective, Y is Q-factorial, all exceptional divisors have discrepancy a < —1, (Y, By, +
B) is generalized dlt, and B} := u;'B + Ex(u) < By where Ky + By + 8y =
/L*(KX —|—B+ﬁX) Let Sy = ,u*_lS, Bg/ = Sy-'-F and By = Sy+F+E Let H be
a sufficiently ample divisor and run the Ky + Sy + I' + 3y mmp with scaling of H.

Claim 2.8. There is a sequence of flips and contractions ¢; : Y; --+ Y; 11 and real
numbers so = 1, 8; > s;11 > 0 such that Ky, + S; + T'; + By, + sH; is nef over X for
S; > 8 > Sir1. 1If the minimal model program terminates, then we may assume that
Sni1 = 0, otherwise the we have lim s; = 0.

Proof. For any s > 0, By + sH =x —(Ky + By) + sH is an ample R-divisor and
hence

SY‘|‘F+ﬁy+SHEXAS

where (Y, Ay) is klt. By [DHP22] or [Fuj22], for any 0 < € < 1, we can run the
Ky + A, mmp over X with scaling of (1 — s)H. The claim now follows easily. O
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We may assume that for ¢ > i, all ¢; are flips.

Claim 2.9. For any t > 0, there is an R-divisor ©; =x ' + By + tH such that
(Y, Sy + ©,) is plt.

Proof. Since H is ample and 3y is nef, then By +tH =x —(Ky + By) + tH is an
ample R-divisor and hence
Sy +T'+ 8y +tH =x Sy + 6,
where (Y, Sy + ;) is plt. O
If t <s;, then (Y;,S; + ©y;) is plt and in particular S; is normal. Suppose that
¥, NS; # (), then
M:(KX +B+ﬁX) Sy — (KYZ +Si+Fi+2i+ﬁ§/i> Sy — KSi _'_Diffsi(Fi_'_Ei) +ﬂYi Si

where K, + Diffg,(I'; + ;) is not log canonical as multp(I'; + ;) > 1, and this
implies that multgDiffg, (I'; + 3;) > 1 where @ is any component of S; N P. But
then Kg, + Diffs, (I'; + X;) + By,|s, is not generalized log canonical and so neither is
(S¥, Bsv + ﬁsy). Therefore ¥; N S; = () for all 7 > 0.

Fix m > 0 such that m>: is an integral divisor and s; > % > Si11. Then

1
Hy =mY; — S =x Ky, +© 1, + (m = 1)(Ky, + 5; + I + EHZ‘+BYZ-)

where Ky, +©1 ; is kIt and Ky, + S; + I'; + = H; + By, is nef and big over X so that
RY(143)«Oy; (H; — mY; — S;) = 0 and hence we have a surjection

(1)« Oy, (H; — mE;) — (1) Os,(H; — m;) = (1), Os, (H;).
Note that as Y;, --» Y} is a small bimeromorphic map, then the sheaves
(11:)Oy, (H; — m35;) = (kg )+ Oy, (Hiy — m3iy) C (1)« Oy;, (Hyg)

are contained in Zy - (1;,)+Oy; (Hi,) for m > 0 where V' = p;,(3;,) and if VNS # 0,
then this contradicts the above surjection. Therefore y;,(3;,)NS = 0 and so (X, B+03)

is generalized log canonical on a neighborhood of S.
O

Proof of Theorem [0 1. Immediate from Theorems and 2.7 O

Proposition 2.10. Let (X, B+08) be a generalized log canonical pair and (X, Bo+03,)
a generalized kit pair. If V' a minimal log canonical center of (X, B + 3), then V is
normal.

Proof. The question is local on X and hence we may assume that X is relatively
compact and Stein. By the usual tie breaking arguments, we may assume that there
is a unique log canonical place for (X, B 4+ 3) and that this place dominates V. Thus
there is a log resolution of (X, B + 3), f : X’ — X such that Kx, + B’ + By, =
f*(Kx + B+ ) where B’ = 5" + A’ and S’ is the unique LC place for (X, B + 3)
so that |A’] < 0 is an exceptional divisor. By the proof of Theorem 2.6, we have a
surjection

¢: [ Ox /(= |A]) = [.O0s(=[A")).
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Since —|A'| is effective and exceptional, then f,Ox/(—|A’]) = Ox. Since 5’ is
smooth, S — V factors through the normalization v : V¥ — V and so ¢ factors via
f+Ox:/(—|A’]) = Ox — Oy and the natural inclusions

Oy C 1,0y C f*OS/ C f*OS/(—LAIJ).
It follows that Oy = v,Oy+ and hence V' is normal. O

Theorem 2.11. Let (X, B+0) be a generalized log canonical pair then nklt(X, B+ 3)
15 seminormal.

Proof. The corresponding result for log canonical pairs is contained in [Amb98]. We
will follow the approach of [Kollar07]. Let v : X’ — X be a log resolution of (X, B+(3)
and write Kx' + B'+ By, = v (Kx + B+ By). f B =S5 — A+ {B'} where S, A
are effective Weil divisors without common components, then S is seminormal as it
is a divisor with simple normal crossings and hence f|gs: S — W factors through the
seminormilazation h : W3" — W via g : S — W*". We have a short exact sequence

0— OX/(A — S) — OX/(A) — Os(A|5) — 0.

Since A — S =x Kx + {B'} + By, and By, is nef and big over X it follows that
R'v,0x/(A — S) = 0 and hence v,.Ox/(A) — 1,05(A|s). Since A is v-exceptional,
v.Ox/(A) = Ox and hence v,Og(A|s) = Ow. But v.0g(Als) D heg:Os = h,Owsn
and so h,Ows = Oy i.e. h: W — W is an isomorphism. O

We will now prove that Theorem follows from Theorem [0.3]

Proof of Theorem[0.2. We may assume that W has codimension > 2. By Proposition
.10, W is normal and by a standard tie breaking argument, we may assume that there
is a unique log canonical place for an auxiliary pair (X, Bf + 8%). Let f : X’ — X be
the corresponding dlt model (Theorem [LG), then f has a unique exceptional divisor
S"and f*(Kx+ B+8x) = Kx'+ S5+ B'+ By, where (X', 5"+ B'+ 3') is plt. Note
that by the proof of Proposition 2.10, S” — W has connected fibers. By Theorem [2.6]
(S', Bsr + Bg/) is generalized klt where K¢/ + Bs + By = (Kx' + 5"+ B + Bx/)|s-
Let v : 8" — W, then K¢ + By + Bg = v*((Kx + B+ Bx)|w) and so by Theorem
0.3 (Kx+B+Bx)|lw = Kw + Bw + By where (W, By + Byy) is generalized klt. [

Remark 2.12. The above arguments show that if (X, B + 3) and (X, B’ + 3') are
generalized pairs, V. C X 1is a subvariety and U C X an open subset such that
(U, (B4+8)|v) is generalized lc, (U, (B'+8)|v) is generalized kit and VNU is a minimal
log canonical center of (U, (B + B)|v), then (Kx + B + B)|yv = Kyv + Byv + 8"
where V¥ — V' is the normalization and (V" Byv + va) 1S a generalized pair.

3. CONE THEOREM FOR GENERALIZED KLT PAIRS

The results in this section are inspired by [CH20]. They suggest that one of the main
obstructions to the higher dimensional minimal model program for Kéahler varieties
is Conjecture [0.4

Proposition 3.1. Assume Conjecture|0.4 in dimension < n—1. Let X be a compact
Q-factorial Kdhler n-fold such that (X, B + B) is generalized klt, Kx + B + Bx is
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pseudo-effective, and w be a Kdihler form such that o = [Kx + B + Bx + w] is
nef and big but not Kdhler. Then there is an a-trivial rational curve C such that
0<—(Kx+B+pBy) C=w-C<2dimX.

Proof. By Proposition L.2]] (see also [CT15, Theorem 1.1] and [Bou04, Theorem 3.17]
in the smooth case) the restricted non-Kéhler locus E%(«) coincides with the null-
locus Null(«), and there exists a Kéhler current n with weak analytic singularities in
the class « such that the Lelong set coincides with E%.(«). Since « is not Kéhler,
then Null(«) has a positive dimensional component. Let Z be a maximal dimensional
irreducible component of Null(«) and ¢ be the log canonical threshold of (X, B+ 3y)
with respect to 7 on a neighborhood of general points of Z. This means that if we
pick a log resolution v : X’ — X such that Kx+ Bx'+ 8y = v*(Kx+ B+ 3y) where
B is nef and v*n = i + F where F is an effective R-divisor, ' > 0 and F' + Bx:
has simple normal crossings, then Z is an irreducible component of v((Bx: + cF)™1)
and Z is not contained in v((Bx: + ¢F)>1). If n = 1/, then Z is a generalized log
canonical center of the generalized pair (X, B + cv,. F' + 3 + ¢n). By Remark 2.12]

(Kx+B+4+cnF+B+cn)|zw =Kz + Bzv + yzv

where (Z7, Bzv + yzv) is a generalized pair.
By assumption we have k := vy (@] 2+ ) < dim Z so that (a|z»)* 2 0 and (az)
0. But then

E+1 —

(Kzv + Bgv +7y2v) - 0y - wim2=h=1 — ok . dmZ=k <
where az = |z and wzr = w|zv. Since Bz > 0 and vz is pseudo-effective, then
K v is not pseudo-effective and hence neither is K for any resolution 2/ — ZV.
Consider now the MRC fibration Z’ — Y, which is non-trivial as Kz is not pseudo-
effective. Passing to a higher model we may assume that it is a morphism with general
fiber . Note that F is rationally connected and hence h*(Or) = 0 and so F is
algebraic. Arguing as above, for any € > 0 we have

(KZ/ + BZ’ + Yz + (1 — €)WZ/ + tOéZ/) . Oé]%/ . w%i/mekfl =

(Kzv + Bz + 920 + (1 — €wgzy) - oy - wlmZ=h=1 — _cok . dmZ-k

where wz = w|z and az = a|z. Since vz is pseudo-effective and B is 2/ — Z¥
exceptional, it follows that (Kz + (1 — €)wyz + tay) - ok, - wim?=%=1 < 0 and hence
Kz + (1 — €)wz + tay is not pseudo-effective for any ¢ > 0. Since Y is not uniruled,
Ky is pseudo-effective and hence by [CH20, Theorem 5.2], Kp + (1 — €)wp + tap
is also not pseudo-effective for any ¢ > 0 and in particular ap is not big. By the
cone theorem, there are finitely many Kr + (1 — €)wpr negative extremal rays, and
there is a non-empty finite collection of Kz + (1 — €)wr negative extremal rays that
are « trivial. Let n : F/ — F be the induced non-trivial morphism contracting this
face. Then ap = n*ap where ap is ample on F. If 5 is birational, then ap is
big which is a contradiction. Thus, 7 is of fiber type and hence F' is covered by
ap-trivial rational curves C'. Note that by bend and break, we may assume that
0 < —Kp-C <2dimF and hence (1 —€)wp - C < 2dim F. But then Z’ is covered by

ap-trivial rational curves and finally Z is covered by a-trivial rational curves C' such

19



that 0 < w-C < ﬁ dim X. Since these curves belong to finitely many numerical

classes, we may assume that 0 < w-C < 2dim X. Finally, we observe that
0<—(Kx+B+8y) - C=w-C<2dimX.
O

Corollary 3.2. Let (X, B+ B3) be a compact Kdhler 4-fold generalized klt pair such
that Kx + B is pseudo-effective. Then there are at most countably many rational
curves {T; }ier such that —(Kx + B+ By)-T'; <8 for alli € I and

m(X) = m(X)(KX+B+5X)ZO + Z Rt [Fz]
iel
Proof. This follows by standard arguments from Proposition B.1] (see eg the proof of
[DH23, Theorem 1.3]). O

4. NULL LOCI

In this section we generalize the main result of [CT15] to the singular setting. To
start with, we recall the notion of Lelong number of a closed positive current 7' > 0 on
a normal complex space, since it plays a crucial role in the formulation of Proposition

[4.21] below.

4.1. Closed positive currents on normal complex spaces. Let {2 C C" be the
unit ball, and let ¢ be a psh function on 2. Then

T :=+/—190¢

defines a closed positive current of (1,1)-type on 2. For example, if we take ¢ =
log|f|?, with f holomorphic, then up to a multiple, T is equal to the current of
integration along the analytic set f = 0 (taking the multiplicities into account).
Thus, closed positive (1, 1) currents can be seen as natural generalizations of effective
divisors.

It turns out that the function

r — sup ¢(z)
|z|=r
is convex increasing of logr, i.e. if z := logr, then the function x — sup ¢(z) is

|z|=e®

convex increasing. It therefore follows that the limit

v(T,0) := lim inf 9(2)

2—0 log | 2|

exists, and it is called the Lelong number of 7" at z = 0. In the example above, this
is precisely the multiplicity of the divisor (f = 0) at 0. Moreover, one can see that
the equality

(3) v(T,0) = sup{v > 0|¢(z) < vlog|z| + O(1)}
holds true.
We collect next a few facts about currents which will be needed later on.
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Theorem 4.1. [DeBook| Let X be a complex manifold, and let T > 0 be a closed
positive current of (1,1)-type on X. We consider an analytic hypersurface A C X,
and let x4 be the characteristic function of A. Then the following assertions hold
true.

(1) The function a — v(T,a) defined on the analytic set A is constant in the
complement of an at most countable union of analytic subsets of A, and it
defines the generic Lelong number of T along A.

(2) The currents xaT and xx\aT obtained by multiplying T with the characteris-
tic function of A and its complement, respectively are closed (and of course,
positive). Moreover, we have

XAT = V(Ta A)[A]7
where v(T, A) is the generic Lelong number of T along A.

Next, consider a surjective map f : X — Y between two compact complex manifolds.
Given a closed (1,1) current T on the base Y, the pull-back f*T is a well-defined,
closed current on X (this is not necessarily true for currents of other bi-degrees). The
following result clarifies the connection between the Lelong numbers of T" and those
of its inverse image f*T.

Theorem 4.2. [Fav99] Under the assumptions above, there exists a positive constant
C > 0 such that we have

Cv(f*T,z) <v(T,y) <v(f'T, x),
forallz € X andy = f(z).

Note that the right-hand side inequality in Theorem [4.2] follows immediately form the
definition (B]). Also, this sort of comparison inequalities is far from true in case of
currents obtained by direct images, i.e. if one wishes to compare the Lelong numbers
of a current © on X with those of its direct image f,©. For example, let f: X — Y
be the blow-up of a point y of Y. We assume that Y is Kéhler; then given any Kahler
metric w on X, the direct image f,w has a positive Lelong number at y.

Still in this context (i.e. f is the blow-up at a point and 7" > 0 is a closed positive
current on Y'), we have the equality

(4) fT=v(TyE]+ R

where F is the exceptional divisor of the blow-up f, and R > 0 is a closed positive
current whose generic Lelong number along F is equal to zero. In particular, we have

(5) xef*T =v(T,y)[E].

Let f: X — Y be a surjective map between compact complex manifolds, and let p
be a real, (1,1) cohomology class on the target manifold Y. We have the following
well-known remark.
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Lemma 4.3. Given any (1,1) closed positive current

T € f*p,
there exists a (1,1) closed positive current R on'Y such that
(6) T=f"R.

Proof. The matter is indeed clear: according to our hypothesis there exists an L'
function ¢ on X and a smooth representative a € p such that the following equality

T = f*(a) + V—100¢

holds. Now the restriction T'|x, of the current T to the general fibers X, of f is a
well-defined, closed positive current. On the other hand, we have

T|x, = V—-100¢|x,

which shows that ¢|x, must be constant on X,. Therefore our assertion follows. [

The notion of Lelong number of a closed positive current on a normal space will be
needed in order to formulate the main result of this section. We recall it next.

Definition 4.4. [Dem82]. Let X be a normal complex space, and let T > 0 be a
closed positive (1,1)-current on X. We consider a positive function p € C*(X,R,),
such that log ¢ is psh and such that Supp(T) N (¢ < R) is relatively compact in X for
all 0 < R < 1 sufficiently small. The limit

. 1 199, ~\n—1
v(T, @) ;= lim 2rr)e /¢<7~T A (V—100yp)

r—0
15 called the Lelong number of T" with respect to .
Let y € X be an arbitrary point. If we consider an embedding
(7) (X,y) = (CV,0)

then the coordinate functions (z;);=1,. n on CN restricted to X induce a generating
system (g;)i=1,..,n of the maximal ideal of the ring Oy ,. The function

0 oyi= 3 loi

is defined on some small open subset U containing z, and then the Lelong number of
T at y is defined as follows

(9) V<T7 y) = V<T‘U790y)7
where T'|y is the restriction of T to U, so the RHS is defined as in Definition [4.41

Remark 4.5. It is not immediate that the limit in Definition |4.4 exists, but this
is a consequence of the Jensen formula established in [Dem82], Théoréme 3. More-
over, note that the Lelong number v(T,y) is independent of the embedding (), as
consequence of Théoréme 4 in loc. cit.
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Let n be the dimension of X. By composing the embedding map ([7l) with a generic
linear projection on C", we obtain a proper, finite map

(10) p:(X,y) = (C",0)
such that p~'(0) = y. The function

(11) 2yi= > Ipjl
(where p; are the components of p) verifies the inequalities
903]/‘/[ <@, <Cypy,

locally near x, for some positive constants C' and M. We can assume that it holds on
the open subset U. By the comparison theorem for Lelong numbers (cf. Théoreme 4,
page 46 in [Dem82]), we have

1 ~ -
(12) 277 (L2y) s v(Tyy) < v(T3y).
Remark 4.6. If y € X is a reqular point, the equality

v(T,y) = lim inf . L —
==y log |2 — |

holds, and it provides an alternative definition for the Lelong number of T at vy, as
we have already mentioned. Simple examples ([BEGZ10], Appendiz A) show that as
soon as y € Xgng, the relation above is no longer verified in general. However, we

always have the inequality v(T,y) > lim inf o
z—y log |z — y|

In connection with these topics, the following result was obtained very recently in
[P24].
Lemma 4.7. [P24] Let X be a normal complex space, and let T > 0 be a closed

positive current on X. The following equivalence

(13) V(T,y) >0 <= liminf — 2 >0

=y log [z — y|

holds true for any point y € X. In other words, the Lelong number of T" at y and the
slope of its potential (i.e. the RHS of (13)) are simultaneously positive or zero.

Remark 4.8. Of course, one expects an inequality of type

. YT
14 T,y) < C'lim inf ——
(14) v(Toy) < Clim Inf

to be true for some constant C' > 0, uniform on compact subsets of X.

To finish this subsection we consider the following the set-up.

e X is a normal, compact Kahler space and 7 : X > X is generically finite,
such that X is also normal (and Kéhler).
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o '=a+ V=100 is a closed current on X, where a is smooth and locally
v —100-exact, and such that

T >

for some smooth locally v/—190-exact (1,1)-form ~.

e We assume moreover that 77 = [E] + 6 + /—109p, where E is effective, p is
a bounded real function on X , and the form 6 is locally given by the Hessian
of a function bounded from above.

Then we claim that the following inequality
(15) 0+ —100p > 7t

holds true (this will be useful in the next sections). This is seen as follows: we only
have to verify (I3]) locally near a point xy € Supp(F) in the support of the divisor E.
Let U be an open subset of X such that 7(z¢) € U and such that v restricted to U
is given by the Hessian of the smooth function f,. Assume that there exists an open
subset V' containing x, such that we have

Oly = V=100 fy
where fj is bounded from above. It then follows that the function
(16) fo— from+ ol

is psh, where V := (VN7 (U)) \ Supp E. On the other hand, the function in (6] is

bounded from above on V4. Since X is normal, it extends as psh function locally near
this point, by result due to Hartogs in the smooth case, see [Dem85], Théoreme 1.7 for
the version we need here. This is the analogue of the fact that bounded holomorphic
functions on normal spaces extend.

In conclusion, the (1,1)-current obtained by taking the /—190 of the function (I6)
is positive — but this is simply

04+ —190p — 7|y,

and our claim is proved.

4.2. Main results. Prior to stating our results we set a few notations and conven-
tions.

Definition 4.9. Given a real (1,1)-class o we denote by Null(«) the null locus of «,
which is given by the union of analytic subsets V C X such that [, a®™" = 0.

We next introduce and establish basic properties of a class of closed positive currents
on normal varieties which will play the role of Kdhler currents in [CT15].
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4.2.1. Currents with admissible singularities. We introduce the following class of sin-
gularities.

Definition 4.10. Let X be a normal, compact Kdhler space, and let ¢ : X —
[—o00,00[ be a function on X. We say that ¢ has admissible singularities if

¢ =max (p1, ..., k)

where each @; has analytic singularities in the sense of [Dem92] i.e. it can be locally

expressed as
Ylog(D_ Ifil?)

modulo a bounded function. In the expression above, v > 0 is a real number and the
functions (fx) are holomorphic.

A more flexible version of this notion reads as follows.

Definition 4.11. Let X be a normal, compact Kdhler space, and let
T =a+V-190p

be a closed positive current of type (1,1) on X, where we denote by o a smooth, real
(1,1)-form on X, which is locally /—100—ezxact. We say that T has weak analytic
singularities if there exists:

e a biholomorphic map  : X — X such that X is normal, and
e a closed positive current

T = m*a + V—=100¢ > 0
on X such that ¥ has admissible singularities and such that we have T =T.

Remark 4.12. As consequence of the fact that the current T is assumed to belong to
the class ™ a, we show that the function ¢ above (in the second point of Definition
4.11]) is constant on every connected component of positive dimensional fibers of .
This can be seen as follows: assume that the restriction of ¥ to a fiber F of w is not
identically —oo. Then by Théoréme 1.10 in [Dem85] combined with the fact that 1)
has admissible singularities we infer that | is a psh function defined on a compact
analytic space — hence, it must be constant by the mazimum principle. So, there exists
a function @1 on X such that p1om = 1, and moreover, the difference p—p1 is smooth
(because it belongs to the kernel of the operator \/_88)J: It follows that Definition

is equivalent to the existence of a birational map T : X — X together with a
current T = 7 + /— 100y > 0 on X such that ™T = T. In other words, the
"singular analogue” of Lemma 4.3 holds true.

It turns out that this class of currents behaves very well under a few natural operations
which will be needed in the proof of Proposition [4.21] below. In particular we have
the following statement.

ISince 1 has admissible singularities, we expect that this should be the case for ¢; (and ¢) as
well, but it is not clear how such a statement can be proved.
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Lemma 4.13. Let X and Y be normal compact Kdhler spaces, and let p: Y — X be
a holomorphic map. Let § be a smooth, real and closed (1,1)—form on X. We have
the following assertions.

(a) Let T' be a current with weak analytic singularities on X. Then the inverse
image p*T" has weak analytic singularities.

(b) Fori=1,2letT; := B++/—100y; be two currents with weak analytic singular-
ities in the class induced by the smooth form 3. If we define ¢ := max (@1, ©2),
then the current T := [+ /—100¢ has weak analytic singularities.

(c) Assume moreover that p is birational. If © € p*(f) is a closed positive current
with weak analytic singularities in the class p*(3) on'Y, then the direct image
T := p,©O has weak analytic singularities.

Proof. Concerning the first point (a), consider the map 7y : X=X given in Defini-
tion [4.11], so that the inverse image

T := T

is a closed positive current on X , whose potential has admissible singularities. We
can construct holomorphic maps

Ty Y — Y, D: Y = X
such that the equality pomy = mxop holds, the space Y is normal and Ty is birational.

Consider the inverse image © := p*T. By Definition [4.10] it is clear that © has
admissible singularities. On the other hand, by Remark [4.12] we may assume that

6 =5 (FiT) = w5 (' T)
which shows that the current p*T" has weak analytic singularities.
Point (b) is a direct consequence of (a), so we will not give any further details.

For assertion (c) we argue as follows. Given that © has weak analytic singularities,
there exist a map my : Y — Y and a closed positive current

6 € (p"B) = (pomy)'p
as in Definition .11} such that
Wy*é =0
and moreover we have © = (p oy )*B 4 /=199y for a function 1) with admissible
singularities. The map po 7y : Y = X is birational, and we clearly have
(po ﬂy)*é = p,O.

It therefore follows that the direct image p,© has weak analytic singularities. OJ

Remark 4.14. Assume that X is a manifold and that T € « is a Kdhler current
with weak analytic singularities. By the regularisation results in [Dem92], the class o
contains a current with analytic singularities, meaning that the equality

¢lu, = vilog (Z | fial?) + ¥

26



holds, where the f;, are holomorphic and v; is bounded. We expect that this still holds
in our context, i.e. in case X is a normal, compact Kdahler space.

Remark 4.15. [t follows from Lemma that in the definition of a current with
weak analytic singularities (4.11) we can assume that the space X is non-singular.

We prove next another property of currents with weak analytic singularities. In the
proof below, we use the generic notation ”C” for a constant that can change from one
line to another.

Lemma 4.16. Let T be a current with weak analytic singularities on a normal com-
pact Kdhler space X. Then the set E.(T) := J..q Ec(T) is a closed, analytic subset
of X.

Proof. We are using the notations in the previous Remark 4121 In particular we

assume that X is non-singular, and moreover the set (¢ = —o00) coincides with the
image of () = —o0) via the map 7, since we have
(17) b=por

modulo a bounded quantity. Given that ¢ has admissible singularities, it follows that
we have the equality

(¢ = —o0) = EL(T),
and therefore we have E,(T) C 7T(E+(f)), since Ey(T) C (p = —o0) as a conse-
quence of upper-semicontinuity of .
Actually, more is true, namely the equality

E(T) = =(B,(T))
holds. To see this, it would be enough to show the existence of a constant C' > 0 such
that we have
(18) CU(T,y) > v(x*T,x) = (T, z)
where y € X is an arbitrary point and x € 7~ (y). If we admit this for the moment,
the proof of our lemma is complete.

In order to establish inequality (8], we proceed as follows. Consider a local parametriza-
tion 7 : (X,y) — (C",0). It is a proper, finite map such that 771(0) = y (as sets). In
this context we have the following important estimate, cf. [Dem82], Théoreme 6

(19) Cu(T,y) > 1(©,0),

which we have already mentioned in (I2), where the constant C' here is very explicit
(depending on a certain multiplicity associated to the map 7) and © := 7,7 is the

direct image of T" with respect to the proper map 7.
By the main result in [Fav99], we have

(20) C(6,0) > v((r 0 7)'0,2).
which combined with (19) gives
(21) CU(T,y) = v((rom)"0,2).
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It would therefore be sufficient to show that the inequality
(22) ™(r.T) > T,
because then it follows that v((T o 7)*0,z) > v(7*T, z).
Let T|y = v/—190¢7 be the local expression of the current 7. Then we have

7T = /=100y
where (z) = Z or(w) is the trace of the local potential @7 of T. It follows
weT—1(z)
that the following formula
(23) (1, T) = /=190 o 7 > /=190y,

holds. Indeed, the difference
(24) Yor(w) —pr(w) = pr(x)

zCFy
is a psh function on U, where F; := {z € U : 7(z) = 7(w),x # w}. The argument
for this last claim is as follows: on the unramified locus of 7 things are clear, and
on the other hand the RHS of (24) is uniformly bounded from above. Our proof is
finished. O

Remark 4.17. The inequality (22) does not holds in general. For example, if instead
of being finite and proper the map 7 is the blow-up of C* at 0, then [22) certainly fails
in case T is the current of integration on the exceptional divisor.

Finally, we introduce the following notion.

Definition 4.18. Let X be a normal compact Kdhler space, and let o be a nef and
big real (1,1)-class on X (in the Bott-Chern cohomology). The restricted non-Kdhler
locus of a is the following set

Epic(a) =[] E+(T)

where T above is assumed to be a Kdahler current with weak analytic singularities,
and E(T) C X is the (analytic) subset of X for which the Lelong numbers of T  are
strictly positive.

Remark 4.19. In the case of a non-singular Kdhler space X, one defines E, k()
as the intersection of E,(T) for all Kdhler currents T € «. Thus, the difference
between E%. (o) and E,i(«) is that in the definition of the former we restrict our-
selves to currents with weak analytic singularities. If X is non-singular, then we have
E% (o) = Eux(), thanks to the regularisation results in [Dem92]. In the general
case of a normal space, things are less clear, but we can at least say that

EnK(Oé) - EZ;(«X) C EnK(a) U Xsing

holds true. We actually expect the first inclusion to be an equality.

The following statement will be important in what follows.
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Corollary 4.20. Let X be a normal compact complex Kahler space, and let a be a nef
and big (1,1)-class. Then E%.(«) is an analytic subset of X, and there is a Kdihler
current with weak analytic singularities T € o such that E.(T) = E%5(«).

Proof. By (b) of Lemma[4.13] given two Kéhler currents with weak analytic singular-
ities T; € a, we can construct 1" € « such that

E(T) C Ex(Th) N Ey(T3)

and moreover 71" is again a Kahler current with weak analytic singularities. We can
therefore construct a sequence Ty € « of such currents, for which the following asser-
tions

E(Tn1) C EL(Tn), Enic (o) C ﬂE+(Tk)

are true for each m > 1. Since X is compact and E(7,,) are analytic sets, the
corollary follows because by notherian induction there exists an integer mg such that
E,(Ty1) = EL(T),) for all m > my. O

In this context, we have the following statement, which represents the main result of
this section.

Theorem 4.21. Let X be a compact normal Kahler variety, and let « be a smooth
(1,1)-form, which is locally \/—100-exact and such that the corresponding class is nef
and big. Then E%.(a) = Null(«). In particular, the set Null(«) is analytic.

Remark 4.22. As we have already mentioned in Remark|4.6} in singular setting the
Lelong number of a positive current can be different from the slope of its potential at a
given point. Therefore one might wonder why the former notion appears in Proposition
and not the latter. The explanation is given by Lemma |4.7: considering slopes
instead of Lelong numbers would lead to the same set E%5. ().

Proof. The arguments which will follow combine |CT15] (where this statement is
established in case X is a manifold), with additional inputs from [DHP22].

Step 1: the inclusion Null(a) C E%.(«) holds. Indeed, let V' C X be an irreducible
component of Null(«) so that

(25) / at =0,
Vreg

where d is the dimension of V. If V' ¢ E% («), then by the definition of this subset,
there exists a Kéahler current © € a, whose potentials have weak analytic singularities
and whose Lelong number at a generic point of V' is equal to zero. These two properties
show that the restriction O|y is a Kéahler current, so in particular aly is nef and big.
This contradicts the equality (23]).

Step 2: the set E%5 (a) does not have isolated points. Let
T :=a++vV—-100¢

be a Kéhler current in the class « (in the equality above we abusively denote by ”a”
a smooth representative of this class). Assume that the function ¢ has weak analytic
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singularities and moreover z € X is an isolated point in the set ¢~*(—o0). Then we
can remove the pole of ¢ at x as follows (see [Dem92] and the references therein).
Consider (X,z) C U C (CV,0) a local embedding of X, such that

a‘UﬂX =V —1857’1

for some smooth function 7,. The sum 7, 4 ¢ is the restriction of a function v defined
on U and whose Hessian is bigger than a positive multiple of the Euclidean metric on
C¥. We now define

¢ == max(y, C1f| Z|]* — Cs)
where (] is strictly positive and Cy > 0 is large enough, so that

Plownx) > (CLllZ]1* = Co)lawnx)

holds. This is indeed possible, since the restriction of ¥ to a small enough neighbor-
hood of the boundary of UNX in X is smooth. We have denoted by Z the coordinates
in CV and for each open set  we denote by 9(€2) its boundary.

We then define ¢ the function on X given by ¢|ynx — 7 on UNX and ¢ on X \ U.
This function has weak analytic singularities, and the current

T:=a+ \/—1855

is greater than a small multiple of the Kahler metric on X. Moreover, x ¢ gg_l(—oo).
Therefore, the set E%;(a) cannot contain isolated points, all its irreducible compo-
nents must have dimension at least one.

Step 3: the inclusion E%-(a) C Null(a) holds. Let V' C E%;(«) be any irreducible

component. We have to show that / a® = 0, where d > 1 is the dimension of V.
‘/}eg
Assume that this equality does not hold. Then given that the restriction «|y is nef,

the only alternative is

(26) / a >0
V}eg

and we show next that (26) leads to a contradiction. This will be done if we are
able to construct a Kahler current in the class o, whose potential has weak analytic
singularities and such that it is bounded locally at some point of V.

A first important reduction is that we can assume that V' is non-singular. Indeed, as
shown in the proof of [DHP22, Theorem 2.29] there exists a modification p : X — X
such that the following hold.

e The complex Kahler space X is normal.

e The proper transform V of V is a smooth submanifold of X.

e The map p is an isomorphism locally over an open subset of V.
If we are able to construct a Kahler current © € p*a with weak analytic singularities
such that © is bounded locally at a very general point of \7, then we are done by

considering the direct image p,0, cf. Lemma[4.13] (b). Thus replacing X with X, we
can assume from this point on that V' is non-singular.
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Thanks to inequality (26)), it follows that we can construct a K&hler current

@V = OJ‘V + vV —185f

such that f:V — [—00,0] has analytic singularities, cf. Remark [A.14]
On the other hand, the class « is nef and big on X, so there exists a Kahler current

O :=a+V—100F

where I’ has weak analytic singularities along V U Z, where Z C X is an analytic
subset of X which does not contain V.

The idea is to remove the singularities of © at the generic point of V' (as we did
in Step 2) by using Oy, so that the resulting current will provide the sought-after
contradiction. However, in the actual context additional complications arise due the
singularities of F'.

A particular case. As ”warm-up” for the rest of the proof, we provide here an argu-
ment in case the function f is smooth. By the proof of [Dem90, Theorem 4] there

exists a smooth extension fdeﬁned in an open subset U of V such that
aly +V—100f

is a Kahler current on U. Let now 1z be a quasi-psh function on X, with analytic
poles along Z. If §y > 0 is sufficiently small, then

(27) aly + V=109(f + dotz|v)

is a Kahler current on U, and it has poles along the analytic set Z NU.

Next we will use the hypothesis "« nef” in order to diminish the order of poles of
F. This is necessary, as otherwise we will be unable to glue © with the form in (27).
Indeed, for any positive € > 0 there exists a smooth function G. on X such that

T. = a++V—100G, > —cwx

where wy is a reference Kahler metric on X. Let §; > 0 be a strictly positive real
number such that © > dwyx. The convex combination

5 5
0, =(1-—)T,+—6
( 51) +3

is a Kahler current in the class a. It is easy to check that it is greater or equal than

2
3 € €
—€<1 — —)wX + —51wx = —Wx.

0 01 0

On the other hand, the singularities of ©. are of order O(e), in other words we
can make them as small as we want/need. Let F. := (1 —¢/01)G. + €/, F be the
potential of ©.. It follows that given a point z € Z \ V, there exists an open subset
U, containing z such that the following inequality

(28) F. > b0¢z

holds for all 0 < ¢ < 1 small enough. This can be seen as consequence of Hilbert’s
Nullstellensatz, as follows.
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We recall that F,(©) is equal to Z U V. Moreover there exists a birational map

m : X — X such that 7*© has admissible singularities, meaning in particular that
locally near w € m1(z) we have

Fom|g,) = log(z |fil?7) 4+ b

where b is bounded, (f;) is a set of holomorphic functions and r; > 0 are positive real
numbers.

In the proof of Lemma we showed that E,(©) = 7(E,(7*0)), which in par-
ticular implies that we have 7' (E,(©)) D E,(7*©). In fact, the equality

(29) 7 (E4(0)) = B (10)

holds: let z € 77! (E4(©)), so that v(©,7(z)) > 0. We claim that v(7*0,z) > 0 is
strictly positive as well. If this is not the case, the local potential of 70 is locally
bounded from below near x. By the analogue of (I7) in our setting here, it follows
that the potential of © is equally locally bounded from below near w(z). But this
contradicts the fact that the Lelong number of © at 7(z) is positive.

Consider next the ideal Z = (f;) generated by the functions appearing in the
expression of F o m above. We remark that the set of zeros of 7 is contained in
(771(Z),w) (this is only true because we are "far” from V). The function 1z is
obtained by gluing functions of type log(}" |h;]?), where (h;) are the local equations
of Z and so there exists an integer N > 0 such that (h; o 7)Y € Z. In particular we
have Y |hj o m[*M < C(37 | fi]?) for some positive constant C' > 0. By arranging the
constants, and taking into account the fact that 7=!(2) is a compact set, this implies
28).

We fix a value, say €, of € small enough, such that (28) holds true for every point
of OU N Z: this is possible, since U NV = (. Then we claim that there exists a
positive constant C' > 0 such that the inequality

(3()) f—f‘ 50¢Z < Fo+ C

holds true pointwise in a small open subset containing the boundary oU of U, where
FO = Fgo.

In order to verify this claim, we note that OU is a compact set, and let x € U
be one of its elements. If z € OU N Z, we clearly have dy¢pz < Fp locally near z,
as consequence of the inequality (28]). Moreover, the function f is non-singular, so
the existence of the constant ”C” such that (B0) holds in a small open subset of z is
guaranteed. If x € OUNZ, then things are clear. By compactness, we have established
our claim.

The next claim is that the function
F.= max(er dotz, Fo + C)
is defined on the whole space X, is bounded at the generic point of V', and moreover

o+ V —100F
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is a Kahler current. Indeed, near the boundary dU of the set U where f is defined
the inequality (B0) shows that F' = Fy + C, and thus we define F' = Fy + C on the
complement of U.

End of the proof. In general, the function f has no reason to be smooth, but never-
theless the line of arguments above remains valid, thanks to a very important remark
in [CT15]. The point is that instead of obtaining a smooth extension f of f defined
on an open subset U C X as above, in the actual context we only get a function with
log poles f and a ”pinched” neighborhood U of V' \ W, where W is an analytic subset
of V, such that the analog expression (27)) is a Ké&hler current. In our context, this
can be seen as follows.

Consider finitely many open subsets (A;) of X, such that each A; is an analytic
subset the unit ball of some Euclidean space, and such that V' C UA;. We can assume
that the equality

flaoy = 6i10g(>_ |gial®) + 7

holds, where §; > 0, the functions g¢;, defined on A; NV are holomorphic and 7; are
bounded (given that f has analytic singularities). In particular, the equations g;, = 0
define a global analytic set W contained in V.

Let Zyy C Oy be the ideal sheaf of W, and let Ju C Ox be its pull-back via the
projection map Ox — Oy . Then there exists a birational map

X > X
obtained by blowing-up smooth centres contained in V', such that the following hold.

(a) The space X is normal and the proper transform % of V is non-singular.
Moreover, the map m is biholomorphic near the general point of V.
(b) The inverse image of Jy via the restriction of 7 to V is equal to Op(=D),
where D is an effective divisor on V whose support 1s snc.
For the construction of the map 7 we use the same argument as in [DHP22]. We start
by constructing a principalization of the ideal Zy, C Oy : this is achieved by a finite
sequence of blow-ups
P Vi = Vi
of smooth centres ¥, C Vj, for k = 0,...,N — 1 with V5 := V. Next we interpret
Yo C V as analytic subspace of X, and we blow-up X along ¥; let

m s Xy — X

be the corresponding map. We get a closed immersion V; — X; (whose image is
simply the proper transform of V'), and we repeat this operation with ¥;. Notice that
the space Xy is not necessarily normal, but the map Xy — X is biholomorphic at
the generic point of Vy. Since X is normal, it follows that the complement of a proper
analytic subset of Vi is contained in the set of normal points of Xy. Therefore, the
normalization v : X — X ~ 18 biholomorphic near the proper transform V of Vi (cf.
IGR], Corollary, page 164). It follows that the map

W:)?—)X
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obtained by composing the normalization of Xy with the previous sequence of blow-
ups has all the properties we need.
Consider next the pull-back current (7|;;)*©y. Its singularities are concentrated

along the snc divisor D in \A/, whose support is A + -+ Ay. Foreachi=1,..., N
we denote by f; an arbitrary, smooth representative of the first Chern class of A;. By
blowing up X along A;, we can add the following item to the properties of m above:

(c) There exists a set (p;)i=1,..n of smooth (1,1)-forms on X such that the equality
/)@'\\7 = B
holds for each i =1,..., N, meaning that the restriction of p; to 1% belongs to
the class (3;.

Indeed, locally analytically we blow up the non-singular set A; in CN. The exceptlonal

set of CN — CV is a smooth divisor F;, — A;. Then F; := X N F; where X — X is
the strict transform and even if E; is neither reduced nor irreducible, it is nevertheless
a Cartier divisor. Then O(E;) is locally free, and so we can endow it with a smooth
metric denoted by h; (this notion is defined precisely as in the usual case of a line
bundle on a manifold). The curvature form corresponding to h; will be our p;, for

each index 7. Moreover, notice that these additional transformations do not affect V',
since A; has codimension one in V.

Given the properties (a)—(c) above, we obtain the decomposition
(nlp) Oy = o + Y ailAi] +V=100f

where the notations/conventions are as follows:

e The same symbol e.g. « is used to denote a cohomology class and some
fixed representative contained in it (in case we do not intend to emphasize a
particular representative of the said class).

e A; are the hypersurfaces of V introduced before.
e The smooth (1, 1)-form «; is defined as

oy = ( a‘V Zazpz‘\h

where p; are the forms in (c).
e The function f is bounded.

We note that since Oy is a Kéhler current, the inequality
(7lp)"Ov = é(nlp)" (wxlv)
holds, for some 6 > 0. It follows that we have
Oy == a; + V—190f > o(mlg)" (wxlv)

as well, since @V is smooth, and the inequality above holds in the complement of an
analytic set of V.
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Then we claim that for each € > 0 there exists an open subset U, C X containing
V', together with a smooth function f. : U. — R such that

(31) ™(a) — Zazpi +V/=100f. > I (wx) — ewg

pointwise on U., where wy is a fixed Kahler metric on X. Indeed, this is done in two

steps: we first apply the regularisation result in [Dem92] on V in order to convert f
to a smooth function. The price to pay is a loss of positivity, which can be assumed to

be of size %w;(\?. Then by the argument in [DeBook]| already used in the particular

case above, we obtain U, and f..

The inequality (B3I) above is in particular true if we construct the metric w¢ as follows:
Wg =T wx — Z&‘Pz‘

)
where ¢; > 0 are well-chosen real numbers. Then we take ¢ := 3 and if we denote by

U and fthe corresponding set and function, respectively, then all in all we have

(32) ﬂ*(a) + \/—_185(f+ Z((lZ + gEZ) 10g |$Ez|}2lz) > gﬁ*(wx)

in the sense of currents on U.

On the other hand, we also have at our disposal the inverse image current e >
017" (wx) which has log poles along V' U Z, where Z C X is an analytic set. The
procedure we have used in the previous particular case applies here: indeed, we have
only used the fact that f is smooth in order to construct the open subset U. Then
adding the function 610z to it has the effect of diminishing a bit more the lower bound
in (B2)), but we can afford this since § > 0.

The current obtained after the gluing procedure on X has log poles and it is non-
singular at the generic point of V. But as we have already mentioned, the birational
map 7 is a biholomorphism at the general point of V', so the direct image of the said
current will be smooth at the generic point of V. Moreover, it has weak analytic
singularities by definition —actually this is the main reason why we have introduced
this class of singularities. O

5. ON SUBADJUNCTION AND THE CANONICAL BUNDLE FORMULA

Let X be a compact Kéhler manifold, and consider a real (1,1)-class « on X. We
assume that a contains a closed positive current R > (0 with admissible singularities.
This means that we can write

(33) R=a++/-100¢

where (abusing notation) « is a smooth representative of the class « and the function
¢ verifies the conditions in Definition .10

We denote by 7 : X—>Xa log-resolution of the integral closure of the ideal generated
locally by the functions (f;) in Definition 410l The pull back of the current R admits
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the decomposition
(34) 7T*R = [D] + RQ

where we denote by [D] the current of integration along the effective divisor D and

Ry > 0 is a closed, smooth and semi-positive (1, 1)-form on X. By analogy with the
case in which R is induced by an effective divisor we call such a map 7 a log-resolution
of R.

We assume next that there exists a log-resolution of R, such that the following addi-
tional requirements are satisfied.
(1) The support of the m-exceptional divisor E has simple normal crossings, and
7 is obtained as composition of blow-ups of smooth centers.
(2) We have 7*(Kx +a) >~ K¢ + 8+ S + Z1 — 29, where:
e The notation above means that the relative canonical class K¢ /X of 7
plus the divisor S + Z; — Zy coincides with 7*(a) — f.
e [ is a nef (1,1)-class on X.
e S is a smooth hypersurface on X whose image is denoted by T := 7(95).
e The restriction 7|s admits a decomposition

7T|S = Ty © f
where my : W — T is a desingularisation of T and f : S — W is
holomorphic.
e The Z;’s are effective R-divisors on X such that their supports do not

have common components, S + = + =, is snc, ()?, S+ Z) is plt and any
hypersurface Y contained in the support of =, is m-exceptional.

We let

(35) v i=my (Kx +a)lr — Kw,
and we write

(36) [ (7) + Zafs = Kgyw + (8 + E1)|s-

Note that the pair (X, = := {Z; — Z,}) is kit and that T is the unique center of log
canonical singularities for the generalized pair (X,S + Z; — Z5 + ). In particular T’
is normal.

3. The class 8 contains a smooth, positive representative.
4. The coefficients of the divisors =; are rational.

A first result we establish here is the following.

Theorem 5.1. Assume that the requirements 1-4 above are satisfied. Then the class
Ks/w + (B4 Z1)|s contains a closed positive current © > 0 such that:

(1) For each general fiber S,, = f~'(w), the restriction O|g, is induced by the
space of sections of the line bundle associated to mZsl|s,, for m large and
sufficiently divisible.

36



(2) Consider the divisor =y < Zs|g obtained by discarding the components of Za|g
whose image is contained in the singular subset of T. Then, © > [Z)] — that
is to say, the current © is singular along the divisor Z,.

The following results can be seen as ”transcendental” versions of the canonical bundle
formula. They can be used to refine Theorem 5.1, but they are of independent interest
as they apply to a variety of other contexts.

Let f: S — W be a surjective map of compact Kéahler manifolds. Let P := > P, and

Q =Y Q; be two reduced, snc divisors on S and W, respectively such that moreover
f~1Q c P. We decompose the divisor P

P=phyp

into f-horizontal and f-vertical parts, and we assume moreover that the restriction
of f to the support of P" is relatively snc on the complement of the support of Q,
and moreover f(Supp P¥) = Q.
Let B =) d;P; be a Q-divisor on S, and let 3 be a (1, 1)-class such that the following
requirements are satisfied.

(a) The pair (S, B) is sub-klt.

(b) The morphism Oy — f,Og([—B]) is surjective at general points of W.

(¢) We have Kg + B +  ~ f*y and moreover  contains a smooth positive

representative.
*) For any point zg € S and wy = f(z9) € W there exist local coordinates
Yy P
(x1,...,Tnem) on S centred at zy and (t1,...,%,) on W centred at wy such

that t; o f(x) = H:pf” where the k;; are non-negative integers such that
k;; # 0 for at most one ¢ for each index j.

Then the following result holds true — the case § = 0 corresponds to the original
result of Y. Kawamata in [Kawamata98].

Theorem 5.2. Assume that conditions (a), (b), (c) as well as (x) hold. Then the
class {y} can be decomposed as Ky + By + Bw where By, is the discriminant divisor
and PBw 1s a cohomology class containing a closed positive current with zero Lelong
numbers. In particular, Py is a nef class.

Remark 5.3. Note that the hypothesis (a), (b), (c) are very natural, identical to
the set-up in [Kawamata98]. We expect Theorem to hold without the additional
hypothesis (%), but there are serious technical difficulties to overcome.

One could ask the same type of questions in a more flexible and natural context, in
which ( is only assumed to be nef (so that we start with a nef class on S and the
"output” is a nef class on W). It turns out that the situation is a bit more complicated
—the reason being that a perturbation of 5 could destroy the first hypothesis in (c)-,
and in order to treat the nef case we consider the following assumptions.

(d) There exists a Kéhler metric w on S such that

w=f"g+0,
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where ¢ is a Kéhler metric on W and 0 is a rational (1,1)-form on S. Therefore,
for any coordinate subset {2 C W biholomorphic to a ball we have a Q-line
bundle Ag on V := f~1(Q) whose curvature equals wly .

(b’) For any fixed, sufficiently big and divisible integer mqy > 0, there is an integer
ko such that the natural inclusion f,Oy(moAq + ko[ —B]) C f.Ov(moAq +
k[—B]) is an isomorphism for all k£ > kg (i.e. the local sections vanish along
(k — ko)[—DB]), where Aq is defined above.

(¢’) We have Kg + B+ 8 ~ f*y and 3 is a nef class.

Theorem 5.4. Assume that conditions (a), (b’), (¢’), (d), as well as (%) hold. Then
the class {v} can be decomposed as Ky + Bw + pw where By is the discriminant
divisor and By s a nef class.

Remark 5.5. The proof of Theorem[5.1 will show that the hypothesis (b’) is quite nat-
ural, in the sense that if the map f : S — W is induced by a birational transformation
m, then these hypothesis hold true.

The content of the following sections is organized as follows. There are two techniques
of constructing closed positive currents in twisted relative classes of a map between
compact Kéhler manifolds. One can either use fiberwise holomorphic sections (nor-
malized in a canonical manner), or fiberwise Kéhler-Einstein metrics, cf. [Gue20] and
the references therein. Here we will use the former, since the latter is not sufficiently
general to be implemented in our context.

Indeed, given a holomorphic surjective map f : S — W between two Kahler manifolds
and a Hermitian line bundle (L, h;) — X, the spaces

HO (Sw7 (KSw + L|Sw) ® I(hL‘Sw))

of L? sections (for w € W general) can be ”pieced together” in order to construct a
metric on Kgw + L, which is semi-positively curved e.g. in case the curvature current
V—16(L,hr) > 0 is positive, cf. [BPOS|. The same is true in the pluricanonical case,
i.e. we can construct a positively curved metric on mKgw + L, by replacing the

L2 normalization with an L condition. As a result, the rational class Kg/w + —L

contains a closed positive current, whose restriction to the general fiber of f is induced
by the subspace of sections of

H°(S,,mKs, + Lls,)

which satisfy an L integrability condition.

In section [6.1] we show that the same holds true if we replace %L with a (1, 1)-class a,
provided that the we can still define the space above, i.e. the restriction alg, of our
class to the fibers of f is rational. This will settle the first part of Theorem [5.1l The
singularities of the current constructed are analyzed by using techniques borrowed
from extension of pluricanonical forms.

Concerning Theorem [5.2] recall that any nef class is pseudo-effective, but in general
the two cones are different. Nevertheless, if a (1,1) class contains a closed positive
current whose Lelong numbers at each point of the ambient space are equal to zero,
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then the class in question is psef, c¢f. [Dem92]. The nefness of the moduli part (in
our notations, the class fy) in the canonical bundle formula was established by S.
Takayama in [Taka22] along these lines. Here we will adopt the same strategy —i.e.,
we will conclude by showing that [y, contains a closed positive current with zero
Lelong numbers—, and by the same token, simplify a little the arguments in loc. cit.

6. POSITIVITY OF THE RELATIVE ADJOINT TRANSCENDENTAL CLASSES

We begin this section by recalling the following results.

Theorem 6.1. Let f : S — W be a surjective map between two compact complex
manifolds. Let «a be a real class of type (1,1) on W. Then
(1) « is nef if and only if f*« is nef.
(2) « is nef if and only if o|z is pseudo-effective for all irreducible proper subva-
rieties Z C W and f*a is pseudo-effective.

Proof. (1) follows immediately from [DHP22, Lemma 2.38|.

We will now show that (2) also follows from the proofs of [DHP22, Theorem 2.36,
Lemma 2.38]. By [DHP22, Theorem 2.36], we know that if Z¥ — Z is the nor-
malization of an irreducible proper subvariety of W, then «|z» is nef. By [DHP22,
Corollary 2.39], it suffices to show that if w is Kéhler on W and dim W = d, then
fW af Aw?*F >0 for 0 < k < d. Suppose that « is not nef, then we let ¢ > 0 be the
nef threshold so that « + tw is nef but not Kéhler. Clearly (o + tw)|z» is Kéhler and
so by [DHP22, Corollary 2.39] [, (o + tw)¥ Aw?* =0 for some 0 < k < d. Let F be
a general fiber of S — W, n a Kahler class on S and A\ = fF 7"~ where n = dim S.
Then

)\-/ (t-tw)F Awd* :/f*((oz+tw)k/\wd_k)/\77"_d > /f*(tkwd)/\n"_d: )\tk-/ w
W s s W

which is impossible as the LHS equals 0 and the RHS is strictly positive. Thus ¢t = 0
and « is nef.

Another way of establishing the point (2) is by using [DHP22, Corollary 2.32] : this
shows that « contains a closed positive current, i.e. it is pseudo-effective. The con-
clusion follows by using [DHP22, Theorem 2.36]. O

Therefore, in order to show that the class 8y in Theorem is nef, it is sufficient
to show that this is true for its pull back via f. This will follow from the main
results in the next two subsections. In the first one we collect a few results about the
construction of closed positive currents.

6.1. Closed positive currents in twisted relative canonical classes. To start
with, we introduce the following set of notations, which will only be used in this
subsection.

(1) f: X =Y is a surjective map with connected fibers between compact Kéhler
manifolds.
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(2) D = > a;D; is an effective, snc divisor with rational coefficients 0 < a; < 1
and L is a Q-line bundle on X. Thus there exists a positive integer mq such
that the reflexive hull L™l := (L®™0)¥V is a genuine line bundle, and a metric
on L will simply be given by a collection of functions (&> , where (;)ier

mo/ el
are the weights of a metric on L), By abuse of notation we will often denote
L™l by myL.

(3) « and v are real (1, 1)—classes on X and Y, respectively. Moreover, o contains

a smooth positive representative denoted by 6.

(4) The class f*y — a coincides with the first Chern class of Kx/y +D — L.

In this context we prove the next statement.

Theorem 6.2. Assume that conditions (1), (2), (3) and (4) hold and that for some
sufficiently big and divisible integer m > 0 we have HO(Xy,mL|Xy) # 0 for general
y €Y. Then the class

Kx)y +D + «
contains a closed positive current © > 0 whose restriction to the general fiber of f is
(well-defined and) induced by the sections of mL restricted to the fibers of f.

Proof. To begin with, we remark that if D = 0 and if some multiple of a belongs to
H?(X,7Z), then the matter is clear. Indeed, in this case we can choose a Q-line bundle
F on X whose Chern class is a and such that

(Kx/y —|—D—|—F>|Xy ~ L‘Xy
for all general y € Y. The results proved in [PT18] show that the current © con-
structed fiber-wise by the m'™ root of the sections of mL)| x, 1s positive.

Even though a may not be a rational class, hypothesis (4) implies that this is the
case locally over Y. This will allow us to conclude via an approach similar to the one
in [PT18], [CH20] (with slight modifications). The details are as follows.

We denote by 7 any closed, real (1, 1)-form contained in the class v given by hypothesis
(3) -and apologize for the abuse of notation. As consequence of the hypothesis (4)
above, the (1,1)-form p defined by the equality

(37) po=10—1"(v)
is closed, real, and its corresponding class is rational.

Let h be a metric on L — (Kx/y + D) whose corresponding curvature form equals
i (here we are using the convention in (2) above). We consider a finite open cover
(Uy)ier of Y such that

(38) YU, = ddcTi

for some smooth real function 7; defined on Uj;.
For each index ¢ we endow the restriction

(L = (Kxy + D)@y
with the metric h; := e~ 7°/h. The equality
(39) Oy = dd(f*7) + pl p-1 i)
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shows that the curvature corresponding to the metric h; is equal to 6] —1(y,).

All in all, we can define a Hermitian Q-line bundle (Fj, h;) on the inverse image

F7HU;) such that the following hold.
(a) For each ¢ € I the following holds
(40) (Kx/y + D)=, + Fi = Ll
especially the sections of mL|x, correspond to sections of m(Kx/y +D+Fi|x,)
for each general point y € U;, where X, := f~1(y).
(b) We describe here more precisely the metric h;. Let (V});cs be an open covering
of X, such that the restriction of the bundles Kx, f*Ky, mD, mL to each V;
is trivial. Recall that we have fixed a metric h on L — Kx/y — D, and denote
by p; its weight on the set V;. Then the weight of the metric h; on the set
Vin f7H(U) is
ij = pilvingrw) + 70 flvinsiws-

We stress the fact that the only "non-global” part of the metric h; corresponds
to the pull-back of ;.
(c) It follows that we have

(41) VEIO(F, hy) = 0] 1w

and remark that even if (F;, h;) is only locally defined (with respect to the
base Y'), the corresponding curvature is a global form on X.

Relation (40) allows us to define a metric hx/y,; on (Kx;y + D)|s1(y,) + F; whose
corresponding curvature is positive. This was done in [PT18], and we recall next the
construction. Let zo € f~1(U;) be an arbitrary point. We fix coordinates (¢;) and
(z;) on U; and near xg, respectively. Assume that f is smooth over Y \ X. For each
yeU\Y, and € € V,, let

(42 leliy, = [ leFevoe

Yy

be the L¥™-seminorm on the space of sections
Viny := H*(X,,mL,) = H*(X,,m(Kx, + Dy + F;,))

where the notations are explained below. The subscript (...), denotes restriction
to the fiber X, and m is assumed to be sufficiently divisible so that all divisors in
question are Cartier. In (42]) the symbol e~%* means that we are using the metric h;
(cf. (b) above) on the bundle F;. The section & in (42) is interpreted as a twisted
pluricanonical form, so that the quantity under the integral is a (n,n)—form.

Then the weight of the metric hx/y,; at the point z, is equal to

(43) eex/vi®0) .= sup & (xo)|™
lI€1lyg,e=1

where yo := f(z9) and & is given by the equality
EAfH(dEE™) = Eod=="
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written locally near z.

We have given such a detailed description of the metric hx/y; because thanks to it,
it is easy to deduce its dependence on the index ¢. Indeed, we assume that we choose
the same coordinates ¢t and z on U; N U, and near zy € V}, respectively, where it is
understood that f(zq) € U; N Uy. Notice that the space of holomorphic sections V;, ,
involved in the definition of the relative metric is independent of 7, but this may be
not the case for the semi-norm (42)). By (b) of (40), we can write

(44) / ‘g‘%e—wp—%ze—n(y)/ ‘g‘%e—wp—m’
Xy Xy

where the notation is indicating the weight ¢p + p; we are using on the set V; N X,,.
This is a consequence of the definition of the metric h; in (b). Moreover, we remark
that the second factor of the product on the RHS of (44) is independent on the index

ey

i
Thus, by (42) we infer that the equality

2 , 2
(45) €]l = e™ @@ g

holds for any point y € U; N U and £ € V,,, .
Moreover, we can assume that the difference

(46) Tg — T = §R(Tm)

is the real part of some holomorphic function 7;;, defined on the intersection U; N Uy,
since their respective Hessian forms coincide by (39).

It follows that

(47) sup |§o(zo)| = sup [€o(o)| = ™) sup - [€y(zo)] -

l1€llyg,:=1 €]y, =€ (ik(v0)) €11y, =1

Finally, we get

(48) ex/v.i(To) = px/vr(To) — %%(Tik@O))

and since the point zy was arbitrary and yo = f(z) it follows that we have

(49) PX/Yi = PX/Yk — %%(Tik o f)

locally near a fixed point on f~1(U; N Uy). In particular we obtain the equality
(50) dd“px/yi = dd“pxv

on the overlapping U;’s.

In conclusion, (50) shows that the curvature currents we construct locally on the
base agree on the intersection of the corresponding sets, and the construction of © is
finished, since the positivity of this current was already established in [PT18, Theorem
4.2.7]. OJ
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6.2. Singularities of the metric. In order to prove Theorem [B.1I] we can apply
Theorem for the following data: X := S)Y := W, D = =; and L = =,, together
with o := . The output is a current

O ca(Kgw)+ (B+E1)|s

with the properties stated in the point (1) of Theorem [5.1l The assertion (2) will be
established along the following lines.

Proof of Theorem[5.1], (2). To begin with, we recall an important class of manifolds
on which L? methods can be applied.

Definition 6.3. A manifold/complex space X is called weakly pseudo-convez if it
admits a smooth, plurisubharmonic exhaustion function 1, so that the closure of the
sets (Y < C) € X are compactly contained in X, for any constant C.

Obviously, compact holomorphic manifolds have this property, but this is equally the
case for any complex space which admits a proper map into a Stein manifold. In
particular, consider the map f : S — W given in Theorem [5.1 for any Stein open
subset U C W the inverse image f~}(U) C S is an example of weakly pseudo-convex
manifold which will be important in what follows.

Consider next the blow-up map 7 : X — X introduced at the beginning of Section
5, and denote by E = > E; the corresponding exceptional divisor. We define the
following form

(51) Wy = Twyx + Zalﬂi

where wy is a Kéhler metric on the base X, the coefficients a; are positive rational
numbers and the forms 6; belong to the Chern class of Oy (—E;). By an appropriate
choice of the coeflicients a;, we can assume that wg > 0 — so we have a Kahler metric

on X for which the only "transcendental” part is pulled-back from the base X.

Let wy € W be an arbitrary point, and let 2 C X be a Stein co-ordinate subset which
contains the image ¢y (wp), cf. diagram (52)) below.

S S, X

(52) fl lﬁ
W= X

Consider the following sets
(53) Xo=n'(Q), U= Q), Sy:=fU)
contained in X, W, and S, respectively. We have the following statement.

Lemma 6.4. There exist Hermitian line bundles (Aq, h) — Xq and (Ay, h) — U on

)A(Q and U, respectively such that the corresponding curvature forms are multiple of
Kdhler forms, i.e.

\/—1@(149,}7,) :Nw;(\;(ﬂ, \/—1@(AU,h) :NWW‘U

where N is positive and sfficiently divisible.
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Proof. This follows by standard arguments. Since the restriction wx|q is dd®-exact, it
can be interpreted as trivial bundle over €2 endowed with a non-trivial metric whose
corresponding curvature form is wx|q. The rest follows as consequence of (51) — in
particular we only need the positive integer NV in order to clear the denominators of
the coefficients a;. A similar argument applies for wyy . OJ

Remark 6.5. Note that we may assume vy : W — X s given by a finite sequence of
blow ups whose centers are contained in the singular locus Tgng of T'. The metric wy
can be obtained by the same formula as in (B1)), so that the corresponding exceptional
divisors E; C W map into the singular locus of the centre X.

After these preparations, we proceed with the second part of Theorem 5.1l Let € X
be an open subset as above. By the same procedure as in the proof of Theorem [6.2]

we can construct a Q-line bundle (Fo, hp) — )?Q such that the following relations
hold

(54) KX+S+51+FQ 252, vV —1@(FQ,hF) :ﬁ
on )?Q C )?
On the other hand, let p be any non-singular (1, 1)-form on W, such that p € ¢1(Kyw ).

We can assume that the constant NV in Lemmal6.4lis large enough, so that the following
inequality

(55) p+ Nww >0
holds point-wise on W. We then consider the closed positive current
(56) O+ f*(p+ Nww) > 0

which belongs to the class Kg + (21 + 8)|s + N f*(ww).
Next, given the expression of the metric wy, combined with Remark [6.5 there exist
integers k; and divisors F; such that the current

(57) 6 =0+ f*(p+ Nww)+ Y _ kilEils]
has the following properties
e It belongs to the cohomology class (Kx +S + =1 + 8+ N7*(wx))|s
e The divisors E; appearing in (57) project into Tyig.
When restricted to the set
SU =5N WﬁlQ

(cf. (B3) for the notations), the class [ corresponds to the line bundle Fglg, so by
abuse of notation we can write

(58) Ols, ~ Kx + 5+ Z1 + Fals,

by which we mean that the bundle on the RHS admits a singular metric hy = e~ #?
defined on Sy whose curvature form is precisely the restriction O|g,,.

For each k£ > 1 sufficiently divisible we consider the line bundle

Ly = (k(Kx + 5+ 21 + Fo) + Aa)ls,
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and the corresponding Hilbert space of homolorphic sections

(59) Hy, = {s € H*(Sy, L)/ |s|2eFermPadV < oo}

Su
in the multiplier ideal induced by the current k@| sy- Then we recall the following
result, basically proved in [Dem09, Section 13] and references therein.

Theorem 6.6. Let O > 0 be the closed positive current on Sy given by a family of
orthonormal sections of Hy. Then we have

v(O,z) = liin %V(@k, )

where x € Sy is an arbitrary point and where we denote by I/(é, x) the Lelong number

of(:) at x.

Remark 6.7. We note that in loc. cit. the result above is established in the setting of
bounded pseudo-convex subsets in C", but the proof applies in the context of Theorem
(6.6, so we will not reproduce it here. As a matter of fact, it is at this point that the
pseudo-convexity of the set Sy (cf. Definitionl6.3) is very important.

In other words, in order to evaluate the singularities of O it would suffice to have a
uniform lower bound for the vanishing orders of the sections s € Hy as k — oco. To
this end, we recall that as a consequence of the results e.g. in [BP10] the following
local version of the invariance of plurigenera holds true.

Theorenl 6.8. In the above set-up, any holomorphic section s of the bundle L ex-
tends to Xq as section s of k(Kx + 5 + El|)?9 + Fq) + Aq.

We offer next a few explanations about [6.8 in the very particular case in which we
have to extend a section s of the bundle k(Kx, + S+ L)|s,,, where (L, hy) is a semi-
positively curved line bundle, such that hj is non-singular and it is defined over X
for some © € V. As we have seen above, we have an ample line bundle Ag over Xq,
and thus, in order to construct the extension of s we need the following.

o A local version of the Ohsawa-Takegoshi extension theorem. The statement
we need is available, cf. [DemOT].
e A finite family of holomorphic sections for the bundles

(k+7)(Kx, + 5+ L) + C(k)Aqx,

forr = 0,...,k such that for each r, their common set of zeroes is empty.
This is easy to see, despite of the fact that Sy and Xq are not compact: the
point is that all the bundles/metrics extend over Xq and we construct our
sections by a quick compactness argument.

These two points granted, one follows the usual algorithm, see e.g.[BP10] and the
references therein.

However, in our case there is an additional level of difficulty, induced by the presence
of the Q-divisor =Z;. This can also be treated by the known techniques (i.e. work by
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Hacon-McKernan, Ein-Popa ...), given the fact that S+Z=; +Z5 is snc and the relation
(54) (and therefore the condition (7) in loc. cit. is automatically satisfied).

Now, by relation(54), the extension s can be seen as section of the bundle kZ»[ g+ Aq.

Given that the support of = is m-contractible and that the set )?Q is the inverse image
of Q by the map m, it follows that the vanishing order of s along =, is at least k — kg
(we "loose” a fixed amount mg because of the ample bundle Ag).

In conclusion, it follows that we have

(60) O > (k= ko)[Zs]ls,
and the proof is finished by using Theorem O

7. PROOF OF THEOREM [5.2

The main steps of the proof of our version of the canonical bundle formula — Theorem
(.2 — are as follows. Let = := {B} be the fractional part of B and we write B =
E+ |B] = £ — [—B] as difference of two effective Q-divisors. We assume that the
discriminant divisor By, is equal to zero (we can do this without altering any of our
hypothesis). We then have the numerical identity

Ksyw +E+ B~ f*Bw + [-B].

Next, we apply the methods already used in the proof of Theorem [5.1] in order to
construct a closed positive current © > 0 in the class corresponding to the LHS of the
relation above. The said current is proved to be singular along [—B]: this follows as
consequence of the hypothesis (b) (which replaces the fact that the map f: S — W
might not be induced by a log-resolution 7).

The heart of the matter is to show the (highly non-trivial) fact that the Lelong
numbers of the difference

© — [-B]

are equal to zero. To this end we adapt the method used in [Taka22] in our context.

We start with a general discussion —and a simple result— concerning fiber integrals.

7.0.1. Fuiber integrals. Let p: X — Y be a proper, surjective holomorphic map, where
X is a (n+m)-dimensional Kéhler manifold and Y is the unit disk in C™. We denote
by Yy C Y the set of regular values of p. Let ¢t = (¢1,...,%,) be coordinates on
C™ induced by a fixed base. Consider a Q-line bundle (L, h;) on the total space X,
endowed with a metric hj eventually singular, but whose curvature is semi-positive.
Let s € H*(X,k(Kx + L)) be a pluricanonical form with values in kL, where k is a
positive, sufficiently divisible integer so that kL is a line bundle. For each y € Yj let
sy € H’(X,,k(Kx, + L,)) be the induced form on X,, in the sense that

(61) slx, = 5y A D" (A,

In this setting we show that the following holds true.
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Lemma 7.1. We assume moreover that there exists a section o of a line bundle A
s

such that the quotient — is a holomorphic section of k(Kx + L) — A. There exists a
a

positive constant Cy > 0 independent of s such that the inequality

2

512

(62) [ st = oo |2

X, 10

Y

holds for any y € Yy such that |y| < % The norm on the RHS is with respect to a
fized, smooth metric on k(Kx + L) — A, and an upper bound for the constant Cy can
be obtained from the proof that follows.

Proof. Let z € X, be a point such that

S|& S|%

sup [—| = |=| (20)

Xy g g
and let y = f(2o) be its image. We take the local coordinates z = (z1, ..., Zp4m) and
t = (t1,...,t,) centred at zy and y respectively. The t-coordinates are defined on some

open set 2 C Y, and the z-coordinates are defined on V' C f~(2) biholomorphic to
the unit ball in C"*™. Let w be an arbitrary Kéahler metric on X.

Corresponding to this data we define the function ¢ : V' — R U {—o0} as follows
(63) WA fH(V=1dt A dE) = e¥/—1dz A dZ

where we use the notations

m+n

V=ldt Adt =[] V-1dt; Ad;,  V=1dzAdz = ] V=1dz A dz;.
=1 =1

Therefore, the restriction of the form e ¥w™ to the fiber X yMV is equal to the measure
2

sometimes denoted with on X,.

dz
i
We assume that the bundles L and A are trivial when restricted to V', and let u € O(V)
be the local holomorphic function corresponding to the section s|y,. Then we clearly
have the inequality

(64) [ e s [ i
X,nV X

Y

On the other hand, by the L#-version of the Ohsawa-Takegoshi theorem established
in [PT18], Proposition 1.2 there exists a function U € O(V') such that

2 _ 2 g,
(65) U|Vme :U|mey, / |U|k6 PLAN S Cuniv/ |u|ke #L ww",
1% X,NV
where Cyiv 1S @ numerical constant.

Let now oy € O(V) be the local holomorphic function induced by the section o and
let N > 0 be a large enough integer so that the integral

dX

v |ov|®

(66) < 0
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is convergent. The first part of (65) combined with the fact that 2y is the maximum
point and the mean-value inequality gives
N
<c|
1%

where the first constant is due to the fixed metric on k(Ky + L) — A and it follows
-thanks to Holder inequality- that

1
kN

u d\

oy

Y

oy

2
kSC

(67) sup )i
x, |0

S %
68 up [—
( ) SXE) 0

<G, / Ulteeran,
1%

where Cj depends on (67), and an upper bound for . This inequality, combined
with the estimate in (65]) completes the proof of Lemma [7.1] O

7.0.2. Pseudo-effectivity. We remark that we can assume By, = 0, by simply replacing
B with B — f*(By) and noticing that under the transversality hypothesis in our
statement, the new pair (S, B) is sub-klt and moreover the hypothesis (b) still holds.

Under the assumption that By, = 0, it follows from the hypothesis (c¢) of Theorem
that we have

(69) Ksw + B+ B~ f*Bw.

Since the pair (S, B) is sub-klt, we can write B = {B} + |B] := E — [-B] and
therefore we obtain

(70) Ksyw +E+ 8 ~ f*Bw + [-B],

where (S, Z) is klt and [—B] is effective, with integer coefficients. We apply Theorem
to the following data: X := S|Y = W,a := 8,7 := 8w, L := Og([—B]) and
finally D := =. It follows that there is a closed positive current © > 0 in the class
((ZQ), induced by the sections of Og([|—B])|s, for w € W general.

We then formulate our next assertion:

Claim 7.2. The inequality
© > [-B]

holds in the sense of currents on S, where the RHS is interpreted as current of inte-
gration on the divisor [—B].

Proof of the Claim. We start with a little comment: if a hypersurface Y C S belongs
to the support of the divisor [—B] is such that f(Y) = W (i.e. Y is horizontal
with respect to the map f), then the hypothesis (c) together with the construction
of © show immediately that © > u[Y], where u is the multiplicity of [—B] along Y.
However, things are less clear for the vertical part of the support of [—B], since we
only have the explicit expression of © over general points of W. It is at this point
that the techniques from the subsection [.0.1] come into play. The argument which
follows has its origins in [BP0S], as well as in [CH20]. The reason why we review it
here is to show that it can be easily adapted to the pluricanonical case, needed a bit
later.
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Let w € W be any regular value of the map f, and let w € Q C W be a coordinate
set of W, biholomorphic with the unit ball in C™. Recall from the proof of Theorem
that there exists a Hermitian line bundle (F,hr) defined over f~1(€), whose
associated curvature form is equal to 3, and such that restricting to f~'(2) we have

(71) Ksw +=+ F ~[B].

Next, let u be any holomorphic section of K, + (£ + F)|g,, such that

(72) / lul?e”?=79r = 1.

As recalled in [7.0.1], there exists a section U of Kg + = + F' such that

(73) Uls, =un i), [ upeveer <
V(%)

Since the canonical bundle of W is trivial when restricted to {2, we can interpret U
as a section of Kg/w + = + F, which is the same as [—B]|;-1(q) thanks to (ZI)). In
particular, by (b) the quotient

becomes a holomorphic function on f~'(), where s;_p7 is the canonical section of
O([-B]).

By Lemma [7.1] we infer the following inequality

(74) sup 7| < C,

w

~because of the normalisation (72)- where the constant C' in (74)) is independent of
u.

As consequence of ([72]) combined with the definition of the relative metric we obtain
(75) psw < C +log|si_p|*,

from which our claim follows. O

7.0.3. Lelong numbers. Next we show that the Lelong numbers of the closed positive
current

(76) T:=6 - [-B]

are equal to zero. To this end we will use an important result due to S. Takayama.
Actually we will ”extract” from the proof in [Taka22] the result below (which will be
useful for the proof of Theorem [5.4] as well). To begin with, we recall the construction
of a natural metric on Kgw, cf. [MP12].

Let zo € S be an arbitrary point, and ¢y = f(zo) be its image. We take coordinates
z = (21, 2n4m) and t = (t1,...,t,) centred at zy and ty respectively. The ¢-
coordinates are defined on some open set {2 C W, and the z-coordinates are defined
on V C f1(Q). Let w be an arbitrary Kahler metric on S. Corresponding to this
data we define the function v as follows

(77) WA fH(V=1dt Adt) = e¥/—1dz A dZ
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where we use the notations

m-+n

V=ldt Adt =[] V=1dt; Nd;,  V=1dzndz:= ] V=1dz A dz;.
i=1 1=1

We now consider a covering of S and W with coordinates sets as above. Given the
equality (77), the resulting functions e~% define a metric h on the relative canonical
bundle Kgw, which is general is singular. Let hq = e %0 be an arbitrary, smooth
metric on Kg/y. The difference of the weights corresponding to the two metrics

Yp =1 — 1y
is a global function on S.

For each regular value t € W of f we define the function
(78) F(w) ::/ e VIPB

where ¢p := log |sp|* is the log of the norm of the canonical section of the divisor B
(which we recall, is not necessarily effective).

We remark that so far the hypothesis (x) was not used in our arguments. It comes
into play through the following important result, established in [Taka22]. Although it
is not stated in this form explicitly, it is a direct consequence of the proof of Theorem
3.1 in loc. cit.

Theorem 7.3. [Taka22] Assume that the hypothesis of Theorem[5.2 are satisfied, as
well as the following.

e The divisor By = 0 is zero.
e given any point zg € S and wy = f(z9) € W there exist local coordinates
(X1, ..y Tpym) on S centred at zo and (ty,...,t,) on W centred at wq such

that t;o f = H:cf” where the k;j are non-negative integers such that k;; # 0
for at most one @ for each index j.

Then for any point wy € W the following inequality holds
1
Fw) <C H log —
= wy]

where C' > 0 is a positive constant and w are coordinates centred at any wy.

Remark 7.4. For the comfort of the readers, we will provide a complete proof of
Theorem in the Appendix of this article.

Remark 7.5. We note that the inequality in Theorem|7.3 holds for any w such that
pw (w) belongs to the set of reqular values of f, and the constant C' is uniform.
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Consider zy € S and wy := f(20), together with the corresponding local coordinates
chosen as in Theorem [7.3] By the definition of the relative metric we have

2
(79) e?s/w () > il

= s, Isr-p1wl?e= e

where we denote by s[_p1,,, the restriction of the section s;_p) to the fiber S,, so that

all in all the expression |s[_p.,|’e”¥= " is a volume form on S,,.
Moreover, given the definition of the divisors = and [—B], we have

(80) ‘SPB],w‘ze_(pE_wF < Ce—wf—@ewn‘sw

for some constant C' > 0 (remark that the proximity of w to the singular loci of f is
luckily irrelevant for the uniformity of C').

Then we have the following inequality for the potential @7 of the current T" introduced
in ([Z6)
(81) e#T(2) >

where w = f(z). The second bullet in Theorem [7.3] together with the upper bound
for the function F' provided by this result show that

(82) v(T, z) =0,

and therefore Theorem is completely proved, modulo the regularisation theorem
in [Dem92] (a class containing a closed positive current whose Lelong numbers are
equal to zero is nef)

Remark 7.6. In general, a nef cohomology class does not necessarily contain a closed
positive current with zero Lelong numbers. Therefore, the property we are establishing
in the proof of Theorem is stronger than neffness. Moreover, we construct the
current T is a very explicit manner, so in principle it should be possible to further
analyze its singularities.

Remark 7.7. We expect that a more general form of Theorem[5.2 holds true, namely
one should obtain a version of this result in the absence of the hypothesis x. This
promises to be a difficult problem (given the arguments invoked to prove it in [Taka22] ).

8. PROOF oF THEOREM [©.4

The main steps of the proof that follows are the same as in the previous subsection.
To begin with, recall that by hypothesis (d) we have a Kéhler metric w on S such
that

(83) w=[f"g+0,

where g is a Kéhler metric on W and 6 is a rational (1,1)-form on S.
Consider a positive integer my divisible enough such that mf € H?(S,Z). For each
k > 1 the class

(84) Bui= B+ Tl
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contains a positive representative, since (3 is nef. Therefore, we can write
(85) Ksyw + B+ Br = () + A

where

m m
Vi =Y+ ?Og, ?09 € c1(Ax)

i.e. Ay is a Q-bundle such that kA, becomes a holomorphic line bundle which admits
a metric hy whose curvature is precisely mgf.

We therefore find ourselves in the framework of Theorem [6.2: we obtain a closed
positive current ©y belonging to the class Kg/w + Z + B, constructed by using the
global sections of

k(Ak + [=B1)ls.,
for w € W generic.

Moreover, by hypothesis (b’) together with the arguments in sub-section [L.0.1] and
the Claim [.2] we infer that we have

(86) Or > (1 — o) [~ B]

where 6, — 0 as k — oo.
Finally, we analyse next the the singularities of the closed positive current

(87) Ty =0 — (1 —0)[—B], T, € Kgyw + B + B + 6, [ —B].

To this end, we first observe that for each co-ordinate ball 2 C W the restriction
(88) kAglv

admits a metric whose curvature is equal to mowl|y, where V := f~1(Q). We can

assume that myg is large enough, so that the bundle in (88) is generated by its global
sections.

As in the proof of Theorem assume that the morphism f satisfies the additional
hypothesis in the statement of Theorem [[.3l We consider z; € S such that wg :=
f(z0) € Q, and let x and ¢ be coordinates having the second bullet property in
Theorem [L.3l Let u be a holomorphic section of the bundle kAy|y, such that zy &
(u=10). The product

— ®k
p=u SI_B
can be interpreted as section of k(Kg/w + =+ Fi|v) (notations as in Section [6) and
by the definition of the L?/*-metric we get

(89) e?s/w(z) > ‘fpgz”%
fsw |pu|Fe#=mvr
for any point z near z; and w := f(z). In (88) we denote by f, the local holomorphic

function corresponding to the section p.
Inequality (80) still applies, so we infer that

(90) (T, 20) < opv([—B], 20)
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given the definition of p, provided that we assume beforehand that By, = 0 so that
we can use Theorem Now the quantity J; is independent of the point 2y, and it
follows that

(91) sup V(Tka Z) < 5k07
z€Z
where C' is the maximum multiplicity of the divisor [—B] at points of S.

We next use [Dem92] in order to obtain a smooth representative T, € Kg/w + B +
Bk + 0| —B] such that
’fk Z —Cs5kw
where the constant C's only depends on the geometry of (S,w). Since k was arbitrary,
it follows that the class
Ksw+B+8=f"
is nef, hence the same is true for v by Theorem [6.11

9. APPENDIX

The main result of this subsection is a direct argument for Theorem [7.3] We first fix
a few notations:

e U C S is an open subset of S small enough so that we have the coordinates
x=(x1,...,Tpym) on U with the property that

I l2 lm
f@) =l A= ] = 0 ful@= ][] =
i=1 i=l+1 i=lyn_1+1
where a; > 1l and 0 =y < l; < - <l < n+m and f; := t; o f for
1=1,...,m.
e For every multi-index [ := (iy,...,4,,) such that iy € Ji := {lx +1,... l41}
we define a form of by-degree (n,n) through the formula

m n+m
V—1dz; A\ dZ; := <H H V—1dx; /\d@) A H V—1dz; A dz;
k=14E€Jy idis i=lm+1

o w:= ) .v/—1ldx; N dZ; is the local version of the reference Kéhler metric. We

set
wp = Z V —1d37[ A df[
I

and up to a constant, we see that we have

15 Im n+m
wi= (Y V-ldzndz) T Aon (Y VeTdeadzs) T A N V- Lda Ada
=1 1=lym_1+1 1=lm+1

We now proceed to the evaluation of the function ¢ defined in (7). The first remark
is that
l;
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and therefore a few simple calculations that we skip show that we have

(93) e’ = ([T1AM 1 >

]C:l Z:lk—l"l‘l

1
]

7

where the symbol ” ~ 7 in (93) means that the quotient of the two functions is
two-sided bounded away from zero.

The hypothesis By, = 0 shows that the inequality

i 1 1
(94) € b= CH | X |25 2 H R Al)
k=1 jeJ "
Uk
holds, where d; = I, — l;,_; and |X;|* = Z |z;|%. Moreover, we have J C
i=lp_1+1

{l,, +1,...,m+n} and B; > 0 for each j.

On the other hand, by the Poincaré-Lelong formula, the local version of the quantity
we have to analyse equals

(95) Fult) = / Ox)e=2n N ddlog t: — fi(x)[? A w”
U i=1
where 0 is a truncation function defined as follows
0(x) = 0(1X")*) [T 00X
i=1

n—+m
and | X'|* .= Z |z ]2
i=lm+1
Now, given the expression of the functions f;, we infer that the integral (93]) is bounded
by the following expression

(96) /U 0(x)A(z)wr A N ddlog [t; — fi(x)]”

i=1

up to a constant independent of ¢, where we recall that the function A was defined in
(O4). Indeed, the equality

/\ ddlog |t; — fi(x)]? Aw™ = wi A /\ dd®log |t; — fi(z)|?

i=1 i=1

holds modulo a constant, because f; only depends on the variables x;,_,41,..., .

7

In order to evaluate (96) we use integration by parts: this expression is the same as
(97) / log [t1 — fi(z)[?dd®(0A) A wi A /\ dd®log |t; — fi(x)|?
U i=2

and we will consider first the term containing 6(z)dd°A.
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Since dz® A dZ® A w; A /\ddclog|ti — fi(z)]* = 0 if max(a, B) > I; + 1, we see that
i=2
the integral

dd°A A w; A /\ddclog It — fi(x)]?

i=2
is equal to
C 1 C
(98) H ’Xk‘gdk 21_[ = QBjdd e /\wl/\/\dd log [t; — fi(z)]?.
=2
We recall that we have the equality
dde—— dd’| X > =0
X, pae MG =0,

the Dirac distribution at the origin in C", so that we have

(99) /Ulog Ity — f1(2)]*0dd"(A) Aw; A /\ ddlog |t; — fi(x)|* =
i=2

/ «91A1/\ddclog\t (@) A

[ta]?

where U’ C C"*™~! is the unit ball, 2’ = (x}, 41, ..., Tpim) and

bi(') = 00X ) JTO0X), U= (layeoilw). A=]] X 11 T
i=2 k=2 jeg "

A quick argument by induction gives the expected estimate for the RHS of (99).

The remaining terms involve the differential of X; — 6(|X;|*), on the support of

which w% is smooth.
In conclusion, after the first integration by parts we get
(100)
I
/[]91(X1)¢1(X1) log [t; — fu(x)[*61 (x)A /\ dd°| X1 [ Awp A /\ dd°log [t; — f;(x)|?

j=2
modulo the terms (99).
We now repeat this procedure, integrating by parts using the factor dd®log [to— fo(x)|?.

l1
Notice that, because of the form /\ dd| X,|? the derivatives of the function
i=1

01 (X1)11(X1)log |ty — fi(z)[?

don’t come into play.
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Thus, after a finite number of steps the last term we still have to deal with equals

i d\
(101) | #@w@ [oglt - o) -
U Zl_Il HjeJ | |>%
where 1 is a truncation function. Since 5; > 0, the integral (L01]) is uniformly bounded
as soon as we fix a bound for |t|. Collecting all the terms, Theorem [7.3]is proved.

Remark 9.1. We consider the function

f:C = f(2) = (2122, 2123).
Let 6 be a truncation function which equals 1 near the origin of C*. A simple calcu-
lation shows that we have

1
/ OeVdd"log |t; — fi(x)|* A dd°log |ty — fo(z)|* Aw ~
3

[t1]? + [ta?
therefore the hypothesis (%) is crucial.

Remark 9.2. Let f : S — W be a morphism such that all the hypothesis of Theorem
except perhaps for (%) are satisfied. Then the techniques developed in our article
show that the current T in ([[6) can only have positive Lelong numbers along an
analytic subset of X which projects in codimension two. The reason is that one can
construct a subset Wy C W whose codimension is at least two, and such that the
morphism [ satisfies (x) in the complement of Wy. It follows that if dimW = 2,
Theorem holds true for morphisms which only satisfy the assumptions (a), (b),
(c), thanks to the following general fact.

Theorem 9.3. [Dem92] Let X be a compact complex manifold, and let T' be a (1,1)—
closed positive current on X. If the level sets

E(T) ={ze X :v(T,x) > c}

have dimension zero for any ¢ > 0, then the cohomology class of T is nef.
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