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ON THE MINIMAL MODEL PROGRAM FOR KÄHLER
3-FOLDS

OMPROKASH DAS AND CHRISTOPHER HACON

Abstract. In this article we prove the existence of pl-flipping and diviso-
rial contractions and pl flips in dimension n for compact Kähler varieties,
assuming results of the minimal model program in dimension n − 1. We
also give a self contained proof of the cone theorem, the existence of flipping
and divisorial contractions, of flips and minimal models in dimension 3.
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1. Introduction

In recent years there has been substantial progress towards the minimal
model program for Kähler varieties. The 3-fold minimal model program is es-
tablished in increasing generality in [CP97], [Pet98], [Pet01], [HP15], [HP16],
[CHP16], [DO24], [DH20], and [DHY23]. Further progress was then made in
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2 OMPROKASH DAS AND CHRISTOPHER HACON

[Fuj22b], [DHP24], and [LM22], where the minimal model program for projec-
tive morphisms between analytic varieties is established in arbitrary dimen-
sions. Note that flipping contractions are, by definition, projective morphisms
and hence the above references imply the existence of flips in all dimensions.
Unluckily, we do not have a Kähler analog of the base point free and cone
theorems and hence this is the main difficulty in proving the minimal model
program in higher dimensions.

In dimension 3, the existence of flipping and divisorial contractions for ter-
minal pairs was claimed in [HP16]. Flipping contractions and divisorial con-
tractions to a point for klt 3-folds follow from [CHP16] and klt divisorial con-
tractions to a curve follow from [DH20]. Unluckily, the proof of the existence
of divisorial contractions to a curve claimed in [HP16] seems to be incomplete
(and relies on [AT84] which also seems to contain an error). To make matters
more complicated, the arguments of [CHP16] heavily rely on those of [HP16],
and [DH20] also indirectly relies on [HP16] and [CHP16].

The purpose of this paper is to give a brief, unified, and mostly self con-
tained treatment of the minimal model program for klt Kähler 3-folds. In
particular, we give new proofs of the cone theorem, and the existence of flip-
ping contractions and divisorial contractions for Kähler klt 3-folds. In the
process, we also establish an inductive framework that we expect to be useful
in proving the existence of flipping contractions and divisorial contractions for
higher dimensional Kähler klt pairs. The strategy of this paper is primarily
inspired by the approaches of [BCHM10], [DH20], and [DHP24].

We will now describe the main results contained in this paper. We begin by
proving the existence of pl-divisorial contractions and pl-flipping contractions
and the corresponding flips in dimension n assuming a base point free result
in dimension n− 1.

Theorem 1.1. Let (X,S + B) be a Q-factorial compact Kähler plt pair of
arbitrary dimension, and π : S → T a contraction such that −(KX + S +
B)|S and −S|S are π-ample. Then there exists a projective bimeromorphic
morphism p : X → Z with connected fibers such that p|S = π and p|X\S is an
isomorphism. If p is of flipping type, then the flip p+ : X+ → Z exists.

In fact we prove a more general version of this results that applies to general-
ized plt pairs, see Theorems 5.8 and 5.12. Note that the existence of flips for plt
pairs was shown in [DHP24] and [Fuj22b]. In order to apply the above result,
we must guarantee the existence of the morphism π : S → T . If there exists a
Kähler form ω such that α = [KX + S + B + ω] is nef and R = α⊥ ∩ NA(X)
is an extremal ray, then we must show that R can be contracted in S. To this
end, we consider the pair KS + BS + ωS = (KS + S + B + ω)|S induced by
adjunction, and we aim to prove that there is a morphism π : S → T such
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that KS + BS + ωS ≡ π∗ωT where ωT is a Kähler form on T . In dimension
dimS ≤ 3, π exists by [DHY23] and therefore Theorem 1.1 holds in dimension
dimX ≤ 4. (We remark that the results of [DHY23] only rely on the 3-fold
MMP established in this paper.) We also note that if such a morphism π
exists, then −(KS + BS) ≡T ωS is ample over T and hence this morphism is
projective and so, a posteriori, the existence of π is implied by the usual base
point free theorem.

We now turn our attention to the full minimal model program for dlt Kähler
3-folds. We first show the existence of flipping and divisorial contractions (see
Theorems 6.2 and 6.9).

Theorem 1.2. Let (X,B) be a Q-factorial compact Kähler 3-fold dlt pair
such that KX + B is pseudo-effective. Let ω be a Kähler class such that α =
KX+B+ω is a nef and big class and α⊥∩NA(X) = R is an extremal ray. Then
there exists a projective bimeromorphic morphism f : X → Z with connected
fibers such that α = f ∗αZ , where αZ is a Kähler class on Z. Moreover, if f is
a divisorial contraction, then (Z, f∗B) has Q-factorial klt singularities.

Using only a special case of the above theorem (namely, assuming X is
strongly Q-factorial), we give a quick proof of the cone theorem when KX +B
is pseudo-effective.

Theorem 1.3. Let (X,B) be a compact Kähler 3-fold dlt pair such that KX+B
is pseudo-effective. Then there are at most countably many rational curves
{Γi}i∈I in X such that −(KX +B) · Γi ≤ 6 for all i ∈ I and

NA(X) = NA(X)(KX+B)≥0 +
∑

i∈I

R+[Γi].

Finally, using the cone and contraction theorems above we prove the exis-
tence of minimal models when KX +B is pseudo-effective.

Theorem 1.4. Let (X,B) be a Q-factorial compact Kähler 3-fold dlt pair such
that KX +B is pseudo-effective. Then after finitely many (KX +B)-flips and
divisorial contractions

X = X0 !!" X1 !!" X2 !!" . . . !!" Xn

we obtain that KXn +Bn is nef.

The existence of Mori-fiber spaces also follows, but we do not pursue it here
as it also relies on the results of [Bru06], [HP15], and [DH20].

Remark 1.5. We also note that Theorems 2.28, 2.30 and 2.31 in [DO24] rely
on the contraction results of [HP16] and [CHP16], however these theorems are
also implied by Theorem 1.2, and so the main results of [DO24] are unaffected.
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This article is organized in the following manner. In Section 2 we recall
some definitions and provide appropriate references, in Section 4 we prove
some contraction theorems when the exceptional locus maps to finitely many
points. Section 5 is the core of this article. In this section we prove Theorems
1.1 and 1.2. Finally, in Section 7 we prove the cone Theorem 1.3 and the
existence of minimal models, Theorem 1.4.

Acknowledgement We would like to thank Paolo Cascini, Mihai Păun,
János Kollár, and Matei Toma for useful comments, references and suggestions.

2. Preliminaries

We will follow the usual conventions of the minimal model program. In
particular, we refer the reader to [KM98, Chapter 2] for the definition of
pairs and their singularities (klt, lc, plt etc.), [DHY23, Subsection 2.1] for
the definitions of generalized pairs and related singularities (glc, gklt, gdlt,
etc.), [Fuj22b, Chapters 2, 3, 11] for many key concepts of the minimal model
program for analytic varieties, to [DHP24, Definition 2.8] for the definitions of
nef, minimal and log terminal models, [HP16] for a discussion of Bott-Chern
cohomology H1,1

BC(X), the Kähler and nef cones K ⊂ K̄, the Mori cone and
the cone of positive closed currents NE(X) ⊂ NA(X) ⊂ N1(X). Analytic
pl-flipping contractions and pl-flips are defined in [Fuj22b, Chapter 15].

Definition 2.1. A compact analytic variety X is said to be in Fujiki’s class
C if X is bimeromorphic to a compact Kähler manifold.

Definition 2.2. LetX be a normal compact analytic variety. A closed positive
(1, 1) current T on X with local potentials is called a Kähler current if T ≥ ω
for some smooth Hermitian form ω on X . A (1, 1) class α ∈ H1,1

BC(X) is called
big if it contains a Kähler current. A class β ∈ H1,1

BC(X) is called a modified
Kähler class if there is a Kähler current T such that the Lelong numbers satisfy
ν(T, P ) = 0 for all prime Weil divisors P ⊂ X .

Remark 2.3. Note that if X is a compact complex manifold in Fujiki’s class
C, then clearly X carries a big (1, 1) class α ∈ H1,1

BC(X). However, if X is
singular, then it is not clear whether X carries any big (1, 1) class or not, the
issue here is that the pushforward of a smooth Kähler form from a resolution
of X is a positive current on X which may not have local potentials.

Definition 2.4. Let X be a normal compact analytic variety and α ∈ H1,1
BC(X)

a pseudo-effective class. Then the negative part N(α) of the Boucksom-Zariski
decomposition of α is an effective R-divisor (see [DHY23, Defintion A.6] and
[Bou04, Definition 3.7]). We note that in [DHY23, Definition A.6] it is assumed
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that X is Kähler, however, it was never used. If X is Q-factorial, N(α) is R-
Cartier, and so α − [N(α)] is a (1, 1) class in H1,1

BC(X). In this case we define
P (α) := α − [N(α)] and call it the positive part of α. Lemma 2.6 below
shows that P (α) is a modified nef class (see [Bou04, Definition 2.2(ii)]) when
X is a Kähler variety. We call α = [N(α)] + P (α), the Boucksom-Zariski
decomposition of α.

Lemma 2.5. Let X be a normal Q-factorial compact analytic variety in Fu-
jiki’s class C, and α ∈ H1,1

BC(X) a big (1, 1) class. Then X contains a modified
Kähler class.

Proof. Let f : Y → X be a resolution of singularities of X such that f is
an isomorphism over Xsm . By Demailly’s regularization theorem, there is
a Kähler current T in f ∗α ∈ H1,1

BC(Y ) with analytic singularities such that
T ≥ ωY for some smooth Hermitian form ωY on Y . Let T = D + R be the
Siu decomposition of T , where D is an effective R-divisor and R is the residue
current. Then R ≥ ωY . Let ω be a smooth Hermitian form on X , then there
is a C > 0 such that ωY ≥ Cf ∗ω. Note that by [BG13, Proposition 4.6.3(i)],
f∗T has local potentials on X and [f∗T ] = α. Now since X is Q-factorial, f∗D
is R-Cartier, and hence f∗R has local potentials on X . However, f∗R ≥ Cω,
and the generic Lelong numbers ν(f∗R,P ) = 0 for all prime Weil divisors P
on X . Therefore [f∗R] ∈ H1,1

BC(X) is a modified Kähler class. #

Lemma 2.6. Let X be a normal Q-factorial compact analytic variety in Fu-
jiki’s class C, such that H1,1

BC(X) contains a big (1, 1) class. If α ∈ H1,1
BC(X) is

a pseudo-effective class, then the positive part P (α) of the Boucksom-Zariski
decomposition of α defined above is a modified nef class.

Proof. Let f : Y → X be a resolution of singularities of X such that Y is a
Kähler manifold and f ∗α = N(f ∗α) + P (f ∗α) the Boucksom-Zariski decom-
position of f ∗α as in [Bou04, Definition 3.7]. Then from [DHY23, Definition
A.6] it follows that P (α) = f∗(P (f ∗α)). Note that P (f ∗α) is modified nef
by [Bou04, Proposition 3.8(i)]. Let β be a modified Kähler class on X , its
existence is guaranteed by Lemma 2.5. It suffices to show that P (α) + β is
modified Kähler, as the modified nef cone is the closure of the modified Kähler
cone (see [Bou04, §2.7]). Let T be a Kähler current in β with generic Lelong
numbers ν(T, P ) = 0 for all prime Weil divisors P on X . Let f ∗T = D + R
be the Siu decomposition, where D is the divisorial part and R is the residue
current. Then D is a R-Cartier divisor such that Supp(D) ⊂ Ex(f) and R is a
Kähler current. In particular, [R] ∈ H1,1

BC(Y ) is a modified Kähler class. Then
by [DH20, Lemma 2.35] applied to the class [R] and replacing Y by a higher
resolution we may assume that there is a Kähler class ωY and an effective f -
exceptional R-divisor E on Y such that f ∗β = ωY +E. Since the modified nef
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cone is the closure of the modified Kähler cone, it follows that P (f ∗α) + ωY

is modified Kähler on Y . Let Θ be a Kähler current in P (f ∗α) + ωY such
that the generic Lelong numbers ν(Θ, Q) = 0 for all prime Weil divisors Q
on Y . Note that P (f ∗α) = f ∗P (α) + F for some f -exceptional R-divisor F
(but not necessarily effective). Then the current Θ + E + F is in the class
f ∗(P (α) + β) + [F ]. Let U := X \ f(Ex(f)); then (f∗Θ)|U is a closed positive
(1, 1) current with local potentials representing the class (P (α) + β)|U . Since
codimX f(Ex(f)) ≥ 2, by the same argument as in the proof of [BG13, Propo-
sition 4.6.3(i)] it follows that f∗Θ|U extends to a unique closed positive (1, 1)
current f∗Θ with local potentials representing the class P (α) + β. From the
definition of Θ it follows that ν(f∗Θ, P ) = 0 for all prime Weil divisors P on
X . Thus P (α) + β is a Kähler class. #

3. Singularities of Currents on Complex Spaces

Definition 3.1. Let X be a normal analytic variety and T a closed positive
(1, 1) current on X with local potentials. Then for each c > 0 we define

Ec := {x ∈ X : ν(T, x) > c},

where ν(T, x) denote the Lelong number of T at x ∈ X .
This is an analytic subset of X by [Siu74], also see [HP24, Lemma 4.16]. We
define

E+(T ) = ∪c∈R+Ec.

If additionally X is compact and α ∈ H1,1
BC(X) is a big class, then we define

the non-Kähler locus of α as follows:

EnK(α) := ∩T∈αE+(T ),

where T runs over all Kähler currents contained in the class α.

We will also need to consider the currents with admissible singularities and
weakly analytic singularities as in [HP24].

Definition 3.2. [HP24, Definition 4.10] Let X be a normal analytic variety
and ϕ : X → [−∞,∞) a function on X . We say that ϕ has admissible
singularities if

ϕ := max{ϕ1,ϕ2, . . . ,ϕk},

where each ϕi : X → [−∞,∞) is a function with weakly analytic singularities
in the sense [Dem92], i.e. locally

ϕi = λi log

( nj∑

j=1

|fj |
2

)

+ gi,

where λi ≥ 0, fj are holomorphic functions and gi are bounded functions.
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In this case we say that the positive current T = α + i∂∂̄ϕ, where α is a
real closed smooth (1, 1) form, has admissible singularities.

Definition 3.3. [HP24, Definition 4.11] Let X be a normal analytic variety,
and T = α + i∂∂̄ϕ a closed positive (1, 1) current on X , where α is a smooth
closed positive (1, 1) form on X with local potentials. We say that T has
weakly analytic singularities if the following conditions are satisfied:

(1) there is a proper bimeromrophic morphism π : X̂ → X from a normal
analytic variety X̂ , and

(2) a closed positive (1, 1) current T̂ on X̂ such that

T̂ = π∗α + i∂∂̄ψ ≥ 0,

where ψ has admissible singularities and π∗T̂ = T .

From [HP24, Remark 4.12] it follows that T̂ = π∗T . Also, note that if T has
weakly analytic singularities, then E+(T ) is a closed analytic subset of X by
[HP24, Lemma 4.16].

Next we define the restricted non-Kähler locus of a current as in [HP24].

Definition 3.4. [HP24, Definition 4.18] Let X be a normal compact Kähler
analytic variety and α ∈ H1,1

BC(X) a nef and big class. The restricted non-
Kähler locus of α is the following set

Eas
nK(α) :=

⋂

T∈α

E+(T ),

where T is a Kähler current with weakly analytic singularities.

Next we recall two very important results from [HP24].

Lemma 3.5. [HP24, Corollary 4.20] Let X be a normal compact Kähler va-
riety and α ∈ H1,1

BC(X) a big class. There is a Kähler current T on X with
weakly analytic singularities such that Eas

nK(α) = E+(T ); in particular, Eas

nK(α)
is a closed analytic subset of X.

Theorem 3.6. [HP24, Theorem 4.21] Let X be a normal compact Kähler
variety and α ∈ H1,1

BC(X) a nef and big class. Then Eas

nK(α) = Null(α), in
particular, Null(α) is an analytic set.

We will also need the following lemmas.

Lemma 3.7. Let X be normal compact Kähler variety, α a real smooth closed
(1, 1) form, and T = α+ i∂∂̄ϕ ≥ ω a closed positive (1, 1) current with weakly
analytic singularities, where ω is a fixed Kähler form on X. Let Z := E+(T ).
Then there exists a resolution f : Y → X such that

f ∗T = F +Θ ≥ f ∗ω
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where F is an effective R-divisor with f(SuppF ) = Z, and Θ ≥ f ∗ω is a closed
positive (1, 1) current such that the classes [Θ] and [Θ − f ∗ω] ∈ H1,1

BC(Y ) are
both nef.

Proof. Since T has weakly analytic singularities, we may assume that there is
a resolution f : Y → X such that the Siu decomposition is f ∗T = F + R0,
where F is an effective R-divisor and R0 is the residue current whose local
potentials are bounded functions. Since f ∗T ≥ f ∗ω, then R0 ≥ f ∗ω and
so the local potentials of R := R0 − f ∗ω are also bounded functions. In
particular, the Lelong numbers satisfy ν(R, y) = 0 for all y ∈ Y , and we can
write R = β + i∂∂̄ρ ≥ 0 (see [DP04, §3]), where β is a real smooth closed
(1, 1) form and ρ : Y → R is a bounded quasi-psh function. Therefore we have
f ∗T = F + (β + f ∗ω) + i∂∂̄ρ = F + Θ ≥ f ∗ω, where Θ := β + f ∗ω + i∂∂̄ρ =
R + f ∗ω ≥ f ∗ω. Since E+(Θ − f ∗ω) = E+(R) = ∅ by our construction, by
[Pau98, Theorem 2, Page 418] the class [Θ − f ∗ω] ∈ H1,1

BC(Y ) is nef, and so
[Θ] = [Θ− f ∗ω] + [f ∗ω] is also nef.

#

Lemma 3.8. Let f : Y → X be a proper bimeromorphic morphism from a
compact complex manifold Y in Fujiki’s class C to a normal compact analytic
variety X with rational singularities. Let α be a (1, 1) big class on X. Then
f−1(EnK(α)) ∪ Ex(f) ⊂ EnK(f ∗α).

Proof. Supposing that y /∈ EnK(f ∗α), we must show that y /∈ f−1(EnK(α)) ∪
Ex(f). Since Y is a compact complex manifold in Fujiki’s class C, by [Bou04,
Theorem 3.27(ii)] (also see [CT15, Theorem 2.2]), there is a Kähler current
T in the class f ∗α with analytic singularities such that EnK(f ∗α) = E+(T ).
Thus y /∈ EnK(f ∗α) implies that T is a smooth form near y. Suppose that
y ∈ Ex(f). We can write T = f ∗θ + i∂∂̄ϕ, where θ is a real closed smooth
(1, 1) form on X with local potentials representing the class α and ϕ is a quasi-
psh function on Y . Since T is a Kähler current, there is a smooth Hermitian
form ωY such that f ∗θ + i∂∂̄ϕ ≥ ωY . Let E be an irreducible component of
f−1(f(y)) containing y. Since T is smooth near y, E is not contained in the
pluripolar locus {y′ ∈ Y | ϕ(y′) = −∞}, in particular, T |E is well defined and
we have

(3.1) T |E = (f ∗θ + i∂∂̄ϕ)|E = i∂∂̄(ϕ|E) ≥ ωY |E.

Thus ϕ|E is a strictly psh function. Since E is compact, from the maximal
principle of psh functions it follows that ϕ|E is a constant function, which is
a contradiction to the above inequality. In particular, y ̸∈ Ex(f), and so f
is an isomorphism near y ∈ Y . By [HP16, Lemma 3.4], S := f∗T is a closed
positive (1, 1) current on X with local potentials such that [S] = α; clearly S
is a Kähler current. Since f is an isomorphism near y ∈ Y , it follows that S is
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a smooth form near x = f(y) ∈ X . In particular, x ̸∈ EnK(α), and the proof
of the inclusion f−1(EnK(α)) ∪ Ex(f) ⊂ EnK(f ∗α) is complete.

#

Remark 3.9. With the same notations and hypothesis as in Lemma 3.8 if
additionally we assume that X is Kähler and α is nef (in addition to being
big), then using [HP24, Corollary 4.20] it follows easily that Eas

nK(f
∗α) =

f−1(Eas
nK(α)) ∪ Ex(f).

Lemma 3.10. Let f : Y → X be a proper bimeromorphic morphism between
two normal compact analytic varieties and α a nef and big (1, 1)-class on X.
Then Null(f ∗α) = f−1(Null(α)) ∪ Ex(f).

Proof. First we will show that Null(f ∗α) ⊂ f−1(Null(α))∪Ex(f). To that end
assume that y /∈ f−1(Null(α))∪Ex(f). Then f is an isomorphism near y ∈ Y .
Assume by contradiction that y ∈ Null(f ∗α), then there is a subvariety V ⊂ Y
containing y such that (f ∗α)dimV · V = 0. Then by the projection formula we
have αdimV · f∗V = 0. However, since f is an isomorphism near y, f |V : V :→
f(V ) is bimeromorphic, and hence f∗V ̸= 0. Therefore f(y) ∈ f(V ) ⊂ Null(α),
and so y ∈ f−1(Null(α)), which is a contradiction.

Now we will show the reverse inclusion. Let y ∈ Ex(f) and E an irreducible
component of f−1(f(y)) containing y. Then clearly, (f ∗α)dimE · E = 0, and
thus y ∈ Null(f ∗α). Now choose y ∈ f−1(Null(α)) \ Ex(f); then f is an
isomorphism near y. Since f(y) ∈ Null(α) \ f(Ex(f)), there is a subvariety
f(y) ∈ W ⊂ X not contained in f(Ex(f)) such that αdimW · W = 0. Let
V ⊂ Y be the strict transform of W under f . Then by the projection formula
we have (f ∗α)dimV · V = 0; since y ∈ V , it follows that y ∈ Null(f ∗α). This
completes the proof.

#

3.1. Generalized pairs.

Definition 3.11. Let π : X → S be a proper morphism of normal Kähler
varieties such that S is relatively compact and ν : X ′ → X a resolution of
singularities, B′ an R-divisor on X ′ with simple normal crossings support, and
β ′ a real closed smooth (1, 1)-form on X ′, such that

(1) B := ν∗B′ ≥ 0,
(2) [β ′] ∈ H1,1

BC(X
′) is nef over S, and

(3) [KX′ +B′ + β ′] = ν∗γ, where γ ∈ H1,1
BC(X).

Then we let β = ν∗β ′ and we say that ν : (X ′, B′ + β ′) → (X,B + β) is a
generalized pair. We will often abuse notation and say that (X,B + β) (or
(X,B+β/S)) is a generalized pair (over S) and ν : (X ′, B′+β ′) → (X,B+β)
is a log resolution. We will often assume that X is compact and S is a point
(or that X = S) and we omit π : X → S.
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Note that given β ′, we can define the corresponding nef b-(1,1) current
β := β ′ as follows. For any bimeromorphic morphism p : X ′′ → X ′ we
define βX′′ = p∗β ′ and for any bimeromorphic morphism q : X ′′ → X ′′′ we
let βX′′′ = q∗βX′′ (in general this is a closed (1,1)-current, not necessarily a
(1,1)-form). Using the projection formula, one easily checks that q∗βX′′ is well
defined (i.e. βX′′′ does not depend on the choice of the common resolution
X ′′ of X ′ and X ′′) and that for any bimeromorphic morphism r : X1 → X2 of
bimeromorphic models of X , we have r∗βX1

= βX2
. We say that β ′ descends

to X ′. Note that for any bimeromorphic morphism p : X ′′ → X ′, we also have
β ′ = β ′′ where β ′′ = βX′′ , and so β also descends to X ′′.

Similarly, if ν : Y → X ′ is a proper bimeromorphic morphism, then write
KY +BY = ν∗(KX′+B′). For any proper bimeromorphic morphism µ : Y → Y ′

we let BY ′ = µ∗BY . In this way we have defined a b-divisor B (whose trace BY

on Y is BY ). Since the b-divisor K+B = KX′ +BX′ and the b-(1, 1)-form
β= βX′ descend to X ′, we say that the generalized pair (X,B + β) descends
to X ′.

We will often denote the generalized pair ν : (X ′, B′ + β ′) → (X,B + β) by
(X,B + β) where β = β ′. Note that then β ′ = βX′ and B′ = ν∗(KX + B +
β)− (KX′ + β ′).

We define the generalized discrepancies a(P ;X,B + β) = −multP (BY ),
where P is a prime divisor on a bimeromorphic model Y of X . We say that
(X,B + β) is generalized klt or generalized Kawamata log terminal (resp.
generalized lc or generalized log canonical) if for any log resolution ν : X ′ → X ,
we have ⌊BX′⌋ ≤ 0, i.e. a(P ;X,B + β) > −1 for all prime divisors P over
X (resp. a(P ;X,B + β) ≥ −1 for all prime divisors P over X). This can be
checked on a single given log resolution. We say that (X,B+β) is generalized
dlt (divisorially log terminal) if there is an open subset U ⊂ X such that
(U, (B + β)|U) is a log resolution (of itself) and a(P ;X,B + β) ≥ −1 for
every prime divisor P over X such that the generic point of centerX(P) is
contained in U and a(P ;X,B + β) > −1 for every prime divisor P over X
with centerX(P ) ⊂ X \ U .

We remark that if α′ is a real closed smooth (1,1)-form in the class [β ′] and
α = α′, then we have a(P ;X,B + β) = a(P ;X,B + α), i.e. the generalized
discrepancies do not depend on the choice of the representative of [β ′] (recall
that β descends to β ′).

Remark 3.12. Following standard convention, in the rest of the article we will
say that a generalized pair (X,B + β) is sub-gklt, sub-glc, etc. if B is not
necessarily effective, and gklt, glc, etc. if B is effective.



ON THE MINIMAL MODEL PROGRAM FOR KÄHLER 3-FOLDS 11

3.2. Adjunction for Generalized Pairs. In this subsection we will define
adjunction for generalized pairs.

• Recall that, if (X,S+B) is a log canonical pair such that ⌊S+B⌋ = S
and Sν → S is the normalization, then by adjunction (see [Kol13,
Chapter 4]) there is an effective Q-divisor DiffSν (B) ≥ 0 on Sν , called
the different, such that

(KX + S +B)|Sν = KSν +DiffSν(B).

Now let (X,B + β) be a generalized pair such that the coefficients of B are
≤ 1 and S a component of ⌊B⌋. Let f : X ′ → X be a log resolution of the
(X,B+β), S ′ is the strict transform of S and KX′ +B′+βX′ = f ∗(KX +B+
βX). Let S

n → S be the normalization morphism; then f |S′ : S ′ → S factors
through Sν, and we denote the induced morphism by g : S ′ → Sn. We define

KSn +BSn + βSn := (KX +B + βX)|Sn = g∗(KS′ + (B′ − S ′)|S′ + βX′|S′).

It is easy to see that this definition does not depend on the log resolution
f , and (Sn, BSn + βSn) is a generalized pair. If (X,B + β) is a glc pair (in
particular, B is a boundary divisor), then from Proposition 4.5 and 4.7 of
[Kol13] it follows that BSν is a boundary divisor. Readers may compare this
with the more familiar case of adjunction for generalized pairs on algebraic
varieties, see [BZ16, Remark 4.8].

Remark 3.13. If (X,B+β) is a glc pair and KX +B is R-Cartier, then we can
write KX′ +B′ −E = f ∗(KX +B), where 0 ≤ E = f ∗βX −βX′ is an effective
f -exceptional R-divisor (by the negativity lemma). It then follows easily from
the definition above that

BSn = DiffSn(B) + g∗(E|S′) ≥ DiffSn(B).

Remark 3.14. Note that BSn is determined by a surface computation, and
therefore if (X,B + β) is generalized log canonical in codimension 2, then for
the purpose of computing BSn we may assume that X is a surface. A simple
computation shows that (X,B) has numerically log canonical singularities, so
that X is Q-Gorenstein, KX +B is R-Cartier and (X,B) is log canonical.

We will also need the following lemma.

Lemma 3.15. Let (X,B+βX) be a generalized dlt pair. Then for every point
x ∈ X, there is a relatively compact Stein open neighborhood x ∈ U ⊂ X and
a R-divisor ∆ ≥ 0 on U such that (U,∆) is a klt pair.

Proof. By [DHY23, Remark 2.18] each point x ∈ X has a relatively compact
Stein open neighborhood U ⊂ X satisfying Property P (see [DHY23, Defi-
nition 2.17]). Thus replacing X by U we may assume that X is a relative
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compact Stein space satisfying Property P. By standard arguments (cf. the
proof of [KM98, Proposition 2.43]), we may assume that (X,B + βX) is a
generalized klt pair. Then by [DHY23, Theorem 2.19(4)] it follows that there
is a ∆ ≥ 0 such that (U,∆) is klt. #

3.3. Varieties in Fujiki’s class C. Recall that an analytic variety X is said
to be in Fujiki’s class C if X is bimeromorphic to a Kähler manifold. In what
follows, we will study some basic properties of these varieties which will be
useful in running the MMP.

Lemma 3.16. Let X be a normal compact analytic variety of dimension 3
in Fujiki’s class C and f : Y → X a proper bimeromorphic morphism from a
normal variety Y . Then a class α ∈ H1,1

BC(X) is nef if and only if f ∗α in nef
on Y

Proof. This is [HP16, Lemma 3.13]. #

Lemma 3.17. Let (X,B) be a Q-factorial dlt pair, where X is a compact
analytic variety of dimension ≤ 3 in Fujiki’s class C. If KX + B is pseudo-
effective, then KX +B is nef if and only if (KX +B) ·C ≥ 0 for every compact
curve C ⊂ X.

Proof. We will prove the dimension 3 case and leave the surface case as an
easy exercise for the reader. The only if part follows easily by passing to a
resolution of singularities f : X ′ → X such that X ′ is a Kähler manifold.
Conversely, assume that (KX +B) ·C ≥ 0 for all curves C ⊂ X and KX +B is
not nef. Then by [DHP24, Theorem 2.35 and Remark 2.36], there is a surface
S ⊂ X such that (KX+B)|S is not pseudo-effective. Let KX+B ≡

∑
λiSi+β

be the Boucksom-Zariski decomposition of KX +B as in Definition 2.4. Then
by a similar argument as in the proof of [HP16, Lemma 4.1] it follows that
S = Si for some λi > 0. By adjunction on the normalization Sν → S and the
above decomposition of KX +B it follows that there is an effective Q-divisor
∆ ≥ 0 such that KSν +∆ is Q-Cartier but not pseudo-effective. Let S̃ → Sν

be the minimal resolution of Sν . Then KS̃ is also not pseudo-effective, and
from surface classification (see [BHPVdV04, Table 10, page 244]) it follows
that κ(S̃) = −∞. Since S̃ is in Fujiki’s class C, by [Fuj21, Theorem 1.3], S̃ is
projective, and thus S is Moishezon. Then we arrive at a contradiction by a
similar argument as in the proof of [HP16, Corollary 4.2]. #

Lemma 3.18. Let (S,B + β) be a gdlt pair, where S is a compact analytic
surface in Fujiki’s class C. Then S is a Kähler surface with Q-factorial rational
singularities.

Proof. Following a similar argument as in [KM98, Proposition 2.43] we may
assume that (S,B + β) is locally gklt. Thus by [DHY23, Lemma 2.20], S
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has Q-factorial rational singularities. Now let ν : S ′ → S be a resolution of
singularities of S such that S ′ is a Kähler manifold. Let ω′ be a Kähler class
on S ′. By the Hodge index theorem, the intersection matrix of the exceptional
curves of ν is negative definite. Thus there is a unique ν-exceptional R-divisor
E such that ω′ + E ≡S 0. Since S has rational singularities and it belongs
to Fujiki’s class C, by [HP16, Lemma 3.3] there is a class ω ∈ H1,1

BC(S) such
that ω′ + E = ν∗ω. From the negativity lemma it follows that E ≥ 0. Thus
ω = ν∗(ω′ + E) = ν∗ω′ is a big class on S. If C ⊂ S is any (compact) curve
and C ′ := ν−1

∗ C, then ω · C = (ω′ + E) · C ′ > 0. Then by [DHP24, Theorem
2.36 and Remark 2.37], ω is nef, and by [DHP24, Theorem 2.30], ω is a Kähler
class. #

Theorem 3.19 (Termination of Flips). Let (X,B) be a Q-factorial dlt pair,
where X is a compact analytic 3-fold in Fujiki’s class C. Then every sequence
of (KX +B)-flips terminates.

Proof. First we note that Fujino’s proof of Special Termination (see [Fuj07])
holds here as the log MMP for surfaces in Fujiki’s class C is known again due
to Fujino, see [Fuj21]. So we may assume that (X,B) is a klt pair. Next we
claim that the proof presented in [DO24, Theorem 3.3] (which is based on the
proof of [Kaw92]) holds in our case without any change. This is because even
though X is assumed to be Kähler in [DO24], that property was never used in
the proof, and all the necessary MMPs used in that proof are relative MMPs
for projective morphisms which are known to exist due to [Nak87] and more
recently by [DHP24] and [Fuj22b]. #

4. Blowing down analytic spaces to points

Recall the following result, generalizing [Gra62], that is claimed in [HP16,
Proposition 7.4].

Claim 4.1. [HP16, Proposition 7.4] Let X be a normal compact complex space
and S a Q-Cartier prime Weil divisor onX with Cartier indexm. Suppose that
S admits a morphism with connected fibres f : S → T such that OS(−mS) is
f -ample. Then there exists a bimeromorphic morphism ϕ : X → Y to a normal
compact complex space Y such that ϕ|S = f and ϕ|X\S is an isomorphism onto
Y \ T .

The above claim contradicts [Fuj75, Proposition 3], and the proof seems to
confuse the divisor S with its thickenings (a similar issue occurs in [CHP16]).
To be more precise the strategy of [HP16, Proposition 7.4] is based on [AT84]
which also appears to contain an error. One should instead use the corre-
sponding result in [Fuj75, Theorem 2] which states:
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Theorem 4.2. [Fuj75, Theorem 2] Let X be a reduced complex space, A an
effective Cartier divisor on X and f : A → A′ a proper surjective morphism of
A onto another complex space A′. Assume that the following conditions hold:

(1) OA(−A) is f -ample, and
(2) R1f∗OA(−kA) = 0 for all k > 0.

Then there exists a blowing down F : X → X ′ such that F∗SX,A,f = OX′,
where SX,A,f is the coherent sheaf defined by the following short exact sequence

0 → SX,A,f → OX → OA/f
−1OA′ → 0.

The proof of [HP16, Proposition 7.4] begins by checking thatR1f∗OS(−km′S) =
0 for k > 0, and given I = OX(−m′S) it is claimed that

R1f∗(I
k/Ik+1) ∼= R1f∗OS(−km′S)

however the right hand side should presumably be replaced by R1f∗OkS(−km′S)
(note that the prime divisor S is not assumed to be Cartier in [HP16], while
[Fuj75, Theorem 2] requires Cartier divisors). When dimA′ = 0, one can
however deduce the following result of Grauert [Gra62].

Lemma 4.3. Let X be a normal analytic variety and S ⊂ X an effective Z-
divisor such that Supp(S) is compact and has k connected components. Assume
that S is Q-Cartier of Cartier index m > 0 such that OS(−mS|S) is ample.
Then there exists a proper bimeromorphic morphism F : X → Y to a normal
analytic variety Y such that F (S) = {p1, . . . , pk} ⊂ Y are points and F |X\S :
X \ S → Y \ {p1, . . . , pk} is an isomorphism.

Proof. Since OS(−mS|S) is ample, from [Laz04, Proposition 1.2.16(i)] it fol-
lows that OmS(−mS) is ample. Thus, by Serre’s vanishing theorem, there is a
positive integer k0 > 0 such that H i(mS,OmS(−kmS)) = 0 for all i > 0 and
k ≥ k0. Then from the short exact sequences (for j ∈ Z≥0)

0 → OmS(−(k + j)mS) → O(j+1)mS(−kmS) → OjmS(−kmS) → 0

it follows that H i((j + 1)mS,O(j+1)mS(−kmS)) = 0 for all i > 0, j > 0
and k ≥ k0. In particular, H i(k0mS,Ok0mS(−jk0mS)) = 0 for all i, j > 0.
Replacing m by k0m, we may assume that H i(mS,OmS(−jmS)) = 0 for all
i, j > 0.

Suppose A := mS. Then A is Cartier and OA(−A|A) is ample since
OS(−mS|S) ample (see [Laz04, Proposition 1.2.16(i)]). Note that A is a pro-
jective scheme (of finite type) over C with k connected components. Let
f : A → SpecC be the structure morphism. Then we have R1f∗OA(−kA) =
H1(mS,OmS(−kmS)) = 0 for all k > 0, and thus by Theorem 4.2 there is a
blowing down F : X → X ′ such that F (A) = {p1, . . . , pk} ⊂ X ′ and F satisfies
the other required properties. Since Supp(S) = Supp(A), we are done.

#
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As a corollary we will show below that if α is a nef (1, 1) class and S :=
Null(α) is an irreducible subvariety of codimension 1 such that α|Sν ≡ 0, where
Sν → S is the normalization, then we can contract S.

Corollary 4.4. Let X be a normal Q-factorial compact Kähler variety and
α ∈ H1,1

BC(X) a nef and big class such that the following hold:

(1) α⊥ defines an extremal ray R in NA(X),
(2) the curves in R cover a prime Weil divisor S ⊂ X, and
(3) α|Sν ≡ 0, where Sν → S is the normalization morphism.

Then there exists a proper bimeromorphic contraction f : X → Y which con-
tracts S to a point and is the identity morphism on the complement of S.

Proof. Since α is big, we may write α = γ + ω, where ω is a Kähler class and
γ is a big class. Let γ = D + β be the Boucksom-Zariski decomposition of γ
as defined above, where D is an R-divisor and β is a modified nef class (see
Lemma 2.6). Then β|Sν is pseudo-effective. If S is not contained in the support
of D, then α|Sν ≡ (D + β)|Sν + ω|Sν is big, which is impossible as α|Sν ≡ 0.
Thus S is contained in the support of D. We have 0 = α ·R = (D+β+ω) ·R
and so T · R < 0, where T = β or T is a component of D. Since β is
modified nef, β|Sν is pseudo-effective and so T is a component of D. Note that
NA(X) = NA(X)T≥0+NA(X)T<0, so from a standard argument (e.g. see the
proof of [DHY23, Claim 3.25]) it follows that α−δT is positive on NA(X)\{0}
for some δ > 0, and hence Kähler. But then (α − δT )|Sν ≡ −δT |Sν Kähler.
Thus T = S, as otherwise −T |Sν is an anti-effective class on Sν and thus
cannot be Kähler. In particular, −S|S is Kähler, and hence OS(−mS|S) is an
ample line bundle, where m is the Cartier index of S on X . Then by Lemma
4.3 there is a bimeromorphic contraction f : X → Y such that f(S) = {p0} is
a point and f |X\S : X \ S → Y \ {p0} is an isomorphism. #

A second consequence of Lemma 4.3 is the existence of flipping contrac-
tions for terminal 3-folds (or more generally log canonical 3-folds with isolated
rational singularities).

Proposition 4.5. Let X be a normal compact Kähler variety of arbitrary
dimension with isolated rational singularities and α a nef and big (1, 1) class
on X. If Null(α) is a pure 1-dimensional analytic subset of X, then there is a
proper bimeromorphic morphism f : X → Y such that Ex(f) = Null(α) and
f(Null(α)) is a finite set of points.

Proof. Let ν : X ′ → X be a log resolution of X and Null(α), which is an
isomorphism on the complement of X

sing
∪ Null(α). Then ν∗α is also nef and

big and hence, by [CT15, Theorem 1.1] and Lemma 3.10 we have

(4.1) EnK(ν
∗α) = Null(ν∗α) = Ex(ν) ∪ ν−1(Null(α)).
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Since EnK(α) ⊂ ν(EnK(ν∗α)) by Lemma 3.8, from eqn. (4.1) above it follows
that EnK(α) doesn’t contain any divisor of X . By Demailly’s regularization
theorem (see [Bou04, Theorem 3.17(ii)]), there exists a Kähler current T in ν∗α
with analytic singularities such that E+(T ) = EnK(ν∗α). Let µ : X ′′ → X ′

be a resolution of the singularities of T so that µ∗T = φ+ F , where F ≥ 0 is
an effective R-divisor and φ is a smooth form (see [Bou04, Definition 2.5.1]);
note that F is ν ◦ µ-exceptional. Let ω′ be a Kähler form on X ′ such that
T ≥ εω′ for some ε > 0. Then φ ≥ εµ∗ω′, and thus by [Bou02, Lemma
2.9] we see that there is an effective µ-exceptional R-divisor E ≥ 0 such that
φ − δE is cohomologous to a Kähler form for 0 < δ ≪ 1. Then we can write
(ν ◦ µ)∗α ≡ ω′′ + G, where ω′′ is a Kähler class and G ≥ 0 is effective Q-
divisor such that Supp(G) = Ex(ν ◦ µ). Let Cn → C be the normalization
of C, a connected component of N := Null(α). Then α|Cn ≡ 0 (since C is
a curve) and so if D := (ν ◦ µ)−1(C), then D is a reduced effective divisor
contained in the support of G and −G|D ≡ ω′′|D is ample. Now from our
construction above it follows that (ν ◦ µ)(Ex(ν ◦ µ)) = X

sing
∪ Null(α). Thus

the components of G which do not map into Null(α) are contracted to (the
singular) points of X , and hence −G|Supp(G) is ample. So by Lemma 4.3 there
is a contraction X ′′ → Y which contracts Supp(G) to a finite set of points and
is an isomorphism on the complement of Supp(G). Then by the rigidity lemma
(see [BS95, Lemma 4.1.13]), we obtain the required morphism f : X → Y . #

Corollary 4.6. Let (X,B) be a compact Kähler 3-fold terminal pair. Let ω be
a Kähler class on X and α = KX+B+ω a nef but not Kähler such that Null(α)
is a pure 1-dimensional analytic subset of X and NA(X) ∩ α⊥ = R is an
extremal ray. Then the flipping contraction f : X → Z and the corresponding
flip f+ : X+ → Z both exist.

Proof. As (X,B) is a terminal 3-fold, X has only isolated rational singularities.
Thus Proposition 4.5 applies and hence the flipping contraction f : X → Z
exists. By [DHP24, Theorem 1.3] or [Fuj22b, Theorem 1.8], we can construct
the log canonical model of (X,B) locally over Z and then glue these together
to obtain the flip f+ : X+ → Z. #

In order to complete the 3-fold MMP for klt pairs, it is necessary to construct
divisorial contractions where n(α) = 1, i.e. divisorial contractions to a curve,
and flipping contractions in the non-terminal case. Divisorial contractions to
a curve were constructed in [DH20] and flipping contractions are constructed
in [CHP16]. Note however that the proof of [CHP16] is somewhat technical as
it involves the use of ample sheaves (which are not necessarily vector bundles).
In what follows we will give a unified approach to the construction of flipping
contractions and divisorial contractions to a curve. This approach relies on
first proving that the pl-extremal contractions exist. Our approach seems to
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be well suited for higher dimensional arguments and settles several important
higher dimensional cases.

5. The Main Contraction Theorems

The goal of this section is to prove the contraction Theorems 1.1 and 1.2.

5.1. Existence of pl-contractions and flips for generalized pairs. In
this subsection we will prove Theorem 1.1. First we need some preparatory
results. The following theorem is a version of the relative Kawamata-Viehweg
vanishing theorem which holds for generalized pairs.

Lemma 5.1. Let (X,B +β) be a gklt pair, g : X → T a projective morphism
of analytic varieties, and D a Q-Cartier Z-divisor such that D−(KX+B+βX)
is nef and big over T . Then Rig∗OX(D) = 0 for all i > 0.

Proof. Since the question is local on the base, we may assume that T is a
relatively compact Stein space. Let ν : (X ′, B′+βX′) → (X,B+βX) be a log
resolution of the gklt pair (X,B + β) such that KX′ + B′ + βX′ = ν∗(KX +
B+βX). We have ⌈ν∗D⌉ = ν∗D+ {−ν∗D}, and we let E := ⌊B′ + {−ν∗D}⌋,
where {·} denotes the fractional part.

We make the following claim.

Claim 5.2. ⌈ν∗D⌉ −E ≥ ⌊ν∗D⌋.

Proof of Claim 5.2. Let P be any prime Weil divisor on X ′. First assume
that P is not contained in the support of {−ν∗D}. Then multP (−E) =
multP (−⌊B′⌋) ≥ 0 and multP (⌈ν∗D⌉) = multP (ν∗D) = multP (⌊ν∗D⌋), and
the claim follows. Suppose now that P is contained in the support of {−ν∗D}.
Then multP ({ν∗D}) = (1 − multP ({−ν∗D})) > 0, so that multP (⌈ν∗D⌉) =
multP (⌊ν∗D⌋) + 1. Since multP (−E) = multP (−⌊B′ + {−ν∗D}⌋) ≥ −1, the
required inequality follows. #

Now recall that (X,B + β) is a gklt pair and D is a Z-divisor. Therefore
E = ⌊B′ + {−ν∗D}⌋ is ν-exceptional, ν∗(⌈ν∗D⌉ − E) = D and ν∗⌊ν∗D⌋ =
D. Since ν is bimeromorphic, the natural morphism ν∗OX′(⌈ν∗D⌉ − E) →
OX(ν∗(⌈ν∗D⌉ − E)) = OX(D) is injective, and ν∗OX′(⌊ν∗D⌋) = OX(D) (see
[Das21, Lemma 3.2]). By Claim 5.2 it follows that

OX(D) ⊃ ν∗OX′(⌈ν∗D⌉ − E) ⊃ ν∗OX′(⌊ν∗D⌋) = OX(D).

Therefore we have

(5.1) ν∗OX′(⌈ν∗D⌉ − E) = OX(D).

Now observe that

⌈ν∗D⌉ − E = KX′ +B∗ + βX′ + ν∗(D − (KX +B + βX)),
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where B∗ := B′ + {−ν∗D} − E = {B′ + {−ν∗D}}. But then (X ′, B∗) is klt
and the R-divisor

⌈ν∗D⌉ − E − (KX′ +B∗) ≡ βX′ + ν∗(D − (KX +B + βX))

is nef and big over T , and so, by the relative Kawamata-Viehweg vanishing
theorem [Nak87, Theorem 3.7] (see also [Fuj22b, Theorem 5.2]) for all i > 0
we have

Riν∗OX′(⌈ν∗D⌉ − E) = 0, Ri(g ◦ ν)∗OX′(⌈ν∗D⌉ −E) = 0.

By a standard spectral sequence argument and eqn. (5.1) it follows that

Rig∗OX(D) = Rig∗(ν∗OX′(⌈ν∗D⌉ − E)) = 0 for all i > 0.

#

Lemma 5.3. Let (X,S + B + β) be a gplt pair such that ⌊S + B⌋ = S is
irreducible. Then S is normal and (S,BS +βS) is gklt, where KS +B +βS =
(KX + S +B + β)|S is defined by adjunction as in Subsection 3.2.

Proof. Since the question is local on X , we may assume that X is a relatively
compact Stein space. Let f : X ′ → X be a log resolution of the generalized
pair (X,B + β) and

KX′ + S ′ +B′ + βX′ = f ∗(KX + S +B + βX) + E ′

where S ′ = f−1
∗ S,B′ ≥ 0, E ′ ≥ 0, f∗B′ = B, f∗E ′ = 0 and S ′ + B′ and E ′ do

not share any common component.
Then −S ′ + ⌈E ′⌉ ≡f KX′ + B′ + {−E ′} + βX′ and (X ′, B′ + {−E ′}) is a

klt pair. Since [βX′ ] ∈ H1,1
BC(X

′) is a nef over X , from Lemma 5.1 it follows
that Rif∗OX′(−S ′ + ⌈E ′⌉) = 0 for all i > 0. Now consider the following exact
sequence

0 !! OX′(⌈E ′⌉ − S ′) !! OX′(⌈E ′⌉) !! OS′(⌈E ′⌉|S′) !! 0.

Since R1f∗OX′(−S ′ + ⌈E ′⌉) = 0, from the long exact sequence of cohomology
we get the surjection

f∗OX′(⌈E ′⌉) $ f∗OS′(⌈E ′⌉|S′).

Since ⌈E ′⌉|S′ is an effective divisor, this map factors as

OX = f∗OX′(⌈E ′⌉) → OS ↪→ ν∗OSν ↪→ f∗OS′(⌈E ′⌉|S′),

where ν : Sν → S is the normalization morphism. Thus we have OS
∼= ν∗OSν ,

and hence S is normal.

For the second part by contradiction assume that there is a prime Weil
divisor F over S such that a(F, S,BS + βS) ≤ −1. Passing to a sufficiently
high resolution f : X ′ → X we may assume that we are in the setup of
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Subsection 3.2 and that there is a f -exceptional divisor E on X ′ such that
E ∩ S ′ = F and f(E) = f |S′(F ). It then follows that a(E,X, S +B + βX) =
a(F, S,BS + βS) ≤ −1, a contradiction, since (X,S +B + β) is gplt.

#

Lemma 5.4. Let (X,B + β) be a generalized dlt pair, and D a Q-Cartier
Z-divisor. Then OX(D) is Cohen-Macaulay.

Proof. Since the question is local on X , by Lemma 3.15 we may assume that X
is a relatively compact Stein space and (X,B) is klt. Then the proof follows
form [KM98, Corollary 5.25]. We explain the necessary changes needed for
analytic varieties. Let m > 0 be the Cartier index of D, then OX(−mD) is
a line bundle on X . Since X is Stein, OX(−mD) is generated by its global
sections. Using OX(−mD) in place of OX(mL−mD) in the proof of [KM98,
Corollary 5.25], and using [DHP24, Theorem 2.21] for the necessary Bertini-
type theorems, the arguments of [KM98, Corollary 5.25] work here.

#

Proposition 5.6 below is an analytic version of a key result from [HW19]
(see also [BK23]), and an important step towards the proof of Theorem 1.1.
First we fix some notations.

Definition 5.5. Let X be a normal analytic variety.

(1) A non-empty open subset U ⊂ X called big, if X \ U is a countable
union of locally closed (analytic) subsets of X of codimension at least
2.

(2) A sheaf L on X is called a Q-line bundle, if L is a reflexive sheaf of
rank 1 and (L⊗m)∗∗ is locally free for some m > 0. Note that if D is
a Q-Cartier Weil divisor, then L = OX(D) is a Q-line bundle. On the
other hand, if X is Stein, then for any Q-line bundle L there exists a Q-
Cartier Z-divisor D such that L = OX(D). Moreover, If L is a Q-line
bundle and G is a Z-divisor, then we define L(G) := (L ⊗ OX(G))∗∗

and L(KX +G) := (L⊗ ωX ⊗OX(G))∗∗.

Recall from Subsection 3.2 and Lemma 5.3 that if (X,S +B + β) is a gplt
pair, then S is normal and (S,BS + βS) is klt, where (KX + S + B + β)|S =
KS +BS + βS.

Proposition 5.6. Suppose that (X,S + B + β) is a relatively compact gplt
pair, and S a Q-Cartier prime Weil divisor. Let L be an rank one reflexive
sheaf on X such that L(KX) is a Q-line bundle on X. Then there exists an
effective Q-divisor 0 ≤ ∆S ≤ BS, a positive integer m > 0, and a reflexive
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rank 1 sheaf E on S such that the following sequence

(5.2) 0 → L(KX) → L(KX + S) → E → 0

is exact, and there is a smooth big open subset S0 ⊂ S such that E|S0 and
(L⊗m)|S0 are locally free, m∆S is a Z-divisor, and

(5.3) (E|S0)⊗m ∼= (L⊗m)|S0 ⊗OS0(m(KS +∆S)).

Proof. This proof follows along the lines of [HW19, Proposition 3.1]. We in-
clude the details as various arguments require more care than their algebraic
counterparts.

Let X = ∪Xi be a (finite) cover by relatively compact Stein open subsets
Xi. Then L(KX)|Xi

∼= OXi
(Gi) for some Q-Cartier Z-divisor Gi whose support

does not contain Si := S∩Xi. Let fi : X ′
i → Xi be a log resolution of (Xi, Si).

We define ∆Si
:= (fi|S′

i
)∗({−f ∗

i Gi}|S′

i
), where S ′

i := (fi)−1
∗ Si. We first claim

that ∆Si
is independent of the log resolution fi. To this end let X ′′

i → Xi be
another log resolution of (Xi, Si) that factors through fi, and gi : X ′′

i → X ′
i

the induced morphism. It suffices to show that

(5.4) ((fi ◦ gi)|S′′

i
)∗({−(fi ◦ gi)

∗Gi}|S′′

i
) = (fi|S′

i
)∗({−f ∗

i Gi}|S′

i
)

where S ′′
i := (gi)−1

∗ S ′
i. Let P ⊂ Si be a prime divisor on Si, and P ′ and P ′′ its

strict transforms on S ′
i and S ′′

i , respectively. Note that, since Gi is a Z-divisor,
the support of {−f ∗

i Gi} and {−(fi ◦ gi)∗Gi} are contained in the exceptional
loci of fi and fi ◦ gi, respectively. Since X ′

i is smooth, ⌊f ∗
i Gi⌋ is Cartier and

so is g∗i (⌊f
∗
i Gi⌋). Thus {−(fi ◦ gi)∗Gi} = g∗i {−f ∗

i Gi}. But then

{−(fi ◦ gi)
∗Gi}|S′′

i
= (g∗i {−f ∗

i Gi})|S′′

i
= (gi|S′′

i
)∗({−f ∗

i Gi}|S′

i
).

Pushing forward by gi|S′′

i
we have (gi|S′′

i
)∗({−(fi ◦ gi)∗Gi|S′′

i
}) = {−f ∗

i Gi}|S′

i
.

Pushing forward by fi|S′

i
we obtain (5.4).

Next, observe that if G′
i is another Z-divisor on Xi such that Gi ∼ G′

i, then
f ∗
i Gi ∼ f ∗

i G
′
i, and thus {−f ∗Gi} = {−f ∗

i G
′
i}. In particular, ∆Si

depends only
on L(KX)|Xi

. Next we will show that the ∆Si
can be glued together to a

unique divisor ∆S on X . To this end, let Xij := Xi ∩Xj and Sij := Si ∩ Sj .
Then Gi|Xij

∼ Gj |Xij
, and thus ∆Si

|Sij
= ∆Sj

|Sij
, this follows from the fact

that ∆Si
does not depend on the choice of log resolution, as we proved above.

Thus {∆Si
}i glue together to give a unique Q-divisor ∆S on S. If X = ∪X ′

i is
another (finite) cover of X by relatively compact Stein open subsets of X and
if ∆′

S is another Q-divisor on S defined as above using the cover {X ′
i}, then

from our arguments above it follows that, for any i, ∆′
S|S∩X′

i∩Xj
= ∆S|S∩X′

i∩Xj

for all j. In particular, ∆′
S = ∆S, i.e. ∆S is independent of the choice of the

cover of X .
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Next we will prove rest of the claims under the additional assumption thatX
is Q-factorial and then deduce the general claim at the end. Assume therefore,
for the time being that X is Q-factorial.

Observe that the exactness of the sequence (5.2) can be checked locally
on X . Moreover, notice that in order to produce a smooth big open subset
S0 ⊂ S and an integer m > 0 satisfying the isomorphism in (5.3), it is enough
to work on a finite open cover of X , and since X is relatively compact, it
can be covered by finitely many relatively compact Stein open subsets. Thus
from now on we assume that X itself is a relatively compact Stein space. We
note here that X is no longer Q-factorial (as Q-factoriality is not an analytic
local property), however, KX , S and B are all Q-Cartier and L is represented
by an effective Q-Cartier Z-divisor, say D, i.e. L ∼= OX(D); we may further
assume here that D does not contain S in its support. In particular, we have
L(KX) = OX(KX+D) and L(KX+S) ∼= OX(KX+S+D), where KX+D and
KX +S+D are both Q-Cartier Weil divisors. Note that since (X,S+B+β)
is gplt, by Lemma 5.3, S is normal and (X,S) is plt. Let Θ be an effective
Q-divisor on S such that (KX + S)|S = KS + Θ. Then Θ ≤ BS, and thus by
cutting down X by general hyperplanes it follows from [HW19, Lemma 3.3]
that ∆S ≤ Θ ≤ BS.

Now consider the following exact sequence

(5.5) 0 → OX(KX +D) → OX(KX + S +D) → E → 0.

By Lemma 5.4, OX(KX +D) and OX(KX +S+D) are Cohen-Macaulay, and
hence so is E by [Kol13, Corollary 2.62]. Thus by [Har80, Proposition 1.3], E
is a reflexive sheaf on S of rank 1.

Let µ : X ′ → X be a log resolution of (X,S +D) and S ′ := µ−1
∗ S. Let BX′

be a Q-divisor on X ′ defined by the equation.

KX′ + S ′ +BX′ = µ∗(KX + S).

Note that since µ : X ′ → X is projective, KX′ is represented by a Weil
divisor. Moreover, since (X,S) is plt, ⌊BX′⌋ ≤ 0, and it follows easily that
⌈µ∗D⌉ ≥ ⌊BX′ + µ∗D⌋. Thus

KX′ + S ′ + ⌈µ∗D⌉ ≥ ⌊KX′ + S ′ +BX′ + µ∗D⌋ = ⌊µ∗(KX + S +D)⌋, and

KX′ + ⌈µ∗D⌉ ≥ ⌊KX′ +BX′ + µ∗D⌋ ≥ ⌊µ∗(KX +D)⌋.

It follows (see for example [Das21, Lemma 3.2]) that

µ∗OX′(KX′ + S ′ + ⌈µ∗D⌉) = OX(KX + S +D), and

µ∗OX′(KX′ + ⌈µ∗D⌉) = OX(KX +D).

Let G′ := KS′ + ⌈µ∗D⌉|S′. Then we have the following exact sequence

0 → OX′(KX′ + ⌈µ∗D⌉) → OX′(KX′ + S ′ + ⌈µ∗D⌉) → OS′(G′) → 0.
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Since KX′+⌈µ∗D⌉ ≡X KX′ +{−µ∗D}, where (X ′, {−µ∗D}) is klt (as µ∗D has
SNC support), and µ is bimeromorphic, by the relative Kawamata-Viehweg
vanishing theorem (see Lemma 5.1), we have R1µ∗OX′(KX′ + ⌈µ∗D⌉) = 0.
Thus applying µ∗, we obtain an exact sequence

(5.6) 0 → OX(KX +D) → OX(KX + S +D) → (µ|S′)∗OS′(G′) → 0.

Now let G := (µ|S′)∗G′ = (µ|S′)∗(KS′+{−µ∗D}|S′+µ∗D|S′) = KS+∆S+D|S.
We will now proceed to show the isomorphism (5.3). To that end first observe
that, since S is normal, it is smooth in codimension 1, and since E is reflexive,
it is locally free in codimension 1. Hence, there is a big open subset S0 ⊂ S
such that S0 is smooth, µ|S′ : S ′ → S is an isomorphism over S0, and E|S0 is
locally free. Recall that µ : X ′ → X is given by a sequence of blow ups along
smooth centers. Let X0 ⊂ X be the open subset of X obtained by removing
the images of the exceptional divisors of µ whose centers have codimension ≥ 3
in X . Thus, over X0, µ is given by a sequence of blow ups of smooth centers of
codimension 2. Furthermore, removing the closed analytic subset S \ S0 of X
(which has comdim ≥ 3 in X) from X0 we may assume that S0 = S ∩X0. By
the classification of plt surface singularities it follows that we may also assume
that there is an integer m > 0 such that mKX , mS and mD are Cartier on X0.
Now from (5.5) and (5.6) it follows that E ∼= (µ|S′)∗OS′(G′). Moreover, since
µ|S′ is an isomorphism over S0 by our construction, the natural morphism
(µ|S′)∗OS′(G′) → OS(G) is an isomorphism over on S0. Therefore we have
E|S0

∼= OS(G)|S0; in particular, E ∼= OS(G), as both sheaves are reflexive and
S0 is a big open subset of S. Restricting the sequence (5.6) on X0 we see that
mG = m(KS +∆S +D|S) is a Cartier divisor on S0; in particular, m∆S is a
Z-divisor on S, as mD|S is Cartier. Thus

(E|S0)⊗m ∼= (OS(G)|S0)⊗m ∼= (L⊗m)|S0 ⊗OS(m(KS +∆S))|S0.

Finally, we address the general (non-Q-factorial) case. As argued in the
Q-factorial case, we may assume that X is a relatively compact Stein space.
Shrinking X further if necessary, we may assume by [DHY23, Theorem 2.19]
that there is exists a small bimeromorphic morphism µ : X ′ → X such that
X ′ is Q-factorial. We let KX′ + S ′ + B′ + βX′ = µ∗(KX + S + B + βX) and
L′(KX′) := (µ∗L(KX))∗∗ the reflexive hull of µ∗L(KX). Then L′(KX′) is a
Q-line bundle and L′(KX′) ≡X 0. By what we have seen above, there is a
short exact sequence

0 → L′(KX′) → L′(KX′ + S ′) → E ′ → 0

and a smooth big open subset S ′0 ⊂ S ′ such that E ′|S′0 and (L′⊗m)|S′0 are
locally free, m∆′

S is a Z-divisor, 0 ≤ ∆′
S ≤ Θ′ ≤ B′

S′ where (KX′ + S ′)|S′ =
KS′ +Θ′, Θ′ ≤ B′

S′, and

(E ′|S′0)⊗m ∼= (L′⊗m)|S′0 ⊗OS′0(m(KS′ +∆S′)).
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Since µ is small, µ∗L′(KX′) = L(KX) and µ∗L′(KX′ + S ′) = L(KX + S).
Note that, since X is Stein, by a similar argument as in the proof of [DHY23,
Theorem 2.19] it follows that there is aQ-divisor Γ′ onX ′ such that βX′ ≡X′ Γ′,
and (X ′, S ′ + B′ + Γ′) and (X,S + B + Γ) are both plt, where Γ := µ∗Γ′.
Moreover, we haveKX′+S ′+B′+Γ′ ≡ µ∗(KX+S+B+Γ). Finally, by a similar
argument as in [KM98, Proposition 2.43], we see that there is an effective Q-
divisor G on X such that (X,G) is klt. Let KX′ + G′ = µ∗(KX + G). Then
L′(KX′) ≡X′ 0 ≡X′ µ∗(KX +G) ≡X′ KX′ +G′, where (X ′, G′) is klt. Thus by
the relative Kawamata-Viehwewg vanishing theorem R1µ∗L′(KX′) = 0, and
so there is a short exact sequence

0 → L(KX) → L(KX + S) → µ∗E
′ → 0.

Arguing as above we see that L(KX) and L(KX+S) are both Cohen-Macaulay,
and hence so is E := µ∗E ′ = L(KX + S)|S. It follows, as explained above
that E is reflexive of rank 1. Since µ(Ex(µ)) has codimension ≥ 3, S0 :=
S \

(
µ
(
Ex(µ) ∪

(
S ′ \ S ′0

)))
is a smooth big open subset of S such that µ is

an isomorphism on a neighborhood of S0. Thus E|S0 and (L⊗m)|S0 are locally
free, m∆S := (µ|S′)∗(m∆′

S) is a Z-divisor, where 0 ≤ ∆S = (µ|S)∗∆′
S ≤

(µ|S)∗B′
S′ = BS, KS +BS + βS = (KX + S +B + β)|S, and

(E|S0)⊗m ∼= (L⊗m)|S0 ⊗OS0(m(KS +∆S)).

#

The following lemma (which is well known to experts) will be useful in our
proof of the general contraction Theorem 5.8.

Lemma 5.7. Let (X,B+β) be a relatively compact gklt pair and D1, D2, . . . , Dn

a collection of Q-divisors. Then there is a projective small bimeromorphic mor-
phism f : X ′ → X such that f ∗Di := f−1

∗ Di are Q-Cartier divisors on X ′ for
all 1 ≤ i ≤ n.

Proof. Note that by induction it is enough to prove the result for n = 1. Now
replacing X by a small relatively compact Stein neighborhood we may assume
by [DHY23, Theorem 2.16] that there is a projective small Q-factorization f :
X ′ → X and an effective R-divisor ∆′ such that βX′ ≡X ∆′, (X ′, B′+∆′) and
(X,B+∆) are both klt, andKX′+B′+∆′ = f ∗(KX+B+∆) , where∆ := f∗∆′.
Let D := nD1 so that D is a Z-divisor, and D′ := f−1

∗ D; then D′ is Q-Cartier.
Choose 0 < ϵ≪ 1 so that (X,B+∆+ ϵD) is klt. Shrinking X further we may
assume that KX +B +∆ ∼R 0. Then KX′ +B′ +∆′ + ϵD′ ∼R ϵD′. Next, we
run a D′-MMP over X as in [DHP24, Theorem 1.4] and then replacing X ′ by
the output of this MMP we may assume that D′ is nef over X . By the relative
base-point free theorem (see [Fuj22b, Theorem 8.1]) we have that D′ is semi-
ample over X . In particular, ⊕m≥0f∗OX′(mD′) is a finitely generated OX-
algebra. But since f is small, f∗OX′(mD′) = OX(mD). Thus ⊕m≥0OX(mD)
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is a finitely generated OX -algebra. Now, since X is a relatively compact space,
there is an analytic space W such that X ⊂ W is an open subset and X ⊂ W .
Let X ⊂ U ⊂ W be a small neighborhood of X such that U = ∪Ui is a
finite union of relatively compact Stein open subsets and ⊕m≥0OUi

(mD|Ui
)

are finitely generated OUi
-algebras. Then Y := Projan ⊕m≥0 OU(mD|U) is a

normal analytic variety such that the projection π : Y → U is a projective
small bimeromorphic morphism and π−1

∗ D is Q-Cartier (see [KM98, Lemma
6.2]). Let X ′′ := π−1(X) and g := π|X′′; then g : X ′′ → X is a projective
small bimeromorphic morphism of normal analytic varieties such that g−1

∗ D is
Q-Cartier. This completes our proof.

#

The following result is a generalization of Theorem 1.1 that works for gen-
eralized pairs.

Theorem 5.8. Let (X,S + B + β) be a generalized plt pair, where X is a
compact analytic variety such that S is Q-Cartier. Suppose that

(1) ⌊S +B⌋ = S is irreducible,
(2) there is a proper morphism π : S → T such that π∗OS = OT ,
(3) −(KX + S +B + βX)|S is relatively Kähler (over T ), and
(4) −S|S is π-ample.

Then there exists a bimeromorphic morphism p : X → Z such that p|S = π
and p|X\S is an isomorphism.

Proof. By adjunction (as in Lemma 5.3) we know that S is normal, (S,BS+βS)
is gklt and −(KS +BS + βS) is Kähler over T , where (KX + S +B + β)|S =
KS +BS + βS.

Choosing L = OX(−KX − (k + 1)S) for k ≥ 1 in eqn. (5.2) we get the
following short exact sequences

(5.7) 0 → OX(−(k + 1)S) → OX(−kS) → Ek → 0.

Since S is Q-Cartier, OX(S) is a Q-line bundle, and thus by Proposition 5.6,
Ek is a reflexive rank 1 sheaf on S. Let Sk be the thickening of S defined by
OSk

∼= OX/OX(−kS). Then we have the following short exact sequence of
sheaves of rings on S

0 → Ek → OSk+1
→ OSk

→ 0.

We can then consider the corresponding long exact sequence of sheaves of rings
on T obtained by pushforward (note that identifying the topological spaces of
the thickenings |Sk| = |S|, we may regard π : |Sk| → |T | as a morphism of
topological spaces). We claim that:

Claim 5.9. R1π∗Ek = 0, and so π∗OSk+1
→ π∗OSk

is surjective for all k ≥ 1.
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Grant this for the time being. Since π∗OSk+1
→ π∗OSk

is surjective for k ≥ 1,
we have inclusions Tk ↪→ Tk+1, where Tk := Specan(π∗OSk

). Since π∗OS1
=

π∗OS = OT , the Tk define thickenings of T with underlying topological space
|T |. The natural isomorphisms H0(OTk

) ∼= H0(π∗OSk
) ∼= H0(OSk

) induce
morphisms of complex spaces πk : Sk → Tk (e.g. see [Har77, Exercise II.2.4]).
The induced composite morphisms Sk → Tk ↪→ Tk+1 factors as Sk → Sk+1 →
Tk+1. We would like to emphasize here that πk : Sk → Tk are morphisms of
non-reduced complex spaces for all k ≥ 1, not just maps of topological spaces.
Fix ℓ ≥ 1 such that A = ℓS = Sℓ is Cartier and let πA : A → Tℓ be the induced
morphism (here πA = πℓ).

Consider the following commutative diagram

(5.8) S = Ared
ϕ

!!

π

""

A

πA

""

T = (Tℓ)red
ψ

!! Tℓ.

We claim that OA(−A) is πA-ample. Indeed, since ϕ∗OA(−A) = OS(−ℓS|S)
is π-ample, and ψ is a proper finite morphism, ϕ∗OA(−A) is (πA ◦ ϕ)-ample.
Since ϕ : Ared → A is the reduction of nilpotent elements of OA, from an
argument similar to the proof of [Laz04, Proposition 1.2.16(i)] it follows that
OA(−A) is πA-ample.

Arguing as in the proof of Lemma 4.3, we will show the following.

Claim 5.10. Replacing A by a multiple, we may assume thatRiπA,∗OA(−kA) =
0 for all i, k ≥ 1.

By Theorem 4.2, it then follows that there exists a proper bimeromorphic
morphism p : X → Z such that p|X\A is an isomorphism and p|A = πA.
Finally, p|S = (p|A)|S = πA|S = π.

Proof of Claim 5.9. To check the claim, note that the vanishing R1π∗Ek =
0 can be checked locally on the base T , and hence we may assume that T
is a relatively compact Stein space. Since π is a projective morphism, it
follows that Ek = OS(Gk) for some Weil divisor Gk on S. By Proposition 5.6,
Gk ∼Q −kS|S − ∆k, where ∆k ≥ 0 is an effective Q-divisor on S such that
0 ≤ ∆k ≤ BS. (Note that with the notation of Proposition 5.6, ∆k = BS−∆S .)

If every component of BS is Q-Cartier, then ∆k is Q-Cartier and so is Gk.
Moreover, in this case we can also write

Gk ∼Q KS +BS −∆k + βS − (KS +BS + βS)− kS|S

so that (S, (BS−∆k)+βS) is gklt (by Lemma 5.3) and −(KS+BS+βS)−kS|S
is relatively Kähler over T , and hence the claim now follows from Lemma 5.1.
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Otherwise, since (S,BS+βS) is a relatively compact generalized klt pair, by
Lemma 5.7 there is a projective small bimeromorphic morphsim q : S̃ → S such
that every component of q−1

∗ BS is Q-Cartier. Let G̃k := q−1
∗ Gk, B̃S := q−1

∗ BS,
∆̃k := q−1

∗ ∆k so that KS̃ + B̃S − ∆̃k + βS̃ = q∗(KS + BS − ∆k + βS) and
Ẽk := OS̃(G̃k). Then

G̃k ∼Q KS̃ + B̃S − ∆̃k + βS̃ − q∗(KS +BS + βS + kS|S),

where (S̃, (B̃S − ∆̃k) +βS̃) is gklt and −q∗(KS +BS +βS + kS|S) is relatively
nef and big over T (hence also over S). By Lemma 5.1, Riq∗OS̃(G̃k) = 0 and
Ri(π ◦ q)∗OS̃(G̃k) = 0 for all i > 0. Since q is small, then q∗OS̃(G̃k) = OS(Gk),
and so by an easy spectral sequence argument we have

Riπ∗OS(Gk) = Riπ∗(q∗OS̃(G̃k)) = 0 for all i > 0.

#

Proof of Claim 5.10. Since the statement is local over Tℓ, replacing Tℓ by a
Stein open subset U and X by a neighborhood of π−1

A (U), we may assume
that Tℓ is Stein and the statement is equivalent to H i(A,OA(−kA)) = 0 for all
k > 0. Since OA(−A) is ample, by Serre vanishing, there is an integer k0 > 0
such that H i(A,OA(−kA)) = 0 for all k ≥ k0 and i > 0. For j ≥ 1, consider
the short exact sequence

0 → OA(−(k + j)A) → O(j+1)A(−kA) → OjA(−kA) → 0.

Proceeding by induction we get that H i(O(j+1)A(−kA)) = 0 for all k ≥ k0,
j ≥ 1, and i > 0. Replacing A by k0A, the claim now follows. #

#

Remark 5.11. Assume that we are in the settings of Theorem 5.8, and addition-
ally assume thatX is a Kähler space. Then the morphism p is projective (since
−S is relatively ample over Z), and Z is in Fujiki’s class C. Working locally
over Z, we may pick a Kähler form ω such that ω ≡Z −(KX+S+B+βX). Let
ν : X ′ → X be a log resolution of (X,S+B+β) and writeKX′+S ′+B′+βX′ =
ν∗(KX + S +B + βX), where [βX′ ] ∈ H1,1

BC(X
′) is nef. Then βX′ + ν∗ω is nu-

merically equivalent (over Z) to a nef and big R-divisor G′ ≥ 0 such that
KX + S +B +G = ν∗(KX′ + S ′ +B′ +G′) is plt. By the Base-point free the-
orem (see [Fuj22b, Theorem 8.1]) KZ +SZ +BZ +GZ = π∗(KX + S +B +G)
is plt and in particular has rational singularities. Then by [HP16, Lemma 3.4]
and [DHP24, Lemma 8.7], the image of p∗ : H1,1

BC(Z) → H1,1
BC(X) is given by

Im(p∗) = {α ∈ H1,1
BC(X) : α · C = 0, for all C ⊂ X curves s.t. p(C) = pt}.

The next result shows that flips for generalized pairs exist in all dimensions.
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Theorem 5.12. Let (X,B + β) be a Q-factorial gdlt pair, where X is a
compact analytic variety belonging to Fujiki’s class C, and f : X → Z a
flipping contraction. Then the flip of f exists.

Recall that a flipping contraction f : X → Z is a small bimeromorphic
morphism such that ρ(X/Z) = 1 and −(KX +B+βX) is Kähler over Z. The
corresponding flip (if it exists) is a small bimeromorphic morphism f+ : X+ →
Z such that ρ(X+/Z) = 1 and KX+ + B+ + βX+ is is Kähler over Z, where
B+ is the strict transform of B.

Proof. Replacing B by (1 − ϵ)B for some 0 < ϵ < 1, we may assume that
(X,B + β) is gklt. Let ν : X ′ → X be a log resolution of (X,B + β) such
that f ◦ ν is a projective morphism and KX′ +B′ +βX′ = ν∗(KX +B +βX).
Let βX′ + E = ν∗βX , then E ≥ 0 is an effective R-divisor by the negativity
lemma. Since ρ(X/Z) = 1, it follows that if KX + B ̸≡Z 0, then X → Z is
projective and βX ≡Z λ(KX + B) for some λ ∈ R. For any point z ∈ Z we
fix a neighborhood z ∈ W ⊂ Z such that W is relatively compact, Stein and
satisfies Property (P) (see [DHY23, Definition 2.17 and Remark 2.18]). Let
XW = f−1(W ), then we may assume that KXW

is a Q-Cartier divisor and we
let D := λ(KXW

+ BW ) where BW = B|XW
. We also let X ′

W = ν−1(XW ),
B′

W = B′|X′

W
, EW = E|X′

W
and D′ := −ν∗WD − EW . Then D′ ≡W βX′

W

is nef and big over W . Since D′ ≡W βX′

W
is nef and big over W , we may

assume that D′ ≡W ∆′
W ≥ 0 so that (X ′

W , B′
W + ∆′

W ) is sub-klt, and hence
(XW , BW + ∆W ) is klt, where BW + ∆W := νW,∗(B′

W + ∆′
W ). But then the

relative log canonical model (X+
W , B+

W + ∆+
W ) of (XW , BW + ∆W ) exists by

[DHP24, Theorem 1.3] and [Fuj22b, Theorem 1.8], and it is the relative log
canonical model of (XW , BW +βW ). Since these relative log canonical models
are unique by [DHY23, Lemma 2.12(3)], they glue together, and we obtain a
relative log canonical model (X+, B+ + β) of (X,B + β) over Z.

Suppose now that KX +B ≡Z 0. Then KZ +BZ := f∗(KX +B) is klt and
Z has rational singularities. Fix z ∈ Z, we will construct the flip locally over a
neighborhood of z. We may assume that a resolution ν : X ′ → X is projective
over Z and X ′

z is a divisor with simple normal crossing support. Let f ′ = f ◦ν.
Since Z has rational singularities, from the short exact sequence ([HP16, §3,
eqn. (2)])

0 → R → OX′ → HX′ → 0

it follows that R1f ′
∗HX′ → R2f ′

∗R is an isomorphism. Note that R2f ′
∗R

∼=
R2f ′

∗Z⊗ZR by the universal coefficient theorem, as f ′ is proper. Now consider
the class [βX′ ] ∈ H1,1

BC(X
′) ∼= H1(HX′). By [KM92, Lemma 12.1.1], there is a

neighborhood z ∈ W ⊂ Z and a R-divisor D′
W on X ′

W such that the images of
β′

W := βX′ |X′

W
and D′

W in R2f ′
∗R coincide. But then β′

W ≡W D′
W . Shrinking

W , we may assume that it is relatively compact, Stein and satisfies Property
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(P). We now argue as above and construct the flip X !!" X+ locally over Z
and then glue these together. #

Remark 5.13. Even though it is not clear that the flipping and flipped contrac-
tions are projective over Z, the proof shows that they are locally projective
over Z.

We will also need the following technical alternate version of Theorem 5.12.

Theorem 5.14. Let f : X → Z be a small proper bimeromorphic morphism of
normal relatively compact analytic varieties in Fujiki’s class C. Let (X,B+β)
be a gdlt pair, ⌊B⌋ is Q-Cartier, and KX + B + βX ≡Z −G, where G is an
R-Cartier divisor. Then there exists f+ : X+ → Z a small bimeromorphic
morphism such that KX+ +B++βX+ is Kähler over Z. We say that f ′ is the
flip of f .

Proof. Replacing B by B − ϵ⌊B⌋ for some 0 < ϵ < 1, we may assume that
(X,B + β) is gklt. By standard arguments, it is easy to see that it suffices
to construct the flip f ′ locally over Z and hence we may assume that Z is
relatively compact and Stein.

Let ν : X ′ → X be a log resolution of (X,B + β) such that f ◦ ν is a
projective morphism and KX′ +B′ + βX′ = ν∗(KX +B +βX). Since βX′ ≡Z

−(KX′ + B′ + ν∗G) is nef and big (over Z), then −(KX′ + B′ + ν∗G) ≡Z ∆′

where (X ′, B′ + ∆′) is sub-klt. If ∆ = ν∗∆′, then (X,B + ∆) is klt and it
suffices to set X+ := ProjZR(X,KX +B +∆) by [DHP24, Theorem 1.3].

#

Proof of Theorem 1.1. This follows immediately from Theorems 5.8 and 5.12.
#

6. Existence of flips and divisorial contractions in dimension 3

Suppose that X is a normal compact analytic variety in Fujiki’s class C,
and α ∈ H1,1

BC(X) is nef and big but not Kähler, then by [DHP24, Theorem
2.30], Null(α) is non-empty. Recall that Null(α) is the union of (positive
dimensional) analytic subvarieties Z ⊂ X such that αdimZ · Z = 0. If X is
Kähler, then from Lemma 3.5 and Theorem 3.6 it follows that Null(α) is a
closed analytic subset of X . Suppose that α⊥ ∩ NA(X) = R is an extremal
ray, then we say that R is divisorial if dimNull(α) = dimX − 1 (i.e. Null(α)
contains a divisor) and R is of flipping type if dimNull(α) < dimX − 1 (i.e.
Null(α) contains no divisors). If α = [KX + B + βX + ω], where (X,B + β)
is a glc pair and ω is Kähler form, then it is expected that Null(α) is given a
by the union of all curves C such that [C] ∈ R, i.e. α · C = 0.

The result below shows that flipping contractions and flips exist in dimension
3 for strongly Q-factorial pairs.
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Definition 6.1. Let X be a normal compact analytic variety. Then X is
called strongly Q-factorial if for every reflexive sheaf L of rank 1, there is a
positive integer m ∈ Z+ such that L[m] := (L⊗m)∗∗ is a line bundle.

Note that complex manifolds are strongly Q-factorial, and this property is
preserved under the steps of MMP, for more details see Lemmas 2.3–2.5 of
[DH20].

Theorem 6.2. Let (X,B) be a strongly Q-factorial compact Kähler 3-fold klt
pair such that

(1) KX +B is pseudo-effective,
(2) α = [KX +B + β] is nef and big for some Kähler form β, and
(3) α⊥ ∩ NA(X) = R is an extremal ray of flipping type.

Then the flipping contraction f : X → Z and the flip X !!" X+ exist, and
there is a Kähler class αZ on Z such that α = f ∗αZ .

Proof. Let ν : X ′ → X be a log resolution of (X,B). We may assume that
α′ := ν∗α = ω′ + G′, where G′ ≥ 0 is ν-exceptional and ω′ is a Kähler
class (see the arguments in the proof of Proposition 4.5). Let ω′ := ω′ (see
Subsection 3.11), and ∆′ := ν−1

∗ B + Ex(ν), then (X ′,∆′) is dlt and we may
write KX′ +∆′ = ν∗(KX +B) +E, where E ≥ 0 and Supp(E) = Ex(ν). Note
that KX′ + ∆′ + tω′ is Kähler for t ≫ 0. Thus the following hypothesis are
satisfied:

(1) α′ is nef and ω′ is a modified Kähler class,
(2) α′ = ω′ +G′, where G′ ≥ 0 is supported on ⌊∆′⌋,
(3) KX′ +∆′ + tω′ + aα′ is nef for some t > 0 and a > 0,
(4) (X ′,∆′ + tω′) is gdlt, and
(5) X ′ is strongly Q-factorial.

Note that even though ω′ is a Kähler class here, in the rest of proof we will
only use the modified Kähler property of ω′, which is preserved by steps of the
minimal model program.

If S ′ is any component of ⌊∆′⌋, then by adjunction we can write

KS′ +∆S′ + tω′
S′ = (KX′ +∆′ + tω′

X′)|S′,

where ∆S′ := DiffS′(∆′). Then (S ′,∆S′) is a dlt surface and ω′
S′ = ω′

X′ |S′ is a
big class, since ω′

X′ is a modified Kähler class.
Let αS′ := α′|S′ so that αS′ is nef and define

τS′ := inf{s ≥ 0 | KS′ +∆S′ + sωS′ + aαS′ is nef for some a > 0}.

Claim 6.3. If τS′ > 0, then KS′ + ∆S′ + τS′ωS′ + a′αS′ is nef for a′ ≫ 0 and
there is a (KS′ +∆S′)-negative extremal ray RS′ of NA(S ′) such that

(KS′ +∆S′ + τS′ωS′) · RS′ = αS′ · RS′ = 0.
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Proof. Since ωS′ is big and τS′ > 0, then there are finitely many (KS′ +∆S′ +
τS′

2 ωS′)-negative extremal rays in NA(S ′) (see [DHY23, Corollary 2.32]). Let
Σ1, . . . ,Σk be curves that span those rays and let

Λ := {i : αS′ · Σi = 0 for some 1 ≤ i ≤ k}.

We define

σS′ := min
{
s ≥

τS′

2
| (KS′ +∆S′ + sωS′) · Σi ≥ 0 for all i ∈ Λ

}
.

If Λ = ∅, i.e. αS′ · Σi > 0 for i = 1, . . . , k, then we define σS′ := τS′

2 . Clearly
σS′ ≤ τS′ and if σS′ = τS′ , then there is a curve Σi for some i ∈ Λ such that
(KS′+∆S′+τS′ωS′)·Σi = αS′ ·Σi = 0. Since Σi is (KS′+∆S′+ τS′

2 ωS′)-negative,
it follows that (KS′ +∆S′) · Σi < 0 and the claim holds. Therefore, it suffices
to show that σS′ < τS′ is impossible. To the contrary assume that σS′ < τS′ .
Then for a′ ≫ 0 we have

(KS′ +∆S′ + σS′ωS′ + a′αS′) · Σi ≥ 0 for i = 1, . . . , k.

For 0 < ϵ ≪ 1 and a′ ≫ 0, we claim that KS′ +∆S′ + (τS′ − ϵ)ωS′ + a′αS′ is
non-negative on

NA(S ′)KS′+∆S′+
τ
S′

2
ωS′≥0.

Indeed, αS′ is nef and KS′ + ∆S′ + (τS′ − ϵ)ωS′ + a′αS′ is a convex linear
combination of KS′ +∆S′ + τS′

2 ωS′ and the nef classes KS′ +∆S′ + tωS′ + aαS′

and αS′. More specifically, if ηs,a := KS′ +∆S′ + sωS′ + aαS′ and λ := t−τS′+ϵ
t−τS′/2

,
then we can write

ητS′−ϵ,a′ = λητS′/2,0 + (1− λ)ηt,a + (a′ − (1− λ)a)αS′.

Note that λ > 0, 1 − λ = τS′/2−ϵ
t−τS′/2

> 0, since 0 < ϵ ≪ 1, and a′ − (1− λ)a ≥ 0

for a′ ≫ 0. Since KS′ + ∆S′ + (τS′ − ϵ)ωS′ + a′αS′ is non-negative on the Σi

for all 1 ≤ i ≤ k, it is non-negative on

NA(S ′) = NA(S ′)KS′+∆S′+
τ
S′

2
ωS′≥0 +

k∑

i=1

R+[Σi].

Thus KS′ + ∆S′ + (τS′ − ϵ)ωS′ + a′αS′ is nef, which is a contradiction to the
definition of τS′ , and the claim follows. Note that KS′ +∆S′ + τS′ωS′ + a′αS′

is nef for all a′ ≫ 0, as αS′ is nef. #

Let τ := max{τS′} as S ′ runs through all the components of ⌊∆′⌋. Then
KS′ +∆S′ + τωS′ + a′αS′ is nef for each component S ′ of ⌊∆′⌋ and a′ ≫ 0, as
KS′ +∆S′ + tωS′ +a′αS′ is nef and τS′ ≤ τ ≤ t for every component S ′ of ⌊∆′⌋.

Claim 6.4. If τ > 0, then KX′ +∆′ + τω′ + aα′ is nef for some a > 0.
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Proof. Suppose that KX′ +∆′ + τω′ + a′α′ is not nef for a given a′ ≫ 0, then
by [DHP24, Theorem 2.36 and Remark 2.37] there is a subvariety Z ′ ⊂ X ′

such that (KX′ +∆′ + τω′ + a′α′)|Z′ is not pseudo-effective. Since

KX′ +∆′ + τω′ + a′α′ ≡ KX′ +∆′ + tω′ + (a′ − t+ τ)α′ + (t− τ)G′

and KX′ +∆′ + tω′ + (a′ − t + τ)α′ is nef for a′ ≫ 0, then Z ′ is contained in
the support of G′ and hence in a component S ′ of ⌊∆′⌋ and this contradicts
what we have shown above (see Claim 6.3). #

If τ > 0, then from Claim 6.3 it follows that there is a component S ′

of ⌊∆′⌋ and a (KS′ + ∆S′)-negative extremal ray Ri = R+ · [Σi] such that
(KX′ +∆′ + τω′) · Ri = α′ · Ri = 0. Let π : S ′ → T denote the corresponding
contraction. Since ω′ · Ri > 0 and α′ · Ri = (ω′ + G′) · Ri = 0, it follows
that G′ · Σi < 0. Thus Σi is contained in a component of G′, say S ′′ such
that S ′′ · Σi < 0. Since Supp(G′) = ⌊∆′⌋, Σi is contained in a (KS′′ + ∆S′′)-
negative extremal face of NA(S ′′), where KS′′ + ∆S′′ := (KX′ + ∆′)|S′′. This
face contains a negative extremal ray R′′

i = R+ · [Σ′′
i ] such that S ′′ · R′′

i < 0.
Thus replacing S ′ by S ′′ and Ri by R′′

i we may assume that S ′ · Ri < 0, and
hence −S ′|S′ is π-ample. Now write ∆′ = S ′ + ∆′′ so that S ′ ̸⊂ Supp(∆′′).
Since (X ′,∆′ + ω′) is gdlt, for 0 < ϵ ≪ 1 we have (X ′, S ′ + (1 − ϵ)∆′′ + ω′)
is gplt and (KX′ + S ′ + (1− ϵ)∆′′ + ω′) ·Ri < 0. Thus by Theorem 5.8, there
exists a bimeromorphic morphism p : X ′ → Z ′ such that p|S′ = π and p|X′\S′

is an isomorphism.

Claim 6.5. The morphism p is either a divisorial or flipping contraction, and
in the latter case the corresponding flip exists.

Proof. Since −(KX′ +∆′) is p-ample, Z ′ has rational singularities by [DH20,
Lemma 2.44]. Let γ ∈ H1,1

BC(X
′) such that γ · Ri = 0, then γ · C = 0 for any

p-exceptional curve. This is because all p-exceptional curves are contained in
S ′ and ρ(S ′/T ) = 1. By [HP16, Lemma 3.3], there is a class γZ′ ∈ H1,1

BC(Z
′)

such that p∗γZ′ = γ. It follows that ρ(X ′/Z ′) = 1. This shows that p is
either a divisorial or flipping contraction. By Theorem 5.12, if it is a flipping
contraction, then the corresponding flip exists. #

We may then replace X ′ by the image of this flip or divisorial contraction.
Observe that, at this stage X ′ is in Fujiki’s class C and not necessarily Kähler,
however, by Lemma 3.18 the components of ⌊∆′⌋ are still Kähler surfaces with
Q-factorial rational singularities. So we can repeat the above arguments.

Claim 6.6. Fix 0 < ϵ ≪ 1. After finitely many steps, we obtain a bimeromor-
phic map φ : X ′ !!" X+ such that for any 0 < t ≤ ϵ

KX+ +∆+ + tω+ + aα+ = φ∗(KX′ +∆′ + tω′ + aα′)

is nef for some a > 0 (depending on t).
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Proof. Properties (1-5) stated at the beginning of our proof continue to be sat-
isfied after each flip or divisorial contraction. So we may repeat the procedure
obtaining an α′-trivial, (KX′+∆′)-minimal model program. Since termination
of flips holds by Theorem 3.19, after finitely many steps we may assume that
τ = 0. Thus we obtain an α′-trivial (KX′ + ∆′)-MMP X ′ !!" X+ such that
KX+ +∆+ + ϵω+ + aα+ is nef for some ϵ > 0, a > 0 and

inf{s ≥ 0 | KX+ +∆+ + sω+ + aα+ is nef for some a > 0} = 0.

The claim now follows easily by taking convex linear combinations. #

Let ψ : X !!" X+ and φ : X ′ !!" X+ be the induced bimeromorphic map,
U := X \ Null(α) and X ′

U := ν−1(U). Next we will show that every step of
this MMP is vertical over U .

Claim 6.7. The map φU =: φ|X′

U
is a proper bimeromorphic map defined over

U , i.e. there exist proper bimeromorphic morphisms X ′
U → U and X+

U → U
commuting with φU .

Proof. Suppose that X ′ =: X0 !!" X1 !!" . . . !!" Xn =: X+ is the MMP
obtained above and φi : X ′ !!" X i are the induced bimeromorphic maps.
Proceeding by induction, it suffices to show that if φi

U := φi|X′

U
: X ′

U !!" X i
U

is a proper bimeromorphic map defined over U , then so is φi+1
U . We will denote

by νiU : X i
U → U the corresponding proper morphism. Since X i !!" X i+1 is

an αi-trivial flip or divisorial contraction, if f i : X i → Z i is the corresponding
contraction, and C is a contracted curve, then αi · C = 0. Suppose that
CU := C ∩X i

U ̸= ∅. Let p : W → X ′, q : W → X i be the normalization of the
graph of φi. If CU is not νiU vertical, then let C ′ ⊂ W be a curve dominating
C so that q∗C ′ = dC for some d > 0. Then ν∗p∗C ′ ̸= 0 and so ν∗p∗C ′ · α ̸= 0
which is a contradiction since then

0 = C · αi =
1

d
C ′ · q∗αi = p∗(

1

d
C ′) · α′ = ν∗p∗(

1

d
C ′) · α ̸= 0.

Thus every such CU is νiU vertical. It follows that f i
U := f i|Xi

U
is a (proper

bimeromorphic) morphism over U and hence X i+1
U → U is a proper bimero-

morphic map over U .
#

Claim 6.8. The divisors contracted by φ : X ′ !!" X+ coincide with the set
of ν : X ′ → X exceptional divisors and hence ψ : X !!" X+ is a small
bimeromorphic map of strongly Q-factorial varieties.

Proof. We will first show that SuppN(KX′ +∆′ + aα′) = Ex(ν) for any a ≫
0. Recall that for any pseudo-effective (1, 1) class γ, N(γ) is defined as the
negative part of the Boucksom-Zariski decomposition of γ, see Definition 2.4.
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Now since α is big, KX +B+aα is big for a ≫ 0. Moreover, since KX′ +∆′+
aα′ = ν∗(KX +B + aα) +E, where Supp(E) = Ex(ν), from [DHY23, Lemma
A.5] it follows that SuppN(KX′ +∆′+aα′) ⊃ Ex(ν). Since α′ = G′+ω′ where
ω′ is Kähler and Supp(G′) = Ex(ν), ω∗ := ω′ + 1

a(KX′ +∆′) is also Kähler for
a ≫ 0 and so KX′ +∆′ + aα′ ≡ aω∗ + aG′. Thus SuppN(KX′ +∆′ + aα′) ⊂
Supp(N(G′)) ⊂ Ex(ν) and hence SuppN(KX′ + ∆′ + aα′) = Ex(ν) for any
a ≫ 0. Since ω′ is a modified Kähler class, SuppN(KX′ +∆′ + aα′ + ϵω′) =
Ex(ν) for all 0 < ϵ ≪ 1 (e.g. see the proof of [DHY23, Claim 3.18]). Since
φ : X ′ !!" X+ is a (KX′ +∆′ + ϵω′+ aα′)-MMP, then KX+ +∆+ + ϵω++ aα+

is nef, and by [DHY23, Theorem A.11], φ contracts Ex(ν). #

By [DH20, Lemma 2.32], ψ∗ : H1,1
BC(X) → H1,1

BC(X
+) is an isomorphism.

Let R⊥ ⊂ N1(X) be the codimension 1 subspace of classes γ ∈ N1(X) such
that γ · R = 0. Let W be the normalization of the graph of ψ : X !!" X+

and p : W → X and q : W → X+ the induced morphisms. Since ψ is not a
morphism, then there is a curve C̃ ⊂ W such that p∗C̃ = 0 and C+ = q∗C̃ ̸= 0.
It follows that α+ · C+ = 0. Let R+ ⊂ N1(X+) be the ray spanned by C+. If
γ ∈ R⊥, then ν∗γ ·Σ ≡ 0 for any curve Σ such that α′ ·Σ = 0 where α′ = ν∗α.
Since the minimal model programX ′ !!" X+ is α′-trivial, i.e. it only contracts
α′-trivial curves, it follows that it is also γ′ := ν∗γ-trivial and hence that
γ+ · C+ = 0 where γ+ = φ∗γ′ ∈ H1,1

BC(X
+). Therefore, ψ∗(R⊥) = (R+)⊥,

and hence every p-exceptional curve C̃ ′ satisfies q∗C̃ ′ ∈ R+. Since ψ∗ is an
isomorphism and (KX +B) ·R ̸= 0, then (KX+ +B+) ·R+ ̸= 0. Suppose that
(KX+ +B+) · R+ < 0, then (KX+ +B+ + tω+) · R+ < 0 for 0 < t ≪ 1. Since
α+ · R+ = 0, (KX+ + B+ + tω+ + aα+) · R+ < 0 for any a > 0, contradicting
Claim 6.6. Therefore (KX+ +B+) · R+ > 0.

Let η := α + δ(KX + B) for some 0 < δ ≪ 1 and η+ := ψ∗η ∈ H1,1
BC(X

+).
Consider E := p∗η−q∗η+, then we claim that−E is p-ample. Indeed, if C̃ ⊂ W
is a p-vertical curve, then q∗C̃ ̸= 0, and as we have seen above that [q∗C̃] ∈ R+,
so η+ · q∗C̃ > 0 and hence −E · C̃ > 0. It follows by the negativity lemma
that E ≥ 0 and the support of E contains Ex(p). But then Supp(E) = Ex(p).
Clearly Supp(E) ⊂ Ex(q), as ψ is an isomorphism in codimension 1. We claim
that Ex(q) = Supp(E) = Ex(p). Indeed, let C̃ ⊂ W be a q-vertical curve.
Then p∗C ̸= 0 and in fact p∗C ⊂ Null(α) as ψ : X !!" X+ is an isomorphism
on X \Null(α). Thus E · C̃ = η · p∗C̃ = (α+ δ(KX +B)) · p∗C̃ < 0, and hence
Ex(q) ⊂ Supp(E).

We will now show that −E|Supp(E) is ample. Let Ei be a component of
Ex(p) = Ex(q). We have Ci := p(Ei) and C+

i := q(Ei) are curves and θ :=
(p|Ei

, q|Ei
) : Ei → Ci × C+

i is finite. Let C̃i (resp. C̃+
i ) be a curve on Ei

dominating Ci × {x} (resp. {x} × C+
i ) for general x ∈ C+

i (resp. x ∈ Ci),
then q∗C̃i = 0 (resp. p∗C̃

+
i = 0). Thus [C+

i ] ∈ R+ and Ci · α = 0 so that
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[Ci] ∈ R. It follows that −η|C+
i
(resp. η|Ci

) is Kähler. Since θ is finite, then

−E|Ei
≡ (q∗η+ − p∗η)|Ei

= θ∗(−η|Ci
, η+|C+

i
) is ample and so −E|Supp(E) is

ample. Perturbing the coefficients of E slightly we may assume that E is a
Q-Cartier divisor. But then we can contract E to a point by Lemma 4.3.

Let g : W → Z be the induced bimeromorphic morphism, then we claim
that we have induced morphisms f : X → Z and f+ : X+ → Z. To this
end, if C ⊂ W is a q (respectively p) exceptional curve, then C is contained
in Supp(E) = Ex(p) = Ex(q). Since g contracts E to a point, then g∗C = 0
and so by the rigidity lemma X → Z and X+ → Z are morphisms.

Note that by construction f : X → Z contracts a non-empty set of α-trivial
curves (i.e. curves in R). We claim that in fact f contracts every curve in R.
Let C ⊂ X be a curve in R so that α · C = 0. If C is not contracted by f ,
then p is an isomorphism over the general points of C and we let C̃ := p−1

∗ C
and C+ := q∗C̃. Then α+ · C+ = 0. Since KX+ + B+ + tω+ + aα+ is nef for
any 0 < t ≪ 1 and some a ≫ 0, then

(KX+ +B+ + tω+) · C+ = (KX+ +B+ + tω+ + aα+) · C+ ≥ 0

and taking the limit we have (KX+ +B+) · C+ ≥ 0. It follows that

0 ≤ E · C̃ = (p∗η − q∗η+) · C̃ = (KX +B) · C − (KX+ +B+) · C+ < 0.

This is impossible and so C is contracted by f . It follows that f is (KX +B)-
negative. By [DH20, Lemma 2.44], Z has rational singularities and by [HP16,
Lemma 3.3] f ∗H1,1

BC(Z) = R⊥ ⊂ H1,1
BC(X). Thus ρ(X/Z) = 1. Finally, since f

contracts the set of α-trivial curves, we have α = f ∗αZ .
We will now check that αZ is a Kähler class. To this end, let V ⊂ Z be a

positive dimensional subvariety of Z. Note that dim f(Ex(f)) = 0. Let V ′ be
the strict transform of V . Then (αZ)dimV · V = αdimV · V ′ > 0 and V ′ is not
contained in Null(α). Thus from [DHP24, Theorem 2.29] it follows that αZ

is a Kähler class. Since ψ∗ is an isomorphism, then ρ(X+/Z) = 1. We have
already seen that f+ contracts a (KX+ +B+)-positive curve and so KX+ +B+

is f+-ample. Finally, it is easy to see that (f+)∗αZ + δ(KX+ +∆+) is Kähler
for 0 < δ ≪ 1, and hence X+ is a Kähler 3-fold.

#

Next we prove the existence of divisorial contractions in dimension 3 for
strongly Q-factorial pairs.

Theorem 6.9. Let (X,B) be a strongly Q-factorial compact Kähler 3-fold klt
pair such that

(1) KX +B is pseudo-effective,
(2) α = [KX +B + β] is nef and big for some Kähler form β, and
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(3) α⊥ ∩ NA(X) = R is an extremal ray of divisorial type.

Then the divisorial contraction f : X → Z exists and there is a Kähler class
αZ on Z such that α = f ∗αZ .

Proof. Recall that by definition α⊥∩NA(X) = R is an extremal ray of diviso-
rial type if and only if dimNull(α) = 2. We begin by observing the following.

Claim 6.10. There is an irreducible divisor S such that Null(α) = S, S is a
Moishezon surface covered by family of α-trivial curves and S · R < 0.

Proof. Let ω be a Kähler class on X . Since α is big, α−ϵω is big for 0 < ϵ≪ 1,
and we have the Boucksom-Zariski decomposition α− ϵω =

∑
sjSj +P where

P is modified nef and big and in particular the restriction of P to any surface
is pseudo-effective. Let S ⊂ Null(α) be a divisor (a surface) and S ′ → S the
minimal resolution. Then α|S′ is nef but not big (as (α|S′)2 = 0), therefore S
coincides with some component of

∑
sjSj , which for simplicity we denote by

S1. We claim that S is Moishezon. To this end, consider b = multS(B) and
(
1 +

1− b

s1

)
α|S′ =

(
KX +B + β +

(
1− b

s1

)(∑
sjSj + P + ϵω

)) ∣∣∣
S′

.

Since multS
(
B + 1−b

s1

∑
sjSj

)
= 1, we have

(
KX +B + 1−b

s1

∑
sjSj

) ∣∣
S′

=

KS′ +BS′ where BS′ ≥ 0. Then

(6.1)

(
1 +

1− b

s1

)
α|S′ = KS′ +BS′ +

(
β +

1− b

s1
(P + ϵω)

) ∣∣∣
S′

.

Since BS′ ≥ 0, P |S′ is pseudo-effective, (β + 1−b
s1

(P + ϵω))|S′ is big and α|S′ is
not big, it follows that KS′ is not pseudo-effective, and hence S ′ is projective
by classification and H2(S ′,OS′) = 0 (e.g. see [DH20, Lemma 2.43]). In
particular, S is Moishezon.

We claim that S is covered by an analytic family of α-trivial curves {Ct}.
Fix AS′ an ample divisor on S ′. Since H2(S ′,OS′) = 0, α|S′ is represented by
an R-divisor. Since α|S′ is nef, it is in the cone NM 1(S ′) of movable curves.
By [Ara10, Theorem 1.3] and [Das20, Theorem 1.9], for any ϵ > 0, we have a
decomposition

α|S′ ≡ Cϵ +
k∑

i=1

λiMi,

where Cϵ ∈ (NE1(S ′)(KS′)≥0+NM 1(S ′))(KS′+ϵAS′)≥0, λi > 0, (KS′+ϵAS′)·Cϵ ≥
0 and the Mi are movable curves. If α|S′ ·Mi = 0, then the pushforward of Mi

onto S defines a movable curve on S which is α-trivial and the claim follows.
Therefore, we may assume that α|S′ · Mi > 0 for all i. Now, 0 = (α|S′)2 =
α|S′ · (Cϵ +

∑k
i=1 λiMi) and since α|S′ is nef then k = 0, i.e. α|S′ ≡ Cϵ.
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But then α|S′ · (KS′ + ϵAS′) ≥ 0. Taking the limit as ϵ → 0, it follows that
α|S′ ·KS′ ≥ 0. Since α|S′ is nef, then α|S′ · γ ≥ 0 for any pseudo-effective class
γ. Thus α|S′ ·BS′ ≥ 0, α|S′ ·P |S′ ≥ 0, and α|S′ ·ω|S′ ≥ 0. It follows from (6.1)
and (α′|S′)2 = 0 that all these terms are equal to 0. But then α|Sν · ω|Sν = 0
where Sν → S is the normalization. Since ω|Sν is Kähler, then α|Sν ≡ 0. This
contradicts the inequality above α|S′ ·Mi > 0, and so the claim holds.

Let {Ct}t∈T be an analytic family of α-trivial curves on S covering S as
proved in the claim above. Then [Ct] ∈ R for all t ∈ T and we have

0 > −ϵω · Ct = (α− ϵω) · Ct =
(∑

sjSj + P
)
· Ct ≥ s1S · Ct

as Si · Ct ≥ 0 for i ̸= 1 and S = S1. Thus S · Ct < 0, and hence S · R < 0 as
R = R+ · [Ct]. In particular, if C is any curve with [C] ∈ R, then S · C < 0
and hence S = Null(α). #

Let b := multS(B) and ∆ := B + (1− b)S.

Claim 6.11. There exists a dlt model µ : X ′ → X of (X,∆). In particular

(1) (X ′,∆′) is Q-factorial and dlt, where ∆′ := µ−1
∗ ∆+ Ex(µ),

(2) KX′ +∆′ is nef over X so that µ∗(KX +∆)− (KX′ +∆′) ≥ 0, and
(3) KX′ +∆′ = µ∗(KX + B) + (1 − b)S ′ +

∑
ajEj , where S ′ = µ−1

∗ S and
aj > 0 for all j.

Proof. Let µ : X ′ → X be a projective log resolution and ∆′ := µ−1
∗ ∆+Ex(µ),

then (X ′,∆′) is dlt. We may run the (KX′ +∆′)-MMP over X (the existence
of this MMP is well known since dimX = 3 and µ is projective, but see also
[DHP24, Theorem 1.4] for the case dimX > 3). By [DO24, Theorem 3.3], we
may assume that the corresponding MMP terminates and replacing (X ′,∆′)
by the output of this MMP, we may assume that KX′ +∆′ is nef over X . By
the negativity lemma, µ∗(KX +∆)− (KX′ +∆′) ≥ 0 and so (1) and (2) hold.
(3) follows since (X,B) is klt.

#

We will now run the α′-trivial (KX′ + ∆′)-minimal model program, where
α′ = µ∗α. Note that if U := X \ S = X \ Null(α), then (U,∆|U) is klt and
so X ′

U → U is a small bimeromorphic (KX′ +∆′)-trivial morphism. Since the
µ-exceptional locus is divisorial, then X ′

U → U is an isomorphism. If C is a
curve not contained in W ′ := X ′ \X ′

U , then α
′ · C > 0. It follows easily that

every α′-trivial step of the (KX′ +∆′)-MMP will involve only curves contained
in the complement of X ′

U , and hence the restriction of this MMP to X ′
U is an

isomorphism.
Let n(α) be the nef dimension of the restriction of α to the normalization

Sν → S, see [BCE+02, Definition 2.7]. Since S is a Moishezon surface covered
by a family of α-trivial curves (as shown above), it follows that 0 ≤ n(α) ≤ 1.
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If n(α) = 0, then α|Sν ≡ 0 and if n(α) = 1, then the nef reduction map Sν → T
is a morphism to a smooth (projective) curve (see [BCE+02, 2.4.4]). Observe
that if n(α) = 0, then the nef reduction map Sν → T is a morphism to a
point and in this case the existence of the divisorial contraction f : X → Z
follows from Corollary 4.4. We however give an alternate argument below
which proves both of the cases: n(α) = 0 and n(α) = 1, simultaneously.

If γ ∈ H1,1
BC(X), then we will say that γ ≡α 0 if and only if γ · C = 0 for

every α-trivial curve C ⊂ X , i.e. γ · C = 0 whenever α · C = 0 for a curve
C ⊂ X . We have that (KX + B − sS) · R = 0 for some s > 0 (as both
KX +B and S are R-negative), and hence KX +B − sS ≡α 0. It follows that
µ∗(KX +B − sS) ≡α′ 0 and hence that

KX′ +∆′ ≡α′ Θ′ := (1− b)S ′ +
∑

ajEj + sµ∗S ≥ 0,

where Supp(Θ′) = ⌊∆′⌋.

Claim 6.12. We can run the α′-trivial (KX′ +∆′)-MMP

X ′ = X0
!!" X1

!!" . . . !!" Xm

so that if φi : X ′ !!" X i, then

(1) each flip and divisorial contraction is α′-trivial, hence αi = φi
∗α

′ is nef,
(2) φi|X′

U
is an isomorphism over U and we denote by X i

U its image,
(3) (X i,∆i := φi

∗∆
′) is dlt, X i is strongly Q-factorial, and ⌊∆i⌋ ⊂ W i :=

X i \X i
U ,

(4) KXi +∆i −Θi ≡αi 0 and Supp(Θi) = ⌊∆i⌋, and
(5) if Sm is a component of ⌊∆m⌋ then every KSm+∆Sm := (KXm+∆m)|Sm

negative extremal ray Rm is αSm := αXm |Sm-positive, i.e. αSm ·Rm > 0.

Proof. We will proceed by induction on i. Assume that we have already con-
structed X ′ !!" X1 !!" . . . !!" X i with the required properties. Suppose that
there is a component Si of ⌊∆i⌋ and a KSi + ∆Si := (KXi + ∆i)|Si-negative
extremal ray Ri = R+[Σi] which is αSi := αXi |Si non-positive and hence triv-
ial, i.e. αSi · Ri = 0. Since KXi + ∆i ≡αi Θi and Supp(Θi) = ⌊∆i⌋, then
Θi · Σi < 0 and hence, there is a component S̄i of ⌊∆i⌋ such that S̄i · Σi < 0
and so Σi ⊂ S̄i. Clearly Σi is also KS̄i +∆S̄i := (KXi + ∆i)|S̄i-negative and
hence is contained in an αS̄i-trivial (KS̄i + ∆S̄i)-negative extremal face. Let
Σ̄i be a curve spanning an extremal ray in this face, we may assume that
S̄i · Σ̄i < 0. Let π : S̄i → V be the corresponding extremal contraction, then
−S̄i and −(KS̄i + ∆S̄i) are relatively ample over V and so by Theorem 5.8
there is a contraction p : X i → Z i such that p|S̄i = π and p|Xi\S̄i an isomor-
phism. If p is a flipping contraction, then the flip exists by Theorem 5.12.
We let X i !!" X i+1 be the induced bimeromorphism (be it a flip or divisorial
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contraction). By construction p is αi-trivial and p|Xi
U
is the identity. In par-

ticular, since Z i has rational singularities (this follows from [DH20, Lemma
2.44]), αi ≡ p∗αZi where αZi is nef. (1-3)i+1 are easily seen to hold. Since
KXi +∆i −Θi ≡αi 0 and p is αi-trivial, it also follows that

KZi +∆Zi −ΘZi := p∗(KXi +∆i −Θi) ≡α
Zi

0

and hence, pulling back to X i+1 we have KXi+1 + ∆i+1 − Θi+1 ≡αi+1 0 and
(4)i+1 holds. By termination of flips Theorem 3.19, after finitely many steps,
we obtain X !!" Xm such that (5) holds. #

Now recall the nef reduction morphism Sν → T . Note that if P is a com-
ponent of µ∗S, then there is an induced morphism σP : P → T such that
for any curve C on P we have α′ · C = 0 if and only if C is vertical over T
i.e. σP,∗C = 0. Note that if n(α|Sν) = 0, then T is a point and every curve
is vertical over T . Since φi : X ′ !!" X i is α′-trivial, it follows easily that if
φi
∗P = P i ̸= 0, then the induced bimeromorphic map P !!" P i is defined over

T and in particular P i !!" T is a morphism.

Claim 6.13. If n(α|Sν) = 0, then the map φm : X ′ !!" Xm contracts µ∗S
and if n(α|Sν) = 1, then the map φm : X ′ !!" Xm contracts S ′ and every
component Ej of µ∗S such that n(α′|Ej

) = 1. Thus if n(α|Sν) = 0, then
φ : X !!" Xm is a bimeromorphic map that contracts S (and no other divisors)
and if n(α|Sν) = 1, then φ : X !!" Xm contracts only S and may extract some
divisors of X ′ such that n(α′|Ej

) = 0.

Proof. Recall that F ′ ≥ 0 is a µ-exceptional Q-divisor such that −F ′ is µ-
ample. Let Ξ′ := µ∗S + ϵF ′ for 0 < ϵ ≪ 1. We claim that for t ≫ 0 we
have that (−Ξ′ + tα′)|S′ and (−Ξ′ + tα′)|Ej

are Kähler for every component
Ej of Ex(µ). To see that (−Ξ′ + tα′)|S′ is Kähler, note that −S|Sν ≡α|Sν

−1
s (KX + B)|Sν ≡α|Sν

1
sβ|Sν is ample over T . Now if dimT = 0, then −S|Sν

ample and α|Sν ≡ 0, thus (−S + tα)|Sν is Kähler for any t > 0. If dimT = 1,
then α|Sν = ϕ∗γ for some Kähler class γ on T (see [BCE+02, Proposition
2.11]), where ϕ : Sν → T is the nef reduction map. Thus (−S + tα)|Sν is
Kähler for t ≫ 0. Since −F ′|S′ is µ|S′-ample and hence ample over Sν , we
have (−µ∗S + tα′ − ϵF ′)|S′ is Kähler for 0 < ϵ≪ 1. To see that (−Ξ′ + tα′)|Ej

is Kähler, we consider 2 cases. If µ(Ej) is a point, then (−µ∗S + tα′)|Ej
≡ 0

and (−ϵF ′)|Ej
is Kähler and the claim follows. Therefore, we may assume that

the normalization Vj → µ(Ej) is a smooth curve. If α|Vj
≡ 0, then µ(Ej) is

a curve in R and hence −S|Vj
is ample and so (−µ∗S − ϵF ′)|Ej

is ample for
0 < ϵ ≪ 1, and α′|Ej

≡ 0. The claim follows. Finally, if α|Vj
̸= 0, then α|Vj

is
Kähler so that (−S+tα)|Vj

is Kähler for t ≫ 0 and hence (−µ∗S+tα′−ϵF )|Ej

is Kähler for 0 < ϵ≪ 1 and the claim follows.
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We claim that φm is Ξ′ non-positive, i.e. if p : W → X ′ and q : W → Xm is
the normalization of the graph of φm, then we claim that p∗Ξ′− q∗(φm

∗ Ξ
′) ≥ 0.

Recall that p and q are isomorphisms over X ′
U = µ−1U = µ−1(X \ S), since

so is φm. We now check that −p∗Ξ′ is nef over Xm. To this end consider a
curve C on W such that q∗C = 0, then p∗C ̸= 0 is contained in Supp(µ∗S)
and α′ · p∗C = αm · q∗C = 0. But then −p∗Ξ′ · C = −Ξ′ · p∗C > 0, and in
particular, −p∗Ξ′ is nef over Xm. Let Ξm := q∗p∗Ξ′ = φm

∗ Ξ
′, then q∗Ξm − p∗Ξ′

is q-exceptional and q-nef so that by the negativity lemma, p∗Ξ′ − q∗Ξm ≥ 0;
this proves our claim.

Suppose now that n(α|Sν) = 0 and φm
∗ (µ

∗S) ̸= 0 (resp. n(α|Sν) = 1 and
there is a component E of S ′ +

∑
Ej such that n(α′|E) = 1 and Em :=

φm
∗ E ̸= 0). Let λ be the smallest constant such that Θm − λΞm ≤ 0 (resp.

multEm(Θm − λΞm) ≤ 0, where Em = φm
∗ E). Thus in both cases, there is

component E of S ′ +
∑

Ej such that multEm(Θm − λΞm) = 0, and there is a
family of αm-trivial curves {Cm

t } covering Em. We claim that (KXm +∆m) ·
Cm

t ≥ 0. If this is not the case, then

[Cm
t ] ∈ (αm)⊥ ∩NA(Em)KEm+∆Em<0,

where KEm+∆Em = (KXm+∆m)|Em. Since αm is nef, by the cone theorem on
Em, there is a (KEm + ∆Em)-negative αm-trivial extremal ray, contradicting
(5) above. If Ct is the strict transform of Cm

t on E = (φm)−1
∗ Em, then

0 ≥ (Θm−λΞm) ·Cm
t = (KXm +∆m−λΞm) ·Cm

t ≥ −λΞm ·Cm
t ≥ −λΞ′ ·Ct > 0

where the first inequality follows by our definition of λ, the second as (KXm +
∆m−Θm) ≡αm 0, the third was observed above, the fourth as p∗Ξ′−q∗Ξm ≥ 0
and multEm(p∗Ξ′ − q∗Ξm) = 0 and the last as (−Ξ′ + tα′)|E is ample. This is
the required contradiction and the claim is proven.

#

Claim 6.14. The map φm : X ′ !!" Xm contracts every component of µ∗S
dominating T , and hence if n(α) = 0, then φ : X !!" Xm is a bimeromorphic
map that contracts S (and no other divisors) and if n(α) = 1, then φ : X !!"

Xm contracts only S and may extract some divisors of X ′ which are contained
in µ−1(S) that do not dominate T .

Proof. Recall that F ′ ≥ 0 is a µ-exceptional Q-divisor such that −F ′ is µ-
ample. Since −S|Sν ≡α

−1
s (KX+B)|Sν is ample over T , then Ξ′ := µ∗S+ϵF ′ is

a Q-divisor such that −Ξ′|S′ and −Ξ′|Ej
are ample over T for every component

Ej of Ex(µ) and all 0 < ϵ ≪ 1.
We claim that φm is Ξ′ non-positive, i.e. if p : W → X ′ and q : W → Xm is

the normalization of the graph of φm, then we claim that p∗Ξ′− q∗(φm
∗ Ξ

′) ≥ 0.
Recall that p and q are isomorphisms over X ′

U = µ−1U = µ−1(X \ S), since
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so is φm. We now check that −p∗Ξ′ is nef over Xm. To this end con-
sider a curve C on W such that q∗C = 0, then p∗C ̸= 0 is contained in
Supp(µ∗S) and α′ · p∗C = αm · q∗C = 0. But then p∗C is vertical over T
and so −p∗Ξ′ · C = −Ξ′ · p∗C > 0; in particular, −p∗Ξ′ is nef over Xm. Let
Ξm := q∗p∗Ξ′ = φm

∗ Ξ
′, then q∗Ξm − p∗Ξ′ is q-exceptional and q-nef so that by

the negativity lemma, p∗Ξ′ − q∗Ξm ≥ 0; this proves our claim.

Suppose now that φm
∗ (µ

∗S) dominates T i.e. that φm
∗ (µ

∗S) → T is surjec-
tive and let λ be the smallest constant such that (Θm − λΞm)

hor
≤ 0, where

(. . .)
hor

denotes the horizontal components over T i.e. those components that
dominate T . Then there is a component Em of φm

∗ (µ
∗S) dominating T such

that multEm(Θm−λΞm) = 0, and there is a family Cm
t (contained in the fibers

over T ) of αm-trivial curves covering Em. We claim that (KXm+∆m)·Cm
t ≥ 0.

If this is not the case, then

[Cm
t ] ∈ (αm)⊥ ∩ NA(Em)KEm+∆Em<0

where KEm+∆Em = (KXm+∆m)|Em. Since αm is nef, by the cone theorem on
Em, there is a (KEm + ∆Em)-negative αm-trivial extremal ray, contradicting
(5) above. If Ct is the strict transform on E = (φm)−1

∗ Em, then

0 ≥ (Θm−λΞm) ·Cm
t = (KXm +∆m−λΞm) ·Cm

t ≥ −λΞm ·Cm
t ≥ −λΞ′ ·Ct > 0

where the first inequality follows by our definition of λ, the second as (KXm +
∆m−Θm) ≡αm 0, the third was observed above, the fourth as p∗Ξ′−q∗Ξm ≥ 0
and multEm(p∗Ξ′ − q∗Ξm) = 0 and the last as −Ξ′|E is ample over T . This is
the required contradiction and the claim is proven. #

We will now show that in fact φm contracts µ∗S. To this end, it suffices to
show that Θm = 0 or equivalently that q∗Θm = 0. Since q∗Θm is effective and
exceptional over X , by the negativity lemma it suffices to show that q∗Θm is
nef over X . Let C ⊂ W be a curve such that µ∗p∗C = 0. If q∗C = 0, then
C · q∗Θm = 0. If instead q∗C ̸= 0, then αm · q∗C = α · µ∗p∗C = 0. Clearly
q∗Θm · C ≥ 0 if q∗C is not contained in any component P of the support Θm

(and hence of the support of ⌊∆m⌋). So assume that q∗C is contained in a
component P of Θm. Since Θm ≡αm KXm + ∆m and (KXm + ∆m)|P is non-
negative on αm-trivial curves (by (5) above), then q∗Θm · C = (KXm +∆m) ·
q∗C ≥ 0. Therefore q∗Θm is nef over X and hence Θm = 0 as observed above.

We will now show that the induced bimeromorphic map φ : X !!" Xm is
a morphism. Let p : W → X and q : W → Xm be a resolution of the graph
of φ. Pick ωm a Kähler class on Xm and E1, . . . , Er the p-exceptional divisors
generating H1,1

BC(W )/p∗H1,1
BC(X) as in [DH20, Lemma 2.32]. Then we may write

q∗ωm +
∑

eiEi ≡X 0 for some ei ∈ R, and hence there is a ω ∈ H1,1
BC(X) such

that p∗ω ≡ q∗ωm +
∑

eiEi. Pick r ∈ R such that (ω + rS) · R = 0, then
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p∗(ω + rS) ≡ q∗ωm +
∑

eiEi + rp∗S. Let C be a q-exceptional curve. If
p∗C = 0, then (q∗ωm +

∑
eiEi + rp∗S) · C = (ω + rS) · p∗C = 0. If p∗C ̸= 0,

then p∗α · C = q∗αm · C = 0 and so p∗C ∈ R and hence (ω + rS) · p∗C = 0
so that (q∗ωm +

∑
eiEi + rp∗S) · C = 0. Recall that Θm = 0, in particular, φ

contracts S and doesn’t extract any divisor. Thus we have shown that
∑

eiEi+
rp∗S is q-exceptional and q-numerically trivial. Then by the negativity lemma∑

eiEi + rp∗S = 0 and so p∗(ω+ rS) ≡ q∗ωm. But then, if C is p-exceptional
and not q-exceptional, we have

0 = C · p∗(ω + rS) = C · q∗ωm = q∗C · ωm > 0

which is impossible. Since no such curves exist, then φ : X !!" Xm is a
morphism which we will now denote by f : X → Z.

As we have seen above, f |U is an isomorphism and f contracts a non-empty
set of α-trivial curves. Since NA(X) ∩ α⊥ = R, then f contracts the set
of all curves in R (and no other curves). Since KX + B + β ≡Z 0, then
−(KX +B) is f -ample. Then from [DH20, Lemma 2.44] it follows that Z has
rational singularities. By [HP16, Lemma 3.3], ρ(X/Z) = 1 and α ≡ f ∗αZ for
some αZ ∈ H1,1

BC(Z). By [DHP24, Theorem 2.29], αZ is Kähler if and only
if for any positive dimensional subvariety W ⊂ Z, αdimW

Z · W > 0 holds. If
W ̸⊂ f(S), then the strict transform W ′ ⊂ X is not contained in S and so
αdimW
Z ·W = αdimW ′

·W ′ > 0. Therefore, we may assume that W = f(S) is a
(projective) curve. Since f is a projective morphism, S is projective, and thus
there is a (projective curve) W ′ ⊂ S such that f(W ′) = W . Then α ·W ′ > 0,
since by our construction above a curve in X is contracted by f if and only it
is α-trivial. Thus by the projection formula αZ · W > 0; this completes our
proof.

#

We conclude this section by proving the existence of a flipping contraction
for non Q-factorial 3-folds.

Lemma 6.15. Let (X,B) be a compact Kähler 3-fold klt pair, and α a nef
and big class such that Null(α) = C is a finite union of curves. Then there
exists a bimeromorphic morphism of normal Kähler varieties ν : X ′ → X and
an effective ν-exceptional Q-Cartier divisor Ψ ≥ 0 such that ω′ = ν∗α − Ψ is
Kähler and Ψ = ν−1(C). In particular, −Ψ|Supp(Ψ) is ample.

Proof. Fix a Kähler form ω on X , and let µ : X̃ → X be a log resolution of
(X,B) and C. By Lemma 3.5 and Theorem 3.6 there is a positive current T ∈
α with weak analytic singularities such that E+(T ) = C, and T ≥ ϵω for some
ϵ > 0. By Lemma 3.7 we may assume that we can write µ∗α ≡ [Θ̃] +Φ, where
Φ ≥ 0 is an effective R-divisor such that µ(SuppΦ) = C, and Θ̃ is a closed
positive (1, 1) current such that Θ̃ ≥ ϵµ∗ω and the class [Θ̃− ϵµ∗ω] ∈ H1,1

BC(X̃)
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is nef. In particular, −Φ is nef over X , and thus from the negativity lemma it
follows that Supp(Φ) = µ−1(C).

Let ∆ := µ−1
∗ B + Ex(µ), then

KX̃ +∆ ≡X G :=
k∑

i=1

giGi ≥ 0,

where Supp(G) = Ex(µ), as (X,B) is klt. Let E =
∑k

i=1 eiGi, where ei > 0,
E is µ-exceptional, and −E is µ-ample. Perturbing the coefficients of E, we
may assume that e1, . . . , ek are linearly independent over Q(g1, . . . , gk).

We now run the [Θ̃]-trivial (KX̃ +∆)-Minimal Model Program over X with
scaling of −E as in [Kol21, Theorem 2]. This means that at each step we
only contract (KX̃ + ∆)-negative extremal rays over X that are [Θ̃]-trivial.
All steps of this MMP exists by [Nak87], [DHP24] and [Fuj22a, Theorem 1.2].
Note that since each step of this mmp is E negative, the contracted locus is
contained in the support of E and hence in the support of ⌊∆⌋. Since the
mmp for surfaces holds, termination follows easily from the usual arguments
for special termination [Fuj07].

Let φ : X̃ !!" X ′ be the output of this MMP and ν : X ′ → X the in-
duced map. Following [Kol21, Theorem 2], we may assume that there is a
ν-exceptional Q-Cartier divisor F ≥ 0 such that −F + λ[Θ′] is Kähler over X
for some λ > 0, where Θ′ := φ∗Θ̃. Note that every step of this MMP is also
[Θ̃− ϵµ∗ω]-trivial, and hence the class [Θ′ − ϵν∗ω] is nef.

Let U = X \ C, Ũ = µ−1(U), and U ′ = ν−1(U), then Φ|Ũ = 0 and so
[Θ̃]|Ũ ≡U 0, and hence over U this is the usual relative MMP. Since G′|U ′ ≥ 0,
where G′ = φ∗G, and G′|U ′ is nef, by the negativity lemma it follows that
G′|U ′ = 0. Thus, there are no ν|U ′-exceptional divisors. As −F |U ′ is relatively
ample, we have U ′ = U .

It then follows that, for 0 < δ ≪ 1 the class of

(1 + λδ)Θ′ − δF = ϵν∗ω − δ(F − λΘ′) + (Θ′ − ϵν∗ω)

is Kähler (as [Θ′− ϵν∗ω] is a nef class and [ϵν∗ω−δ(F −λΘ′)] is a Kähler class
for 0 < δ ≪ 1). We let ω′ := [Θ′ − δ

1+λδF ] and Ψ = Φ′ + δ
1+λδF . Then

ν∗α = φ∗(µ
∗α) = φ∗([Θ̃] + Φ) = [Θ′] + Φ′ = ω′ +Ψ,

and the claim follows. Note that perturbing Ψ and ω′, we may assume that Ψ
is a Q-divisor. #

Theorem 6.16. Let (X,B) be a compact Kähler 3-fold klt pair and KX + B
pseudo-effective. Suppose that there is a Kähler class ω such that α = KX +
B+ω is a nef and big class but not Kähler, and Null(α) = C is a finite union
of curves. Then there exists a bimeromorphic morphism f : X → Z of normal
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compact Kähler varieties and a Kähler class αZ on Z such that α = f ∗αZ ; in
particular, Ex(f) = Null(α).

Proof. By Lemma 6.15, there is a bimeromorphic morphism of normal compact
Kähler varieties ν : X ′ → X and an effective ν-exceptional Q-divisor Ψ such
that ν(Ψ) = C and −Ψ|Supp(Ψ) is ample. By Lemma 4.3, there is a bimeromor-
phic morphsim g : X ′ → Z to a normal compact analytic variety Z such that
g(Supp(Ψ)) is a finite set of points and X \ Supp(Ψ) → Z \ g(Supp(Ψ)) is an
isomorphism. By the rigidity lemma (see [BS95, Lemma 4.1.13]), we obtain
a bimeromorphic morphism f : X → Z such that f ◦ ν = g. In particular,
Ex(f) = C = Null(α). Thus, −(KX + B) is f -ample, hence Z has rational
singularities by [DH20, Lemma 2.44]. Then by [HP16, Lemma 3.3], there is
an (1, 1) class ωZ ∈ H1,1

BC(Z) such that α = f ∗ωZ . Finally, by the projection
formula and [DHP24, Theorem 2.29] it follows that ωZ is a Kähler class. #

7. Cone Theorem and Minimal Models

In this section we will establish the cone theorem and existence of minimal
models for klt pairs (X,B) of dimension 3 such thatKX+B is pseudo-effective.

Let K ⊂ Rn be a compact convex set. An extremal point of K is a point
x such that if x = tx1 + (1 − t)x2 for xi ∈ K, then x = x1 or x = x2;
equivalently K \ {x} is convex. An exposed point of K is a point x ∈ K such
that {x} = K ∩ {f = 0} where {f = 0} is a supporting hyperplane for K.
Every exposed point is extremal but not vice versa. We let ext(K) be the
set of extremal points, exp(K) the set of exposed points and we denote by
conv(X) the convex hull of a set X ⊂ Rn and cl(X) the closure of X . For
a detailed a discussion on these topics see [HW20, Chapter 1]. We need the
following result:

Theorem 7.1. Let K ⊂ Rn be a non-empty compact convex set. Then

cl(conv(exp(K))) = conv(ext(K)) = K.

In particular, the sets exp(K) and ext(K) are both non-empty.

Proof. The equality conv(ext(K)) = K is well known and due to Minkowski
(see [HW20, Theorem 1.21]), and the equality cl(conv(exp(K))) = K follows
from [HW20, Theorem 1.23]. #

Proof of Theorem 1.3. By standard arguments (see the proof of [DHP24, Corol-
lary 5.3]), passing to a strongly Q-factorial model (which exists by [DH20,
Lemma 2.28]), we may assume that X is strongly Q-factorial. Let K be a
compact convex slice of NA(X) of Euclidean dimension n − 1, where n =
dimRH

1,1
BC(X), i.e. the cone generated by K is equal to NA(X), and R an
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extremal ray corresponding to an exposed point {x} ∈ K. Then by defi-
nition, there is a (1, 1) class α ∈ H1,1

BC(X) such that K is contained in the
half-space α≥0 := {γ ∈ N1(X) : α · γ ≥ 0} and {x} = K ∩ α⊥. In par-
ticular, R = NA(X) ∩ α⊥. Since α is non-negative on NA(X), it is nef. If
(KX+B) ·R < 0, then for 0 < a ≪ 1, it follows easily that β := α−a(KX+B)
is positive on NA(X) \ {0}, and hence Kähler (e.g. see the proof of [DHY23,
Claim 3.25]). Thus α = a(KX + B + 1

aβ). Replacing α by 1
aα and letting

ω = 1
aβ we may assume that α ≡ KX +B + ω, where ω is a Kähler class. By

Theorems 6.2 and 6.9, there is a corresponding flipping or divisorial contrac-
tion and hence R = R+[Γ] for some curve Γ on X . By [DO24, Theorem 1.23],
we may assume that Γ is a rational curve and 0 > (KX+B) ·Γ ≥ −6. Since X
is a Kähler variety, by a Douady space argument there are at most countably
many such extremal rays {R+·[Γi]}i∈I . Let V := NA(X)KX+B≥0+

∑
i∈I R

+[Γi].
Following [HP16, Lemma 6.1] it suffices to show that NA(X) = V . To the
contrary assume that NA(X) \ V ̸= ∅. Since V is a convex set (as so is V )
and NA(X) is generated by K, from Theorem 7.1 it follows that there is an
exposed point x ∈ K not contained in V . Let R be the (KX + B)-negative
extremal ray corresponding to the exposed point x ∈ K. Then from what we
have seen above, there is a rational curve Γ such that 0 < −(KX +B) · Γ ≤ 6
and R = R+ · [Γ], but all such extremal rays are contained in V by definition
of V , this is a contradiction.

#

Proof of Theorem 1.2. Choose 0 < ϵ ≪ 1 so that ω + ϵB is Kähler. Thus
replacing B by (1 − ϵ)B and ω by ω + ϵB we may assume that (X,B) is a
klt pair. By [DH20, Lemma 2.27] there is a small projective bimeromorphic
morphism g : X ′ → X such that X ′ is strongly Q-factorial and KX′ + B′ =
g∗(KX + B). Let α′ := g∗α and run a α′-trivial (KX′ + B′)-MMP using
the cone Theorem 1.3 and the contraction Theorems 6.2 and 6.9. Note that
each step of this MMP preserves strong Q-factoriality by [DH20, Lemma 2.5].
This MMP terminates by Theorem 3.19. Let φ : X ′ !!" Xn be the end
result of this MMP, Bn := φ∗B′ and αn := φ∗α′. We claim that Null(αn)
does not contain any surface. Assume to the contrary that there is a surface
Sn ⊂ Null(αn). Let S ⊂ Null(α) be the strict transform of Sn under the
induced map ψ := φ ◦ g−1 : X !!" Xn. We note that S exists, since ψ
does not extract any divisor. Then from the proof of Claim 6.10 it follows
that Null(α) = S, and S is covered by an analytic family of α-trivial curves
{Ct}t∈T such that S · Ct < 0 for all t ∈ T . Now recall that α = KX + B + ω,
where ω is a Kähler class; let ωn := ψ∗ω and Cn

t := ψ∗Ct. Then {Cn
t }t∈T is a

family of αn-trivial curves covering Sn. Now since αn = KXn + Bn + ωn, we
have (KXn +Bn) ·Cn

t = (KXn +Bn)|Sn ·Cn
t = −ωn|Sn ·Cn

t < 0, since ωn|Sn is
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big as ωn is a modified Kähler class. This is a contradiction to the fact that
(KXn +Bn) · C ≥ 0 for all αn-trivial curves C.

Now by Theorem 3.6, Null(αn) = Eas
nK(α

n) is an analytic subset of Xn, and
hence Null(αn) is either an empty set or a finite union of curves. First assume
that Null(αn) is a finite union of curves. In this case by Theorem 6.16, there
is a small proper bimeromorphic morphism h : Xn → Z to a normal analytic
variety Z and a Kähler class αZ ∈ H1,1

BC(Z) such that αn = h∗αZ and Ex(h) =
Null(αn). LetW be a resolution of the graph of φ : X ′ !!" Xn and p : W → X ′

and q : W → Xn are projection morphisms; then (g ◦ p)∗α = (h ◦ q)∗αZ . Let
C ⊂ W a curve contracted by g ◦ p, then (h ◦ q)∗αZ · C = (g ◦ p)∗α · C = 0.
Since αZ is Kähler, this implies that C is also contracted by h◦q. Then by the
rigidity lemma [BS95, Lemma 4.1.13], there is a morphism f : X → Z such
that f ◦ (g ◦ p) = h ◦ q. In particular, α = f ∗αZ , and thus a curve C ⊂ X is
contracted by f if and only if α · C = 0, i.e. [C] ∈ R. The only thing that
remains to be shown in this case is that f is projective. To see this, observe
that −(KX +B) ≡f ω, and hence −(KX +B) is a Q-Cartier f -ample divisor
on X , thus f is projective.

Now if Null(αn) = ∅, then by [DHP24, Theorem 2.29], αn is a Kähler class
on Xn. We rename Xn by Z; then by a similar argument as above it follows
that there is a projective bimeromorphic morphism f : X → Z such that
α = f ∗αn. In particular, a curve C ⊂ X is contracted by f if and only if
α · C = 0, i.e. [C] ∈ R.

Finally, if f is a divisorial contraction, then by a similar argument as in the
proof of [KM98, Proposition 3.36] it follows that Z is Q-factorial, and (Z, f∗B)
is dlt (see [KM98, Lemma 3.38]). If f is a flipping contraction, then the flip
f+ : X+ → Z is defined as X+ := Projan ⊕m≥0 f∗OX(md(KX + B)), where
d is the Cartier index of KX + B; the finite generation of this ring is due to
Shokurov, see [CHP16, Theorem 4.3], also, for a more general result in all
dimensions see [DHP24, Theorem 1.3].

#

Proof of Theorem 1.4. Suppose that KX +B is not nef, then by Theorem 1.3
and its proof, there is a (KX + B)-negative extremal ray R with nef sup-
porting class α such that R = NA(X) ∩ α⊥, and the corresponding flipping
or divisorial contractions exist by Theorem 1.2. Let (X,B) !!" (X1, B1) be
the corresponding flip or divisorial contraction. We may replace (X,B) by
(X1, B1) and repeat the above procedure. By termination of flips Theorem
3.19, after finitely many steps we obtain the required minimal model. #
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[Gra62] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen,
Math. Ann. 146, 331–368 (1962).

[Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52,
Springer-Verlag, New York-Heidelberg, 1977.

[Har80] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254(2), 121–176 (1980).
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