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MMP FOR GENERALIZED PAIRS ON KÄHLER 3-FOLDS

OMPROKASH DAS, CHRISTOPHER HACON, AND JOSÉ IGNACIO YÁÑEZ

Abstract. In this article we define generalized pairs (X,B+β) where X

is an analytic variety and β is a b-(1,1) current. We then prove that almost
all standard results of the MMP hold in this generality for compact Kähler
varieties of dimX ≤ 3. More specifically, we prove the cone theorem,
existence of flips, existence of log terminal models, log canonical models
and Mori fiber spaces, geography of log canonical and log terminal models,
etc.
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1. Introduction

In this article we will develop the minimal model program for generalized
Kähler surfaces and threefolds. Generalized pairs naturally arise in the con-
text of Kawamata’s canonical bundle formula and adjunction to lc centers,
and have been playing an increasingly important role in the birational geom-
etry of complex projective varieties (see [Kaw98], [FM00], [BZ16], [Bir21] and
references therein). It is natural to hope that these results carry over to the
context of Kähler manifolds, especially for surfaces and threefolds where the
usual minimal model program is known to hold (see [HP16, HP15, CHP16],
[DO23], [DH20] and references therein). We introduce generalized Kähler pairs
(Definition 2.7), in a context which is more general than the usual definition of
generalized pairs from projective geometry. Roughly speaking, a generalized
pair (X/S,B + β) consists of a proper morphism X → S of normal Kähler
varieties, a pair (X,B), and a closed positive (1,1) current β ∈ H1,1

BC(X) which
is (bimeromorphically) nef over S (we refer the reader to Definition 2.7 for
the technical nuances; we will denote the corresponding closed positive b-(1,1)
current by β, but for the purposes of this introduction, we will sometimes
abuse notation and just refer to β = βX , the trace of β on X). Note that
in the case of projective varieties one requires the more restrictive condition
that β is a R-divisor (birationally nef over S). Thus, if H2(X,OX) ̸= 0 (and
hence NS(X)R ̸= H1,1

BC(X)), this allows us more flexibility even in the projec-
tive case. This is particularly important in the Kähler case as there may be
very few R-divisors whilst H1,1

BC(X) may contain many interesting classes. For
example, working in this generality allows us to:

(1) Prove the finiteness of certain 3-fold minimal models (see Theorem
3.26).

(2) Show that different 3-fold minimal models are connected by flops (see
Theorems 3.26 and 3.29).

(3) Run the minimal model program with scaling of a Kähler form ω (see
Theorems 3.21 and 3.23).

It is then possible to consider the various flavors of singularities of the minimal
model program for generalized pairs (klt, lc, dlt etc.) and to show several
natural properties (in all dimensions), such as the fact that generalized klt
singularities are rational, and if X is Stein, then a generalized klt pair (X,B+
β) is equivalent to a usual klt pair (X,B + ∆) and in particular it admits a
Q-factorization (see Theorem 2.19). In Section 2.4 we give a treatment of the
generalized surface MMP including the cone theorem, the existence of minimal
models and Mori fiber spaces, and the existence of log canonical models when
KX +B+β is big. In Section 3.1 we then develop the minimal model program
for 3-fold generalized klt pairs. We show that 3-fold klt flips exist:
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Theorem 1.1. Let (X,B + β) be a compact Kähler Q-factorial 3-fold gener-
alized klt pair, and f : X → Z a flipping contraction, then the flip X+ → Z
exists.

Proving the termination of flips in this generality however turns out to be too
difficult. Instead, following the approach of [BCHM10], we show that certain
generalized minimal model programs with scaling terminate. For example, if
(X,B + β) is a compact Kähler Q-factorial 3-fold generalized klt pair and
β = βX is Kähler, then KX +B + tβ is Kähler for t ≫ 0, and a KX + B + β
mmp with scaling of (t− 1)β is also a KX +B mmp with scaling of tβ and so,
in this case, termination follows from standard results on the termination of
flips for the usual klt 3-fold pair (X,B). This allows us to prove the existence
of minimal and canonical models.

Theorem 1.2. Let (X,B+β) be a generalized compact klt Kähler 3-fold pair.

(1) If KX + B + βX is big, then (X,B + β) has a log terminal model
f : X !!" Xm and a unique log canonical model g : Xm → Xc.

(2) If KX +B + βX is pseudo-effective and βX is big, then KX +B + βX

has a log terminal model f : X !!" Xm and there is a contraction
g : Xm → Z such that f∗(KX +B +βX) ≡ g∗ωZ where ωZ is a Kähler
form on Z.

For more general minimal model programs with scaling, termination of flips
is achieved by studying Shokurov polytopes and the geography of minimal
models. In particular we show the following (please see Theorems 3.19 and
3.26 for a more comprehensive statement).

Theorem 1.3. Let X be a smooth compact Kähler 3-fold, B a simple normal
crossings divisor, and Ω a compact convex polyhedral set of closed positive
(1,1)-currents such that [β] is nef and [KX + B + β] is big for all β ∈ Ω.
Then there exist a finite polyhedral decomposition Ω = ∪Ωi and finitely many
bimeromorphic maps ψi,j : X !!" Xi,j such that if ψ : X !!" Y is a weak log
canonical model for some β ∈ Ω, then ψ = ψi,j for some i, j.

Building on this result, we are able to show that good minimal models are
connected by flops (and in general minimal models are connected by flips, flops
and anti-flips).

Theorem 1.4. Let (Xi, Bi+βXi
) be compact Q-factorial generalized klt Kähler

3-folds, where KXi
+ Bi + βXi

is nef (resp. (Xi, Bi + βXi
) are good minimal

models) for i = 1, 2 and φ : X1 !!" X2 a bimeromorphic map which is an
isomorphism in codimension 1. Then φ can be decomposed as flips, flops and
inverse flips, see Definition 3.28 (resp. φ can be decomposed as a sequence of
flips).



4 OMPROKASH DAS, CHRISTOPHER HACON, AND JOSÉ IGNACIO YÁÑEZ

When KX +B + βX is not pseudo-effective, we show the existence of Mori
fiber space, see Theorem 3.23.

Theorem 1.5. Let (X,B + β) be a generalized klt Kähler 3-fold such that
KX +B+βX is not pseudo-effective. Then we can run a KX +B+βX-MMP
X !!" X ′ ending with a Mori fiber space X ′ → Z.

We also establish the following cone theorem.

Theorem 1.6. Let (X,B+βX) be a Q-factorial generalized klt pair, where X
is a compact Kähler 3-fold. Then there are at most countably many rational
curves {Γi}i∈I such that

NA(X) = NA(X)KX+B+βX≥0 +
∑

i∈I

R+[Γi],

and −(KX +B + βX) · Γi ≤ 6. Moreover, if βX is big, then I is finite.

We believe that the added flexibility afforded by working with nef classes in
H1,1

BC will be useful in a variety of contexts. For example, we use this when show-
ing that bimeromorphic Calabi-Yau threefolds are connected by flops (Theo-
rem 3.29), and we expect that it will be important in the proof of the minimal
model program for klt pseudo-effective Kähler 4-folds [DH23]. Note that the
case of effective klt Kähler 4-folds was addressed in [DHP22].

This article is organized in the following manner: In Section 2 we define
generalized pairs, generalized models and establish the generalized MMP for
Kähler surfaces. We also the prove Theorem 1.1 in this section. Section 3 is
the heart of our article, Theorem 1.2 is proved in Subsection 3.2, Theorem
1.5 is proved in Subsection 3.3, Theorem 1.6 is proved in Subsection 3.4, and
Theorem 1.4 is proved in Subsection 3.6.

Acknowledgement We would like to thank Mihai Păun for answering our
questions.

2. Preliminaries

An analytic variety or simply a variety X is a reduced and irreducible com-
plex space. A holomorphic map f : X → Y between two complex spaces is
called a morphism. A small bimeromorphic map or a small map is a bimero-
morphic map φ : X !!" X ′ between two normal analytic varieties such that
φ is an isomorphism in codimension 1, i.e. there are closed analytic subsets
Z ⊂ X and Z ′ ⊂ X ′ such that codimX Z ≥ 2 and codimX′ Z ′ ≥ 2 and
φ|X\Z : X \ Z → X ′ \ Z ′ is an isomorphism. A (1, 1) class α ∈ H1,1

BC(X) is
called general (resp. very general) if α is not contained in any finite union
(resp. countable union) of analytic subvarieties of H1,1

BC(X).
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Definition 2.1. Let X be a normal analytic variety. The canonical sheaf
ωX is defined as ωX := (∧dimXΩ1

X)
∗∗. Note that unlike the case of algebraic

varieties, ωX here does not necessarily correspond to a Weil divisor KX such
that ωX

∼= OX(KX). However, by abuse of notation we will say that KX is a
canonical divisor when we actually mean the canonical sheaf ωX . This doesn’t
create any problem in general as running the minimal model program involves
intersecting subvarieties with ωX .
A Q-divisor (resp. an R-divisor) on a normal analytic variety (non necessarily
compact) is a finite sum of prime Weil divisor with Q-coefficients (resp. R-
coefficients). A compact normal analytic variety X is called Q-factorial if for
every prime Weil divisor D ⊂ X there is a m ∈ Z+ such that mD is Cartier
and there is a k ∈ Z+ such that (ω⊗k

X )∗∗ is a line bundle on X .
For a normal analytic variety X and a R-divisor B we say that KX + B is
R-Cartier, if locally around any point x ∈ X we can choose a divisor KX

such that OX(KX) ∼= ωX and KX + B is R-Cartier. In this case, we define
the singularities of the pair (X,B) as in [KM98]. Note that throughout this
article, by a pair (X,B), we will always mean that X is normal, B ≥ 0 is an
effective R-divisor. If B is not effective, then we will refer to the corresponding
singularities of (X,B) as sub-klt, sub-dlt, etc.

Definition 2.2. An analytic variety X is Kähler or a Kähler space if there
exists a positive closed real (1, 1) form ω ∈ A1,1

R (X) such that the following
holds: for every point x ∈ X there exists an open neighborhood x ∈ U and
a closed embedding ιU : U ↪→ V into an open set V ⊂ CN , and a strictly
plurisubharmonic C∞ function f : V → R such that ω|U∩Xsm = (i∂∂̄f)|U∩Xsm .
Here Xsm is the smooth locus of X .

(1) On a normal compact analytic variety X we replace the use of Néron-
Severi group NS(X)R by H1,1

BC(X), the Bott-Chern cohomology of real
closed (1, 1) forms with local potentials or equivalently, the closed bi-
degree (1, 1) currents with local potentials. See [HP16, Definition 3.1
and 3.6] for more details. More specifically, we define

N1(X) := H1,1
BC(X).

(2) If X is in Fujiki’s class C and has rational singularities, then from
[HP16, Eqn. (3)] we know that N1(X) = H1,1

BC(X) ⊂ H2(X,R). In
particular, the intersection product can be defined in N1(X) via the
cup product of H2(X,R).

(3) For the definitions of nef, pseudo-effective class, etc. see [DH20, Defi-
nition 2.2].

(4) We define NA(X) ⊂ N1(X) to be the closed cone generated by the
classes of positive closed currents of bi-dimension (1, 1), see [HP16,
Defintion 3.8]. The Mori cone NE(X) ⊂ NA(X) is defined as the
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closure of the cone of currents of integration TC , where C ⊂ X is an
irreducible curve.

Definition 2.3. If X is a normal Kähler variety and ω ∈ H1,1
BC(X), then

we say that ω is modified Kähler if there exists a bimeromorphic morphism
ν : X ′ → X and Kähler form ω′ on X ′ such that ν∗ω′ = ω. By [Bou04,
Proposition 2.3], if X is compact, then this is equivalent to requiring that ω
contains a Kähler current T with Lelong number ν(T,D) = 0 for all prime
divisors D in X .

Definition 2.4. Let π : X → S be a proper morphism of normal Kähler
varieties such that S is relatively compact. Let β be a closed (1, 1) current with
local potentials, i.e. a locally ∂∂̄-exact current on X . We say that the class
[β] ∈ H1,1

BC(X) is relatively Kähler (or Kähler over S) if [β + π∗ωS] ∈ H1,1
BC(X)

is a Kähler class for some Kähler form ωS on S, and we say that the class [β]
is relatively nef if [β + ω] is relatively Kähler for every relatively Kähler class
[ω] on X . Similarly, we say that β is relatively modified Kähler if β + π∗ωS is
modified Kähler for some Kähler form ωS on S.

It is well known that if a class [β] ∈ H1,1
BC(X) is relatively Kähler (resp.

relatively nef), then its restriction to each fiber is Kähler (resp. nef). By
abuse of notation we will say that a closed bi-degree (1, 1) current T with
local potentials is relatively Kähler or relatively nef over S if so is its class
[T ] ∈ H1,1

BC(X).

2.1. Generalized Pairs. LetX be a normal analytic variety. A closed b-(1,1)
current β is a collection of closed bi-degree (1,1) currents βX′ on all proper
bimeromorphic models X ′ → X such that if p : X1 → X2 is a bimeromorphic
morphism of proper models of X , then p∗βX1

= βX2
.

Suppose that β is a closed positive (1,1)-current onX with local (psh) poten-
tials, then we may define a b-(1,1) current β̄ as follows. For any bimeromorphic
morphism ν : X ′ → X we let β̄X′ := ν∗β. Explicitly, if X = ∪Ui is an open
cover and γi are psh functions on Ui such that β = ∂∂̄γi, then ν∗β is defined
by letting U ′

i = ν−1Ui, γ′i = γi ◦ ν|U ′

i
, and ν∗β = ∂∂̄γ′i on U ′

i . If µ : X ′ → X ′′ is
another proper bimeromorphic morphism, then we let β̄X′′ = µ∗βX′ . We note
that

Claim 2.5. The closed b-(1,1) current β̄X′′ is well defined.

Proof. Suppose that ν̃ : X̃ → X and µ̃ : X̃ → X ′′ are also proper bimeromor-
phic morphisms of normal complex varieties. By a standard argument, passing
to a common resolution, we may in fact assume that there is a bimeromorphic
morphism ρ : X̃ → X ′ such that ν̃ = ν◦ρ and µ̃ : µ◦ρ. Then by the projection
formula we have

µ̃∗(ν̃
∗β) = µ∗ρ∗(ρ

∗ν∗β) = µ∗(ν
∗β).
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#

If β = β̄ for some closed positive (1,1)-current β on X then we say that β
is a positive closed b-(1,1) current that descends to X . Note that in this case
for any bimeromorphic morphism ν : X ′ → X we also have that β = βX′ i.e.
β also descends to X ′.

Remark 2.6. We make the following observations:

(i) Note that if γ ∈ H1,1
BC(X

′) is nef, then it is pseudo-effective and so
we may choose a positive closed (1,1) form β ′ on X ′ with psh local
potentials such that [β ′] = γ and we may then set β := β̄ ′. Different
choices of β ′ give rise to different (non-equivalent) generalized pairs.

(ii) Note that if β is a positive closed b-(1,1) current that descends toX and
X !!" X ′ is bimeromorphic (and X ′ is normal), then βX′ may not have
local potentials, but if it does, then it has psh local potentials. To see
this, first note that in this case [βX′ ] ∈ H1,1

BC(X
′). Let p : X ′′ → X and

q : X ′′ → X ′ be a common resolution and U ′ := X ′ \ (X ′
sing

∪ q(Ex(q)))

so that U ′′ := q−1U ′ → U ′ is an isomorphism. Then βX′ |U ′ = βX′′ |U ′′,
and since βX′′ is a positive current, from [BG13, Proposition 4.6.3(i)]

it follows that βX′ |U ′ has a unique extension β̂X′|U ′ to a closed positive

(1,1) current on X ′ such that
[
β̂X′|U ′

]
= [βX′].

Definition 2.7. Let f : X → S be a proper morphism of normal Kähler
varieties, where S is relatively compact, ν : X ′ → X a resolution, B′ an R-
divisor on X ′ with simple normal crossings support such that B := ν∗B′ ≥ 0,
and β a closed b-(1,1) current. We say that (X,B +β) is a generalized pair if

(1) β is a positive closed b-(1,1) current that descends to X ′,
(2) [βX′] ∈ H1,1

BC(X
′) is nef over S, and

(3) [KX′ +B′ + βX′ ] = ν∗γ for some γ ∈ H1,1
BC(X).

Note that we are abusing notation as we are implicitly assuming the exis-
tence of (X ′, B′) as above. We will say that ν : (X ′, B′) → (X,B) is a structure
morphism or a log resolution of (X,B + β).

Remark 2.8. We make the following observations:

(i) Given (X,B + β) and β ′ = βX′ with the above properties, then B′ is
uniquely determined (by the negativity lemma applied to ν : X ′ → X).

(ii) If S is a point so that X is compact, then we drop S and say that
(X,B + β) is a compact generalized pair.

(iii) If U ⊂ X is a relatively compact subset, then (U/U,B|U + β|U) is a
generalized pair over U .
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(iv) If S = X and π : X → S is the identity (and in particular X is
relatively compact), then we also drop S and we often abuse notation
and say that (X,B + β) is a generalized pair.

Definition 2.9. (1) Let P be a prime Weil divisor over X . We define the
generalized discrepancy a(P,X,B + β) as follows: Let ν : X ′ → X be
a log resolution of (X,B + β) such that P ⊂ X ′ is prime Weil divisor
on X ′. Then a(P,X,B + β) := −multP (B′). Note that these can be
computed locally over X and hence S plays no role here (and hence we
drop it from the notation).

(2) We say that (X,B + β) is generalized klt or gklt or generalized Kawa-
mata log terminal (resp. generalized lc or glc or generalized log canon-
ical) if for some log resolution ν ′ : X ′ → X , we have ⌊B′⌋ ≤ 0, i.e.
a(P,X,B + β) > −1 for all prime divisors P ⊂ X ′ (resp. a(P,X,B +
β) ≥ −1 for all prime divisors P ⊂ X ′).

(3) We say that (X,B + β) is generalized dlt or gdlt or generalized di-
visorially log terminal if there is an open subset U ⊂ X such that
(U, (B+β)|U) is a log resolution (of itself) and −1 ≤ a(P,X,B+β) ≤ 0
for any prime divisor P on U and −1 < a(P,X,B + β) ≤ 0 for any
prime divisor P over X with center contained in X \ U .

Remark 2.10. By abuse of notation we will often say β is a (1, 1) class in
H1,1

BC(X) when we actually mean β is a closed positive bi-degree (1, 1) current
on X with local (psh) potentials. Especially, we will often add a Kähler form
ω to a generalized pair (X,B+β) while calling it a Kähler class; however, this
doesn’t create any problem as a Kähler form ω on X defines a b-(1,1) current
as ω := ω̄ which descends to X and [ωX ] ∈ H1,1

BC(X) is nef (in fact Kähler), so
the singularities of (X,B + β + ω) are the same as those of (X,B + β).

2.2. Generalized Models.

Definition 2.11. If (X/S,B + β) is a generalized dlt pair over S, then we
say that a bimeromorphic map φ : X !!" Xm (proper over S) is a log minimal
model over S (resp. a log terminal model over S) if (1-3) below hold (resp.
(1-4) below hold).

(1) (Xm, Bm+β) is Q-factorial generalized dlt pair, where Bm = φ∗B+E,
and E is the reduced sum of all φ−1-exceptional divisors,

(2) KXm +Bm + βXm is nef over S,
(3) a(P,X,B,β) < a(P,Xm, Bm,β) for every φ-exceptional divisor P , and
(4) there are no φ−1-exceptional divisors i.e. E = 0.
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If (X/S,B +β) is a generalized dlt pair over S, then we say that a bimero-
morphic map φ : X !!" Xm (proper over S) is a weak log canonical model over
S (resp. a log canonical model over S) if (1-3) below hold (resp. (1-4) below
hold).

(1) (Xm, Bm + β) is generalized lc pair, where Bm = φ∗B + E, and E is
the reduced sum of all φ−1-exceptional divisors,

(2) KXm +Bm + βXm is nef over S,
(3) a(P,X,B,β) ≤ a(P,Xm, Bm,β) for every φ-exceptional divisor P , and
(4) [KX′m +Bm + βXm ] ∈ H1,1

BC(X
m) is a Kähler class.

If X is proper and S is a point, then we drop “over S” and simply say that
we have a log minimal model, log terminal model etc.

Lemma 2.12. Suppose that (X/S,B + β) is generalized dlt over S.

(1) If φ : X !!" Xm is a weak log canonical model over S, then a(P,X,B,β) ≤
a(P,Xm, Bm,β) for every divisor P over X and a(P,X,B,β) = a(P,Xm, Bm,β)
for every divisor P on Xm.

(2) IfX !!" Xm andX !!" Xw are weak log canonical models of (X/S,B+
β) over S, then (Xm, Bm+β) and (Xw, Bw+β) are crepant equivalent,
i.e. if p : Z → Xm and q : Z → Xw is a resolution of the induced map
Xm !!" Xw, then p∗(KXm +Bm + βXm) ≡S q∗(KXw +Bw + βXw).

(3) If X !!" Xm and X !!" Xw are log canonical models of (X/S,B +β)
over S, then (Xm, Bm) and (Xw, Bw) are isomorphic.

(4) If (X,B + β) is generalized klt, then every log minimal model over S
is a log terminal model over S.

(5) If f : X ′ → X is a log resolution of (X/S,B+β) and KX′+B∗+βX′ =
f ∗(KX + B + βX) + F , where B∗ ≥ 0, f∗B∗ = B and F ≥ 0 is f -
exceptional such that for every f -exceptional divisor P with a(P,X,B+
β) > 0 we have P ⊂ Supp(F ). Then any log minimal model (resp.
(weak) log canonical model) of (X ′/S,B∗+β′) over S is a log minimal
model (resp. (weak) log canonical model) of (X/S,B + β) over S.

Proof. (1) Let p : Z → X and q : Z → Xm be a resolution of φ. Then we can
write F =

∑
(a(P,Xm, Bm,β)− a(P,X,B,β))P , where the sum runs over all

prime divisors P ⊂ Z. Then from the definition above it follows that p∗F ≥ 0.
Note that F ≡S p∗(KX+B+βX)−q∗(KXm+Bm+βXm), and hence F ≥ 0 by
the negativity lemma, as KXm +Bm + βXm is nef over S. We also claim that
q∗F = 0. Observe that, here Bm = φ∗B + E, where E is the reduced sum of
φ−1-exceptional divisors on Xm. Thus it is enough to show that multP (F ) = 0
for any prime divisor P in the support of E (i.e. any p-exceptional divisor
which is not q-exceptional). We have

−1 = a(P,Xm, Bm + β) ≥ a(P,X,B + β) ≥ −1,
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where the second inequality holds because F ≥ 0. In particular, we have

a(P,X,B + β) = a(P,Xm, Bm + β)

for all prime Weil divisors P on Xm.

(2) Follows easily by what we have seen in (1).

(3) Let W be the normalization of the graph of Xm !!" Xw, and p : W →
Xm, q : W → Xw the induced morphisms. Then by part (2) we have p∗(KXm+
Bm +βXm) ≡ q∗(KXw +Bw +βXw). Since p, q are bimeromorphic, and hence
Moishezon morphisms, if Xm !!" Xw is not an isomorphism, we may assume
that there is a curve C ⊂ W such that p∗C = 0 and q∗C ̸= 0 (or p∗C ̸= 0 and
q∗C = 0). But then

0 = p∗C · (KXm +Bm + βXm) = C · p∗(KXm +Bm + βXm)

= C · q∗(KXw +Bw + βXw)

= q∗C · (KXw +Bw + βXw) > 0,

which is a contradiction.

(4) Suppose that φ : X !!" Xm is a log minimal model and P is a φ−1

exceptional divisor. Then as (X,B) is klt and P is contained in the support
of Bm with multiplicity 1 (as Bm = φ∗B + Ex(φ−1)), from Part (1) we have

−1 < a(P,X,B) = a(P,Xm, Bm) = −1,

which is impossible, and so there are no φ−1-exceptional divisors, i.e. φ is a
log terminal model.

(5) See the proof of [HL21, Lemma 3.10]. #

Lemma 2.13. Let (X,B +β) be a generalized klt (resp. dlt) pair. If KX +B
is Q-Cartier, then (X,B) is klt (resp. dlt).

Proof. Since the statement is local on X , we may assume that X is Stein and
relatively compact. Let f : X ′ → X be a log resolution and KX′ +B′ +βX′ =
f ∗(KX + B + βX), where ⌊B′⌋ ≤ 0, as (X,B + β) is generalized klt. Let
KX′ +B♯ := f ∗(KX +B). Then

f ∗βX − βX′ ≡ KX′ +B′ − f ∗(KX +B) =: E,

where E ≥ 0 by the negativity lemma. But then

B′ = E + f ∗(KX +B)−KX′ = B♯ + E
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and so ⌊B♯⌋ ≤ 0, i.e. (X,B) is klt. The statement about dlt singularities
follows similarly. #

Lemma 2.14. Let φ : X !!" Y be a bimeromorphic map of normal compact
Kähler 3-folds with Q-factorial klt singularities that extracts no divisors. Then
the linear map φ∗ : H

1,1
BC(X) → H1,1

BC(Y ) is well defined and surjective.

Proof. From [DH20, Corollary 2.28] it follows that φ∗ is well defined. So it
only remains to show that φ∗ is surjective. To that end, let p : W → X
and q : W → Y be a resolution of the graph of φ. Replacing W by a higher
resolution if necessary and then using the relative Chow lemma of Hironaka
we may assume that p : W → X is a projective morphism. Choose β ∈
H1,1

BC(Y ); then by [DH20, Lemma 2.27] there is an R-divisor E supported on
the exceptional locus of p such that q∗β + [E] = 0 in H1,1

BC(W )/p∗H1,1
BC(X).

In particular, there is a α ∈ H1,1
BC(X) such that q∗β + [E] = p∗α for some

α ∈ H1,1
BC(X). Since φ does not extract any divisor, E is also q-exceptional.

Therefore φ∗α = q∗p∗α = q∗(q∗β + [E]) = β, and hence φ∗ is surjective. #

Lemma 2.15. Let f : X ′ → X be a proper bimeromorphic morphism of nor-
mal compact Kähler varieties. Assume further that X has Q-factorial klt sin-
gularities and X ′ has rational singularities. Then Ex(f) is a pure codimension
1 subset of X ′.

Proof. We claim that we can apply [DH20, Lemma 2.27] here to show that
Ex(φ) has pure codimension 1. Indeed, if we assume this lemma in our case,
then for any Kähler class ωX on X , we can write −ωX ≡ φ∗αX′ + F for some
αX′ ∈ H1,1

BC(X
′) and F a φ-exceptional R-divisor. Then the negativity lemma

implies that F is effective and Supp(F ) = Ex(φ), and we are done.
Now observe that in [DH20, Lemma 2.27] it is assumed that the morphism φ
is projective and dimension of the varieties are 3, however, the projectivity of
φ was never used in the proof and the dimension argument was only necessary
to run the relative MMP which can be achieved in arbitrary dimension by
[DHP22, Theorem 1.4]. #

Lemma 2.16. Let φ : X !!" X ′ be a small bimeromorphic map over Y of
normal compact Kähler varieties such that X and X ′ both have klt singularities
and X ′ is Q-factorial. Let ω ∈ H1,1

BC(X) be nef over Y such that φ∗ω ∈ H1,1
BC(X

′)
is Kähler over Y . Then φ is an isomorphism.

Proof. Let W be the normalization of the graph of φ and p : W → X and
q : W → X ′ are the induced bimeromorphic morphisms. Write p∗ω = q∗ω′+E,
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where E is an R-divisor. Since φ is small, from the negativity lemma it follows
that E = 0, i.e. p∗ω = q∗ω′. If φ is a not a morphism, then there is a curve
C ⊂ W such that p∗(C) = 0 but q∗(C) ̸= 0 and (f ′ ◦ q)∗(C) = 0, where
f ′ : X ′ → Y is the induced morphism. In particular, 0 = p∗ω · C = q∗ω′ · C =
ω′ · q∗(C) > 0, a contraction. Thus φ is a morphism. Then we arrive at a
contradiction by Lemma 2.15 unless φ is an isomorphism.

#

Definition 2.17. [Fuj22, Page 3] Let X be a normal analytic variety and
W ⊂ X a fixed compact subset. We say that W ⊂ X satisfies Property P if
the following hold:

(P1) X is a Stein space.
(P2) W is a Stein compact subset of X .
(P3) Γ(W,OX) is noetherian (or equivalently, for any open subset U ⊂ X

and any analytic subset Z of U , W ∩ Z has finitely many connected
components).

A projective morphism g : S → T between analytic varieties is said to satisfy
Property Q if S and T are both compact.

Remark 2.18. Let X be a normal analytic variety and for each point x ∈ X ,
let x ∈ U be a Stein open neighborhood. Since U is locally compact, there
is a compact neighborhood x ∈ K ⊂ U of x. Then by [Fuj22, Lemma 2.5],
its holomorphically convex hull K̂ in U is Stein compact. Note that from
[Fuj22, Theorem 2.10] it follows that K̂ ⊂ U satisfies Property P if and only if
Γ(K̂,OU) = lim−→K̂⊂V

Γ(V,OV ), where V is an open subset of U , is a noetherian
ring. But then from [Fuj22, Lemma 2.16] we see that there is a Stein compact
subset L such that x ∈ K̂ ⊂ L ⊂ U such that Γ(L,OU) is noetharian. In
particular, every point x ∈ X has a Stein open neighborhood U and a Stein
compact subset x ∈ L ⊂ U such that U satisfies Property P.

Theorem 2.19. Let (X,B + β) be a generalized klt pair, where X relatively
compact analytic variety. Then the following hold locally over X:

(1) X has rational singularities,
(2) there exists a small bimeromorphic morphism µ : X♯ → X such that

X♯ is Q-factorial,
(3) if KX♯ + B♯ + βX♯ = µ∗(KX + B + βX), then βX♯ ≡X ∆♯ so that

(X♯, B♯ +∆♯) is klt, and
(4) if ∆ = µ∗∆♯, then (X,B +∆) is klt.

Proof. (1) immediately follows from (4) and [Kol97, Corollary 11.14].
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(2-3) From Remark 2.18, it follows that for any x ∈ X there is a Stein
compact subset x ∈ W ⊂ X such that X satisfies Property P. In what follows
we work locally around W i.e. we repeatedly shrink X to a neighborhood of
W (without further mention). Let ν : X ′ → X be a projective log resolution
of (X,B+β) and write KX′ +B′ +βX′ = ν∗(KX +B +βX). Let E = Ex(ν),
and for 0 < ϵ ≪ 1 define B∗ := (B′)>0 + ϵE and F := (B′)<0 + ϵE. Then
KX′ + B∗ + βX′ ≡ ν∗(KX + B + βX) + F , where the support of F equals
the set of all ν-exceptional divisors, and (X ′, B∗ + βX′) is generalized klt. In
particular, βX′ ≡X F − (KX′ +B∗) where F − (KX′ +B∗) is an R-divisor, nef
over X . As ν is projective and X is Stein, we may assume that F −(KX′ +B∗)
is big and nef (over X). But then βX′ ≡X ∆′, where ∆′ ≥ 0 is an effective
R-divisor such that (X ′, B∗ +∆′) is klt.

We may therefore run the relative KX′ +B∗ +∆′-MMP (see [DHP22, The-
orem 1.4] and [Fuj22, Theorem 1.8]) and hence we may assume that we have
a bimeromorphic map ψ : X ′ !!" X♯ such that if F ♯ = ψ∗F , B♯ = ψ∗B∗,
βX♯ = ψ∗βX′ and ∆♯ = ψ∗∆′, then

F ♯ ≡X KX♯ +B♯ + βX♯ ≡X KX♯ +B♯ +∆♯

is nef over X so that F ♯ = 0 by the negativity lemma. Therefore µ : X♯ →
X is a small bimeromorphic morphism, B♯ = µ−1

∗ B and X♯ is Q-factorial.
Clearly (X♯, B♯ +∆♯) is klt. Note that each step of the above MMP preserves
the numerical equivalence βX♯ ≡X ∆♯, and in particular KX♯ + B♯ + βX♯ =
µ−1
∗ (KX +B + βX).
(4) By the Base-point free theorem [Fuj22, Theorem 8.1], we have (locally

over X) that KX♯ +B♯ +∆♯ ∼Q,X 0 and the claim follows.
#

We have following immediate corollary.

Lemma 2.20. Let (X,B + β) be a generalized klt (resp. dlt) pair, where X
is compact analytic surface. Then X is Q-factorial with rational singularities,
and (X,B) is klt (resp. dlt).

Proof. By Theorem 2.19, X has rational singularities. Then from [Fuj21,
Lemma 3.10] it follows that X is Q-factorial. #

2.3. Existence of Flips for Generalized Pairs. In this subsection we prove
the existence of flips for generalized klt pairs in dimension 3.

Theorem 2.21. Let (X/S,B + β) be a generalized klt Kähler 3-fold pair,
such that KX + B is R-Cartier, and f : X → Z is a KX + B + βX-negative
small bimeromorphic morphism over S. Then f is locally projective, the log
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canonical model f+ : X+ → Z for (X,B + β) over Z exists and there is an
f -exceptional rational curve C such that 0 > (KX +B + βX) · C ≥ −6.

Proof. Let C = ∪Ci be the set of curves contracted by f . Assume for simplicity
that C is connected. It suffices to construct the flip locally around z = f(C) ⊂
Z. Let z ∈ W ⊂ Z be a relatively compact Stein open subset. Shrinking
W , we may assume that for every curve Ci, there is a Cartier divisor Di on
XW := f−1W that intersects Ci transversely and does not intersect Cj for
j ̸= i. To construct Di, pick a general point xi on Ci and a sufficiently small
neighborhood xi ∈ Ui ⊂ X . We identify xi ∈ Ui with a locally closed analytic
subvariety of CN and take the divisorDi given by a general hyperplane through
xi. Shrinking W and intersecting Di with XW , we may assume that each Di is
a subvariety of XW . It then follows that if D =

∑
diDi, where di = [βX ] · Ci,

then D ≡W βX .
Now let ν : X ′ → X be a log resolution of the generalized pair (X,B + β).

Since KX + B is R-Cartier, we have [βX ] ∈ H1,1
BC(X), and so by Remark 2.8

we may write −E ≡ βX′ − ν∗βX for some ν-exceptional R-divisor E on X ′.
Let D′ := ν∗D − E|X′

W
≡W βX′|X′

W
. We may assume that ν : X ′

W → W is
projective (via Hironaka’s Chow lemma [Hir75, Corollary 2]). Since D′ is nef
and big over XW , replacing D′ by an R-linearly equivalent divisor, we may
assume that (X ′

W , B′
W +D′) is sub-klt and hence (XW , BW +D) is klt, since

KX′

W
+B′

W +D′ ≡ ν∗(KXW
+BW +D). But then the required log canonical

modelX+
W exists (see [CHP16, Theorem 4.3]). In particular, −(KXW

+BW+D)
is ample over W and so f is locally projective. The existence of f -exceptional
rational curve C ⊂ XW such that 0 > (KX + B + βX) · C = (KXW

+ BW +
D) · C ≥ −6 now follows from [DO23, Theorem 4.2]. #

As an easy corollary, we will prove the existence of flips. Recall that if
(X/S,B+β) is a Q-factorial compact Kähler generalized klt 3-fold pair, then
a KX+B+βX-flipping contraction over S is a small bimeromorphic morphism
f : X → Z over S such that ρ(X/Z) = 1, and −(KX +B+βX) is Kähler over
Z. By definition, the flip of f : X → Z, if it exists, is a small bimeromorphic
morphism f+ : X+ → Z over S such that X+ is Kähler over S, and KX+ +
B+ + βX+ is Kähler over Z. We need the following lemma first.

Lemma 2.22. Let X be a normal Q-factorial compact Kähler variety, f :
X → Z a 3-fold KX + B + βX-flipping contraction of a generalized klt pair
over S, and f+ : X+ → Z the corresponding flip, then

(1) f+ : X+ → Z is uniquely determined,
(2) X+ is Q-factorial, and
(3) ρ(X+/Z) = 1.
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Proof. Suppose that f ′ : X ′ → Z is another flip of f : X → Z, then X+ !!" X ′

is a small bimeromorphic map over Z. Let Y be the normalization of the
graph and p : Y → X+ and q : Y → X ′ are the induced morphisms, then
from the negativity lemma it follows easily that q∗(KX+ + B+ + βX+) =
p∗(KX′ + B′ + βX′). Let C ⊂ Y be a p-exceptional curve. Then q∗C ̸= 0
and (f ′ ◦ q)∗C = 0. Thus we have

0 < C · q∗(KX+ +B+ + βX+) = C · p∗(KX′ +B′ + βX′) = 0

which is a contradiction. Therefore, there are no such curves and henceX+ !!"

X ′ is a morphism. Similarly, it follows that X ′ !!" X+ is a morphism and
hence X+ ∼= X ′; in particular, (1) holds.

Let G+ be a prime Weil divisor on X+ and G its strict transform on X .
Then G is Q-Cartier, as X is Q-factorial. For any point p ∈ X+ we must show
that there is a neighborhood of p on which G+ is Q-Cartier. This is clear if p is
not contained in the flipped locus Ex(f+), so assume that p ∈ Ex(f+) and let
q = f+(p). Working locally over a neighborhood q ∈ W ⊂ Z as in the proof of
Theorem 2.21, we may assume that KXW

+BW +D is klt for some R-divisor D
on XW such that D ≡W βX |XW

and that X+ → W is the relative log canonical
model for KXW

+BW +D. Since −(KXW
+BW +D) is ample over W , we may

pick an effective R-divisor 0 ≤ H ∼R,W ϵGW− 1
2(KXW

+BW+D) for 0 < ϵ≪ 1
such that (XW , BW+D+H) is klt and −(KXW

+BW+D+H) is ample over W .
Then X+ → W is also the relative log canonical model for KXW

+BW +D+H
over W and so KX+

W
+ B+

W +D+ +H+ ∼R,W
1
2(KX+

W
+ B+

W +D+) + ϵG+
W is

R-Cartier for 0 < ϵ≪ 1, and hence G+
W is Q-Cartier and (2) is proven.

(3) now follows from [DH20, Lemma 2.27].
#

Corollary 2.23. Let (X/S,B+β) be a Q-factorial compact Kähler generalized
klt 3-fold pair, and f : X → Z is a KX +B +βX-flipping contraction over S.
Then f is locally projective, the flip f+ : X → Z for KX + B + βX over Z
exists (and unique), and there is an f -exceptional rational curve C such that
0 > (KX +B + βX) · C ≥ −6.

Proof. Follows immediate from Theorem 2.21 and Lemma 2.22. #

Proof of Theorem 1.1. This follows from Corollary 2.23. #

Lemma 2.24. Let π : X → S be a proper morphism of compact complex
varieties such that X is Kähler. If (X,B+β) is a generalized dlt pair and φ :
X !!" X ′ is a KX +B+βX flip, flipping contraction or divisorial contraction,
then X ′ is Kähler.
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Proof. Let ω be a Kähler form such that γ = KX +B+βX +ω is a supporting
hyperplane for the KX + B + βX-negative extremal ray. If f : X → Z is the
corresponding contraction, then γZ = KZ+BZ+βZ+ωZ = f∗(KX+B+βX+ω)
is generalized dlt and hence Z has rational singularities. But then, by the proof
of [CHP16, Corollary 3.8], γZ is Kähler (over S). Suppose now that f : X → Z
is a flipping contraction and let f+ : X+ → Z be the flip, then −ω+ = −φ∗ω
is Kähler over Z and so, for any 0 < ϵ≪ 1,

KX+ +BX+ + βX+ + (1− ϵ)ω+ ≡ f+∗
γZ − ϵω+

is Kähler on X+. #

2.4. Generalized Surface MMP. We begin by recalling the following well
known fact.

Lemma 2.25. If α ∈ H1,1
BC(X) is pseudo-effective but not nef on a normal

compact Kähler surface X, then
∫
C
α < 0 for some curve C ⊂ X.

Proof. Follows immediately from [DHP22, Theorem 2.36]. #

Lemma 2.26. Let f : X → Y be a proper bimeromorphic morphism of normal
compact Kähler surfaces with rational singularities. If α ∈ H1,1

BC(X) is nef and
αY := f∗α, then αY ∈ H1,1

BC(Y ) is nef.

Proof. Passing to a resolution of singularities of X we may assume that X is
smooth. Now recall that by the Hodge index theorem the intersection matrix
of the set of all f -exceptional curves is a negative definite matrix. Therefore
there is an f -exceptional R-divisor E on X such that α+E ≡Y 0. By [HP16,
Lemma 3.3], α+E = f ∗αY for some αY ∈ H1,1

BC(Y ), and thus αY = f∗(f ∗αY ) =
f∗(α+E) = f∗α. From the the negativity lemma it follows that E ≥ 0. Thus
αY is pseudo-effective, and so by Lemma 2.25, it suffices to check that αY |C is
pseudo-effective, i.e. that

∫
C
αY ≥ 0 for all curves C ⊂ Y . If C ′ = f−1

∗ C, then
we have ∫

C

αY =

∫

C′

α + (E · C ′) ≥ 0,

since C ′ is not contained in the support of E and α is nef. #

An immediate corollary of this lemma is the following.

Corollary 2.27. If (X,B+β) is a compact generalized lc pair such that X is a
compact Kähler surface with rational singularities, then βX has local potentials
on X and [βX ] ∈ H1,1

BC(X) is nef.
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Definition 2.28. Let X be a compact analytic variety. The Neron-Severi
R-vector space of X is defined as:

NS(X)R := Im(Pic(X) → H2(X,R)).

Lemma 2.29. Let X be a normal compact Kähler variety with rational sin-
gularities. If H2(X,OX) = 0, then X is projective and NS(X)R = H1,1

BC(X).

Proof. Since H2(X,OX) = 0, from the usual exponential sequence it follows
that Pic(X) $ H2(X,Z) is surjective. Since X is compact, all singular ho-
mology groups of X are finitely generated Z-modules, and thus by the Uni-
versal Coefficient Theorem we have H2(X,Z) ⊗Z R = H2(X,R). Therefore
NS(X)R = H2(X,R). Now consider the following short exact sequence (see
[HP16, page 223])

(2.1) 0 !! R !! OX
!! HX

!! 0.

The associated long exact sequence of cohomology yields
(2.2)

0 !! H1(X,R) !! H1(X,OX) !! H1(X,HX) !! H2(X,R) !! H2(X,OX) !! · · · .

Let π : X̂ → X be a resolution of singularities of X . Since X has rational
singularities, H1(X̂,R) ∼= H1(X,R) and H1(X̂,OX̂)

∼= H1(X,OX). Since X̂
is a compact Kähler manifold, from the Hodge decomposition it follows that
H1(X̂,R) → H1(X̂,OX̂) is an isomorphism, and thus H1(X,R) → H1(X,OX)
is an isomorphism. In particular, from the sequence (2.2) and the fact that
H2(X,OX) = 0, it follows that H2(X,R) ∼= H1(X,HX) := H1,1

BC(X). This
completes our proof.

#

In the next few results we will establish the cone theorem and existence of
minimal models (and Mori fiber spaces) for generalized pairs in dimension 2
which will be used in rest of the articles in without reference.

Lemma 2.30. Let (X,B) be a dlt pair, where X is a compact Kähler sur-
face. Then there exists countably many rational curves {Γi}i∈I such that
0 < −(KX +B) · Γi ≤ 4 and

NA(X) = NA(X)(KX+B)≥0 +
∑

i∈I

R+ · [Γi].

Proof. From Lemma 2.20 it follows that X has Q-factorial rational singulari-
ties. First assume that KX + B is pseudo-effective. Then from Lemma 2.25
it follows that KX + B is nef if and only if (KX + B) · C ≥ 0 for every curve
C ⊂ X . Let KX +B ≡

∑
i∈I λiCi+β be the Boucksom-Zariski decomposition

as in [Bou04], where λi ≥ 0 for all i ∈ I ⊂ N (a finite subset) and β ·C ≥ 0 for
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every curve C ⊂ X . Now if KX + B is not nef, then there is a curve Γ ⊂ X
such that (KX+B) ·Γ < 0. This implies that (

∑
i∈I λiCi) ·Γ < 0, in particular,

Γ = Ci for some i ∈ I and Γ2 < 0. Then the rest of proof works similarly as in
the proof of [DO23, Theorem 6.1]. The length bound 0 > (KX +B) · Γ ≥ −4
follows from [DO23, Theorem 4.2].
Now assume that KX + B is not pseudo-effective. Then KX is not pseudo-
effective. Let ν : X̃ → X be the minimal resolution of singularities of X .
Then from [DH20, Lemma 2.40] it follows that X̃ is an uniruled projective
surface. In particular, X is Moishezon. Since X is also a compact Kähler
variety with rational singularities, from [Nam02, Theorem 1.6] it follows that
X is (uniruled) projective. Let π : X → Y be the MRC(C) fibration of X ,
where dim Y ≤ 1. Then from the argument of [DH20, Lemma 2.39] it fol-
lows that H2(X,OX) = 0. In particular, from Lemma 2.29 it follows that
NS(X)R = H2(X,R) = H1,1

BC(X), and hence NE(X) = NA(X) and the cone
theorem is well known in this case.

#

Lemma 2.31. Let (X,B + β) be a generalized klt (resp. dlt) pair, where X
is a compact Kähler surface. Then we can run the KX +B + βX-MMP

X = X0 → X1 → . . . → Xn

so that:

(1) each (Xi, Bi + βXi
) is a generalized klt (resp. dlt) surface with Q-

factorial rational singularities (where Bi is defined by pushforward),
(2) if KX +B + βX is pseudo-effective, then KXn +Bn + βXn is nef, and
(3) if KX+B+βX is not pseudo-effective, then there is a KXn+Bn+βXn-

Mori fiber space f : Xn → Z.

Proof. By Lemma 2.20, X has Q-factorial rational singularities. Then by
Lemma 2.13, (X,B) is klt (resp. dlt). If KX +B is nef, then KX +B+βX nef
by Corollary 2.27 and we are done. So assume that KX+B is not nef. Suppose
that there is a KX +B-negative extremal ray R which is also KX + B + βX-
negative (cf. Lemma 2.30). Then, by the usual MMP, there are two cases.
If R defines a Mori fiber space, then we are done. Otherwise, R defines a
divisorial contraction g : X → X ′ so that (X ′, B′ = g∗B) is klt (resp. dlt)
and in particular Q-factorial with rational singularities. From Corollary 2.27
it follows that βX′ := g∗βX has local potentials and [βX′ ] ∈ H1,1

BC(X
′) is nef.

We may replace (X,B+β) by (X ′, B′+β = g∗(B+β)). The Kähler condition
is preserved by Lemma 2.24. Repeating this procedure finitely many times we
may assume that either it terminates with a Mori fiber space or every KX+B-
negative extremal ray R is KX +B+βX-non-negative. In the latter case since
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βX is nef (see Corollary 2.27), it then follows that KX+B+βX is non-negative
on NA(X) and hence nef. This concludes our proof. #

Corollary 2.32. Let (X,B+β) be a generalized dlt pair, where X is a compact
Kähler surface. Then the following holds:

(1) There are at most countably many curves {Γi}i∈I such that 0 > (KX +
B + βX) · Γi ≥ −4 and

NA(X) = NA(X)KX+B+βX≥0 +
∑

i∈I

R[Γi].

(2) If F is a face spanned by a set of KX + B + βX-negative extremal
rays, then there is a contraction f : X → Y contracting curves C with
[C] ∈ F and either Y is a point, or a smooth projective curve or a
normal Q-factorial surface with rational singularities.

(3) If (X,B + β) is a generalized klt and B + βX or KX +B + βX is big,
then I is finite.

Proof. (1) By Lemma 2.13, (X,B) is dlt with rational Q-factorial singularities.
By Corollary 2.27, βX is nef and so NA(X)KX+B≥0 ⊂ NA(X)KX+B+βX≥0.
Thus by Lemma 2.30 we have

NA(X) = NA(X)KX+B≥0 +
∑

i∈I

R[Γi] = NA(X)KX+B+βX≥0 +
∑

i∈I

R[Γi].

(2) Clearly F is also KX + B-negative and hence the contraction exists by
the usual contraction theorem. Since we are unable to find a reference for this
fact we recall an easy proof. Let γ be the supporting hyperplane so that γ
is nef and γ⊥ ∩ NA(X) = F . Pick an extremal ray of F , say R. By [Fuj19]
or [DO23, Theorem 6.2], we may contract R to obtain another generalized dlt
Kähler surface (X ′, B′ + βX′) with rational Q-factorial singularities (see also
Lemma 2.24). Since X ′ has rational singularities and hence γ = ν∗(γ′), where
γ′ ∈ H1,1

BC(X) is nef. Repeating this procedure, after finitely many steps we
may assume that γ′ ∈ H1,1

BC(X) is Kähler, and thus we have contracted the
face F .

(3) We claim that if ψ ∈ H1,1
BC(X) is a big class, then there are at most

finitely many curves C ⊂ X such that
∫
C
ψ < 0. To see this, note that for

some Kähler form ω, the class [ψ − ω] is still big. Let ψ − ω ≡ Z + P be
a Boucksom-Zariski decomposition such that Z ≥ 0 is an effective R-divisor
and P is a nef class (see [Bou04, Proposition 2.4] and Lemma 2.25). But then
one sees that if

∫
C
ψ < 0, then C is contained in the support of Z. Thus, if

KX +B + βX is big, then the claim immediately holds.
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Suppose now that B + βX is big, then we may write B + βX ≡ Z + ω + P
as above. Thus

B + βX ≡ ((1− ϵ)B + ϵZ) + ((1− ϵ)βX + ϵ(ω + P ))

where (X, (1 − ϵ)B + ϵZ) is klt and (1 − ϵ)βX + ϵ(ω + P ) is Kähler for all
0 < ϵ≪ 1. The finiteness of KX +B+βX negative extremal rays now follows
from the usual cone theorem. #

Theorem 2.33. Let (X,B+β) be a generalized klt pair, where X is a compact
Kähler surface. If KX + B + βX is big, then (X,B + β) has a log canonical
model.

Proof. By running aKX+B+βX-MMP, we may assume that α = KX+B+βX

is nef and big (Lemma 2.31). We claim that Null(α) consists of finitely many
curves. To see this, choose a Kähler form ω such that KX +B+βX −ω is also
a big class. Then, by the Boucksom-Zariski decomposition [Bou04], we can
write KX +B +βX − ω ≡ D+ γ, where D is an effective R-divisor and γ is a
modified nef class (and hence a nef class by Lemma 2.25). Choose 0 < ε ≪ 1
such that (X,B + εD) is klt. Then

(1 + ε)α = (KX +B + εD + βX) + ε(γ + ω).

Now if C ⊂ Null(α) is a curve, then α · C = 0 implies that (KX + B + εD +
βX) ·C < 0. Since KX +B + εD+βX is big, by a similar argument as in the
proof of Corollary 2.32(3) it follows that there are finitely many such curves.
This proves our claim. Moreover, from the above equation it also follows that
if C ⊂ Null(α) is a curve, then (KX + B + εD) · C < 0, and thus this curve
can be contracted. Repeating this process finitely many times (since Null(α)
contains finitely many curves) we obtain a projective bimeromorphic morphism
f : X → Z to a normal compact surface Z with rational singularities such that
α = f ∗αZ and Null(αZ) = ∅, where αZ := f∗(KX +B+βX) =: KZ +BZ +βZ .
Then from [DHP22, Theorem 2.30] it follows that αZ is a Kähler class. Thus
(Z,BZ + βZ) is the log canonical model of (X,B + βX).

#

Remark 2.34. Note that by [LP20, Example 6.2], it is not the case that all
generalized pairs have a good minimal model, however it is known that if β is
an R-divisor and KX +B is pseudo-effective, then good minimal models exist
[LP20, Corollary C]. It would be interesting to know if good minimal models
exist for generalized klt Kähler surface pairs (X,B + β) such that KX +B is
pseudo-effective and [βX ] ∈ H1,1

BC(X).
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2.5. Relative MMP for 3-Folds. Using [DHP22, Theorem 5.2] we will show
that we can run a relative MMP for proper morphism between Kähler varieties.

Theorem 2.35. Let (X,B) be a Q-factorial dlt pair, where X is a compact
Kähler 3-fold. Let f : X → Z be a proper morphism to a normal compact
Kähler variety. Then we can run a KX + B-MMP over Z which terminates
with either a log terminal model over Z or a Mori fiber space over Z.

Proof. Let ωZ be a Kähler class on Z. We may assume that KX +B is not nef
over Z. Then KX + B + tf ∗ωZ is not nef on X for any t ≥ 0. From the cone
theorem [DHP22, Theorem 5.2] we know that there are at most countably
many rational curves {Ci}i∈I such that 0 > (KX + B) · Ci ≥ −6 for all i ∈ I
and

NA(X) = NA(X)(KX+B)≥0 +
∑

i∈I

R+ · [Ci].

We claim that there is an i ∈ I such that f∗Ci = 0. If not, then f ∗ωZ ·Ci =
ωZ · f∗Ci > 0 for all i ∈ I, since ωZ is a Kähler class on Z. Since the classes
[Ci] are contained in a discrete lattice of H4(X,Z), it follows that there is an
ϵ > 0 such that ωZ · f∗Ci ≥ ϵ for all i ∈ I. Then for some t0 ≫ 0 we may
assume that t0f ∗ωZ · Ci ≥ 7 for all i ∈ I. Thus (KX + B + t0f ∗ωZ) · Ci > 0
for all i ∈ I, and hence KX + B + t0f ∗ωZ is nef on X , a contradiction. Now
we contract an extremal ray R = R+ · [Ci] such that f∗Ci = 0 using [DH20,
Theorem 1.7] and obtain a morphism g : X → Y to a normal Kähler variety
Y . Then from the rigidity lemma it follows that there is a unique morphism
h : Y → Z such that f = h ◦ g. Repeating this process we construct a MMP
over Z. Termination of flips follow from [DO23, Theorem 3.3].

#

3. Threefold generalized MMP

3.1. Running the MMP for R-Cartier Divisors. Throughout this section
we will repeatedly use the results of [DH20] on the 3-fold MMP for Q-factorial
compact Kähler klt pairs (X,B). Note that in this reference, the results are
stated for the case that KX + B is Q-Cartier, however, they also hold when
KX + B is an R-Cartier divisor. This is because if KX + B is an R-Cartier
divisor, then it can be approximated by a sequence of klt Q-Cartier divisors
KX+Bn (for example, if X is Q-factorial, let Bn = 1

n
⌊nB⌋). The cone theorem

forKX+B is easily seen to follow from the cone theorem (cf. [DH20, Theorems
2.17, 4.6]) applied to the sequence of Q-Cartier divisors KX + Bn. If Γ is a
KX + B-negative extremal ray, then it is also a KX + Bn-negative extremal
ray for any n ≫ 0 and so the contraction of Γ, cΓ : X → Y exists by [DH20,
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Theorems 1.5 and 2.18]. Similarly, if X → Y is a KX +B-flipping contraction,
then it is also a KX + Bn-flipping contraction and hence the flip X+ → Y
exists [CHP16, Theorem 4.3]. The termination of flips follows by the usual
arguments (see [DO23, Theorem 3.3]).

Lemma 3.1. Let (X,B + β) be a compact generalized 3-fold pair with Q-
factorial rational singularities. If βX is not nef, then βX · C < 0 for some
curve C ⊂ X contained in the indeterminacy locus of f−1, where f : X ′ → X
is a structure morphism of the generalized pair.

Proof. Since KX +B is Q-Cartier, the current βX has local potentials. Let

E := KX′ +B′ − f ∗(KX +B) = f ∗βX − βX′ ,

where E is exceptional, and so E ≥ 0 is effective by the negativity lemma
as βX′ is f -nef. If βX is not nef, then βX |V is not pseudo-effective for some
subvariety V ⊂ X , by [DHP22, Theorem 2.36]. Since βX′ is nef, it is pseudo-
effective and hence so is β = f∗βX′, and hence dimV < 3. If dimV = 2, let
V ′ = f−1

∗ V ; then (βX′ + E)|V ′ = f ∗βX |V ′ is pseudo-effective and hence so is
βX |V . Thus dimV = 1 and it is easy to see that V is contained in the image
of E and hence in the indeterminacy locus of f−1. #

Lemma 3.2. Let X be a normal compact Kähler 3-fold and ω is a modified
Kähler class on X. Then for any countable collection of non-numerically equiv-
alent curves {Ci}i∈I, there is a positive real number b > 0 such that ω ·Ci ≥ b
for all but finitely many curves. Moreover, if (X,B) is a log canonical pair for
some R-divisor B ≥ 0 and {Ci}i∈I are all the rational curves generating the
KX + B-negative extremal rays of NA(X), then there are only finitely many
curves {Cj}j∈J , J ⊂ I, such that (KX +B + ω) · Cj < 0 for all j ∈ J .

Proof. Let f : X ′ → X be a resolution of singularities of X and ω′ a Kähler
class on X ′ such that f∗ω′ = ω. Then f ∗ω = ω′ + E, where E is a f -
exceptional divisor. From the negativity lemma it follows that E is effective.
Since dimX = 3 and E is f -exceptional, dim f(SuppE) ≤ 1. Therefore there
can be at most finitely many curves {Cj}j∈J , J ⊂ I, contained in f(SuppE).
In particular, ω · Ci = f ∗ω · C ′

i = (ω′ + E) · C ′
i > 0 for all i ∈ I \ J , where

C ′
i is the strict transform of Ci. Note that these C ′

i are also not numerically
equivalent. Moreover, since ω′ is a Kähler class, there is a positive real number
b > 0 such that ω′ · C ′

i ≥ b for all i ∈ I \ J . In particular, ω · Ci ≥ ω′ · C ′
i ≥ b

for all i ∈ I \ J .
If {Ci}i∈I are generators of KX+B-negative extremal rays, then from [DHP22,
Corollary 5.3] it follows that (KX + B) · Ci ≥ −6 for all i ∈ I. Therefore if
(KX +B+ω) ·Ci < 0 for some i ∈ I, then ω′ ·C ′

i ≤ ω ·Ci < −(KX +B) ·Ci ≤
6. Since ω′ is a Kähler class, it follows that there are only finitely many
KX +B + ω-negative extremal rays. #
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3.2. Existence of Log Terminal Models. In this subsection we will estab-
lish the existence of log terminal models and log canonical models, and prove
Theorem 1.2.
In the following two results we will show that we can run a MMP with scaling
(which terminates after finitely many steps) when KX + B + βX is pseudo-
effective and βX is a modified Kähler class.

Proposition 3.3. Let (X,B) be a Q-factorial compact Kähler 3-fold klt pair.
Let ω ∈ H1,1

BC(X) be a modified Kähler class, KX+B+ω is pseudo-effective and
KX+B+(1+ t)ω is nef for some t ≥ 0. Then we can run a KX+B+ω-MMP
with scaling of tω which terminates with a log terminal model.

Proof. Let λ := inf{t ≥ 0 : KX +B + (1 + t)ω is nef}.

Claim 3.4. There exists a KX + B-negative extremal ray R+[C] such that
(KX +B + (1 + λ)ω) · C = 0.

Proof. By [DHP22, Theorem 5.2], there are countably many KX +B-negative
extremal rays generated by curves {Ci}i∈I such that 0 > (KX +B) ·Ci ≥ −6.
Since ω is a modified Kähler class, by Lemma 3.2 there is a finite subset I ′ ⊂ I
such that (KX +B +ω) ·Ci ≥ 0 if and only if i ∈ I \ I ′. Let I0 ⊂ I ′ be the set
of i ∈ I0 such that (KX +B + (1 + λ)ω) · Ci = 0.

We claim that I0 ̸= ∅. To see this, suppose that I0 = ∅, then there is a
positive real number b > 0 such that (KX + B + (1 + λ)ω) · Ci > b for any
i ∈ I ′, and there is a positive real number c > 0 such that ω · Ci ≤ c for all
i ∈ I ′. Recall that (KX + B) · Ci ≥ −6 for all i ∈ I. Choose a positive real
number 0 < δ < min{λ, b/c}, then

(3.1) (KX +B + (1 + λ− δ)ω) · Ci ≥ b− δc > 0 for all i ∈ I ′.

Since

KX +B + (1 + λ− δ)ω =
δ

λ
(KX +B + ω) + (1−

δ

λ
)(KX +B + (1 + λ)ω),

then (KX +B + (1 + λ− δ)ω) · Ci ≥ 0 for all i ∈ I \ I ′. Observe that

KX +B+(1+λ− δ)ω =
δ

1 + λ
(KX +B)+

(
1−

δ

1 + λ

)
(KX +B+(1+λ)ω)

and so KX + B + (1 + λ − δ)ω is non-negative on NA(X)KX+B≥0. Since by
[DHP22, Theorem 5.2],

NA(X) = NA(X)KX+B≥0 +
∑

i∈I

R+ · [Ci],

thenKX+B+(1+λ−δ)ω is non-negative on NA(X) and soKX+B+(1+λ−δ)ω
is nef, which is a contradiction to the definition of λ.

#
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Now, let R = R+·[C] be aKX+B-negative extremal ray such that (KX+B+
(1+ λ)ω) ·C = 0; in particular, ω ·C > 0. Then, by [DH20, Theorem 1.7], we
can contract this ray and obtain a morphism f : X → Y to a normal compact
Kähler variety Y with rational singularities. Note that f is bimeromorphic,
since it is also a contraction of a (KX+B+ω)-negative extremal ray and KX+
B+ω is pseudo-effective. If f is a flipping contraction then let f ′ : X ′ → Y be
the associated flip (and if f is a divisorial contraction, let X ′ = Y ), and B′,ω′

the pushforwards of B and ω onX ′. Note thatKX′+B′+(1+λ)ω′ is nef and ω′

is modified Kähler. We now let λ′ := inf{t ≥ 0 : KX′ +B′ + (1 + t)ω′ is nef}
and repeat the process. Note that 0 ≤ λ′ ≤ λ and the process terminates
as there is no infinite sequence of steps for any (KX + B)-MMP by [DO23,
Theorem 3.3]. #

Corollary 3.5. Let (X,B) be a Q-factorial compact Kähler 3-fold klt pair and
π : X → S a proper surjective morphism to a Kähler variety. Let ω ∈ H1,1

BC(X)
be a modified Kähler class over S, KX +B +ω is pseudo-effective over S and
KX+B+(1+t)ω is nef over S for some t ≥ 0. Then we can run a KX+B+ω-
MMP over S with scaling of tω which terminates with a log terminal model
over S.

Proof. Replacing ω by ω+π∗ωS for some Kähler class ωS on S, we may assume
that ω ∈ H1,1

BC(X) is a modified Kähler class, KX+B+ω is pseudo-effective, and
KX+B+(1+t)ω is nef. Let {Ci}i∈I be the set of curves generating all KX+B-
negative extremal rays of NA(X). Then from [DHP22, Theorem 5.2] it follows
that 0 < −(KX+B)·Ci ≤ 6 for all i ∈ I. SinceKX+B+(1+t)ω is nef, it follows
that ω ·Ci > 0 for all i ∈ I. In particular, we have (KX+B+(1+λ)ω)·Ci ≥ −6
for any 0 ≤ λ ≤ t and for all i ∈ I. Pick a Kähler class ηS on S such that
C · ηS > 6 for any curve C on S. Let ω′ := ω + π∗ηS, then ω′ is modified
Kähler on X , KX +B + ω′ is pseudo-effective, and KX +B + (1 + t)ω′ is nef.
By Proposition 3.3, we may run the KX + B + ω′-MMP with scaling of tω′.
Let

λ := inf{s ≥ 0 : KX +B + ω′ + s(tω′) is nef}.

Then by Claim 3.4 there is a KX + B-negative extremal ray spanned by a
curve Ci such that (KX +B + (1 + λ)ω′) ·Ci = 0. We claim that π∗Ci = 0. If
not, i.e. if π∗Ci ̸= 0, then we have

0 = (KX +B + (1 + λ)ω) · Ci + (1 + λ)π∗η · Ci > −6 + (1 + λ)6 > 0

which is a contradiction. Therefore π∗Ci = 0 and so the corresponding flip or
divisorial contraction is a step of the KX +B-MMP over S. Since there is no
infinite sequence of KX + B-flips (see [DO23, Theorem 3.3]), we may repeat
this procedure finitely many times until we obtain a KX + B + ω minimal
model over S. #
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We now prove the existence of log canonical model when KX + B + βX is
big. This is result is of fundamental importance and will be used repeatedly
in the rest of the article.

Theorem 3.6. Let (X,B+β) be a generalized klt pair, where X is a compact
Kähler 3-fold. Assume that KX +B + βX is big. Then

(1) (X,B + βX) has a (unique) log canonical model,
(2) there exists a log terminal model and all such models admit a morphism

to the log canonical model, and
(3) if [KX +B +βX ] ∈ H1,1

BC(X) is very general, then there is a unique log
terminal model coinciding with the log canonical model.

Proof. We begin with the following reduction.

Claim 3.7. We may assume that (X,B) is log smooth and βX is a Kähler
class.

Proof. Let f : X ′ → X be a structure morphism of the generalized pair (X,B+
β). Since KX + B + βX is big, by [Bou02, Theoreme 1.4] and passing to a
higher resolution if necessary, we may assume that f ∗(KX+B+βX) ≡ F ′+ω′,
where ω′ is a Kähler class and F ′ ≥ 0 is an effective Q-divisor. Let F + ω :=
f∗(F ′ + ω′), then F ≥ 0 and ω is modified Kähler. For any 0 < ϵ ≪ 1,
(X,B + ϵF + β + ϵω̄) is generalized klt and KX + B + ϵF + βX + ϵω ≡
(1 + ϵ)(KX +B + βX). Thus, replacing (X,B + β) by (X, ϵF + β + ϵω̄′), we
may assume that βX′ is Kähler for some log resolution f : X ′ → X of the
generalized pair (X,B + β).

Let E = Ex(f). By Lemma 2.12(5) and [BCHM10, Lemma 3.6.9], a log
terminal model (resp. the log canonical model) of KX′ + (B′)≥0 + ϵE + βX′ ,
where E ≥ 0 is an effective Q-divisor such that Supp(E) = Ex(f) and 0 ≤ ϵ≪
1 is also a log terminal model (resp. the log canonical model) of KX +B+βX .
Thus replacing (X,B+β) by (X ′, (B′)≥0+ϵE+β′+ϵω̄′), we may assume that
(X,B) is log smooth and βX is a Kähler class. Note that if [KX +B + βX ] ∈
H1,1

BC(X) is very general, then by [DH20], after possibly perturbing E, we may
assume that [KX′ + (B′)≥0 + ϵE + βX′ + ϵω′] is very general in H1,1

BC(X
′). #

Then KX +B + (1+ t)βX is Kähler for t ≫ 0 and KX +B +βX is pseudo-
effective, and thus by Proposition 3.3, we can run the KX + B + βX-MMP
with scaling of tβX . We obtain a log terminal model φ : X !!" Xm such that
αm := KXm + Bm + βXm = φ∗(KX + B + βX) is nef and big, and βXm is a
modified Kähler class. Moreover, we also have that KXm + Bm + (1 + ϵ)βXm

is nef (and big) for all 0 ≤ ϵ≪ 1.

Claim 3.8. After a finite sequence of αm-trivial steps of the KXm +Bm-MMP
Xm !!" Xn, we may assume that (KXn +Bn) ·C ≥ 0 for any αn-trivial curve
C ⊂ Xn.
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Proof. The proof follows exactly as in the proof of [DH20, Theorem 6.4] where
it is shown that we may flip and contract all KXm+Bm-negative extremal rays
that are αm-trivial. Note that in [DH20] it is assumed that βXm is nef and
big, but the arguments of the proof only use that βXm is modified Kähler. #

Claim 3.9. Null(αn) does not contain any surface.

Proof. This also follows from the proof of [DH20, Theorem 6.4]. #

Claim 3.10. There is a proper bimeromorphic contraction π : Xn → Z con-
tracting Null(αn) such that µ : Xm !!" Z is also a morphism.

Proof. The morphism π : Xn → Z contracting Null(αn) exists by [DH20,
Proposition 6.2]. Following the proof of [DH20, Theorem 6.4], we argue that
µ : Xm → Z is also an αm-trivial morphism. #

Recall that KXm +Bm + (1 + ϵ)βXm is nef. So from

ϵβXm = (KXm +Bm + (1 + ϵ)βXm)− (KXm +Bm + βXm)

= (KXm +Bm + (1 + ϵ)βXm)− αm

it follows that βXm ·C ≥ 0 for all curves C ⊂ Xm contracted by µ : Xm → Z.
Thus −(KXm+Bm) is µ-nef-big, as −(KXm+Bm)|Xm

z
≡ βXm |Xm

z
for all z ∈ Z.

Then by [DHP22, Lemma 8.8], Z has rational singularities. Now since Z is in
Fujiki’s class C, by [HP16, Lemma 3.3] there exists a (1, 1) class αZ ∈ H1,1

BC(Z)
such that αm ≡ µ∗αZ . One then easily checks that Null(αZ) = ∅ and so αZ is
Kähler by [DH20, Lemma 6.3]. Thus KZ +BZ + βZ := µ∗(KXm +Bm +βXm)
is a log canonical model of KX + B + βX . The uniqueness of log canonical
models follows by (3) of Lemma 2.12; this proves (1).

(2) The fact that log terminal models admit a morphism to the log canonical
model follows from the Claim 3.10 above.

(3) Finally, suppose that [KX + B + βX ] is very general in H1,1
BC(X) and

π : Xm → Z is the morphism from a log terminal model Xm to the log
canonical model Z. From Lemma 2.14 it follows that the induced morphism
φ∗ : H1,1

BC(X) → H1,1
BC(X

m) is surjective, where φ : X !!" Xm; in particular,
the class of KXm +Bm + βXm is very general in H1,1

BC(X
m). Let C be a curve

contracted by π, then (KXm +Bm +βXm) ·C = 0, contradicting the fact that
[KX +B +βX ] is very general. Therefore π is a quasi-finite proper morphism
with connected fibers, and hence an isomorphism.

#

We will also need the following relative version of Theorem 3.6.



MMP FOR GENERALIZED PAIRS ON KÄHLER 3-FOLDS 27

Theorem 3.11. Let (X,B+β) be a generalized compact Kähler 3-fold klt pair,
where π : X → S is a morphism to a compact Kähler variety and KX+B+βX

is big over S. Then the following hold:

(1) (X,B + βX) has a (unique) log canonical model X !!" Xc over S.
(2) There exists a log terminal model X !!" Xm over S such that KXm +

Bm + βXm + p∗ωS is nef for some Kähler form ωS on S (where p :
Xm → S is the corresponding morphism) and there is a morphism
Xm → Xc.

(3) If (Xm, Bm +βXm) is a log terminal model over S, then KXm +Bm +
βXm + p∗ωS is nef for some Kähler form ωS on S, and there is a
morphism Xm → Xc.

Proof. Adding a sufficiently large multiple of a Kähler form ωS on S, we may
assume that KX +B + βX is big. Proceeding as in the proof of Theorem 3.6,
replacing X by a higher model, we may assume that βX is Kähler so that
KX + B + (1 + t)βX is also Kähler for t ≫ 0. As in the proof of Corollary
3.5, after adding the pullback of a sufficiently large multiple of a Kähler form
ωS on S, we run the KX +B +βX-MMP with scaling of tβX which turns out
to be a MMP over S, and we obtain a log terminal model X !!" X ′ over S
such that KXm +Bm+βXm is nef and hence also nef over S. By Theorem 3.6
there is a log canonical model ψ : Xm → Xc for KXm + Bm + βXm + p∗ωS,
where ωS is a Kähler class on S, and p : Xm → S is the induced morphism.
Note that ψ is a bimeromorphic morphism, so its fibers are covered by curves
and ψ : Xm → Xc contracts KXm + Bm + βXm + p∗ωS-trivial curves. Since
KXm + Bm + βXm is nef and ωS is Kähler, any such curve must be vertical
over S and hence by the rigidity lemma (see [BS95, Lemma 4.1.13]), there is
a morphism Xc → S so that ψ : Xm → Xc is the log canonical model for
KXm +Bm + βXm over S. Thus (1) and (2) hold.

Suppose now that X !!" Xm is any log terminal model of KX + B + βX

over S. We begin by showing the following.

Claim 3.12. There exists a Kähler form ωS on S such that KXm +Bm+βXm +
p∗ωS is nef.

Proof. If KXm + Bm + βXm is nef, then the claim is obvious. Otherwise, let
X !!" Xn be the log terminal model of KX + B + βX over S constructed
in (2). Then KXn + Bn + βXn + q∗ωS is nef for some Kähler class ωS on
S, where q : Xn → S is the corresponding morphism. Now, by Theorem
A.11, Xm !!" Xn is an isomorphism in codimension 1 between log terminal
models of KX +B+βX over S, and hence it easily follows from the negativity
lemma that if r : W → Xm and s : W → Xn is a common resolution,
then r∗(KXm + Bm + βXm + p∗ωS) = s∗(KXn + Bn + βXn + q∗ωS). Since
KXn +Bn + βXn + q∗ωS is nef, so is KXm +Bm + βXm + p∗ωS. #
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Arguing as above, it follows easily that Xm → Xc is a morphism and hence
(3) also holds. #

Theorem 3.13. Let (X,B+β) be a generalized klt pair, where X is a compact
Kähler 3-fold. Then the following hold:

(1) X has rational singularities,
(2) there exists a small bimeromorphic morphism ν : Xq → X such that

Xq is Q-factorial, and
(3) there exists a bimeromorphic morphism ν : X t → X such that X t is

Q-factorial and (X t, Bt + β) is a generalized terminal pair such that
KXt +Bt + βXt = ν∗(KX +B + βX).

Note that a local version of (2) was proven in Theorem 2.19.

Proof. (1) follows from Theorem 2.19.
(2) Let f : X ′ → X be a projective log resolution of the generalized pair

(X,B + β). Fix 0 < ϵ ≪ 1 and let φ : X ′ !!" Xq be a log terminal model
of KX′ + f−1

∗ B + (1 − ϵ)Ex(f) over X which exists by Theorem 3.11. Since
KX′ + f−1

∗ B + (1− ϵ)Ex(f) + βX′ ≡X F where F ≥ 0 and Supp(F ) = Ex(f),
it follows that F q = φ∗F ≥ 0 is f q : Xq → X exceptional and F q is nef
over X and so by the negativity lemma, F q = 0. Therefore f q is a small
bimeromorphic morphism and Xq is Q-factorial.

The proof of (3) is also standard and similar to the proof of (2) and so we
omit it.

#

The following theorem is a variant of the Base-point-free theorem [DH20,
Theorem 1.7].

Theorem 3.14. Let (X,B+β) be a generalized klt pair, where X is a compact
Kähler 3-fold. Assume that KX + B + βX is nef but not big and βX′ is big.
Then there is a morphism g : X → Z to a normal Kähler variety Z such that
KX +B + βX = g∗αZ , where αZ is a Kähler class on Z.

Proof. Note that if ν : X ′ → X is a bimeromorphic morphism and f ′ : X ′ → Z
a proper morphism (not necessarily bimeromorphic) of normal compact Kähler
varieties such that ν∗α = f ′∗αZ , where αZ is a Kähler class on Z, then f ′

contracts all ν-vertical curves and so by the rigidity lemma (see [BS95, Lemma
4.1.13]) there is a morphism f : X → Z such that f ◦ ν = f ′ and α = f ∗αZ .
Therefore by passing to a small Q-factorialization using Theorem 3.13 we may
assume that X is Q-factorial and (X,B +β) is terminal. Since βX′ is nef and
big, possibly replacing X ′ by a higher model, we may assume that βX′ = F+ω′

where F ≥ 0 is an effective R-divisor and ω′ is Kähler [Bou02, Theoreme 1.4].
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Pick ϵ > 0 such that (X ′, B′ + ϵF ) is sub-klt. Define B∗ := f∗(B′ + ϵF ) and
β∗ := f∗((1 − ϵ)βX′ + ϵω′). Then (X,B∗ + β̄∗) is a generalized pair and β∗

is a modified Kähler class. Note that KX + B∗ + β∗ ≡ KX + B + βX ; thus
replacing (X,B + β) by (X,B∗ + β̄∗) we may assume that βX is a modified
Kähler class.

Now, if KX is pseudo-effective, then KX +B+βX is big, which is a contra-
diction. Therefore KX is not pseudo-effective, and hence X is uniruled.

Claim 3.15. Let π : X !!" T be the MRCC fibration. Then we may assume
that dim T = 2.

Proof. Since X is uniruled, dimT ≤ 2. If dimT ≤ 1, then from the proof of
[DH20, Lemma 2.39] it follows that H2(X,OX) = 0. Thus X is projective
and every (1, 1) class is represented by an R-Cartier divisor. In particular,
(X,B + βX) is numerically equivalent to a traditional generalized pair for
projective varieties, i.e. [βX′ ] = c1(N ′), where N ′ is a nef and big R-divisor
on X ′ and f : X ′ → X is the given log resolution of (X,B + βX). We then
have N ′ ∼R A′+E, where A′ is a general ample R-divisor and E is an effective
R-divisor. Therefore

KX′ +B′ +N ′ ∼R KX′ +B′ + ϵE + (1− ϵ)N ′ + ϵA′ =: KX′ +B′′ +N ′′,

where B′′ := B′ + ϵE, N ′′ ∼R (1 − ϵ)N ′ + ϵA′ is a general ample R-divisor
and (X ′, B′′ + N ′′) is sub klt. But then (X,∆ := f∗(B′′ + N ′′)) is klt such
that ∆ ≥ 0 is big and KX + B + βX ≡ KX +∆. The conclusion now follows
from the base-point free theorem for R-divisors, for example see [BCHM10,
Theorem 3.9.1]. Therefore we may assume that dimT = 2. #

Claim 3.16. Let F be a general fiber of π : X !!" T , then F ∼= P1 and
(KX +B + βX) · F = 0.

Proof. Let g : Y → X be a log resolution of (X,B + β) which also resolves
the map π : X !!" T . Write

KY +BY + βY = g∗(KX +B + βX) + E,

where BY ≥ 0, E ≥ 0, g∗BY = B, g∗E = 0, BY and E do not share any
component, and βY is nef.
Observe that the general fibers of π◦g and π are isomorphic. Now since (KX+
B+βX) is pseudo-effective, so isKY +BY+βY , and thus (KY+BY+βY )·F ≥ 0.
If (KX+B+βX)·F > 0, then (KY +BY +βY )·F = (KX+B+βX)·F > 0, and
thus (KY +BY + tβY ) ·F > 0 for some 1 > t > 0. Then by [Gue20, Theorem],
KY +BY + tβY is pseudo-effective and so KY +BY +βY +(1− t) Ex(f) is big,
since βX is big. In particular, KX+B+βX = g∗(KY +BY +βY +(1−t) Ex(f))
is big, a contradiction. #
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Now, as in the proof of [DH20, Theorem 5.2] we will analyze the nef di-
mension of KX + B + βX . Since a dense open subset of X is covered by
KX+B+βX -trivial curves, we see that the nef dimension n(KX+B+βX) ≤ 2.
If n(KX +B +βX) = 0, then KX +B +βX ≡ 0 and we are done by choosing
Z := Specan(C). If n(KX + B + βX) = 1, then there is a smooth projective
curve C and a morphism g : X → C such that KX + B + βX = g∗αC , where
αC ∈ H1,1

BC(C), (see [BCE+02, 2.4.4] and [HP15, Theorem 3.19]). Since the nef
dimension n(g∗αC) = 1, it follows that αC is a Kähler class and we are done.
The final case is n(KX +B + βX) = 2. In this case, by an argument identical
to the one in [DH20, Theorem 5.5], we find the required morphism g : X → Z.

Note that in [DH20], βX is assumed to be nef and big, however, in the proof
it is only used to show that a nef and big class can be written as a sum of a
modified Kähler class and a sufficiently small effective divisor (see the Step 3
of the proof of [DH20, Theorem 5.2]); in particular, βX being modified Kähler
is enough for the proof in [DH20].

#

Theorem 3.17. Let (X,B + β) be a Q-factorial generalized klt pair, where
X is a compact Kähler 3-fold, such that KX +B + βX is pseudo-effective but
not big and βX′ is big. Then there is a log terminal model f : X !!" Xm and
a morphism g : Xm → Z such that KXm + Bm + βXm = g∗αZ , where αZ is a
Kähler class on Z.

Proof. If KX is pseudo-effective, then KX +B + βX is big, contradicting our
assumptions. Thus, KX is not pseudo-effective. In particular, X is uniruled.
Let π : X !!" T be the MRCC fibration of X . If dim T ≤ 1, then from the
proof of [DH20, Lemma 2.39] it follows that H2(X,OX) = 0. In particular, all
(1, 1) classes on X are represented by R-Cartier divisors and X is projective.
So we may assume that (X,B + β) is a traditional generalized pair on a
projective variety and the statement follows from known results (see [BZ16,
Lemma 4.4]). Therefore we may assume that dim T = 2.

Let ν : Y → X be a log resolution of (X,B + β) so that KY + BY + βY =
ν∗(KX +B+βX), where (Y,BY ) is log smooth and βY is nef and big. Passing
to a higher model, we may assume that βY ≡ ω′ + E, where E is an effective
R-divisor and ω′ is Kähler. Therefore, for 0 < ϵ≪ 1,

KY +BY + βY ≡ KY +BY + ϵE + (1− ϵ)βY + ϵω′,

where (1 − ϵ)βY + ϵω′ is Kähler and (Y,BY + ϵE) is sub-klt. Let B∗ :=
ν∗(BY +ϵE) and β∗ := ν∗((1−ϵ)βY +ω′). Then the generalized pair (X,B∗+β̄∗)
is generalized klt and β∗ is a modified Kähler class. Moreover, KX+B∗+β∗ ≡
KX+B+βX ; thus replacing (X,B+β) by (X,B∗+β̄∗) we may assume that βX
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is a modified Kähler class. Then from the proof of Claim 3.16 it follows that
(KX +B+βX) ·F = 0 for general fibers F of the MRC fibration π : X !!" T ,
KX +B + (1+ ϵ)βX is big for 0 < ϵ≪ 1, and (X,B + (1+ ϵ)β) is generalized
klt.

Claim 3.18. Let N := N(KX + B + βX) and Nϵ := N(KX + B + (1 + ϵ)βX)
be the negative parts of the Boucksom-Zariski decomposition of the pseudo-
effective classes KX +B+βX and KX +B+(1+ ϵ)βX for ϵ > 0 (see §A). We
may assume that

Supp(Nϵ) ⊂ Supp(N), for all 0 < ϵ≪ 1,

and in particular, Supp(Nϵ) is independent of 0 < ϵ≪ 1.

Proof of Claim 3.18. Note that N(KX + B + βX) is an effective R-divisor.
Since βX is modified Kähler, from Remark A.8 it follows that if ϵ > ϵ′ ≥ 0,
then Nϵ ≤ Nϵ′. Since their support is contained in N , they must stabilize. #

Let fϵ : X !!" Xm
ϵ be a log terminal model of KX + B + (1 + ϵ)βX (which

exists by Theorem 3.6 as KX + B + (1 + ϵ)βX is a big class). Then for all
0 < ϵ ≪ 1, the divisors contracted by fϵ are just Nϵ (see Theorem A.11) and
so Xm

ϵ are all isomorphic in codimension 1 for all 0 < ϵ ≪ 1. We now fix an
0 < ϵ ≪ 1 satisfying the above Claim 3.18 and run the KXm

ϵ
+ BXm

ϵ
+ βXm

ϵ
-

MMP with scaling of ϵβXm
ϵ
. This MMP terminates with a log terminal model

ψ : Xm
ϵ !!" Xm by Proposition 3.3. Let

KXm +BXm + (1 + t)βXm := ψ∗(KXm
ϵ
+BXm

ϵ
+ (1 + t)βXm

ϵ
)

for t ≥ 0. Then, by the properties of the MMP with scaling, there exists
0 < δ < ϵ such that ψ is also a KXm

ϵ
+ BXm

ϵ
+ (1 + t)βXm

ϵ
-MMP with scaling

of (ϵ− t)βXm
ϵ
for every 0 ≤ t ≤ δ. In particular, KXm + BXm + (1 + t)βXm is

nef for all 0 ≤ t ≤ δ. Note that from Claim 3.18 it follows that

SuppN(KXm
ϵ
+BXm

ϵ
+ (1 + t)βXm

ϵ
) = SuppN(KXm

ϵ
+BXm

ϵ
+ (1 + ϵ)βXm

ϵ
) = 0,

where the second equality holds because KXm
ϵ
+BXm

ϵ
+(1+ ϵ)βXm

ϵ
is nef. Thus

from Theorem A.11 it follows that ψ is a small map. ThereforeXm !!" Xm
t is a

small bimeromorphic map for every 0 < t ≤ δ where, as above, ft : X !!" Xm
t

is a log terminal model of KX +B+(1+ t)βX . Since KXm +BXm +(1+ t)βXm

and KXm
t
+BXm

t
+ (1 + t)βXm

t
are both nef, we have

a(P ;Xm, BXm+(1+t)βXm) = a(P ;Xm
t , BXm

t
+(1+t)βXm

t
) ≥ a(P ;X,B+(1+t)β)

for any prime Weil divisor P over X .
Since X is Q-factorial, βX has local potentials. In particular,

a(P,X,B + (1 + t)β) = a(P,X,B + β)− t ·multP (f
∗βX − βX′).
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Therefore, taking the limit as t → 0+ we see that a(P,X,B+β) ≤ a(P,Xm, BXm+
βXm) for every prime Weil divisor P over X , and hence φ : X !!" Xm is a Q-
factorial weak log canonical model. Let {Pi}i∈I be the set of all φ-exceptional
divisors on X such that a(Pi, X,B+β) = a(Pi, Xm, BXm+β). To obtain a log
terminal model of (X,B+β), we need to extract Pi from Xm. To that end, let
h : Y → Xm be a log resolution of (Xm, BXm+βXm) which extracts the divisors
{Pi}i∈I . Write KY +BY +βY = f ∗(KXm +BXm +βXm), where (Y,BY ) is log
smooth and βY is nef. Note that a(Pi, Xm, BXm +βXm) = a(Pi, X,B+β) ≤ 0
for all i ∈ I, since Pi ⊂ X is a divisor on X . Let {Pi}i∈I ∪ {Qj}j∈J be the set
of all h-exceptional divisors. We define

B̃Y := h−1
∗ BXm −

∑

i∈I

a(Pi, X
m, BXm + βXm)Pi +

∑

j∈J

(1− ϵ)Qj

for 0 < ϵ≪ 1. Then (Y, B̃Y + βY ) is a klt pair such that KY + B̃Y + βY ≡Xm

E ≥ 0, where Supp(E) = ∪j∈JQj. We run a KY + B̃Y + βY -MMP over Xm

as in Corollary 3.5. Replacing Y by the corresponding minimal model, we
may assume that E is nef over Xm, and since it is exceptional, it follows from
the negativity lemma that E = 0. We then have that KY + B̃Y + βY =
h∗(KXm + BXm + βXm) is nef. Replacing (Xm, BXm + β) by (Y, B̃Y + β) we
see that π : X !!" Xm is a log terminal model for KX + B + βX .
The existence of the morphism g : Xm → Z such that KXm + BXm + βXm =
g∗αZ , where αZ is Kähler on Z follows from Theorem 3.14. #

Proof of Theorem 1.2. It follows from combining Theorems 3.6 and 3.17. #

Next we will establish an analog of [BCHM10, Corollary 1.1.5] for log canon-
ical models.

Theorem 3.19. Let X be a normal Q-factorial compact Kähler 3-fold and
ν : X ′ → X a resolution. Let (X,B) be a pair and Ω′ be a compact convex
polyhedral set of closed positive (1,1) currents on X ′ such that for every β ′ ∈ Ω′,
(X,B + β) is a generalized klt pair, where β = β̄ ′. Assume that one of the
following conditions hold:

(i) KX +B + βX is big for every β ′ ∈ Ω′ (and β = β̄ ′), or
(ii) there is a bimeromorphic morphism π : X → S of normal compact

Kähler 3-folds.

Then there exists a finite polyhedral decomposition Ω′ = ∪Ω′
i and finitely many

bimeromorphic maps ψi : X !!" Xi (resp. finitely many bimeromorphic maps
ψi : X !!" Xi over S) such that if ψ : X !!" Y is a log canonical model for
KX + B + ν∗β ′ (resp. a log canonical model for KX + B + ν∗β ′ over S) for
some β ′ ∈ Ω′

i, then ψ = ψi.
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Note that a compact convex polyhedral set is a convex hull of finitely many
vectors. Then by finite polyhedral decomposition Ω′ = ∪Ω′

i we simply mean
that each Ω′

i is a subset of Ω′ defined by finitely many affine linear equations
and inequalities such that Ω′

i ∩ Ω′
j = ∅ for i ̸= j.

Proof. We will prove both cases (i) and (ii) simultaneously. We will use the
convention that in case (i), S = Specan(C) and we remark that in case (ii) the
condition that KX +B+βX is big over S is automatic as π is bimeromorphic.
We will use induction on the dimension of Ω′. We will abuse notation and
denote βX by β. If dimΩ′ = 0, then Ω′ = {β ′

0} for some β ′
0 such that (X,B +

β0 = B+ν∗β ′
0) is a generalized klt pair and KX+B+β0 is big (over S). In this

case the existence of the required log canonical model follows by Theorems 3.6
and 3.11.

Since Ω′ is compact, it is enough to prove the statement locally in a neigh-
borhood of each point β ′ ∈ Ω′. Fix a point β ′

0 ∈ Ω′ and let β0 = ν∗β ′
0 ∈ Ω :=

ν∗Ω′. By Theorems 3.6 and 3.11, there is a KX + B + β0-log terminal model
φ : X !!" Xm (over S) and a log canonical model ψ : Xm → Xc (over S).
Since a(E,X,B + β0) < a(E,Xm, Bm + βm

0 ) for all φ-exceptional divisors E
of X (where Bm + βm

0 = φ∗(B + β0)), shrinking Ω′ (to a smaller polytope
containing β ′

0 but without changing its dimension) around β ′
0 we may assume

that if β = ν∗β ′ and βm = φ∗β, then a(E,X,B + β) < a(E,Xm, Bm + βm)
for all β ′ ∈ Ω′ and for all φ-exceptional divisors E of X . In particular, if
φm : Xm → X̄m is a log canonical model for KXm + Bm + βm (over S), then
φm ◦ φ : X !!" X̄m is a log canonical model for KX +B + β (over S).

Now let Ωm := φ∗Ω. Note that Ωm is a compact convex polyhedral subset of
H1,1

BC(X
m), since φ∗ is a linear map by Lemma 2.14. Then, by induction, there

is a finite polyhedral decomposition ∂Ωm = ∪k
i=1Pi of the boundary ∂Ωm of

Ωm and finitely many meromorphic maps φi : Xm !!" Xi (over Xc) 1 ≤ i ≤ ℓ
such that if f : Xm !!" Y is a log canonical model of KXm + Bm + βm over
Xc for some βm ∈ Pi, then f = φi (note that as KX + B + β0 is big over
S, ψ : Xm → Xc is bimeromorphic). Recall that βm

0 := φ∗β0 ∈ Ωm. Choose
βm
1 ∈ ∂Ωm such that βm

1 ̸= βm
0 . For 0 < λ ≤ 1 we define

(3.2) βm
λ := (1− λ)βm

0 + λβm
1 .

Recall that KXm +Bm+βm
0 = ψ∗ω ≡Xc 0 for some Kähler class ω (over S) on

Xc. By induction, φi : Xm !!" Xi is a log canonical model of KXm +Bm+βm
1

over Xc for some i. Thus from (3.2) we have

(3.3) KXi
+Bi + βλ,i ≡ (1− λ)ψ∗

i ω + λ(KXi
+Bi + β1,i),

where ψi : Xi → Xc is the induced bimeromorphic morphism.
Thus from [BCHM10, Lemma 3.6.8] and our induction hypothesis it follows
that φi is a log canonical model of KXm +Bm + βm

λ over Xc for all 0 < λ ≤ 1.
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Let νi : X
q
i → Xi be a small Q-factorization as in Theorem 3.13 such that

(3.4) KXq
i
+Bq

i + βq
i = ν∗i (KXi

+Bi + βi).

Let φq
i : X

m !!" Xq
i be the induced bimeromorphic maps.

Claim 3.20. There exists a constant λ̄ > 0 such that for every βm
1 ∈ ∂Ωm

there exists a φi : Xm !!" Xi for some i ∈ {1, 2, . . . , ℓ} such that φi is a log
canonical model of KXm +Bm + βm

λ (over S) for all 0 < λ ≤ λ̄.

Proof of Claim 3.20. Let pqi : Xq
i → S be the induced morphisms for all 1 ≤

i ≤ ℓ. Consider the following set of curves in Xq
i for each 1 ≤ i ≤ ℓ:

Ci := {C ⊂ Xq
i | pqi,∗(C) = 0 and βq

i · C < 0 for some βq
i },

where βq
i := φq

i,∗(β
m) for βm ∈ Ωm.

We claim that Ci is a finite set. Indeed, since each β ′ ∈ Ω′ is nef over S and
descends to X ′ and the composite map φq

i ◦φ ◦ ν : X ′ !!" Xq
i does not extract

any divisors, it follows that if C ⊂ Xq
i is a curve such that pqi,∗(C) = 0 and

C " Ex((φq
i ◦ φ)

−1), then βq
i · C ≥ 0. Thus Ci ⊂ Di := {C ⊂ X | pqi,∗(C) =

0 and C ⊂ Ex((φq
i ◦ φ)

−1)} for all 1 ≤ i ≤ ℓ, and clearly each Di is a finite set
as dimXq

i = 3. Observe that if C ⊂ Xq
i is a curve such that pqi,∗(C) = 0 but

C /∈ Ci, then β
q
i ·C ≥ 0 for all βq

i . Suppose that KXq

i′
+Bq

i′ +β
q
i′ is not nef (over

S) for some 1 ≤ i′ ≤ ℓ and β ′ ∈ Ω′. Pick a Kähler class ωq
i′ on Xq

i′ which is
very general in H1,1

BC(X
q
i′), and consider the corresponding nef threshold µ > 0

so that KXq

i′
+ Bq

i′ + βq
i′ + µωq

i′ is nef and big (over S) but not Kähler (over

S). By Theorems 3.6 and 3.11, there is a log canonical model gi′ : X
q
i′ → Zi′

(over S) which is a bimeromorphic morphism and hence the exceptional locus
is covered by curves. Since ωq

i′ is very general in H1,1
BC(X

q
i′), it follows that

all of the exceptional curves of gi′ belong to a fixed ray, say R≥0[Γi′], where
pqi′,∗(Γi′) = 0; observe that the curve Γi′ depends on the class βq

i′ . Let T be
the collection of all such curves Γi′ as βm varies in Ωm, where βq

i′ := φq
i′,∗β

m.
We note here that T could be an infinite collection. We claim that there is
a positive real number M > 0 (independent of indices 1 ≤ i ≤ ℓ) such that
if KXq

i
+ Bq

i + βq
i is not nef (over S) for some 1 ≤ i ≤ ℓ and βm ∈ Ωm, then

0 > (KXq
i
+ Bq

i + βq
i ) · Γi ≥ −M for the corresponding Γi ∈ T . To see this,

observe that if βq
i · Γi ≥ 0, then (KXq

i
+Bq

i ) · Γi < 0 and so by the usual cone
theorem (see [DHP22, Corollary 5.3]) we may assume that

0 > (KXq
i
+Bq

i + βq
i ) · Γi ≥ (KXq

i
+Bq

i ) · Γi ≥ −6.

If βq
i · Γi < 0, then from our construction of the sets Ci above it follows that

Γi ∈ Ci. Since Ci is a finite set and the indices i also vary in the finite set
{1, . . . , ℓ}, by the compactness of Ωm the claim follows.
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Recall from equation (3.3) that ω is a Kähler class on Xc (over S) such that
KXq

i
+ Bq

i + βq
0 = (ψq

i )
∗ω, where ψq

i = ψi ◦ νi for all 1 ≤ i ≤ ℓ. There exists
a δ > 0 such that ω · C > δ for every curve C ⊂ Xc which is vertical over S.
Let λ̄ := δ

M+δ
. If KXq

i
+Bq

i + βq
λ,i is not nef (over S) for some 0 < λ ≤ λ̄ and

for some 1 ≤ i ≤ ℓ, then from (3.3) it follows that KXq
i
+ Bq

i + βq
1,i is not nef

(over S) for some βm
1 ∈ ∂Ωm. Then by the claim above there is a curve Γi ∈ T

such that 0 > (KXq
i
+ Bq

i + βq
1,i) · Γi ≥ −M . Moreover, since KXq

i
+ Bq

i + βq
1,i

is nef over Xc, Γi is not contracted by ψq
i : Xq

i → Xc. Let Γ̄i := ψq
i,∗Γi, then

ω · Γ̄i > δ.
Thus from (3.3) we have

(KXq
i
+Bq

i +β
q
λ,i)·Γi = (1−λ)ω ·Γ̄i+λ(KXq

i
+Bq

i +β
q
1,i)·Γi > (1−λ)δ−λM ≥ 0

which is a contradiction, and hence KXq
i
+ Bq

i + βq
λ,i = ν∗i (KXi

+ Bi + βλ,i) is
nef over S and so is KXi

+Bi + βλ,i.
Since φi : Xm !!" Xi is a log canonical model of KXm +Bm + βm

1 over Xc,
KXi

+ Bi + β1,i is Kähler over Xc. Recall again that KXi
+ Bi + β0,i = ψ∗

i ω,
where ω is a Kähler class over S and ψi : Xi → Xc is the induced morphism.
In the argument above we saw that KXi

+ Bi + βλ,i is nef over S for all
0 ≤ λ ≤ λ̄. By contradiction assume that there is an 0 < λ ≤ λ̄/2 such that
KXi

+Bi+βλ,i is not Kähler over S. Then, by Theorem 3.11 there is a proper
bimeromorphic morphism Xi → Z over S, where Z is the log canonical model
for KXi

+ Bi + βλ,i over S. So there is a curve C ⊂ Xi (over S) such that
(KXi

+Bi + βλ,i) · C = 0. Also, note that there is a 0 < µ < 1 such that

(3.5) βλ,i = (1− µ)β0,i + µβλ̄,i.

As observed above, KXi
+Bi+β0,i and KXi

+Bi+βλ̄,i are both nef over S, and
thus from (3.5) it follows that (KXi

+Bi+β0,i) ·C = (KXi
+Bi+βλ̄,i) ·C = 0.

Then again from (3.3) (with λ replaced by λ̄) it follows that (KXi
+Bi+β1,i) ·

C = 0. In particular, C is not vertical over Xc (as KXi
+ Bi + β1,i is Kähler

over Xc). However, since KXi
+Bi + β0,i = ψ∗

i ω where ω is Kähler over S, it
follows that (KXi

+Bi + β0,i) · C > 0; this is a contradiction to (3.3).

Finally replacing λ̄ by λ̄/2 completes the proof of Claim 3.20.
#

Note that as observed above, X !!" Xi is a log canonical model for KX +
B+βλ (over S) for all β1 ∈ Pi and 0 < λ ≤ λ̄. The decomposition ∂Ωm = ∪Pi

induces a corresponding decomposition of Ωm − {βm
0 } = ∪Ωm

i where each Ωm
i

is the polytope spanned by β0 and Pi excluding βm
0 , and Ωm

0 := {βm
0 } is a 0-

dimensional polytope. We then obtain a decomposition Ω′ = ∪Ω′
i, where Ωi is
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the inverse image of Ωm
i . Finally we replace Ω′ by Ω′∩{β ′ ∈ Ω′ : ||β ′−β ′

0|| ≤
λ̄} for some fixed norm || · ||. This completes the proof. #

3.3. Existence of Mori Fiber Space. In this subsection we will show that
if KX +B +βX is not pseudo-effective, then we can run an MMP which ends
with a Mori fiber space.
First we will show that if KX +B +βX is big, then we can run a terminating
MMP with scaling of a very general Kähler class. Using this result, we will
then show that we can also obtain a Mori fiber in the non pseudo-effective
case.

Theorem 3.21. Let (X,B+β) be a Q-factorial generalized dlt pair such that
KX + B + βX is big, where X is a compact Kähler 3-fold. Let ω be a very
general Kähler class in H1,1

BC(X) such that KX +B+βX +ω is a Kähler class.
Then we can run a terminating KX +B + βX-MMP with scaling of ω.

Proof. To run the KX + B + βX-MMP with scaling of ω, we will inductively
construct a sequence of bimeromorphic maps φi : Xi !!" Xi+1 and real num-
bers ti > ti+1 for i ≥ 0 such that X0 = X and t0 = 1 and the following
conditions are now satisfied

(1) (Xi, Bi + βXi
+ tiωi) is a generalized dlt pair,

(2) KXi
+Bi + βXi

+ tiωi is nef,
(3) KXi

+Bi + βXi
+ (ti − ϵ)ωi is Kähler for 0 < ϵ≪ 1,

(4) KXi
+Bi + βXi

is big,
(5) Xi is Q-factorial and ωi ∈ H1,1

BC(Xi) is very general.

The base of the induction is clear. Assume that we have constructed (Xi, Bi+
βXi

+ tiωi) as above. Let

ti+1 := inf{s ≥ 0 | KXi
+Bi + βXi

+ sωi is nef}.

If ti+1 = 0, then the MMP terminates and X !!" Xi is a log terminal model
for (X,B + βX). Thus we may assume that ti+1 > 0.

Let ψ : Xi → Zi be the log canonical model forKXi
+Bi+βXi

+ti+1ωi (which
exists by Theorem 3.6; note that (Xi, Bi +βXi

+ ti+1ωi) is generalized dlt but
not necessarily generalized klt, however if ω′ = ti+1ω+ ϵBi for 0 < ϵ≪ 1, then
(Xi, (1− ϵ)Bi + βXi

+ ω′
i) is generalized klt and so Theorem 3.6 applies).

Since ψi : Xi → Zi is bimeromorphic, the fibers of ψi are covered by curves.
Since ωi is very general in H1,1

BC(Xi) and (KXi
+ Bi + βXi

+ ti+1ωi) · C = 0
for any ψi-exceptional curve C ⊂ Xi, it follows that ρ(Xi/Zi) = 1 and ψi is a
contraction of a KXi

+ Bi + βXi
-negative extremal ray Ri spanned by (any)

one of these curves, i.e. Ri = R≥0[C]. If ψi is a divisorial contraction, then we
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let φi = ψi and

KXi+1
+Bi+1 + βXi+1

+ ti+1ωi+1 := ψi,∗(KXi
+Bi + βXi

+ ti+1ωi).

If ψi is a small contraction, then it is a KXi
+ Bi + βXi

flipping contraction
(as it is ωi-positive).

Claim 3.22. Let X !!" Xi+1 be the log canonical model of KX + B + βX +
(ti+1 − ϵ)ω (for any 0 < ϵ≪ 1). Then φi : Xi !!" Xi+1 is the flip of ψi.

Proof. By Theorem 3.19, we may assume that there is an ϵ0 > 0 such that
X !!" Xi+1 is the log canonical model of KX + B + βX + (ti+1 − ϵ)ω for
any 0 < ϵ ≤ ϵ0. In particular, KXi+1

+ Bi+1 + βXi+1
+ ti+1ωi+1 is nef and

hence admits a morphism ψ+
i : Xi+1 → Z̄ to the log canonical model of

(Xi+1, Bi+1 + βXi+1
+ ti+1ωi+1) (which exists by Theorem 3.6). Since X !!"

Xi+1 isKX+B+βX+ti+1ω non-positive, thenX !!" Z̄ is also the log canonical
model of KX + B + βX + ti+1ω and hence Z̄ = Zi. Note that −(KXi

+ Bi +
βXi

+ (ti − ϵ)ωi) is Kähler over Zi and KXi+1
+Bi+1 + βXi+1 + (ti+1 − ϵ)ωi+1

is Kähler over Zi and so Xi !!" Xi+1 is a KXi
+ Bi + βXi

+ (ti+1 − ϵ)ωi-
flip. Since KXi

+ Bi + βXi
+ ti+1ωi ≡Zi

0, it follows that Xi !!" Xi+1 is a
KXi

+Bi + βXi
-flip. #

It is easy to check that properties (1-5) hold for (Xi+1, Bi+1 + βXi+1
+

ti+1ωi+1). Repeating the above procedure we obtain a sequence of KX + B +
βX + (ti − ϵi)ω distinct log canonical models where 0 ≤ ti − ϵi ≤ 1. By The-
orem 3.19, this sequence can not be infinite and so the above minimal model
program with scaling terminates and the proof is complete. #

The next result shows that if KX + B + βX is not pseudo-effective, then
we can run a terminating KX + B + βX-MMP with scaling of a very general
Kähler class and end with a Mori fiber space.

Theorem 3.23. Let (X,B+β) be a Q-factorial generalized klt pair, where X
is a compact Kähler 3-fold. Assume that KX +B+βX is not pseudo-effective,
and let ω be a very general Kähler class in H1,1

BC(X) such that KX+B+βX+ω
is Kähler. Then we can run the KX + B + βX-MMP with scaling of ω and
obtain φ : X !!" X ′ such that KX′ +B′+βX′ + τω′ is pseudo-effective but not
big for some 0 < τ < 1, and there is a Mori-fiber space g : X ′ → W .

Proof. We define

τ := inf{s ≥ 0 | KX +B + βX + sω is pseudo-effective}

and
t1 := inf{s ≥ 0 : KX +B + βX + sω is nef}.
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Then KX + B + βX + τω is pseudo-effective but not big. By Theorem 3.17,
there is a log terminal model φ : X !!" X ′ and a morphism g : X ′ → Z of
normal Kähler varieties such that KX′ +B′ + βX′ + τω′ = g∗αZ , where αZ is
a Kähler class. Since KX +B + βX + τω is not big, g is not bimeromorphic.

We begin by proving that we can run a KX +B+βX-MMP with scaling of
ω terminating with a log terminal model of KX +B +βX + τω. Indeed, if Xi

is a step of this MMP, then let ti+1 := inf{s ≥ 0 : KXi
+Bi+βXi

+sωi is nef}.
If ti+1 > τ , then KXi

+ Bi + βXi
+ ti+1ωi is big and by Theorem 3.21 we can

run this MMP. Thus as long as ti > τ , we can continue running this MMP and
it will stop once we have ti = τ for some i (note that every step of this MMP
is also a step of KX +B+βX -MMP with the scaling of ω). However, it is not
clear whether this MMP will terminate after finitely many steps. Assume by
contradiction that this MMP does not terminate. We claim that lim ti = τ .
If not, then let lim ti = τ0 > τ ; note that τ0 = inf{ti : i ≥ 0}. Then every
step of the above MMP is also a step of KX +B + βX + τ0ω-MMP, but since
KX + B + βX + τ0ω big (as τ0 > τ), this MMP terminates by Theorem 3.21,
a contradiction. Now from Claim 3.18 we observe that
(3.6)
N(KX+B+βX+tω) = N(KX+B+βX+τω) for all t > 0 s.t. 0 < t−τ ≪ 1.

Thus by Theorem A.11 we may assume that Xi !!" X ′ is a small bimeromor-
phic map for i ≫ 0. Then from the proof of Theorem 3.21, it follows that
KXi

+Bi + βXi
+ tωi is Kähler for any t > 0 satisfying ti > t > ti+1. We may

also assume that if 0 < t0−τ ≪ 1, then a(E,X,B+βX+t0ω) < a(E,X ′, B′+
βX′+t0ω′) for all φ-exceptional divisors and that (X ′, B′+βX′+t0ω′) is gener-
alized klt. Fix t0 as above. By Theorem 3.17, there is a morphism g : X ′ → Z
such that KX′ + B′ + βX′ + τω′ ≡ g∗αZ where αZ is Kähler on Z. Let
b > 0 be a constant such that αZ · C > b for any curve C on Z and fix
τ < t < bt0+6τ

b+6 . By Theorem 3.21 there is a sequence of KX′ +B′ +βX′ + tω′-
flips X ′

j !!" X ′
j+1 with 0 ≤ j ≤ j̄ − 1 ending with X ′ !!" X ′

j̄
, a log terminal

model of (X ′, B′ + βX′ + tω′). Then X !!" X ′
j̄ is a log terminal model of

(X,B + βX + tω). Since ω is very general in H1,1
BC(X), we may assume that

ti > t > ti+1 for some i ≫ 0; then KXi
+ Bi + βXi

+ tωi is Kähler as argued
above. Since X ′

j̄
!!" Xi is a small bimeromorphic map, by Lemma 2.16 it’s an

isomorphism, i.e. X ′
j̄
∼= Xi.

We claim that each flip ψj : X ′
j !!" X ′

j+1 for 0 ≤ j ≤ j̄ − 1 is KX′ + B′ +
βX′ + τω′-trivial. We prove this by induction on i. Suppose that X ′

0 = X ′ and
the claim holds for the first k − 1 flips, then each flip is a flip over Z and so
there is a morphism g′k : X

′
k → Z such that KX′

k
+B′

k +βX′

k
+ τω′

k = (g′k)
∗αZ .

Observe that ψ0, . . . ,ψk−1 are KX′ + B′ + βX′ + λω′-flips for any τ < λ ≤ t0,
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as each of the them are KX′ +B′+βX′ + τω′-trivial. Recall that αZ ·C ≥ b for
every curve C ⊂ Z. Let X ′

k !!" X ′
k+1 be the next KX′ +B′+βX′ + tω′-flip and

Ck a corresponding flipping curve. Since KX′

k
+B′

k +βX′

k
+ τω′

k is nef, we may
assume that this curve is also a KX′ +B′+βX′ +t0ω′-flipping curve, and hence
by Corollary 2.23 we may assume that −(KX′

k
+ B′

k + βX′

k
+ t0ω′

k) · Ck ≤ 6.
Moreover, if (KX′

k
+B′

k+βX′

k
+τω′

k)·Ck > 0, then (KX′

k
+B′

k+βX′

k
+τω′

k)·Ck ≥
b. Observe that

KX′

k
+B′

k+βX′

k
+tω′

k =
t0 − t

t0 − τ
(KX′

k
+B′

k+βX′

k
+τω′

k)+
t− τ

t0 − τ
(KX′

k
+B′

k+βX′

k
+t0ω

′
k).

Since τ < t < bt0+6τ
b+6 and hence b(t0 − t) + 6(τ − t) > 0, we then have

0 > (KX′

k
+B′

k + βX′

k
+ tω′

k) · Ck ≥
b(t0 − t)

t0 − τ
−

6(t− τ)

t0 − τ
> 0.

Since this is impossible, we have (KX′

k
+B′

k + βX′

k
+ τω′

k) · Ck = 0 and hence
ψk is KX′

k
+B′

k + βX′

k
+ τω′

k-trivial and the induction is complete.
Since X ′

j̄
∼= Xi for some i ≫ 0, we may assume that there is a morphism

gi : Xi → Z such that KXi
+Bi+βXi

+τωi = g∗i αZ . But this leads to an imme-
diate contradiction, since if Xi !!" Xi+1 is a flip and Σi is a flipping curve for
theKX+B+βX-MMP with scaling of ω, then (KXi

+Bi+βXi
+ti+1ωi)·Σi = 0

and ωi ·Σi > 0 so that (KXi
+Bi+βXi

+τωi)·Σi < 0, but (KXi
+Bi+τωi)·Σi =

αZ · gi,∗(Σi) ≥ 0.
This shows that our KX + B + βX-MMP with scaling of ω terminates after
finitely many steps producing a log terminal model of KX + B + βX + τω.
Let φ : X !!" X ′ be the composite maps of this MMP so that KX′ + B′ +
βX′ + τω′ := φ∗(KX + B + βX + τω) is nef, and by Theorem 3.14 there is
a morphism g : X ′ → Z to a normal compact Kähler variety Z such that
KX′ +B′ + βX′ + τω = g∗αZ , where αZ is a Kähler class on Z.

We will now show that we have a Mori fiber space. Observe that −(KX′ +
B′)|Xz ≡ (βX′ + τω′)|Xz is big for general points z ∈ Z; in particular Xz is
Moishezon and KX′ +B′ not pseudo-effective over Z. Thus by Theorem 2.35,
we can run a KX′ +B′-MMP over Z which terminates with a Mori fiber space
h : X ′′ → W over Z. Note that each step of this MMP is KX′ +B′+βX′ +τω′-
trivial.
Now we will show that the induced map ψ : X ′ !!" X ′′ is an isomorphism. To
see this, let g′ : X ′ → Y be the first contraction of the above MMP over Z,
and Σ is a curve contracted by g′. Let C be a curve contained in a general fiber
of g : X ′ → Z. Then Σ and C are linearly independent in N1(X ′), however
they are both KX′ + B′ + βX′ + τω′-trivial, contradicting the fact that ω is
very general in H1,1

BC(X). Thus ψ : X ′ !!" X ′′ is an isomorphism and Z = W .
In particular, ρ(X ′/Z) = 1 and −(KX′ + B′) is g-ample. We will show that



40 OMPROKASH DAS, CHRISTOPHER HACON, AND JOSÉ IGNACIO YÁÑEZ

−(KX′+B′+βX′) is g-Kähler. To that end, let F be a general fiber of g. Now if
dimZ = 2, then dimF = 1, and since ω′ is a modified Kähler class, ω′ ·F > 0.
This implies that −(KX′ + B′ + βX′) · F > 0, and hence −(KX′ + B′ + βX′)
is g-Kähler, as ρ(X ′/Z) = 1. If dimZ ≤ 1, then ω′|F is a big class on F . Let
{Ct}t∈T be a covering family of curves in F . Then ω′ ·Ct = ω′|F ·Ct > 0, and
thus −(KX′ +B′ +βX′) ·Ct = −(KX′ +B′ +βX′)|F ·Ct > 0. This shows that
−(KX′ +B′ +βX′) is g-Kähler, since ρ(X ′/Z) = 1. This completes our proof.

#

Proof of Theorem 1.5. This follows from Theorem 3.23. #

3.4. Cone Theorem. In this section we will prove the cone theorem for gen-
eralized pairs in dimension 3. We start with the following lemma.

Lemma 3.24. Let (X,B+β) be a Q-factorial generalized klt pair, where X is a
compact Kähler 3-fold. Let ω be a Kähler class such that α := KX+B+βX+ω
is nef but not Kähler. Then there is a rational curve C ⊂ X such that α·C = 0
and 0 > (KX +B + βX) · C ≥ −6.

Proof. If KX + B + βX is nef, then α is Kähler, which is a contradiction. So
we may assume that KX +B+βX is not nef. We may write ω = η+ω′, where
η and ω′ are very general Kähler classes in H1,1

BC(X). Replacing β by β + ϵη̄
and ω by ω − ϵη ≡ (1 − ϵ)ω + ϵω′, we may assume that KX + B + βX is not
nef, βX is big, KX + B + βX is either big or not pseudo-effective, and ω is
a very general class in H1,1

BC(X). By Theorems 3.21 and 3.23 we can run the
KX + B + βX-MMP with scaling of ω. Let f : X → Z be the first flipping
or divisorial contraction, or fiber type contraction, and C the curve spanning
the corresponding extremal ray; then α · C = 0. If f is a flipping contraction,
then the result follows from Theorem 2.21.
So now on assume that f is either a divisorial contraction or a fiber type
contraction. Then there is a family of f -vertical curves {Γt}t∈T in X such that
either ∪t∈TΓt = E is the exceptional divisor of f or ∪t∈TΓt = X , respectively.
Then in the former case βX |E is pseudo-effective, since βX is modified nef (see
[Bou04, Proposition 2.4]). Therefore βX · Γt = βX |E · Γt ≥ 0 (as {Γt}t∈T is a
moving family of curves in E); in the latter case βX ·Γt ≥ 0, since modified nef
implies pseudo-effective. In particular, βX ·C ≥ 0 for all f -exceptional curves
in either case, and so 0 > (KX +B + βX) · C ≥ (KX +B) · C. But then f is
a KX + B-negative contraction and −(KX +B) is f -ample (as ρ(X/Z) = 1).
Then by [DO23, Theorem 4.2] there is a rational curve Γ such that f∗Γ = 0
and 0 > (KX +B + βX) · Γ ≥ (KX +B) · Γ ≥ −6.

#



MMP FOR GENERALIZED PAIRS ON KÄHLER 3-FOLDS 41

Now we are ready to prove the Cone Theorem 1.6.

Proof of Theorem 1.6. By a Douady space argument (see [Tom16, Lemma
4.4]), there are at most countably many families of curves {Γi}i∈I such that
(KX +B +βX) · Γi < 0 and Γi · αi = 0 for some nef class αi. Let R = R≥0[Γi]
be a KX +B + βX-negative extremal ray. We make the following claim.

Claim 3.25. There is a Kähler class ω such that α := KX +B +βX + ω is nef
but not Kähler and α⊥ ∩NA(X) = R.

Proof. Fix a norm || · || on N1(X) and let S be the unit sphere in N1(X), i.e.
S := {γ ∈ N1(X) : ||γ|| = 1}. Let S := S ∩ NA(X); then S is a compact
subset of NA(X) such that for any γ ∈ NA(X) \ {0}, γ

||γ|| ∈ S. Moreover, from

[HP16, Corollary 3.16] it follows that a class α ∈ H1,1
BC(X) is Kähler if and only

if α · γ > 0 for all γ ∈ S.
There is a unique point r ∈ R such that R ∩ S = {r}. Let η be a (1, 1)

nef supporting class of R; then η⊥ ∩ NA(X) = R. For ϵ > 0, let Bϵ :=
{s ∈ S : ||s − r|| < ϵ}. Choosing 0 < ϵ ≪ 1 we may assume that Bϵ ⊂
NA(X)(KX+B+βX)<0. Then clearly η − (KX +B + βX) is positive on Bϵ, i.e.

(3.7) (η − (KX +B + βX)) · s > 0 for all s ∈ Bϵ.

Now define Sϵ := S \ Bϵ. Observe that η · s > 0 for all s ∈ Sϵ. Since Sϵ

compact, there exist positive real numbers δ > 0 and M > 0 such that η ·s ≥ δ
and −(KX + B + βX) · s ≥ −M for all s ∈ Sϵ. Then for t ≫ 0, tδ −M > 0,
and thus

(3.8) (tη − (KX +B + βX)) · s ≥ (tδ −M) > 0 for all s ∈ Sϵ.

Since η is nef, from (3.7) we have (tη−(KX+B+βX))·s > 0 for all s ∈ Bϵ and
t ≥ 1. Recall that S = Bϵ∪Sϵ, and thus we have (tη− (KX +B+βX)) · s > 0
for all s ∈ S, and hence tη − (KX + B + η) is Kähler for t ≫ 0. Let ω :=
tη− (KX +B+βX) for some t ≫ 0. Then α := tη = KX +B+βX +ω proves
our claim. #

It then follows from Lemma 3.24 that we may assume 0 > (KX +B +βX) ·
Γi ≥ −6 for all such Γi.

Let V = NA(X)KX+B+βX≥0+
∑

i∈I R
+[Γi]. By [HP16, Lemma 6.1] it suffices

to show that NA(X) = V (note that [HP16, Lemma 6.1] is only stated for KX ,
but the same proof works for KX +B+βX). Since NA(X) is a closed strongly
convex cone, it is the convex hull of its extremal rays. Thus if the inclusion
V̄ ⊂ NA(X) is strict, then there is a KX + B + βX-negative extremal ray
R ∈ NA(X) not contained in V̄ .

Then by Lemma 3.24 and Claim 3.25 it follows that there is a rational curve
C ⊂ X such that α · C = 0, where α is the nef supporting class of R. But
then [C] ∈ α⊥ ∩ V̄ is an immediate contradiction.
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Finally, if βX is big, then by [Bou04, Def. 3.7 and Pro. 3.8], we may write
βX ≡ N + η, where N ≥ 0 is an effective R-divisor and η is a modified Kähler
class, i.e. η = f∗η′ where f : X ′ → X is bimeromorphic and η′ is Kähler on X ′.
Let γ be a Kähler class on X , then η − ϵγ is modified Kähler for 0 < ϵ ≪ 1.
Replacing η by η−ϵγ and ϵγ by γ we may write βX ≡ N+η+γ, where N ≥ 0
is an effective R-divisor and η is a modified Kähler class and γ is Kähler. We
then have

KX +B + βX = KX + (B + ϵN) + (1− ϵ)βX + ϵη + ϵγ,

where (X, (B+ ϵN)+(1− ϵ)βX + ϵη+ ϵγ) is generalized klt for any 0 < ϵ≪ 1.
Let Bϵ := B + ϵN and βϵX := (1− ϵ)βX + ϵη. Since βϵX is modified Kähler,
by the proof of Lemma 3.2, βϵX · Γi ≥ 0 for Γi not contained in f(Ex(f)) and
hence for all but finitely many i. Then taking limit as ϵ → 0+, we see that
βX · Γi ≥ 0 for all but finitely many i . Therefore βϵX · Γi ≥ ϵη · Γi > 0 for all
but finitely many i. So if (KX +B+βX) ·Γi = (KX +Bϵ+βϵX + ϵγ) ·Γi < 0,
then arguing as above we get

ϵγ · Γi ≤ −(KX +Bϵ+ βϵX) · Γi ≤ −(KX +Bϵ) · Γi ≤ 6

for all but finitely many i, and hence, by a Douady space argument, such
curves belong to finitely many families.

#

Next we will establish an analog of [BCHM10, Corollary 1.1.5] for log ter-
minal models.

3.5. Geography of Minimal Models.

Theorem 3.26. Let X be a normal compact Kähler 3-fold, ν : X ′ → X a
log resolution of a klt pair (X,B), and Ω′ a compact convex polyhedral set of
closed positive (1,1) currents on X ′ such that for every β ′ ∈ Ω′, (X,B+β) is a
generalized klt pair, where β = β̄ ′. Assume that one of the following conditions
hold:

(i) KX +B + βX is big for every β ′ ∈ Ω′ (and β = β̄ ′), or
(ii) there is a bimeromorphic morphism π : X → S.

Then there exists a finite polyhedral decomposition Ω′ = ∪Ω′
i and finitely many

bimeromorphic maps ψij : X !!" Xij (resp. finitely many bimeromorphic
maps ψij : X !!" Xij over S) such that if ψ : X !!" Y is a weak log canonical
model for KX + B + βX (resp. a weak log canonical model for KX +B + βX

over S) for some β ′ ∈ Ω′
i (with β = β̄ ′), then ψ = ψij for some i, j.

Proof. Arguing as in the proof of Theorem 3.19, we will prove both cases (i) and
(ii) simultaneously. We will use the convention that in case (i), S = Specan(C)
and we remark that in case (ii) the condition that KX +B +βX is big over S
is automatic as π is bimeromorphic. By compactness, it suffices to prove the
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result on a neighborhood of any β ′
0 ∈ Ω′. For simplicity of notation, from now

on we will write β on X to denote βX and so on. Note that ν : X ′ → X is a log
resolution of (X,B + β) for any β ∈ Ω = ν∗Ω′. By [Bou02, Theorem 1.4], we
may assume that ν∗(KX +B+β0) ≡ ω′+F where ω′ is Kähler and F ≥ 0 has
simple normal crossings support. Let B′ := ν−1

∗ B+(1−δ)Ex(ν) for 0 < δ ≪ 1.
Then the weak log canonical models ofKX′+B′+β ′ andKX+B+ν∗β ′ coincide
for every β ′ ∈ Ω′. Replacing (X,B) by (X ′, B′) and Ω by Ω′ we may assume
that all β ∈ Ω are nef and descend to X , and KX +B + β0 ≡ ω + F , where ω
is Kähler, F ≥ 0 and B + F has simple normal crossings support.

Pick δ > 0 such that (X,B+ δF ) is klt and consider the linear map L(β) =
1

1+δ
(β + δβ0). Note that L(β0) = β0 and L(Ω) ⊂ Ω contains a neighborhood

of β0. Since

KX+B+δF+β+δω ≡ KX+B+β+δ(KX+B+β0) ≡ (1+δ)(KX+B+L(β)),

replacing B by B+ δF and β by β+ δω we may assume that β = η+γ, where
γ is a fixed Kähler class and η := β − γ is nef for any β ∈ Ω. Let {γ1, . . . , γρ}
be Kähler forms whose classes in H1,1

BC(X) form a basis of H1,1
BC(X). For ϵ > 0

define

Ωϵ := {β +
ρ∑

i=1

tiγi : β ∈ Ω, |ti| ≤ ϵ, 1 ≤ i ≤ ρ}.

For 0 < ϵ ≪ 1 we may assume that KX + B + β ′ is generalized klt and big
(over S), and β ′ is Kähler for any β ′ ∈ Ωϵ. By Theorem 3.19, there exists a
finite polyhedral decomposition Ωϵ = ∪j∈JΩϵ

j and finitely many bimeromorphic
maps ψϵ

j : X !!" Xϵ
j (over S) such that if ψ : X !!" Z is a log canonical model

for KX + B + β ′ (over S) for some β ′ ∈ Ωϵ
j, then ψ = ψϵ

j . Suppose now that
φ : X !!" Y is a weak log canonical model of KX + B + β, where β ∈ Ω
and let η be a Kähler class on Y . Since {γ1, . . . , γρ} spans H1,1

BC(X) and φ∗ :
H1,1

BC(X) → H1,1
BC(Y ) is surjective by Lemma 2.14, we may pick t1, . . . , tρ such

that φ∗(
∑ρ

i=1 tiγi) ≡ η. For any 0 < δ ≪ 1, it follows that φ is a log canonical
model for KX +B+β+

∑ρ
i=1(δti)γi and that β ′ := β+

∑ρ
i=1(δti)γi ∈ Ωϵ. But

then, there exists j ∈ J such that β ′ ∈ Ωϵ
j and hence φ = ψϵ

j .
We now let {Ωi}i∈I be the finite polyhedral decomposition induced by re-

fining the finite polyhedral cover of Ω given by {Ωϵ
j ∩ Ω}j∈J . For each i ∈ I

we let {ψi,j} = {ψϵ
j}j∈J . Suppose now that ψ : X !!" Y is a weak log canon-

ical model for KX + B + β where β ∈ Ωi, then as observed above ψ is a log
canonical model for KX +B+β+

∑ρ
i=1(δti)γi and β

′ := β+
∑ρ

i=1(δti)γi ∈ Ωϵ.
Thus β ′ ∈ Ωϵ

j for an appropriate j and hence ψ = ψϵ
j ∈ {ψi,j} as required.

#

Proof of Theorem 1.3. Immediate from Theorem 3.26. #
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Corollary 3.27. Let (X,B + β) be a generalized klt 3-fold and π : X → S a
proper morphism such that either π is bi-meromorphic or S = Specan(C) and
KX +B + β is big, then (X,B + β) has finitely many minimal models.

3.6. Minimal Models are Connected by Flops. In this section we will
prove that minimal models are connected by flops. Recall that if (X,B + β)
is a compact generalized klt pair and fi : X → Xi are log terminal models
for i = 1, 2, then Xi are Q-factorial, KXi

+ Bi + βi = fi∗(KX + B + β) is
nef and X1 !!" X2 is an isomorphism in codimension 1. We will show that
3-fold log terminal models are connected by flips, flops and inverse flips, and in
particular two generalized klt Calabi-Yau pairs are connected by flops, which
generalizes a result of Kollár for terminal varieties, see [Kol89, Theorem 4.9].

First we define the inverse flip.

Definition 3.28. Let (X,B+β) be a Q-factorial compact Kähler generalized
klt pair and φ : X !!" X ′ a small bimeromorphic map. If φ is a KX +B+βX-
flip, then we call φ−1 : X ′ !!" X an inverse flip (or anti-flip) of KX +B+βX .

Theorem 3.29. Let (Xi, Bi + βXi
) be compact Q-factorial generalized klt

Kähler 3-folds, where KXi
+ Bi + βXi

is nef for i = 1, 2 and φ : X1 !!" X2

a bimeromorphic map which is an isomorphism in codimension 1. Then the
following hold:

(1) φ decomposes as a finite sequence of flips, flops and inverse flips.
(2) Suppose that there is a positive constant b > 0 such that following

holds: whenever (KX1
+ B1 + βX1

) · C > 0 for some curve C ⊂ X1,
then (KX1

+ B1 + βX1
) · C ≥ b holds. Then φ decomposes as a finite

sequence of flops.

Remark 3.30. Note that if (X1, B1 + βX1
) is a good minimal model, then

there is a morphism f : X1 → Z1 and a Kähler form ω1 on Z1 such that
KX1

+ B1 + βX1
≡ f ∗ω1. Let b := inf{Σ · ω1 | Σ ⊂ Z1 is a curve}. So if

(KX1
+ B1 + βX1

) · C > 0 for some curve C ⊂ X1, then Σ = f1∗C ̸= 0 and
(KX1

+ B1 + βX1
) · C = ω1 · Σ ≥ b. If instead KX1

+ B1 is Q-Cartier (and
βi = 0), then k(KX1

+ B1) is Cartier for some k > 0 and let b = 1
k
. Thus, in

both of these cases, the hypothesis of (2) are satisfied.

Proof. Let ω2 be a Kähler form on X2 and and ω1 := φ−1
∗ ω2, then by Lemma

3.31, ω1 has local potentials, it is modified nef and (X1, B1 + β + ϵ0ω̄1) is
generalized klt for some 0 < ϵ0 ≪ 1. We now run a KX1

+ B1 + βX1
+ ϵω1-

MMP with scaling of a sufficiently big multiple of a very general Kähler class,
where 0 < ϵ ≤ ϵ0 is any fixed real number.

By Theorem 3.21, this MMP terminates with a minimal model (Xm, Bm +
βXm + ϵωm), ψ : X1 !!" Xm. In particular, KXm + Bm + βXm + ϵωm is nef
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and big. Since (X2, B2 + βX2
+ ϵω2) is a generalized log canonical model of

(X1, B1 + βX1
+ ϵω1), there is a morphism Xm → X2. Since this is a small

bimeromorphic map of Q-factorial varieties, it is in fact an isomorphism by
Lemma 2.15. Now observe that from Lemma A.9 it follows that N(KX1

+B1+
βX1

+ ϵω1) = 0, and thus by Theorem A.11 there are no divisorial contractions
in the above MMP. So every step of this MMP is a KX1

+ B1 + βX1
+ ϵω1-

flip, which are in particular either flips, flops or inverse flips with respect to
KX1

+ B1 + βX1
(depending on whether the KX1

+ B1 + βX1
+ ϵω1 flipping

contraction is KX1
+B1 + βX1

-negative, trivial or positive respectively).
Suppose now that we are in case (2) and so there is a positive constant

b > 0 such that (KX1
+ B1 + βX1

) · C ≥ b for all curves C ⊂ X1 such that
(KX1

+ B1 + βX1
) · C > 0. We now run a KX1

+ B1 + βX1
+ ϵω1-MMP

with scaling of a sufficiently big multiple of a very general Kähler class, where
0 < ϵ < bϵ0/(b+6) is any fixed real number; this MMP terminates by Theorem
3.21. Now let Kt := KX1

+ B1 + βX1
+ tω1. Suppose that C1 ⊂ X1 is a Kϵ-

flipping curve for t = ϵ. Then C1 · ω1 < 0 as KX1
+B1 +βX1

is nef, and hence
C1 is a Kϵ0 flipping curve and so we may assume that 0 > Kϵ0 · C1 ≥ −6 by
Lemma 3.24. If K0 · C1 > 0, then

0 > Kϵ · C1 =

(
1−

ϵ

ϵ0

)
K0 · C1 +

ϵ

ϵ0
Kϵ0 · C1 ≥

(
1−

ϵ

ϵ0

)
b− 6

ϵ

ϵ0
> 0

which is impossible. Therefore K0 · C1 = 0 and the first flip X1 !!" X+
1 is a

KX1
+ B1 + βX1

-flop. It follows that KX+
1
+ B+

1 + βX+
1
is nef. Suppose that

C ⊂ X+
1 is a curve such that (KX+

1
+B+

1 + βX+
1
) · C > 0, then we claim that

in fact (KX+
1
+B+

1 + βX+
1
) · C ≥ b and hence we may continue the procedure

inductively. Thus we obtain a sequence of flips for the (X1, B1 + βX1
+ ϵω1)

MMP with scaling which are also KX1
+B1+βX1

-flops connecting X1 and X2.
To see the claim, let p : Y → X1 and q : Y → X+

1 be a common resolution.
Then by the negativity lemma p∗(KX1

+ B1 + βX1
) = q∗(KX+

1
+ B+

1 + βX+
1
).

Since (KX+
1
+B+

1 +βX+
1
) ·C > 0, then C is not contained on the indeterminacy

locus ofX+
1 !!" X1 (i.e. it is not contained in the flipped locus). Let C̄ ⊂ X be

the strict transform of C, then (KX1
+B1+βX1

)·C̄ = (KX+
1
+B+

1 +βX+
1
)·C > 0

and so (KX+
1
+B+

1 + βX+
1
) · C = (KX1

+B1 + βX1
) · C̄ ≥ b.

#

Lemma 3.31. Let φ : X !!" X ′ be a bimeromorphic map between two normal
compact Kähler 3-folds. Let ω′ be a Kähler form on X ′. If X has Q-factorial
klt singularities, then ω := φ∗ω′ is a closed positive (1, 1) current on X with
local potentials.

Proof. Let W be a resolution of the graph of φ, and p : W → X and q :
W → X ′ are the induced bimeromorphic morphisms such that p is projective.
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Then ω = φ∗ω′ = p∗q∗ω′. Since p is projective and X has Q-factorial klt
singularitites, by [DH20, Lemma 2.27], there is an R-divisor E and an (1, 1)
class α ∈ H1,1

BC(X) such that [q∗ω′+E] = p∗α. Then by the negativity lemma,
E ≥ 0 is an effective divisor; in particular, q∗ω′+E is a positive current. Thus
from [HP16, Lemma 3.4] it follows that ω = φ∗ω′ = p∗q∗ω′ = p∗(q∗ω′+E) has
local potentials.

#

Proof of Theorem 1.4. This is (1) of Theorem 3.29.
#

Appendix A. Boucksom-Zariski Decomposition

We will use the definition of Boucksom-Zariski decomposition of a (1, 1)
pseudo-effective class α ∈ H1,1

BC(X) on a compact complex manifold as in
[Bou04, Definition 3.7]. We will also define the Lelong number of a pseudo-
effective (1, 1) class α (on a manifold) as in [Bou04, Definition 3.1]. The main
result of this section is Theorem A.11.

We recall Boucksom’s definition of the negative part of a pseudo-effective
(1, 1) class.

Definition A.1. [Bou04, Definition 3.7] LetX be a compact complex manifold
and α is a pseudo-effective (1, 1) class on X . Then we define the negative part
N(α) of α as follows:

N(α) :=
∑

P⊂X

ν(α, P )P,

where P is a prime Weil divisor on X .
From [Bou04, Theorem 3.12(i)] it follows that N(α) is an effective R-divisor.

Remark A.2. Let X be a compact Kähler manifold and α is a pseudo-effective
(1, 1) class. If N(α) is the negative part of the Boucksom-Zariski decomposi-
tion and if α = β +D, where β is a modified nef class, and D is an effective
R-divisor, then N(α) = N(β + D) ≤ N(β) + N(D) ≤ D by [Bou04, Pro.
3.2(ii) and Pro. 3.11(ii)]. In particular, for any prime Weil divisor Q on X ,
ν(α, Q) ≤ multQ(D).

The following result will be useful for the proof of our main theorem in this
section.

Lemma A.3. Let f : Y → X be a proper bimeromorphic morphism of analytic
varieties where X is relatively compact. Let E be an effective f -exceptional R-
Cartier divisor on Y . Then there is a component E ′ of E such that E ′ is
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covered by an analytic family of curves {Ct}t∈T such that E · Ct < 0 and
f∗Ct = 0 for all t ∈ T .

Proof. Let ν : Ỹ → Y be a resolution of singularities and Ẽ = ν∗E. We may
assume that f̃ = f ◦ ν is a projective morphism. Let m := dim f(SuppE).
Replacing X by a Stein open neighborhood we may assume that X is a Stein
space. Now we cut X by m general hyperplanes of X , and replace Y and Ỹ
by the corresponding inverse images. Then f(SuppE) is a finite set of points
on X . Next since f̃ is projective, possibly shrinking X further we may assume
that there is a very ample divisor on Ỹ . Thus cutting Ỹ by n− 2 hyperplanes
(n = dimY ), we may assume that that Ỹ is a smooth surface. Next we
replace X by the Stein factorization of f̃ : Ỹ → X and thus assume that
X is a normal surface and f̃ is a projective bimeromorphic morphism from a
smooth surface to a normal surface and Ẽ is an effective f̃ -exceptional divisor
on Y . Let Ẽ =

∑ℓ
i=1 aiCi. Since the intersection matrix of the exceptional

curves of f̃ form a negative definite matrix by [KM98, Lemma 3.40], we have
0 > Ẽ2 =

∑ℓ
i=1 ai(E · Ci), and thus Ẽ · Ci < 0 for some 1 ≤ i ≤ ℓ. Note that

E · ν∗Ci = Ẽ · Ci < 0 and hence Ci is not ν-exceptional.
Since X is relatively compact, it can be covered by finitely many Stein open
sets, and thus the lemma follows. #

Definition A.4. Let X be a normal analytic variety and D =
∑

aiDi and
D′ =

∑
a′iDi are two R-divisors on X . Then we define the R-divisor D ∧D′

as
D ∧D′ :=

∑

i

min{ai, a
′
i}Di.

Lemma A.5. Let f : Y → X be a proper bimeromorphic morphism from a
compact complex manifold Y to a normal compact analytic variety X and α
is a pseudo-effective (1, 1) class on X. If E ≥ 0 is an effective f -exceptional
R-divisor, then ν(f ∗α + E, P ) = ν(f ∗α, P ) + multP (E) for every prime Weil
divisor P on Y . In particular, N(f ∗α + E) = N(f ∗α) + E.

Proof. Let E =
∑

aiEi. By remark A.2, we have N(f ∗α + E) ≤ N(f ∗α) + E
and so ν(f ∗α+E,E) ≤ ν(f ∗α, E) + ai. To see the reverse inequality, suppose
that f ∗α + E = β + N is the Boucksom-Zariski decomposition of f ∗α + E
so that N =

∑
ν(f ∗α + E,Q)Q. We claim that E ≤ N . To see this, define

N ′ := N − N ∧ E and E ′ := E − N ∧ E, so that f ∗α + E ′ = β + N ′. We
must show that E ′ = 0. If this is not the case, then, by Lemma A.3, there is a
component Ei of E ′ which is covered by curves {Ct}t∈T such that E ′ · Ct < 0
and f∗Ct = 0 for all t ∈ T . But then the family of curves {Ct}t∈T is not
contained in the support of N ′ and so

0 > E ′ · Ct = (f ∗α + E ′) · Ct ≥ N ′ · Ct ≥ 0.
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This is a contradiction, and hence E ≤ N . Then f ∗α = β + N ′, where β is
modified nef and N ′ = N −E ≥ 0. This implies that

ν(f ∗α, Ei) ≤ multEi
(N ′) = multEi

(N)−multEi
(E) = ν(f ∗α + E,Ei)− ai.

Putting all of these together, we have that ν(f ∗α + E,Ei) = ν(f ∗α, Ei) + ai
and hence N(f ∗α + E) = N(f ∗α) + E.

#

Now we are ready to define the negative part of a pseudo-effective (1, 1)
class on a normal variety and prove the main result of this appendix.

Definition A.6. Let X be a normal compact Kähler variety and α ∈ H1,1
BC(X)

a pseudo-effective class. Let f : Y → X be a resolution of singularities X .
Then we define the negative part N(α) as follows:

N(α) := f∗(N(f ∗α)).

The following Lemma A.7 guarantees that this definition is independent of the
choice of resolution f .

Lemma A.7. Let X be a normal compact Kähler variety and α ∈ H1,1
BC(X) a

pseudo-effective class. Let f : Y → X and g : Z → X be two resolutions of
singularities of X. Then

f∗(N(f ∗α)) = g∗(N(g∗α)).

Proof. It is easy to see from the definition of Lelong numbers that if f : Y → X
is a proper bimeromorphic map of compact Kähler manifolds and P is a prime
divisor on Y and Q = f∗P ̸= 0, then ν(α, Q) = ν(f ∗α, P ) and therefore
f∗(N(f ∗α)) = g∗(N(g∗α)).

Passing to the general situation, let W be a common resolution of Y and Z,
and p : W → Y and q : W → Z are the projections. Then p∗(f ∗α) = q∗(g∗α),
and thus (f◦p)∗N(p∗(f ∗α)) = (g◦q)∗N(q∗(g∗α)). Then from what we observed
above it follows that f∗N(f ∗α) = g∗N(g∗α) and we are done.

#

Remark A.8. From our definition above and Remark A.2 it follows that if α
is a pseudo-effective class on a normal compact analytic variety X , then N(α)
is an effective R-divisor on X . Moreover, if α and β are two pseudo-effective
classes on a normal compact analytic variety X , then N(α+β) ≤ N(α)+N(β).

Lemma A.9. Let f : X ′ → X be a proper bimeromorphic morphism of normal
compact Kähler varieties. Let α′ ∈ H1,1

BC(X
′) be a nef class such that α := f∗α′

is contained in H1,1
BC(X). Then N(α) = 0.

Proof. Let g : X ′′ → X ′ be a resolution of singularities of X ′. Then we have
(f ◦g)∗α = g∗α′+E, where E is f ◦g-exceptional R-divisor. By the negativity
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lemma it follows that E is an effective divisor. Therefore by Lemma A.5,
N((f ◦ g)∗α) = N(g∗α′) + E = E, since g∗α′ is nef. Then from the definition
we have N(α) = (f ◦ g)∗(E) = 0. #

Definition A.10. Let φ : X !!" X ′ be a bimeromorphic contraction of normal
compact analytic varieties. Let α ∈ H1,1

BC(X) and assume that α′ := φ∗α ∈
H1,1

BC(X
′). We say that φ is α-negative, if for any common resolution p : W →

X and q : W → X ′, we may write

p∗α = q∗α′ + E,

where E ≥ 0 is an effective R-divisor such that it is q-exceptional and Supp(p∗E)
consists precisely the φ-exceptional divisors on X .

The following theorem is the main result of this section.

Theorem A.11. Let φ : X !!" X ′ be a bimeromorphic contraction of normal
compact Kähler varieties. Let (X,B + βX) and (X ′, B′ + βX′) be generalized
dlt pairs such that KX+B+βX is pseudo-effective and B′+βX′ = φ∗(B+βX).
If φ is KX +B +βX-negative, then the divisors contracted by φ are contained
in the support of N(KX + B + βX). In particular, if KX′ + B′ + βX′ is nef,
then the divisors contracted by φ are precisely the divisors in the support of
N(KX +B + βX).

Proof. LetW be a compact Kähler manifold resolving the map φ, and p : W →
X and q : W → Y are the projections. Since φ is KX +B + βX -negative, we
have

(A.1) p∗(KX +B + βX) = q∗(KX′ +B′ + βX′) + E,

where E ≥ 0 is an effective q-exceptional divisor and the support of p∗E is the
set of divisors contracted by φ.
Then by Lemma A.5

N(p∗(KX+B+βX)) = N(q∗(KX′+B′+βX′)+E) = N(q∗(KX′+B′+βX′))+E,

and by Definition A.6, N(KX +B+βX) = p∗(N(q∗(KX′ +B′+βX′))+E). In
particular, the φ-exceptional divisors are contained in the support of N(KX +
B + βX).
Moreover, if KX′ + B′ + βX′ is nef, then N(q∗(KX′ + B′ + βX′)) = 0, and so
N(KX +B + βX) = p∗E and we are done.

#
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