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MMP FOR GENERALIZED PAIRS ON KAHLER 3-FOLDS

OMPROKASH DAS, CHRISTOPHER HACON, AND JOSE IGNACIO YANEZ

ABSTRACT. In this article we define generalized pairs (X, B + 3) where X
is an analytic variety and 3 is a b-(1,1) current. We then prove that almost
all standard results of the MMP hold in this generality for compact Kéahler
varieties of dim X < 3. More specifically, we prove the cone theorem,
existence of flips, existence of log terminal models, log canonical models
and Mori fiber spaces, geography of log canonical and log terminal models,
ete.
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1. INTRODUCTION

In this article we will develop the minimal model program for generalized
Kahler surfaces and threefolds. Generalized pairs naturally arise in the con-
text of Kawamata’s canonical bundle formula and adjunction to lc centers,
and have been playing an increasingly important role in the birational geom-
etry of complex projective varieties (see [Kaw98], [FMO00], [BZ16], [Bir21] and
references therein). It is natural to hope that these results carry over to the
context of Kéahler manifolds, especially for surfaces and threefolds where the
usual minimal model program is known to hold (see [HP16, HP15, CHP16],
[DO23], [DH20] and references therein). We introduce generalized Kéhler pairs
(Definition 2.7), in a context which is more general than the usual definition of
generalized pairs from projective geometry. Roughly speaking, a generalized
pair (X/S, B + () consists of a proper morphism X — S of normal Ké&hler
varieties, a pair (X, B), and a closed positive (1,1) current € Hé’é(X ) which
is (bimeromorphically) nef over S (we refer the reader to Definition 2.7 for
the technical nuances; we will denote the corresponding closed positive b-(1,1)
current by 3, but for the purposes of this introduction, we will sometimes
abuse notation and just refer to § = By, the trace of 3 on X). Note that
in the case of projective varieties one requires the more restrictive condition
that 3 is a R-divisor (birationally nef over S). Thus, if H*(X,Ox) # 0 (and
hence NS(X)g # Hg (X)), this allows us more flexibility even in the projec-
tive case. This is particularly important in the Kahler case as there may be
very few R-divisors whilst Hy5(X) may contain many interesting classes. For
example, working in this generality allows us to:

(1) Prove the finiteness of certain 3-fold minimal models (see Theorem
3.26).

(2) Show that different 3-fold minimal models are connected by flops (see
Theorems 3.26 and 3.29).

(3) Run the minimal model program with scaling of a Kahler form w (see
Theorems 3.21 and 3.23).

It is then possible to consider the various flavors of singularities of the minimal
model program for generalized pairs (klt, lc, dlt etc.) and to show several
natural properties (in all dimensions), such as the fact that generalized klt
singularities are rational, and if X is Stein, then a generalized klt pair (X, B+
() is equivalent to a usual klt pair (X, B + A) and in particular it admits a
Q-factorization (see Theorem 2.19). In Section 2.4 we give a treatment of the
generalized surface MMP including the cone theorem, the existence of minimal
models and Mori fiber spaces, and the existence of log canonical models when
Kx + B+ is big. In Section 3.1 we then develop the minimal model program
for 3-fold generalized klt pairs. We show that 3-fold kit flips exist:
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Theorem 1.1. Let (X, B + 3) be a compact Kahler Q-factorial 3-fold gener-
alized kit pair, and f : X — Z a flipping contraction, then the flip X+ — Z
er1sts.

Proving the termination of flips in this generality however turns out to be too
difficult. Instead, following the approach of [BCHM10], we show that certain
generalized minimal model programs with scaling terminate. For example, if
(X, B + B) is a compact Kéhler Q-factorial 3-fold generalized klt pair and
£ = Bx is Kahler, then Kx + B+t is Kahler for t > 0, and a Kx + B+ (3
mmp with scaling of (t —1)f is also a Kx + B mmp with scaling of ¢ and so,
in this case, termination follows from standard results on the termination of
flips for the usual klt 3-fold pair (X, B). This allows us to prove the existence
of minimal and canonical models.

Theorem 1.2. Let (X, B+ 3) be a generalized compact kit Kdhler 3-fold pair.

(1) If Kx + B + Bx is big, then (X, B + 3) has a log terminal model
f:X --+» X™ and a unique log canonical model g : X™ — X°.

(2) If Kx + B+ By is pseudo-effective and Bx is big, then Kx + B + Bx
has a log terminal model f : X --+ X™ and there is a contraction
g: X™ — Z such that f.(Kx + B+ Bx) = g*wz where wy is a Kihler
form on Z.

For more general minimal model programs with scaling, termination of flips
is achieved by studying Shokurov polytopes and the geography of minimal
models. In particular we show the following (please see Theorems 3.19 and
3.26 for a more comprehensive statement).

Theorem 1.3. Let X be a smooth compact Kahler 3-fold, B a simple normal
crossings divisor, and ) a compact convexr polyhedral set of closed positive
(1,1)-currents such that [f] is nef and [Kx + B + f3] is big for all € Q.
Then there exist a finite polyhedral decomposition €2 = US); and finitely many
bimeromorphic maps v; ;j + X --» X, ; such that if ¢ : X --»Y is a weak log
canonical model for some B € ), then 1 = 1), ; for some 1, j.

Building on this result, we are able to show that good minimal models are
connected by flops (and in general minimal models are connected by flips, flops
and anti-flips).

Theorem 1.4. Let (X;, B;+Bx,) be compact Q-factorial generalized kit Kihler
3-folds, where Kx, + B; + Bx, is nef (resp. (X, B; + Bx,) are good minimal
models) for i = 1,2 and ¢ : X1 --+ X5 a bimeromorphic map which is an
isomorphism in codimension 1. Then ¢ can be decomposed as flips, flops and
inverse flips, see Definition 3.28 (resp. ¢ can be decomposed as a sequence of

flips).
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When Kx + B + Bx is not pseudo-effective, we show the existence of Mori
fiber space, see Theorem 3.23.

Theorem 1.5. Let (X, B + B3) be a generalized kit Kdhler 3-fold such that
Kx + B+ Bx is not pseudo-effective. Then we can run a Kx + B+ Bx-MMP
X --» X' ending with a Mori fiber space X' — Z.

We also establish the following cone theorem.

Theorem 1.6. Let (X, B+ Bx) be a Q-factorial generalized kit pair, where X
is a compact Kdhler 3-fold. Then there are at most countably many rational
curves {I'; }ier such that

NA(X) = NA(X)ky+B1pyz0 + Y RF[T,
icl
and —(Kx + B+ Bx) - I'; < 6. Moreover, if Bx is big, then I is finite.

We believe that the added flexibility afforded by working with nef classes in
H éé will be useful in a variety of contexts. For example, we use this when show-
ing that bimeromorphic Calabi-Yau threefolds are connected by flops (Theo-
rem 3.29), and we expect that it will be important in the proof of the minimal
model program for klt pseudo-effective Kahler 4-folds [DH23]. Note that the
case of effective klt Kéhler 4-folds was addressed in [DHP22].

This article is organized in the following manner: In Section 2 we define
generalized pairs, generalized models and establish the generalized MMP for
Kahler surfaces. We also the prove Theorem 1.1 in this section. Section 3 is
the heart of our article, Theorem 1.2 is proved in Subsection 3.2, Theorem
1.5 is proved in Subsection 3.3, Theorem 1.6 is proved in Subsection 3.4, and
Theorem 1.4 is proved in Subsection 3.6.

Acknowledgement We would like to thank Mihai Paun for answering our
questions.

2. PRELIMINARIES

An analytic variety or simply a variety X is a reduced and irreducible com-
plex space. A holomorphic map f : X — Y between two complex spaces is
called a morphism. A small bimeromorphic map or a small map is a bimero-
morphic map ¢ : X --» X’ between two normal analytic varieties such that
¢ is an isomorphism in codimension 1, i.e. there are closed analytic subsets
Z C X and Z' ¢ X' such that codimy Z > 2 and codimyx Z' > 2 and
dlxvz : X\ Z — X'\ Z'is an isomorphism. A (1,1) class a € HEA(X) is
called general (resp. wvery gemeral) if o is not contained in any finite union
(resp. countable union) of analytic subvarieties of Hyh(X).
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Definition 2.1. Let X be a normal analytic variety. The canonical sheaf
wyx is defined as wy = (AM™XQL)** Note that unlike the case of algebraic
varieties, wx here does not necessarily correspond to a Weil divisor Kx such
that wx = Ox(Kx). However, by abuse of notation we will say that Ky is a
canonical divisor when we actually mean the canonical sheaf wy. This doesn’t
create any problem in general as running the minimal model program involves
intersecting subvarieties with wy.

A Q-divisor (resp. an R-divisor) on a normal analytic variety (non necessarily
compact) is a finite sum of prime Weil divisor with Q-coefficients (resp. R-
coefficients). A compact normal analytic variety X is called Q-factorial if for
every prime Weil divisor D C X there is a m € Z* such that mD is Cartier
and there is a k € Z* such that (w$")** is a line bundle on X.

For a normal analytic variety X and a R-divisor B we say that Ky + B is
R-Cartier, if locally around any point x € X we can choose a divisor Ky
such that Ox(Kx) = wx and Ky + B is R-Cartier. In this case, we define
the singularities of the pair (X, B) as in [KM98]. Note that throughout this
article, by a pair (X, B), we will always mean that X is normal, B > 0 is an
effective R-divisor. If B is not effective, then we will refer to the corresponding
singularities of (X, B) as sub-klt, sub-dlt, etc.

Definition 2.2. An analytic variety X is Kdhler or a Kdhler space if there
exists a positive closed real (1,1) form w € Ag'(X) such that the following
holds: for every point x € X there exists an open neighborhood x € U and
a closed embedding ¢y : U < V into an open set V' C CV, and a strictly
plurisubharmonic C* function f : V' — R such that w|ynx,, = (100 f)|un Xom -
Here X, is the smooth locus of X.

(1) On a normal compact analytic variety X we replace the use of Néron-
Severi group NS(X)g by Hy,(X), the Bott-Chern cohomology of real
closed (1,1) forms with local potentials or equivalently, the closed bi-
degree (1,1) currents with local potentials. See [HP16, Definition 3.1
and 3.6] for more details. More specifically, we define

NY(X) = HEL(X).

(2) If X is in Fujiki’s class C and has rational singularities, then from
[HP16, Eqn. (3)] we know that N'(X) = HyL(X) € H*(X,R). In
particular, the intersection product can be defined in N!'(X) via the
cup product of H?(X,R).

(3) For the definitions of nef, pseudo-effective class, etc. see [DH20, Defi-
nition 2.2].

(4) We define NA(X) C N;(X) to be the closed cone generated by the
classes of positive closed currents of bi-dimension (1,1), see [HP16,
Defintion 3.8]. The Mori cone NE(X) C NA(X) is defined as the
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closure of the cone of currents of integration T, where C' C X is an
irreducible curve.

Definition 2.3. If X is a normal Kahler variety and w € Hpyl(X), then
we say that w is modified Kahler if there exists a bimeromorphic morphism
v : X' — X and Kahler form ' on X’ such that v,w' = w. By [Bou04,
Proposition 2.3], if X is compact, then this is equivalent to requiring that w

contains a Kéhler current 7" with Lelong number v(7, D) = 0 for all prime
divisors D in X.

Definition 2.4. Let 7 : X — S be a proper morphism of normal Kéahler
varieties such that S is relatively compact. Let 3 be a closed (1, 1) current with
local potentials, i.e. a locally d0-exact current on X. We say that the class
(8] € Hy,\(X) is relatively Kéhler (or Kihler over S) if [8 4 m*ws] € Hyi(X)
is a Kéhler class for some Kéhler form wg on S, and we say that the class [f]
is relatively nef if [8 4 w] is relatively Kéhler for every relatively Kéahler class
[w] on X. Similarly, we say that [ is relatively modified Kéhler if § + m*wg is
modified Kahler for some Kéahler form wg on S.

It is well known that if a class [3] € Hpya(X) is relatively Kahler (resp.
relatively nef), then its restriction to each fiber is Kéahler (resp. nef). By
abuse of notation we will say that a closed bi-degree (1,1) current 7" with
local potentials is relatively Kéhler or relatively nef over S if so is its class

(7] € Hye(X).

2.1. Generalized Pairs. Let X be a normal analytic variety. A closed b-(1,1)
current 3 is a collection of closed bi-degree (1,1) currents Bx on all proper
bimeromorphic models X’ — X such that if p : X; — X5 is a bimeromorphic
morphism of proper models of X, then p.Bx, = Bx,.

Suppose that § is a closed positive (1,1)-current on X with local (psh) poten-
tials, then we may define a b-(1,1) current 3 as follows. For any bimeromorphic
morphism v : X’ — X we let By := v*f. Explicitly, if X = UU; is an open
cover and ~; are psh functions on U; such that 8 = 90v;, then v*3 is defined
by letting U} = v~'Us, 7] = vi ov|yr, and v*f3 = 00y, on Ul. If p: X' — X" is
another proper bimeromorphic morphism, then we let Bx» = pu,Bx:. We note
that

Claim 2.5. The closed b-(1,1) current By~ is well defined.

Proof. Suppose that 7: X — X and i : X — X" are also proper bimeromor-
phic morphisms of normal complex varieties. By a standard argument, passing
to a common resolution, we may in fact assume that there is a bimeromorphic
morphism p : X — X’ such that 7 = vop and i : pop. Then by the projection
formula we have

[1(B) = pupi(p"V* B) = ps (V7).
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If 3 = /3 for some closed positive (1,1)-current 3 on X then we say that 3
is a positive closed b-(1,1) current that descends to X. Note that in this case
for any bimeromorphic morphism v : X’ — X we also have that 3 = By i.e.
3 also descends to X’.

Remark 2.6. We make the following observations:

(i) Note that if v € HyA(X') is nef, then it is pseudo-effective and so
we may choose a positive closed (1,1) form " on X’ with psh local
potentials such that [3'] = v and we may then set 3 := . Different
choices of ' give rise to different (non-equivalent) generalized pairs.

(ii) Note that if 3 is a positive closed b-(1,1) current that descends to X and
X --» X' is bimeromorphic (and X’ is normal), then Bx, may not have
local potentials, but if it does, then it has psh local potentials. To see
this, first note that in this case [Bx/] € Hya(X’). Let p: X” — X and
q: X" — X' be a common resolution and U’ := X"\ (XS’ing Uq(Ex(q)))

so that U” := ¢~'U" — U’ is an isomorphism. Then Bx/ |y = Bxr|vn,
and since Bx~ is a positive current, from [BG13, Proposition 4.6.3(i)]

it follows that Bx/|ys has a unique extension Bx/ |y to a closed positive
(1,1) current on X’ such that [ﬁX’|U’] = [Bx/].

Definition 2.7. Let f : X — S be a proper morphism of normal Kéahler
varieties, where S is relatively compact, v : X’ — X a resolution, B’ an R-
divisor on X’ with simple normal crossings support such that B := v, B’ > 0,
and B a closed b-(1,1) current. We say that (X, B+ 3) is a generalized pair if

(1) B is a positive closed b-(1,1) current that descends to X',
(2) [Bx/] € Hgh(X') is nef over S, and
(3) [Kx/ + B' + Bx/] = v*y for some v € HSH(X).

Note that we are abusing notation as we are implicitly assuming the exis-
tence of (X', B’) as above. We will say that v : (X', B") — (X, B) is a structure
morphism or a log resolution of (X, B + 3).

Remark 2.8. We make the following observations:
(i) Given (X, B+ B) and ' = Bx/ with the above properties, then B’ is
uniquely determined (by the negativity lemma applied to v : X’ — X).
(ii) If S is a point so that X is compact, then we drop S and say that
(X, B+ B) is a compact generalized pair.
(iii) If U C X is a relatively compact subset, then (U/U, B|ly + B|v) is a
generalized pair over U.
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(iv) If S = X and 7 : X — S is the identity (and in particular X is
relatively compact), then we also drop S and we often abuse notation
and say that (X, B + (3) is a generalized pair.

Definition 2.9. (1) Let P be a prime Weil divisor over X. We define the
generalized discrepancy a(P, X, B + (3) as follows: Let v : X’ — X be
a log resolution of (X, B + ) such that P C X' is prime Weil divisor
on X'. Then a(P, X, B + ) := —multp(B’). Note that these can be
computed locally over X and hence S plays no role here (and hence we
drop it from the notation).

(2) We say that (X, B + 3) is generalized kit or gklt or generalized Kawa-
mata log terminal (resp. generalized lc or glc or generalized log canon-
ical) if for some log resolution v/ : X’ — X, we have |B’| < 0, i.e.
a(P, X, B+ 3) > —1 for all prime divisors P C X’ (resp. a(P, X, B +
B) > —1 for all prime divisors P C X’).

(3) We say that (X, B + B) is generalized dlt or gdlt or generalized di-
visorially log terminal if there is an open subset U C X such that
(U, (B+83)|v) is a log resolution (of itself) and —1 < a(P, X, B+3) <0
for any prime divisor P on U and —1 < a(P, X, B + 3) < 0 for any
prime divisor P over X with center contained in X \ U.

Remark 2.10. By abuse of notation we will often say f is a (1,1) class in
HE(X) when we actually mean £ is a closed positive bi-degree (1,1) current
on X with local (psh) potentials. Especially, we will often add a Kéhler form
w to a generalized pair (X, B+ ) while calling it a Kéhler class; however, this
doesn’t create any problem as a Kéahler form w on X defines a b-(1,1) current
as w := © which descends to X and [wx] € Hy,(X) is nef (in fact Kihler), so
the singularities of (X, B + 3 + w) are the same as those of (X, B + 3).

2.2. Generalized Models.

Definition 2.11. If (X/S, B + 3) is a generalized dlt pair over S, then we
say that a bimeromorphic map ¢ : X --» X™ (proper over S) is a log minimal
model over S (resp. a log terminal model over S) if (1-3) below hold (resp.
(1-4) below hold).

(1) (X™, B™+ ) is Q-factorial generalized dlt pair, where B™ = ¢, B+ F,
and E is the reduced sum of all ¢~ !-exceptional divisors,

(2) Kxm + B™ + Bxm is nef over S,

(3) a(P, X, B,3) < a(P,X™, B™, 3) for every ¢-exceptional divisor P, and

(4) there are no ¢~ '-exceptional divisors i.e. £ = 0.
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If (X/S, B+ ) is a generalized dlt pair over S, then we say that a bimero-
morphic map ¢ : X --» X™ (proper over S) is a weak log canonical model over
S (resp. a log canonical model over S) if (1-3) below hold (resp. (1-4) below
hold).

(1) (X™, B™ + ) is generalized lc pair, where B™ = ¢,B + E, and F is
the reduced sum of all ¢~!-exceptional divisors,

(2) Kxm + B™ 4+ Bxm is nef over S,

(3) a(P, X, B,3) < a(P,X™, B™, 3) for every ¢-exceptional divisor P, and

(4) [Kxm + B™ 4 Bxn] € Hys(X™) is a Kihler class.

If X is proper and S is a point, then we drop “over S” and simply say that
we have a log minimal model, log terminal model etc.

Lemma 2.12. Suppose that (X/S, B+ 3) is generalized dlt over S.

(1) If ¢+ X --» X™ is a weak log canonical model over S, then a(P, X, B, 3) <
a(P, X™, B™ B) for every divisor P over X and a(P, X, B,3) = a(P, X™, B™, 3)
for every divisor P on X™.

(2) If X --» X" and X --» X" are weak log canonical models of (X /S, B+
B) over S, then (X™, B"+03) and (Xv, B¥+3) are crepant equivalent,
ve. ifp: Z — X™ and q : Z — X" is a resolution of the induced map
XM -5 Xw, then p*(KXm + B™ +ﬁXm) =g q*(wa + BY +BX“J)-

(8) If X --+» X™ and X --+ X" are log canonical models of (X/S, B+ 3)
over S, then (X™, B™) and (X", B¥) are isomorphic.

(4) If (X, B + B) is generalized klt, then every log minimal model over S
is a log terminal model over S.

(5) If f + X' — X is a log resolution of (X/S, B+3) and Kx:+ B*+ By =
f"(Kx + B+ Bx) + F, where B* > 0, f,B* = B and F > 0 is f-
exceptional such that for every f-exceptional divisor P with a(P, X, B+
B) > 0 we have P C Supp(F'). Then any log minimal model (resp.
(weak) log canonical model) of (X'/S, B*+ 3') over S is a log minimal
model (resp. (weak) log canonical model) of (X/S, B+ B) over S.

Proof. (1) Let p: Z — X and ¢ : Z — X™ be a resolution of ¢. Then we can
write F' =Y (a(P, X™, B™ B) —a(P, X, B, 3))P, where the sum runs over all
prime divisors P C Z. Then from the definition above it follows that p,F > 0.
Note that F' =g p*(Kx+ B+ 8x)—q¢* (Kxm+ B™+Bxm), and hence F' > 0 by
the negativity lemma, as Kxm + B™ + Bxm is nef over S. We also claim that
g+ F" = 0. Observe that, here B™ = ¢.B + E, where E is the reduced sum of
¢~ '-exceptional divisors on X™. Thus it is enough to show that multp(F) = 0
for any prime divisor P in the support of E (i.e. any p-exceptional divisor
which is not g-exceptional). We have

—1=a(P,X™,B™"+3)>a(P,X,B+8) > —1,
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where the second inequality holds because F' > 0. In particular, we have
a(P,X,B+3)=a(P,X™ B™+ 3)

for all prime Weil divisors P on X™.
(2) Follows easily by what we have seen in (1).

(3) Let W be the normalization of the graph of X --» X and p: W —
X" q: W — X" the induced morphisms. Then by part (2) we have p*(K xm+
B™+ Bxm) = ¢*(Kxw + BY + Bxw). Since p, ¢ are bimeromorphic, and hence
Moishezon morphisms, if X™ --+ X" is not an isomorphism, we may assume
that there is a curve C' C W such that p,C = 0 and ¢.C # 0 (or p,C # 0 and
¢:C' = 0). But then

0= p.C - (Kxm + B™ + Byn) = C - p*(Kxm + B™ + Bxn)
=C-q¢"(Kxw+ BY + Bxw)

which is a contradiction.

(4) Suppose that ¢ : X --» X™ is a log minimal model and P is a ¢!
exceptional divisor. Then as (X, B) is klt and P is contained in the support
of B™ with multiplicity 1 (as B™ = ¢, B + Ex(¢™ 1)), from Part (1) we have

~1<a(P,X,B) =a(P,X™ B") = —1,

which is impossible, and so there are no ¢~ !'-exceptional divisors, i.e. ¢ is a
log terminal model.

(5) See the proof of [HL21, Lemma 3.10]. O

Lemma 2.13. Let (X, B+ 3) be a generalized kit (resp. dlt) pair. If Kx + B
is Q-Cartier, then (X, B) is klt (resp. dlt).

Proof. Since the statement is local on X, we may assume that X is Stein and
relatively compact. Let f : X’ — X be a log resolution and Ky + B’ + Bx: =
f*(Kx + B + Bx), where |B’| < 0, as (X, B + 3) is generalized klt. Let
KXf + Bti = f*(KX + B) Then
f*ﬁX — /BX’ = KX’ + B/ — f*(KX -+ B) = E,
where F > 0 by the negativity lemma. But then
B =E+ f"(Kx+B)—Kyxy =B'+E
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and so |B¥] < 0, i.e. (X,B) is kit. The statement about dlt singularities
follows similarly. O

Lemma 2.14. Let ¢ : X --» Y be a bimeromorphic map of normal compact
Kahler 3-folds with Q-factorial klt singularities that extracts no divisors. Then
the linear map ¢. - Hys(X) — Hyo(Y) is well defined and surjective.

Proof. From [DH20, Corollary 2.28] it follows that ¢, is well defined. So it
only remains to show that ¢, is surjective. To that end, let p : W — X
and ¢ : W — Y be a resolution of the graph of ¢. Replacing W by a higher
resolution if necessary and then using the relative Chow lemma of Hironaka
we may assume that p : W — X is a projective morphism. Choose 3 €
HEL(Y); then by [DH20, Lemma 2.27] there is an R-divisor E supported on
the exceptional locus of p such that ¢*f + [E] = 0 in Hys(W)/p* Hys(X).
In particular, there is a o € Hé’é(X) such that ¢*f + [E] = p*a for some
a € Hé’é(X ). Since ¢ does not extract any divisor, E is also g-exceptional.
Therefore ¢.a = q.p*a = ¢.(¢*f + [E]) = B, and hence ¢, is surjective. O

Lemma 2.15. Let f: X' — X be a proper bimeromorphic morphism of nor-
mal compact Kdhler varieties. Assume further that X has Q-factorial kit sin-

gularities and X' has rational singularities. Then Ex(f) is a pure codimension
1 subset of X'.

Proof. We claim that we can apply [DH20, Lemma 2.27] here to show that
Ex(¢) has pure codimension 1. Indeed, if we assume this lemma in our case,
then for any Kéhler class wx on X, we can write —wy = ¢*ayx, + F for some
ax: € HyL(X') and F a ¢-exceptional R-divisor. Then the negativity lemma
implies that F' is effective and Supp(F') = Ex(¢), and we are done.

Now observe that in [DH20, Lemma 2.27] it is assumed that the morphism ¢
is projective and dimension of the varieties are 3, however, the projectivity of
¢ was never used in the proof and the dimension argument was only necessary
to run the relative MMP which can be achieved in arbitrary dimension by
[DHP22, Theorem 1.4]. O

Lemma 2.16. Let ¢ : X --» X' be a small bimeromorphic map over Y of
normal compact Kdhler varieties such that X and X' both have kit singularities
and X' is Q-factorial. Letw € Hgh(X) be nef over Y such that ¢.w € Hy (X'
1s Kdahler over'Y . Then ¢ is an isomorphism.

Proof. Let W be the normalization of the graph of ¢ and p : W — X and
q : W — X' are the induced bimeromorphic morphisms. Write p*w = ¢*w'+ F,
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where F is an R-divisor. Since ¢ is small, from the negativity lemma it follows
that £ = 0, i.e. p*w = ¢*w'. If ¢ is a not a morphism, then there is a curve
C C W such that p.(C) = 0 but ¢.(C) # 0 and (f" 0 q).(C) = 0, where
f": X" = Y is the induced morphism. In particular, 0 = p*w - C = ¢*w’ - C =
W' - q.(C') > 0, a contraction. Thus ¢ is a morphism. Then we arrive at a
contradiction by Lemma 2.15 unless ¢ is an isomorphism.

O

Definition 2.17. [Fuj22, Page 3] Let X be a normal analytic variety and
W C X a fixed compact subset. We say that W C X satisfies Property P if
the following hold:

(P1) X is a Stein space.

(P2) W is a Stein compact subset of X.

(P3) I'(W, Ox) is noetherian (or equivalently, for any open subset U C X
and any analytic subset Z of U, W N Z has finitely many connected
components).

A projective morphism g : S — T between analytic varieties is said to satisfy
Property Q if S and T" are both compact.

Remark 2.18. Let X be a normal analytic variety and for each point x € X,
let © € U be a Stein open neighborhood. Since U is locally compact, there
is a compact neighborhood z € K C U of x. Then by [Fuj22, Lemma 2.5],
its holomorphically convex hull K in U is Stein compact. Note that from
[Fuj22, Theorem 2.10] it follows that K C U satisfies Property P if and only if
F(IA(, Oy) = lim - ['(V,Oy), where V' is an open subset of U, is a noetherian
ring. But then from [Fuj22, Lemma 2.16] we see that there is a Stein compact
subset L such that © € K ¢ L C U such that I'(L,Oy) is noetharian. In
particular, every point z € X has a Stein open neighborhood U and a Stein
compact subset © € L C U such that U satisfies Property P.

Theorem 2.19. Let (X, B + 3) be a generalized kit pair, where X relatively
compact analytic variety. Then the following hold locally over X :
(1) X has rational singularities,
(2) there exists a small bimeromorphic morphism p : X* — X such that
X* is Q-factorial,
(3) if Ky: + B* + By: = p*(Kx + B + Bx), then Bx: =x A? so that
(X*, B* + AF) s kit, and
(4) if A = uAb, then (X, B+ A) is kit.

Proof. (1) immediately follows from (4) and [Kol97, Corollary 11.14].
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(2-3) From Remark 2.18, it follows that for any x € X there is a Stein
compact subset x € W C X such that X satisfies Property P. In what follows
we work locally around W i.e. we repeatedly shrink X to a neighborhood of
W (without further mention). Let v : X’ — X be a projective log resolution
of (X, B+ ) and write Kx' + B+ Bx = v*(Kx + B+ Bx). Let £ = Ex(v),
and for 0 < € < 1 define B* := (B')”° + ¢F and F := (B')<" + ¢E. Then
Kx + B*+ Bx = v*(Kx + B + fBx) + F, where the support of F' equals
the set of all v-exceptional divisors, and (X', B* + Bx/) is generalized klt. In
particular, Bx =x F — (Kx/ + B*) where F' — (Kx/ + B*) is an R-divisor, nef
over X. As v is projective and X is Stein, we may assume that F' — (K x + B*)
is big and nef (over X). But then By =x A’, where A’ > 0 is an effective
R-divisor such that (X', B* + A') is klt.

We may therefore run the relative Ky + B* + A’-MMP (see [DHP22, The-
orem 1.4] and [Fuj22, Theorem 1.8]) and hence we may assume that we have
a bimeromorphic map 1 : X’ --» X* such that if F* = ¢, F, B} = ¢, B*,
/BXIi = w*ﬁxf and Aﬁ = w*A/, then

FP=x Kxi + B* + Bx: =x Kx: + B¥ + Af

is nef over X so that F'* = 0 by the negativity lemma. Therefore p : X* —
X is a small bimeromorphic morphism, B* = u;'B and X* is Q-factorial.
Clearly (X*, B* + Af) is klt. Note that each step of the above MMP preserves
the numerical equivalence By: =x A?, and in particular Ky: + B + By: =
1 (Kx + B+ Bx).
(4) By the Base-point free theorem [Fuj22, Theorem 8.1}, we have (locally
over X) that Kxs + B* + A" ~g x 0 and the claim follows.
O

We have following immediate corollary.

Lemma 2.20. Let (X, B + B) be a generalized klt (resp. dit) pair, where X
is compact analytic surface. Then X is Q-factorial with rational singularities,
and (X, B) is klt (resp. dlt).

Proof. By Theorem 2.19, X has rational singularities. Then from [Fuj21,
Lemma 3.10] it follows that X is Q-factorial. O

2.3. Existence of Flips for Generalized Pairs. In this subsection we prove
the existence of flips for generalized klt pairs in dimension 3.

Theorem 2.21. Let (X/S, B + B) be a generalized kit Kdhler 3-fold pair,
such that Kx + B is R-Cartier, and f : X — Z is a Kx + B + Bx-negative
small bimeromorphic morphism over S. Then f is locally projective, the log
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canonical model f* : Xt — Z for (X, B+ B) over Z exists and there is an
f-exceptional rational curve C' such that 0 > (Kx + B + Bx) - C > —6.

Proof. Let C' = UC; be the set of curves contracted by f. Assume for simplicity
that C' is connected. It suffices to construct the flip locally around z = f(C) C
Z. Let z € W C Z be a relatively compact Stein open subset. Shrinking
W, we may assume that for every curve Cj, there is a Cartier divisor D; on
Xy := f~'W that intersects C; transversely and does not intersect C; for
j #i. To construct D;, pick a general point z; on C; and a sufficiently small
neighborhood z; € U; C X. We identify z; € U; with a locally closed analytic
subvariety of CV and take the divisor D; given by a general hyperplane through
x;. Shrinking W and intersecting D; with Xy, we may assume that each D is
a subvariety of Xy . It then follows that if D =" d;D;, where d; = [Bx] - C;,
then D =y Bx.

Now let v : X’ — X be a log resolution of the generalized pair (X, B + 3).
Since Kx + B is R-Cartier, we have [Bx| € Hé’é(X), and so by Remark 2.8
we may write —F = By, — v*Bx for some v-exceptional R-divisor F on X'.
Let D" := v*D — Elx; =w Bx/|x;,. We may assume that v : Xy, — W is
projective (via Hironaka’s Chow lemma [Hir75, Corollary 2]). Since D’ is nef
and big over Xy, replacing D’ by an R-linearly equivalent divisor, we may
assume that (X, By, + D’) is sub-klt and hence (X, By + D) is klt, since
Kx;, + By, + D' = v*(Kx,, + Bw + D). But then the required log canonical
model X, exists (see [CHP16, Theorem 4.3]). In particular, —(Kx,, +Bw+D)
is ample over W and so f is locally projective. The existence of f-exceptional
rational curve C' C Xy such that 0 > (Kx + B+ Bx) - C = (Kx,, + Bw +
D) - C > —6 now follows from [DO23, Theorem 4.2]. O

As an easy corollary, we will prove the existence of flips. Recall that if
(X/S, B+ B) is a Q-factorial compact Kéhler generalized klt 3-fold pair, then
a Kx + B+ Bx-flipping contraction over S is a small bimeromorphic morphism
f: X — Z over S such that p(X/Z) =1, and —(Kx + B+ Bx) is Kéhler over
7. By definition, the flip of f : X — Z, if it exists, is a small bimeromorphic
morphism f* : X* — Z over S such that X" is Kahler over S, and Kx+ +
BT + Bx+ is Kahler over Z. We need the following lemma first.

Lemma 2.22. Let X be a normal Q-factorial compact Kdhler variety, f :
X — Z a 3-fold Kx + B + Bx-flipping contraction of a generalized kit pair
over S, and f*: Xt — Z the corresponding flip, then

(1) fT: XT — Z is uniquely determined,

(2) X+ is Q-factorial, and
(3) p(X*/Z) = 1.
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Proof. Suppose that f': X’ — Z is another flipof f : X — Z, then X --» X’
is a small bimeromorphic map over Z. Let Y be the normalization of the
graph and p : Y — X and ¢ : Y — X’ are the induced morphisms, then
from the negativity lemma it follows easily that ¢*(Kx+ + BT + Bx+) =
p*(Kx + B'+ Bx/). Let C C Y be a p-exceptional curve. Then ¢.C' # 0
and (f' 0 q).C = 0. Thus we have

0<C -¢"(Kx++B"+8x+)=C-p"(Kx + B + Bx:) =0

which is a contradiction. Therefore, there are no such curves and hence X+ --»
X'’ is a morphism. Similarly, it follows that X’ --+ X is a morphism and
hence X = X’; in particular, (1) holds.

Let Gt be a prime Weil divisor on X* and G its strict transform on X.
Then G is Q-Cartier, as X is Q-factorial. For any point p € X+ we must show
that there is a neighborhood of p on which G is Q-Cartier. This is clear if p is
not contained in the flipped locus Ex(f), so assume that p € Ex(f") and let
q = fT(p). Working locally over a neighborhood ¢ € W C Z as in the proof of
Theorem 2.21, we may assume that Kx,, + By + D is klt for some R-divisor D
on Xy such that D =y Bx|x,, and that X* — W is the relative log canonical
model for Kx,, + By + D. Since —(Kx,, + Bw + D) is ample over W, we may
pick an effective R-divisor 0 < H ~p yw Gy — %(KXW +Bw+D)for0<e<1
such that (Xw, Bw+D+H) is klt and —(K x,, + Bw+D+H) is ample over W.
Then X — W is also the relative log canonical model for Kx,, +Bw + D+ H
over W and so Ky+ + B, + DT+ H" ~py %(KXV*V + B, + D) + €GYy is
R-Cartier for 0 < € < 1, and hence GY}; is Q-Cartier and (2) is proven.

(3) now follows from [DH20, Lemma 2.27].

O

Corollary 2.23. Let (X/S, B+8) be a Q-factorial compact Kdhler generalized
klt 3-fold pair, and f : X — Z is a Kx + B + Bx-flipping contraction over S.
Then f is locally projective, the flip f* : X — Z for Kx + B + Bx over Z
exists (and unique), and there is an f-exceptional rational curve C' such that
0> (Kx +B+Bx)-C > —6.

Proof. Follows immediate from Theorem 2.21 and Lemma 2.22. O

Proof of Theorem 1.1. This follows from Corollary 2.23. O

Lemma 2.24. Let 7 : X — S be a proper morphism of compact complex
varieties such that X is Kdahler. If (X, B+ 3) is a generalized dlt pair and ¢ :
X --» X' is a Kx + B+ Bx flip, flipping contraction or divisorial contraction,
then X' is Kdhler.
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Proof. Let w be a Kéahler form such that v = Kx + B+ Bx +w is a supporting
hyperplane for the Kx + B + Bx-negative extremal ray. If f: X — Z is the
corresponding contraction, then v, = Kz+Byz+ 874w, = fo(Kx+B+Bx+w)
is generalized dlt and hence Z has rational singularities. But then, by the proof
of [CHP16, Corollary 3.8], vz is Kéhler (over S). Suppose now that f : X — Z
is a flipping contraction and let f* : X* — Z be the flip, then —w'™ = —¢,w
is Kéhler over Z and so, for any 0 < e < 1,

Kx+ +Bx+ +Bx+ + (1 —e)wm = [Ty, —ew™
is Kahler on X . O

2.4. Generalized Surface MMP. We begin by recalling the following well
known fact.

Lemma 2.25. If a € Hé’é(X) s pseudo-effective but not nef on a normal
compact Kahler surface X, then fc a < 0 for some curve C' C X.

Proof. Follows immediately from [DHP22, Theorem 2.36]. O

Lemma 2.26. Let f : X — Y be a proper bimeromorphic morphism of normal
compact Kihler surfaces with rational singularities. If «a € Héé(X) is nef and
ay = f.a, then ay € HEL(Y) is nef.

Proof. Passing to a resolution of singularities of X we may assume that X is
smooth. Now recall that by the Hodge index theorem the intersection matrix
of the set of all f-exceptional curves is a negative definite matrix. Therefore
there is an f-exceptional R-divisor £ on X such that a + E =y 0. By [HP16,
Lemma 3.3], a+FE = f*ay for some ay € Hyl(Y), and thus ay = f.(f*ay) =
f«(a+ E) = f.a. From the the negativity lemma it follows that F > 0. Thus
ay is pseudo-effective, and so by Lemma 2.25, it suffices to check that ay|¢ is
pseudo-effective, i.e. that [, ay >0 for all curves C C Y. If C" = f'C, then

we have
/Oéy:/Oé—f—(E'Cl)ZO,
C !

since C’ is not contained in the support of F and « is nef. O

An immediate corollary of this lemma is the following.

Corollary 2.27. If (X, B+() is a compact generalized lc pair such that X is a
compact Kdhler surface with rational singularities, then Bx has local potentials
on X and [Bx] € Hy(X) is nef.
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Definition 2.28. Let X be a compact analytic variety. The Neron-Severi
R-vector space of X is defined as:

NS(X)g := Im(Pic(X) — H*(X,R)).

Lemma 2.29. Let X be a normal compact Kahler variety with rational sin-
gularities. If H*(X,Ox) = 0, then X is projective and NS(X)g = Hya(X).

Proof. Since H*(X,Ox) = 0, from the usual exponential sequence it follows
that Pic(X) — H?*(X,Z) is surjective. Since X is compact, all singular ho-
mology groups of X are finitely generated Z-modules, and thus by the Uni-
versal Coefficient Theorem we have H*(X,Z) ®; R = H?*(X,R). Therefore
NS(X)r = H?(X,R). Now consider the following short exact sequence (see
[HP16, page 223])

(2.1) 0 R Ox Hx 0.
The associated long exact sequence of cohomology yields
(2.2)

0— H'(X,R) = H'(X,Ox) = H'(X,Hx) = H*(X,R) = H*(X,Ox) — - - -

Let 7 : X — X be a resolution of singularities of X. Since X has rational
singularities, H'(X,R) & H'(X,R) and H'(X,0;) = H'(X,Ox). Since X
is a compact Kahler manifold, from the Hodge decomposition it follows that
HY(X,R) — H'(X,0y) is an isomorphism, and thus (X, R) — H'(X, Ox)
is an isomorphism. In particular, from the sequence (2.2) and the fact that
H*(X,0x) = 0, it follows that H*(X,R) = HY(X,Hx) := Hy\(X). This
completes our proof.

O

In the next few results we will establish the cone theorem and existence of
minimal models (and Mori fiber spaces) for generalized pairs in dimension 2
which will be used in rest of the articles in without reference.

Lemma 2.30. Let (X, B) be a dlt pair, where X is a compact Kdhler sur-
face. Then there ezists countably many rational curves {I';};c;r such that
0<—(Kx+B)-I' <4 and

NA(X) = NA(X)(kx+mz0 + ) R - [T].
i€l
Proof. From Lemma 2.20 it follows that X has Q-factorial rational singulari-
ties. First assume that Ky + B is pseudo-effective. Then from Lemma 2.25
it follows that Kx + B is nef if and only if (Kx + B) - C' > 0 for every curve
CcX. Let Kx+B= Ziel A C; + B be the Boucksom-Zariski decomposition
as in [Bou04], where \; > 0 for all i € I C N (a finite subset) and g-C > 0 for
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every curve C' C X. Now if Ky + B is not nef, then there is a curve I' C X
such that (Kx +B)-I' < 0. This implies that (>, ; \iC;)-I' <0, in particular,
I' = C; for some i € I and I'> < 0. Then the rest of proof works similarly as in
the proof of [DO23, Theorem 6.1]. The length bound 0 > (Kx + B) - I' > —4
follows from [DO23, Theorem 4.2].
Now assume that Kx + B is not pseudo-effective. Then Kx is not pseudo-
effective. Let v : X — X be the minimal resolution of singularities of X.
Then from [DH20, Lemma 2.40] it follows that X is an uniruled projective
surface. In particular, X is Moishezon. Since X is also a compact Kahler
variety with rational singularities, from [Nam02, Theorem 1.6] it follows that
X is (uniruled) projective. Let m : X — Y be the MRC(C) fibration of X,
where dimY < 1. Then from the argument of [DH20, Lemma 2.39] it fol-
lows that H?(X,Ox) = 0. In particular, from Lemma 2.29 it follows that
NS(X)gr = H*(X,R) = Hy (X)), and hence NE(X) = NA(X) and the cone
theorem is well known in this case.

O

Lemma 2.31. Let (X, B + 3) be a generalized kit (resp. dlt) pair, where X
1s a compact Kahler surface. Then we can run the Kx + B + Bx-MMP

X=Xo—>X;—...— X,

so that:

(1) each (X;, B; + Bx,) is a generalized kit (resp. dlt) surface with Q-
factorial rational singularities (where B; is defined by pushforward),

(2) if Kx + B + By is pseudo-effective, then Kx, + B, + Bx, is nef, and

(3) if Kx+ B+ By is not pseudo-effective, then there is a Kx, + B, + Bx,,-
Mori fiber space f: X, — Z.

Proof. By Lemma 2.20, X has Q-factorial rational singularities. Then by
Lemma 2.13, (X, B) is klt (resp. dlt). If Kx + B is nef, then Kx + B+ 3x nef
by Corollary 2.27 and we are done. So assume that K x+ B is not nef. Suppose
that there is a Kx + B-negative extremal ray R which is also Kx + B + Bx-
negative (cf. Lemma 2.30). Then, by the usual MMP, there are two cases.
If R defines a Mori fiber space, then we are done. Otherwise, R defines a
divisorial contraction g : X — X’ so that (X', B’ = ¢.B) is klt (resp. dlt)
and in particular Q-factorial with rational singularities. From Corollary 2.27
it follows that Bxs := g.Bx has local potentials and [Bx/] € Hg:(X') is nef.
We may replace (X, B4+3) by (X', B'+8 = ¢g.(B+3)). The Kéhler condition
is preserved by Lemma 2.24. Repeating this procedure finitely many times we
may assume that either it terminates with a Mori fiber space or every Ky + B-
negative extremal ray R is Kx + B + Bx-non-negative. In the latter case since
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Bx is nef (see Corollary 2.27), it then follows that Kx + B+ Bx is non-negative
on NA(X) and hence nef. This concludes our proof. O

Corollary 2.32. Let (X, B+0) be a generalized dlt pair, where X is a compact
Kahler surface. Then the following holds:

(1) There are at most countably many curves {I';}ier such that 0 > (Kx +
B+ Bx) -1 > —4 and

NA(X) = NA(X) gy Bipyz0 + Y R[]
icl

(2) If F is a face spanned by a set of Kx + B + Bx-negative extremal
rays, then there is a contraction f : X — 'Y contracting curves C with
[C] € F and either Y is a point, or a smooth projective curve or a
normal Q-factorial surface with rational singularities.

(3) If (X, B+ 3) is a generalized klt and B + Bx or Kx + B + Bx is big,
then I is finite.

Proof. (1) By Lemma 2.13, (X, B) is dlt with rational Q-factorial singularities.
By Corollary 2.27, Bx is nef and so NA(X)k, 18>0 C NA(X) g +B1+8x>0-
Thus by Lemma 2.30 we have

NA(X) = NA(X) k4820 + 3 R[] = NA(X) k1 5agyz0 + 3 R[TH].

el el

(2) Clearly F'is also Kx + B-negative and hence the contraction exists by
the usual contraction theorem. Since we are unable to find a reference for this
fact we recall an easy proof. Let v be the supporting hyperplane so that ~
is nef and v+ N NA(X) = F. Pick an extremal ray of F', say R. By [Fuj19]
or [DO23, Theorem 6.2}, we may contract R to obtain another generalized dlt
Kahler surface (X', B’ + Bx/) with rational Q-factorial singularities (see also
Lemma 2.24). Since X’ has rational singularities and hence v = v*(v’), where
v € Hyl(X) is nef. Repeating this procedure, after finitely many steps we
may assume that v € Hpg(X) is Kéhler, and thus we have contracted the
face F.

(3) We claim that if ¢ € HyS(X) is a big class, then there are at most
finitely many curves C' C X such that fcw < 0. To see this, note that for
some Kéhler form w, the class [¢) — w] is still big. Let v —w = Z + P be
a Boucksom-Zariski decomposition such that Z > 0 is an effective R-divisor
and P is a nef class (see [Bou04, Proposition 2.4] and Lemma 2.25). But then
one sees that if fC@D < 0, then C' is contained in the support of Z. Thus, if
Kx + B + Bx is big, then the claim immediately holds.
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Suppose now that B + Bx is big, then we may write B+ 8y =7 +w+ P
as above. Thus

B+Bx=((1—€¢)B+eZ)+ ((1 —€)Bx +e(w+ P))

where (X, (1 —¢)B 4+ €Z) is kIt and (1 — €)Bx + e(w + P) is Kéhler for all
0 < e < 1. The finiteness of Kx + B + Bx negative extremal rays now follows
from the usual cone theorem. U

Theorem 2.33. Let (X, B+3) be a generalized klt pair, where X is a compact

Kahler surface. If Kx + B + Bx is big, then (X, B + (3) has a log canonical
model.

Proof. By running a K x+ B+3x-MMP, we may assume that « = Kx+B+3x
is nef and big (Lemma 2.31). We claim that Null(«) consists of finitely many
curves. To see this, choose a Kahler form w such that Kx + B+ 3x —w is also
a big class. Then, by the Boucksom-Zariski decomposition [Bou04], we can
write Kx + B+ Bx —w = D+, where D is an effective R-divisor and ~ is a
modified nef class (and hence a nef class by Lemma 2.25). Choose 0 < ¢ < 1
such that (X, B +¢D) is klt. Then

(I1+e)a=(Kx+B+eD+Bx)+e(y+w).

Now if C' C Null(«) is a curve, then - C' = 0 implies that (Kx + B +¢eD +
Bx)-C < 0. Since Kx + B+ ¢eD + Bx is big, by a similar argument as in the
proof of Corollary 2.32(3) it follows that there are finitely many such curves.
This proves our claim. Moreover, from the above equation it also follows that
if ¢ C Null(«) is a curve, then (Kx + B +¢D) - C < 0, and thus this curve
can be contracted. Repeating this process finitely many times (since Null(«)
contains finitely many curves) we obtain a projective bimeromorphic morphism
f X — Z to anormal compact surface Z with rational singularities such that
a = f*OéZ and Null(az) = @, where Qg = f*(Kx+B+ﬂx) = Kz—l—Bz—l—Bz.
Then from [DHP22, Theorem 2.30] it follows that ay is a Kéhler class. Thus
(Z, Bz + Bz) is the log canonical model of (X, B + Bx).

O

Remark 2.34. Note that by [LP20, Example 6.2], it is not the case that all
generalized pairs have a good minimal model, however it is known that if g is
an R-divisor and Kx + B is pseudo-effective, then good minimal models exist
[LP20, Corollary C]. It would be interesting to know if good minimal models
exist for generalized klt Kéhler surface pairs (X, B 4+ 3) such that Kx + B is
pseudo-effective and [Bx] € Hyg(X).
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2.5. Relative MMP for 3-Folds. Using [DHP22, Theorem 5.2] we will show
that we can run a relative MMP for proper morphism between Kéahler varieties.

Theorem 2.35. Let (X, B) be a Q-factorial dit pair, where X is a compact
Kahler 3-fold. Let f : X — Z be a proper morphism to a normal compact
Kdhler variety. Then we can run a Kx + B-MMP over Z which terminates
with either a log terminal model over Z or a Mori fiber space over Z.

Proof. Let wz be a Kéhler class on Z. We may assume that Kx + B is not nef
over Z. Then Kx 4+ B + tf*wy is not nef on X for any ¢t > 0. From the cone
theorem [DHP22, Theorem 5.2] we know that there are at most countably
many rational curves {C;};ey such that 0 > (Ky + B) - C; > —6 for alli € T
and
NA(X) = NA(X)(kx+m)20 + Y RT - [CI].
iel
We claim that there is an ¢ € [ such that f,C; = 0. If not, then ff*w,-C; =
wy - fxC; > 0 for all ¢ € I, since wy is a Kahler class on Z. Since the classes
[C;] are contained in a discrete lattice of H*(X,Z), it follows that there is an
€ > 0 such that wy - f,C; > € for all © € I. Then for some t; > 0 we may
assume that tof*wy - C; > 7 for all i € I. Thus (Kx + B+ tof*wz) - C; >0
for all © € I, and hence Kx + B + tgf*wz is nef on X, a contradiction. Now
we contract an extremal ray R = RT - [C;] such that f.C; = 0 using [DH20,
Theorem 1.7] and obtain a morphism g : X — Y to a normal Kéhler variety
Y. Then from the rigidity lemma it follows that there is a unique morphism
h:Y — Z such that f = h o g. Repeating this process we construct a MMP
over Z. Termination of flips follow from [DO23, Theorem 3.3].
O

3. THREEFOLD GENERALIZED MMP

3.1. Running the MMP for R-Cartier Divisors. Throughout this section
we will repeatedly use the results of [DH20] on the 3-fold MMP for Q-factorial
compact Kéhler klt pairs (X, B). Note that in this reference, the results are
stated for the case that Ky + B is Q-Cartier, however, they also hold when
Kx + B is an R-Cartier divisor. This is because if Kx + B is an R-Cartier
divisor, then it can be approximated by a sequence of klt Q-Cartier divisors
Kx+ B, (for example, if X is Q-factorial, let B,, = %LnBJ) The cone theorem
for Kx+ B is easily seen to follow from the cone theorem (cf. [DH20, Theorems
2.17, 4.6]) applied to the sequence of Q-Cartier divisors Kx + B,,. If I' is a
Kx + B-negative extremal ray, then it is also a Kx + B,-negative extremal
ray for any n > 0 and so the contraction of I', ¢r : X — Y exists by [DH20,
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Theorems 1.5 and 2.18]. Similarly, if X — Y is a Kx 4+ B-flipping contraction,
then it is also a Ky + B,-flipping contraction and hence the flip X* — Y
exists [CHP16, Theorem 4.3]. The termination of flips follows by the usual
arguments (see [DO23, Theorem 3.3]).

Lemma 3.1. Let (X, B + 3) be a compact generalized 3-fold pair with Q-
factorial rational singularities. If Bx is not nef, then Bx - C < 0 for some
curve C' C X contained in the indeterminacy locus of f=%, where f : X' — X
s a structure morphism of the generalized pair.

Proof. Since Kx + B is Q-Cartier, the current Bx has local potentials. Let
E:=Kx +B — f*(Kx + B) = f*Bx — Bx’,

where FE is exceptional, and so £ > 0 is effective by the negativity lemma
as Bx is f-nef. If By is not nef, then Bx|y is not pseudo-effective for some
subvariety V' C X, by [DHP22, Theorem 2.36]. Since Bx is nef, it is pseudo-
effective and hence so is 3 = f.3x/, and hence dimV < 3. If dimV = 2, let
V' = f71V; then (Bx: + E)|v = f*Bx|v is pseudo-effective and hence so is
Bx|v. Thus dim V' = 1 and it is easy to see that V' is contained in the image
of E/ and hence in the indeterminacy locus of f~!. O

Lemma 3.2. Let X be a normal compact Kahler 3-fold and w is a modified
Kahler class on X. Then for any countable collection of non-numerically equiv-
alent curves {C;}ier, there is a positive real number b > 0 such that w - C; > b
for all but finitely many curves. Moreover, if (X, B) is a log canonical pair for
some R-divisor B > 0 and {C;};cr are all the rational curves generating the
Kx + B-negative extremal rays of NA(X), then there are only finitely many
curves {C;}iey, J C I, such that (Kx + B+w)-C; <0 forallj € J.

Proof. Let f : X' — X be a resolution of singularities of X and w’ a Kéahler
class on X’ such that f.w’ = w. Then f*w = W' + E, where F is a f-
exceptional divisor. From the negativity lemma it follows that E is effective.
Since dim X = 3 and E is f-exceptional, dim f(SuppE) < 1. Therefore there
can be at most finitely many curves {C;};es, J C I, contained in f(SuppFE).
In particular, w- C; = ffw-Cl = (W' + E)-C! > 0 for all i € I\ J, where
C! is the strict transform of C;. Note that these C} are also not numerically
equivalent. Moreover, since w’ is a Kahler class, there is a positive real number
b > 0 such that w'-C! > b for alli € I'\ J. In particular, w-C; > ' -Cl > b
forallie I\ J.

If {C;}ics are generators of K x+ B-negative extremal rays, then from [DHP22,
Corollary 5.3] it follows that (Kx + B) - C; > —6 for all i € I. Therefore if
(Kx+B+4w)-C; <0forsomei€ I, then w -C! <w-C; < —(Kx+B)-C; <
6. Since w’ is a Kahler class, it follows that there are only finitely many
Kx + B + w-negative extremal rays. O
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3.2. Existence of Log Terminal Models. In this subsection we will estab-
lish the existence of log terminal models and log canonical models, and prove
Theorem 1.2.

In the following two results we will show that we can run a MMP with scaling
(which terminates after finitely many steps) when Ky + B + Bx is pseudo-
effective and Bx is a modified Kéahler class.

Proposition 3.3. Let (X, B) be a Q-factorial compact Kdhler 3-fold kit pair.
Letw € Hé’é(X) be a modified Kahler class, K x+ B+w is pseudo-effective and
Kx+ B+ (1+t)w is nef for somet > 0. Then we can run a Kx+ B+w-MMP
with scaling of tw which terminates with a log terminal model.

Proof. Let A :=inf{t > 0 : Kx + B+ (1 + t)w is nef}.

Claim 3.4. There exists a Kx + B-negative extremal ray R*[C] such that
(Kx+B+(1+MNw)-C=0.

Proof. By [DHP22, Theorem 5.2], there are countably many Kx + B-negative
extremal rays generated by curves {C;};e; such that 0 > (Kx + B) - C; > —6.
Since w is a modified Kéhler class, by Lemma 3.2 there is a finite subset I’ C I
such that (Kx + B+4w)-C; > 0if and only if i € I\ I'. Let Iy C I’ be the set
of i € Iy such that (Kx + B+ (1 + MNw) - C; = 0.

We claim that I, # (). To see this, suppose that I, = (), then there is a
positive real number b > 0 such that (Kx + B + (1 + Mw) - C; > b for any
1 € I', and there is a positive real number ¢ > 0 such that w - C; < ¢ for all
i € I'. Recall that (Kx + B) - C; > —6 for all i € I. Choose a positive real
number 0 < 0 < min{\, b/c}, then

(3.1) (Kx+B4+(1+X=0w)-C;>b—0c>0 foralliel

Since

) 4
Kx+B—|—(1+>\—5)w:X(KX—FB-i-w)-i-(l——)(Kx+B+(1+>\)w),

A
then (Kx + B+ (1+ X —0d)w)-C; > 0foralli e I\ I'. Observe that
) J
Kx+B+(1+X—d0)w=——-(Kx+B l—— | (Kx+B+(1+A
x+B+(1+ Jw 1+A( x+ )+< 1+A)( x+B+(1+Mw)

and so Kx + B + (1 + A — §)w is non-negative on NA(X)x,+p>o. Since by
[DHP22, Theorem 5.2],

NA(X) = NA(X) k4820 + 3 RV [Cl],
icl
then Ky +B+(1+A—d)w is non-negative on NA(X) and so Kx+B+(1+A—d)w

is nef, which is a contradiction to the definition of .
O
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Now, let R = R*-[C] be a K x+ B-negative extremal ray such that (K x+B+
(14 MNw) - C = 0; in particular, w-C > 0. Then, by [DH20, Theorem 1.7], we
can contract this ray and obtain a morphism f: X — Y to a normal compact
Kahler variety Y with rational singularities. Note that f is bimeromorphic,
since it is also a contraction of a (Kx + B+w)-negative extremal ray and Ky +
B+ w is pseudo-effective. If f is a flipping contraction then let f’: X’ — Y be
the associated flip (and if f is a divisorial contraction, let X’ =Y'), and B’ o’
the pushforwards of B and w on X’. Note that Kx/+B’'+(1+\)w’ is nef and w’
is modified Kéhler. We now let N :=inf{t >0 : Ky + B+ (1 +t)w’ is nef}
and repeat the process. Note that 0 < ) < X and the process terminates
as there is no infinite sequence of steps for any (Kx + B)-MMP by [DO23,
Theorem 3.3]. O

Corollary 3.5. Let (X, B) be a Q-factorial compact Kdhler 3-fold kit pair and
m: X — S a proper surjective morphism to a Kdhler variety. Let w € Hé’é(X)
be a modified Kahler class over S, Kx + B 4+ w is pseudo-effective over S and
Kx+B+(1+t)w is nef over S for somet > 0. Then we can run a Kx+B+w-
MMP over S with scaling of tw which terminates with a log terminal model
over S.

Proof. Replacing w by w+7m*wg for some Kahler class wg on S, we may assume
that w € Hé’é (X) is amodified Kahler class, K y+ B+w is pseudo-effective, and
Kx+B+(1+t)w is nef. Let {C;};c; be the set of curves generating all K x + B-
negative extremal rays of NA(X). Then from [DHP22, Theorem 5.2] it follows
that 0 < —(Kx+B)-C; < 6foralli € I. Since Kx+ B-+(1+4t)w is nef, it follows
that w-C; > 0 for all i € I. In particular, we have (Kx+ B+ (1+\w)-C; > —6
for any 0 < A < t and for all 7 € I. Pick a Kahler class ng on S such that
C -ng > 6 for any curve C on S. Let w' := w + 7*ng, then W’ is modified
Kéhler on X, Kx + B + w' is pseudo-effective, and Kx + B + (1 +t)w’ is nef.
By Proposition 3.3, we may run the Ky + B + «'-MMP with scaling of tw’.
Let
A:=inf{s >0 : Ky + B+ w'+ s(tw') is nef}.

Then by Claim 3.4 there is a Kx + B-negative extremal ray spanned by a
curve C; such that (Kx + B+ (1 + A\)w') - C; = 0. We claim that 7,.C; = 0. If
not, i.e. if w,C; # 0, then we have

0=(Kx+B+{14+Nw)-Ci+(1+Nr"n-C; >—6+(14+X)6>0

which is a contradiction. Therefore 7,C; = 0 and so the corresponding flip or
divisorial contraction is a step of the Kx + B-MMP over S. Since there is no
infinite sequence of Ky + B-flips (see [DO23, Theorem 3.3]), we may repeat
this procedure finitely many times until we obtain a Kx + B + w minimal
model over S. O
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We now prove the existence of log canonical model when Kx + B + By is
big. This is result is of fundamental importance and will be used repeatedly
in the rest of the article.

Theorem 3.6. Let (X, B+ 3) be a generalized klt pair, where X is a compact
Kdhler 3-fold. Assume that Kx + B + Bx is big. Then

(1) (X, B+ Bx) has a (unique) log canonical model,

(2) there exists a log terminal model and all such models admit a morphism
to the log canonical model, and

(3) if [Kx + B+ Bx] € HyM(X) is very general, then there is a unique log
terminal model coinciding with the log canonical model.

Proof. We begin with the following reduction.

Claim 3.7. We may assume that (X, B) is log smooth and Bx is a Kéahler
class.

Proof. Let f: X’ — X be a structure morphism of the generalized pair (X, B+
B). Since Kx + B + Bx is big, by [Bou02, Theoreme 1.4] and passing to a
higher resolution if necessary, we may assume that f*(Kx+B+0x) = F'+u/,
where w’ is a Kéahler class and F’ > 0 is an effective Q-divisor. Let F' 4+ w :=
f«(F" + '), then F' > 0 and w is modified Kéhler. For any 0 < € < 1,
(X,B + €F + B + ew) is generalized kIt and Ky + B + ¢F + By + ew =
(14 €)(Kx + B+ Bx). Thus, replacing (X, B+ 3) by (X,eF + 3+ ex'), we
may assume that B/ is Kahler for some log resolution f : X’ — X of the
generalized pair (X, B + 3).

Let F = Ex(f). By Lemma 2.12(5) and [BCHM10, Lemma 3.6.9], a log
terminal model (resp. the log canonical model) of Kx: 4 (B')>¢ + €E + Bx/,
where £ > 0 is an effective Q-divisor such that Supp(F) = Ex(f) and 0 < e <
1 is also a log terminal model (resp. the log canonical model) of Kx + B+ Bx.
Thus replacing (X, B+3) by (X', (B')>o+€E+ 3 +€ed’), we may assume that
(X, B) is log smooth and Bx is a Kéhler class. Note that if [Ky + B+ Bx]| €
Hé’é(X ) is very general, then by [DH20], after possibly perturbing F, we may
assume that [Ky: + (B')so + €E + By + ew'] is very general in Hy,(X'). O

Then Kx + B+ (1+1t)Bx is Kéhler for ¢t > 0 and Kx + B + B is pseudo-
effective, and thus by Proposition 3.3, we can run the Ky + B + B3x-MMP
with scaling of {3x. We obtain a log terminal model ¢ : X --+» X™ such that
a™ = Kxm + B™ + Bxm = ¢.(Kx + B + Bx) is nef and big, and Bx= is a
modified Kéhler class. Moreover, we also have that Kxm + B™ + (1 + €)Bxm
is nef (and big) for all 0 < e < 1.

Claim 3.8. After a finite sequence of a-trivial steps of the Kxm + B™-MMP
X™ --» X", we may assume that (Kx» + B")-C > 0 for any o"-trivial curve
ccXxm
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Proof. The proof follows exactly as in the proof of [DH20, Theorem 6.4] where
it is shown that we may flip and contract all K xm + B"-negative extremal rays
that are o™-trivial. Note that in [DH20] it is assumed that Bxm is nef and
big, but the arguments of the proof only use that Bx= is modified Kahler. [

Claim 3.9. Null(a™) does not contain any surface.
Proof. This also follows from the proof of [DH20, Theorem 6.4]. O

Claim 3.10. There is a proper bimeromorphic contraction = : X" — Z con-
tracting Null(a™) such that g : X™ --» Z is also a morphism.

Proof. The morphism 7 : X" — Z contracting Null(a™) exists by [DH20,
Proposition 6.2]. Following the proof of [DH20, Theorem 6.4], we argue that
p: X™ — Z is also an a™-trivial morphism. U

Recall that Kxm + B™ + (1 + €)Bxm is nef. So from

eBxm = (Kxm + B™ + (1 +¢€)Bxm) — (Kxm + B™ + Bxm)
= (Kxm +B" 4+ (1+¢€)Bxm) —a™

it follows that Bxm - C' > 0 for all curves C' C X™ contracted by p: X™ — Z.
Thus —(Kxm +B™) is p-nef-big, as —(Kxm +B™)|xm» = Bxm|xp forall z € Z.
Then by [DHP22, Lemma 8.8], Z has rational singularities. Now since Z is in
Fujiki’s class C, by [HP16, Lemma 3.3] there exists a (1,1) class ay € Hy:(Z)
such that o™ = u*ay. One then easily checks that Null(ayz) = () and so ay is
Kahler by [DH20, Lemma 6.3]. Thus Kz + By + 7 := pu(Kxm + B™ + Bxm)
is a log canonical model of Ky + B + Bx. The uniqueness of log canonical
models follows by (3) of Lemma 2.12; this proves (1).

(2) The fact that log terminal models admit a morphism to the log canonical
model follows from the Claim 3.10 above.

(3) Finally, suppose that [Kx + B + Bx] is very general in Hy(X) and
m : X™ — Z is the morphism from a log terminal model X™ to the log
canonical model Z. From Lemma 2.14 it follows that the induced morphism
Oy - Hé’é(X) — Hé’é(Xm) is surjective, where ¢ : X --» X™:; in particular,
the class of Kxm + B™ + Bxm is very general in Hy,(X™). Let C be a curve
contracted by 7, then (Kxm + B™ + Bxm) - C = 0, contradicting the fact that
[Kx + B+ Bx] is very general. Therefore 7 is a quasi-finite proper morphism
with connected fibers, and hence an isomorphism.

O

We will also need the following relative version of Theorem 3.6.
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Theorem 3.11. Let (X, B+3) be a generalized compact Kdhler 3-fold klt pair,
where m : X — S is a morphism to a compact Kdhler variety and Kx + B+ Bx
is big over S. Then the following hold:

(1) (X, B+ Bx) has a (unique) log canonical model X --+ X over S.

(2) There exists a log terminal model X --+ X™ over S such that Kxm +
B™ + Bxm + p*wg is nef for some Kdihler form wg on S (where p :
X™ — S is the corresponding morphism) and there is a morphism
X™ — Xe.

(3) If (X™, B™ 4 Bxm) is a log terminal model over S, then Kxm + B™ +
Bxm + p*ws is nef for some Kahler form ws on S, and there is a
morphism X™ — X°¢.

Proof. Adding a sufficiently large multiple of a Kahler form wg on S, we may
assume that Kx + B + Bx is big. Proceeding as in the proof of Theorem 3.6,
replacing X by a higher model, we may assume that By is Kahler so that
Kx + B+ (1 +t)Bx is also Kéhler for ¢ > 0. As in the proof of Corollary
3.5, after adding the pullback of a sufficiently large multiple of a Kahler form
wg on S, we run the Kx + B 4+ Bx-MMP with scaling of t3x which turns out
to be a MMP over S, and we obtain a log terminal model X --» X’ over S
such that Kxm + B™ + Bxm is nef and hence also nef over S. By Theorem 3.6
there is a log canonical model ¢ : X™ — X¢ for Kxm + B™ + Bxm + p*wg,
where wg is a Kahler class on S, and p : X™ — S is the induced morphism.
Note that 1 is a bimeromorphic morphism, so its fibers are covered by curves
and ¢ : X™ — X¢ contracts Kxm + B™ 4+ Bxm + p*wg-trivial curves. Since
Kxm 4+ B™ + Bxm is nef and wg is Kahler, any such curve must be vertical
over S and hence by the rigidity lemma (see [BS95, Lemma 4.1.13]), there is
a morphism X¢ — S so that ¢ : X™ — X¢ is the log canonical model for
Kxm + B™ 4+ Bxm over S. Thus (1) and (2) hold.

Suppose now that X --+» X is any log terminal model of Kx + B + Bx
over S. We begin by showing the following.

Claim 3.12. There exists a Kahler form wg on S such that Kxm + B™ 4+ Bxm +
p*wg is nef.

Proof. It Kxm + B™ + Bxm is nef, then the claim is obvious. Otherwise, let
X --+ X" be the log terminal model of Kx + B + B3x over S constructed
in (2). Then Kxn + B"™ + Bx» + q¢*ws is nef for some Kahler class wg on
S, where ¢ : X" — S is the corresponding morphism. Now, by Theorem
A11, X™ --» X" is an isomorphism in codimension 1 between log terminal
models of Ky + B+ Bx over S, and hence it easily follows from the negativity
lemma that if » : W — X™ and s : W — X" is a common resolution,
then r*(Kxm + B™ 4+ Bxm + p*wg) = s*(Kxn + B" + Bx» + ¢*wg). Since
Kxn + B" 4+ Bxn + ¢*wg is nef, so is Kxm + B™ 4+ Bxm + p*wg. O
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Arguing as above, it follows easily that X — X¢ is a morphism and hence
(3) also holds. O

Theorem 3.13. Let (X, B+3) be a generalized klt pair, where X is a compact
Kahler 3-fold. Then the following hold:

(1) X has rational singularities,

(2) there exists a small bimeromorphic morphism v : X% — X such that
X1 45 Q-factorial, and

(3) there exists a bimeromorphic morphism v : X' — X such that X' is
Q-factorial and (X', B' + B) is a generalized terminal pair such that
Kxi+ B' + Bxt = v*(Kx + B + Bx).

Note that a local version of (2) was proven in Theorem 2.19.

Proof. (1) follows from Theorem 2.19.

(2) Let f : X’ — X be a projective log resolution of the generalized pair
(X,B+pPB). Fix0 < e < 1 and let ¢ : X' --» X9 be a log terminal model
of Kx' + f7'B + (1 — €)Ex(f) over X which exists by Theorem 3.11. Since
Kx + f7'B+ (1 — €)Ex(f) + Bx: =x F where F' > 0 and Supp(F) = Ex(f),
it follows that F?1 = ¢, FF > 0is f9 : X? — X exceptional and F? is nef
over X and so by the negativity lemma, F'¢ = 0. Therefore f? is a small
bimeromorphic morphism and X7 is Q-factorial.

The proof of (3) is also standard and similar to the proof of (2) and so we
omit it.

O

The following theorem is a variant of the Base-point-free theorem [DH20,
Theorem 1.7].

Theorem 3.14. Let (X, B+3) be a generalized klt pair, where X is a compact
Kdhler 3-fold. Assume that Kx + B + Bx is nef but not big and Bx: is big.
Then there is a morphism g : X — Z to a normal Kdhler variety Z such that
Kx + B+ Bx = g*ag, where ay is a Kdahler class on Z.

Proof. Note that if v : X’ — X is a bimeromorphic morphism and ' : X' — Z
a proper morphism (not necessarily bimeromorphic) of normal compact Kéhler
varieties such that v*a = f"ay, where ay is a Kahler class on Z, then f’
contracts all v-vertical curves and so by the rigidity lemma (see [BS95, Lemma
4.1.13]) there is a morphism f : X — Z such that for = f" and a = f*ay.
Therefore by passing to a small Q-factorialization using Theorem 3.13 we may
assume that X is Q-factorial and (X, B + 3) is terminal. Since By is nef and
big, possibly replacing X’ by a higher model, we may assume that Bx, = F+w’
where ' > 0 is an effective R-divisor and w’ is Kéhler [Bou02, Theoreme 1.4].
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Pick € > 0 such that (X', B’ 4 ¢F) is sub-klt. Define B* := f.(B’ + €¢F') and
B* = f.((1 — €)Bx + ew’). Then (X, B* + 3*) is a generalized pair and 3*
is a modified Kéahler class. Note that Ky + B* 4+ * = Kx + B + Bx; thus
replacing (X, B + 3) by (X, B* + 5*) we may assume that By is a modified
Kahler class.

Now, if Ky is pseudo-effective, then Kx + B + Bx is big, which is a contra-
diction. Therefore Kx is not pseudo-effective, and hence X is uniruled.

Claim 3.15. Let m : X --» T" be the MRCC fibration. Then we may assume
that dim 7" = 2.

Proof. Since X is uniruled, dim7" < 2. If dim 7" < 1, then from the proof of
[DH20, Lemma 2.39] it follows that H?*(X,Ox) = 0. Thus X is projective
and every (1,1) class is represented by an R-Cartier divisor. In particular,
(X, B + Bx) is numerically equivalent to a traditional generalized pair for
projective varieties, i.e. [Bx/] = ¢1(N’), where N’ is a nef and big R-divisor
on X’ and f: X’ — X is the given log resolution of (X, B 4+ Bx). We then
have N ~r A’+ E, where A’ is a general ample R-divisor and E is an effective
R-divisor. Therefore

Kxi+B + N ~g Kx+ B +e¢E+ (1 —€e)N' + €A =: Kx.+ B" + N"|

where B” := B'+ e¢FE, N”" ~g (1 —€)N' + €A’ is a general ample R-divisor
and (X', B” + N”) is sub klt. But then (X, A := f.(B" + N")) is klt such
that A > 0 is big and Kx + B + Bx = Kx + A. The conclusion now follows
from the base-point free theorem for R-divisors, for example see [BCHMI10,
Theorem 3.9.1]. Therefore we may assume that dim 7" = 2. U

Claim 3.16. Let F be a general fiber of 7 : X --» T, then F = P! and
(Kx + B+ Bx)-F=0.

Proof. Let g : Y — X be a log resolution of (X, B + 3) which also resolves
the map 7 : X --» T. Write

Ky + By + By = g"(Kx + B+ Bx) + E,

where By > 0,F > 0,9.By = B,¢9.E = 0, By and FE do not share any
component, and By is nef.

Observe that the general fibers of mog and 7 are isomorphic. Now since (K x +
B+pBx) is pseudo-effective, so is Ky + By +8y, and thus (Ky+By+8y )-F > 0.
If (Kx+B+8x)-F >0, then (Ky+By+08y)-F = (Kx+B+Bx)-F >0, and
thus (Ky + By +t8y) - F > 0 for some 1 >t > 0. Then by [Gue20, Theorem)],
Ky + By +1tBy is pseudo-effective and so Ky + By + By + (1 —t) Ex(f) is big,
since By is big. In particular, Kx+ B+8x = ¢g.(Ky + By + 8y +(1—t) Ex(f))
is big, a contradiction. O
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Now, as in the proof of [DH20, Theorem 5.2] we will analyze the nef di-
mension of Kx + B + Bx. Since a dense open subset of X is covered by
K x + B+ Bx-trivial curves, we see that the nef dimension n(Kx+B+8x) < 2.
If n(Kx + B+ Bx) =0, then Kx + B+ Bx = 0 and we are done by choosing
Z = Specan(C). If n(Kx + B + Bx) = 1, then there is a smooth projective
curve C' and a morphism ¢ : X — C such that Kx + B + Bx = g*a¢, where
ac € HyA(C), (see [BCET02, 2.4.4] and [HP15, Theorem 3.19]). Since the nef
dimension n(g*ac) = 1, it follows that a¢ is a Kéhler class and we are done.
The final case is n(Kyx + B + Bx) = 2. In this case, by an argument identical
to the one in [DH20, Theorem 5.5], we find the required morphism g : X — Z.

Note that in [DH20], Bx is assumed to be nef and big, however, in the proof
it is only used to show that a nef and big class can be written as a sum of a
modified Kéhler class and a sufficiently small effective divisor (see the Step 3
of the proof of [DH20, Theorem 5.2]); in particular, B3x being modified Kéahler
is enough for the proof in [DH20].

O

Theorem 3.17. Let (X, B + 3) be a Q-factorial generalized kit pair, where
X is a compact Kdahler 3-fold, such that Kx + B + Bx is pseudo-effective but
not big and Bx: is big. Then there is a log terminal model f : X --+ X™ and
a morphism g : X™ — Z such that Kxm + B™ + Bxm = g*ay, where az is a
Kahler class on Z.

Proof. If Ky is pseudo-effective, then Kx + B 4+ Bx is big, contradicting our
assumptions. Thus, Ky is not pseudo-effective. In particular, X is uniruled.
Let m : X --» T be the MRCC fibration of X. If dim7 < 1, then from the
proof of [DH20, Lemma 2.39] it follows that H?(X, Ox) = 0. In particular, all
(1,1) classes on X are represented by R-Cartier divisors and X is projective.
So we may assume that (X, B + ) is a traditional generalized pair on a
projective variety and the statement follows from known results (see [BZ16,
Lemma 4.4]). Therefore we may assume that dim 7" = 2.

Let v: Y — X be a log resolution of (X, B + 3) so that Ky + By + By =
v (Kx + B+ Bx), where (Y, By) is log smooth and By is nef and big. Passing
to a higher model, we may assume that By = w’ + E, where E is an effective
R-divisor and w’ is Kéhler. Therefore, for 0 < ¢ < 1,

Ky+By+,6yEKy+By+EE+(1—€)/6Y‘|‘Ew/,
where (1 — €)By + ew’ is Kéhler and (Y, By + €E) is sub-klt. Let B* :
Vi(By+€eE) and f* := v, ((1—€) Py +w'). Then the generalized pair (X, B*+*
is generalized kIt and 3* is a modified Kéhler class. Moreover, Kx + B* + 3
Kx+ B+By; thus replacing (X, B+3) by (X, B*+*) we may assume that B

~—
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is a modified Kéhler class. Then from the proof of Claim 3.16 it follows that
(Kx + B+ Bx) - F =0 for general fibers F' of the MRC fibration 7 : X --» T,
Kx+ B+ (14¢€)Bx is big for 0 < e < 1, and (X, B+ (1 +¢€)8) is generalized
klt.

Claim 3.18. Let N := N(Kx + B+ Bx) and N, :== N(Kx + B+ (1 +¢)Bx)
be the negative parts of the Boucksom-Zariski decomposition of the pseudo-
effective classes Kx + B+ Bx and Kx + B+ (14 ¢)Bx for € > 0 (see §A). We
may assume that

Supp(NV,) C Supp(N), forall 0 < e < 1,
and in particular, Supp(N,) is independent of 0 < € < 1.

Proof of Claim 3.18. Note that N(Kx + B + Bx) is an effective R-divisor.
Since Bx is modified Kéhler, from Remark A.8 it follows that if € > ¢ > 0,
then N. < N.. Since their support is contained in N, they must stabilize. [

Let f.: X --» X™ be a log terminal model of Kx + B + (1 + ¢)Bx (which
exists by Theorem 3.6 as Ky + B + (1 4 ¢)Bx is a big class). Then for all
0 < € < 1, the divisors contracted by f. are just N, (see Theorem A.11) and
so XM are all isomorphic in codimension 1 for all 0 < € < 1. We now fix an
0 < e < 1 satisfying the above Claim 3.18 and run the Kxm + Bxm + Bxm-
MMP with scaling of ¢Bxm». This MMP terminates with a log terminal model
P XM --» X™ by Proposition 3.3. Let

Kxm + Bxm + (1 41)Bxm 1= ¢ (Kxm + Bxm + (1 +t)Bxm)

for ¢ > 0. Then, by the properties of the MMP with scaling, there exists
0 < 0 < e such that ¢ is also a Kxm + Bxm + (1 + t)Bxm-MMP with scaling
of (€ —t)Bxm for every 0 < ¢ < 4. In particular, Kxm + Bxm + (1 4+ t)Bxm is
nef for all 0 < ¢ < 4. Note that from Claim 3.18 it follows that

SuppN(KXgl + BX? + (1 + t),@xén) = SuppN(KXgl + Bxem + (1 + 6),6){;11) = 0,

where the second equality holds because Kym 4+ Bxm 4 (1+¢)Bxm is nef. Thus
from Theorem A.11 it follows that 1 is a small map. Therefore X™ --» X" is a
small bimeromorphic map for every 0 < ¢ < ¢ where, as above, f, : X --» X"
is a log terminal model of Kx + B+ (1+t)Bx. Since Kym + Bxm + (1+1)Bxm
and Kxm + Bxm + (1 +1)Bxm are both nef, we have

for any prime Weil divisor P over X.
Since X is Q-factorial, Bx has local potentials. In particular,

a(P, X, B+ (1+1)8) =a(P, X, B+ B) —t - multp(f"Bx — Bx).



32 OMPROKASH DAS, CHRISTOPHER HACON, AND JOSE IGNACIO YANEZ

Therefore, taking the limit as ¢ — 0% we see that a(P, X, B+3) < a(P, X™, Bxm+
Bxm) for every prime Weil divisor P over X, and hence ¢ : X --» X™ is a Q-
factorial weak log canonical model. Let {P,};c; be the set of all ¢-exceptional
divisors on X such that a(P;, X, B+3) = a(P;, X™, Bxm+3). To obtain a log
terminal model of (X, B+ 3), we need to extract P; from X™. To that end, let
h:Y — X™ be alog resolution of (X™, Bxm+8xm) which extracts the divisors
{Pi}iEI- Write Ky + By + ﬂy = f*(me + me + ,me), where (K By) is log
smooth and By is nef. Note that a(P;, X™, Bxm + Gxn) = a(P;, X, B+0) <0
for all ¢ € I, since P; C X is a divisor on X. Let {P;}icr U{Q,};jes be the set

of all h-exceptional divisors. We define

By :=h;'Bx=— Y _a(P, X™ Bxn + Bx=)Pi+ > (1 - €)Q;
iel jed

for 0 < e < 1. Then (Y, By + By) is a klt pair such that Ky + By + By =xm
E > 0, where Supp(£) = UjesQ;. We run a Ky + By + By-MMP over X™
as in Corollary 3.5. Replacing Y by the corresponding minimal model, we
may assume that F is nef over X™, and since it is exceptional, it follows from
the negativity lemma that £ = 0. We then have that Ky + By + By =
h*(Kxm + Bxm + Bxm) is nef. Replacing (X™, Bxm + 3) by (Y, By + 3) we
see that w: X --» X™ is a log terminal model for Kx + B + Bx.

The existence of the morphism g : X™ — Z such that Kxm + Bxm + Bxm =
g*az, where ayz is Kéahler on Z follows from Theorem 3.14. O

Proof of Theorem 1.2. It follows from combining Theorems 3.6 and 3.17. [

Next we will establish an analog of [BCHM10, Corollary 1.1.5] for log canon-
ical models.

Theorem 3.19. Let X be a normal Q-factorial compact Kdhler 3-fold and
v: X' — X a resolution. Let (X, B) be a pair and Q' be a compact convex
polyhedral set of closed positive (1,1) currents on X' such that for every 5 € €,
(X, B + B) is a generalized kIt pair, where 3 = ['. Assume that one of the
following conditions hold:

(i) Kx + B + Bx is big for every ' € V' (and B = f3'), or

(ii) there is a bimeromorphic morphism © : X — S of normal compact

Kdhler 3-folds.

Then there ezists a finite polyhedral decomposition ) = U2, and finitely many
bimeromorphic maps ; : X --» X; (resp. finitely many bimeromorphic maps
v X --» X; over S) such that if ¢ : X --+Y s a log canonical model for
Kx + B+ v.f3" (resp. a log canonical model for Kx + B + v.3" over S) for
some ' € QU then ¢ = 1);.
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Note that a compact convex polyhedral set is a convex hull of finitely many
vectors. Then by finite polyhedral decomposition ' = U, we simply mean
that each €2 is a subset of €)' defined by finitely many affine linear equations
and inequalities such that Q; N Q) = () for i # j.

Proof. We will prove both cases (i) and (ii) simultaneously. We will use the
convention that in case (i), S = Specan(C) and we remark that in case (ii) the
condition that Kx + B+ (B is big over S is automatic as 7 is bimeromorphic.
We will use induction on the dimension of . We will abuse notation and
denote Bx by f. If dim Q" = 0, then Q' = {5} for some S such that (X, B+
Bo = B+v.[3)) is a generalized klt pair and Kx + B+ [y is big (over ). In this
case the existence of the required log canonical model follows by Theorems 3.6
and 3.11.

Since ' is compact, it is enough to prove the statement locally in a neigh-
borhood of each point 5 € €. Fix a point ) € Q" and let fy = .3, € 2 :=
v,§). By Theorems 3.6 and 3.11, there is a Kx + B + fy-log terminal model
¢ X --» X™ (over S) and a log canonical model ¢ : X™ — X°¢ (over S).
Since a(F, X, B + () < a(E,X™, B™ + fj) for all ¢-exceptional divisors E
of X (where B™ + 5" = ¢.(B + [p)), shrinking €' (to a smaller polytope
containing f; but without changing its dimension) around ) we may assume
that if § = v, and ™ = ¢.0, then o(E, X, B + ) < a(E, X™, B™ 4+ ™)
for all g’ € € and for all ¢-exceptional divisors £ of X. In particular, if
¢™ : X™ — X™ is a log canonical model for Kxm + B™ + ™ (over S), then
¢ od: X --» X™is a log canonical model for Ky + B + 3 (over S).

Now let Q™ := ¢,£). Note that 2™ is a compact convex polyhedral subset of
Hé’é(X ™), since ¢, is a linear map by Lemma 2.14. Then, by induction, there
is a finite polyhedral decomposition 9™ = UF_;P; of the boundary 9Q™ of
Q™ and finitely many meromorphic maps ¢; : X™ --» X (over X¢) 1 <i </
such that if f: X™ --» Y is a log canonical model of Kxm + B™ + ™ over
X¢ for some ™ € P;, then f = ¢; (note that as Kx + B + [, is big over
S, ¢ X™ — X°¢is bimeromorphic). Recall that ' := ¢.f € Q™. Choose
Bt € 09Q™ such that 57" # . For 0 < A <1 we define

(3.2) AR = (L= A)Bg" + AB"

Recall that Kxm + B™ + " = ¢*w =x. 0 for some Kéahler class w (over S) on
X¢. By induction, ¢; : X™ --» X, is a log canonical model of Kxm + B™ + B"
over X¢ for some . Thus from (3.2) we have

(3.3) Kx,+Bi+ b= 1= MYjw+ NKx, + B + 1),

where ¢; : X; — X€ is the induced bimeromorphic morphism.
Thus from [BCHM10, Lemma 3.6.8] and our induction hypothesis it follows
that ¢; is a log canonical model of Kxm + B™ + " over X for all 0 < A < 1.
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Let v; : X! — X; be a small Q-factorization as in Theorem 3.13 such that
(3.4) Kxs + B + 8] = v (Kx, + Bi + ).
Let ¢ : X™ --» X! be the induced bimeromorphic maps.

Claim 3.20. There exists a constant A > 0 such that for every g™ € 9Q™
there exists a ¢; : X™ --» Xj for some ¢ € {1,2,...,/} such that ¢; is a log
canonical model of Kxm + B™ + " (over S) for all 0 < A < A.

Proof of Claim 3.20. Let p! : X! — S be the induced morphisms for all 1 <
i < ¢. Consider the following set of curves in X/ for each 1 <i < {:

Ci:={Cc X/ |p{.(C)=0and g C <0 for some 3/},

where ff := ¢{ (8™) for g™ € Q™.

We claim that C; is a finite set. Indeed, since each 3 € € is nef over S and
descends to X’ and the composite map ¢f oporv : X' --» X! does not extract
any divisors, it follows that if C' C X is a curve such that p{,(C) = 0 and
C € Ex((¢f 0 ¢)™"), then g} - C' > 0. Thus C; C D; := {C C X | p{,(C) =
0 and C' C Ex((¢f 0 ¢)™1)} for all 1 <i < ¢, and clearly each D; is a finite set
as dim X = 3. Observe that if C' C X is a curve such that pj,(C') = 0 but
C ¢ C;, then Bf-C > 0 for all ;. Suppose that Ky« + Bj, + 3] is not nef (over
S) for some 1 < i < /¢ and ' € ). Pick a Kihler class wy on X which is
very general in Hé’é (X7), and consider the corresponding nef threshold y > 0
so that Ky« 4+ Bj, + 3], + pwy, is nef and big (over ) but not Kéhler (over
S). By Theorems 3.6 and 3.11, there is a log canonical model g; : X} — Zy
(over S) which is a bimeromorphic morphism and hence the exceptional locus
is covered by curves. Since wf is very general in Hy,(X?), it follows that
all of the exceptional curves of gy belong to a fixed ray, say R=°[T'y], where
Py .(I's) = 0; observe that the curve I'y depends on the class 3j. Let T be
the collection of all such curves I';y as ™ varies in ™, where 5} := ¢J /™.
We note here that 7 could be an infinite collection. We claim that there is
a positive real number M > 0 (independent of indices 1 < i < ¢) such that
if Kxa+ B + 3] is not nef (over S) for some 1 <14 < ¢ and ™ € Q, then
0> (Kxs+ Bf + ) - I' > =M for the corresponding I'; € 7. To see this,
observe that if 3 - I'; > 0, then (Kx« + Bf) - I'; < 0 and so by the usual cone
theorem (see [DHP22, Corollary 5.3]) we may assume that

0> (Kxo+ B} +8)-I'i > (Kxs + Bf) - I'; > —6.
If g -T; < 0, then from our construction of the sets C; above it follows that

I'; € C;. Since C; is a finite set and the indices ¢ also vary in the finite set
{1,...,¢}, by the compactness of 2" the claim follows.
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Recall from equation (3.3) that w is a Kéhler class on X¢ (over S) such that
Kyo + B} + B§ = (¢{)"w, where ¢ = ¢; ov; for all 1 <4 < (. There exists
a 0 > 0 such that w-C > ¢ for every curve C' C X¢ which is vertical over S.
Let A := . If Kxa + BY + 3%, is not nef (over S) for some 0 < A < X and
for some 1 < </, then from (3.3) it follows that Ky« + Bf + 3, is not nef
(over S) for some 37" € 0Q™. Then by the claim above there is a curve I'; € T
such that 0 > (Kx« + B + ;) - ' > —M. Moreover, since Kxa + B} + f{,
is nef over X¢ T is not contracted by ¢J : X! — X¢. Let [; := g*Fi, then
w Fl > 0.

Thus from (3.3) we have

(Kxa+BI+B1,)-Ti = (1= Nw Ty + MKy + BI+81)-T; > (1=A\)§—AM > 0

which is a contradiction, and hence Ky« + Bf + 05, = v} (Kx, + B; + B);) is
nef over S and so is Kx, + B; + (.

Since ¢; : X™ --» X, is a log canonical model of Kym + B™ + 3" over X,
Kx, + B; + (1, is Kahler over X°¢. Recall again that Kx, + B; + o = ¢jw,
where w is a Kéhler class over S and ¢; : X; — X¢ is the induced morphism.
In the argument above we saw that Kx, + B; + (), is nef over S for all
0 < A < A. By contradiction assume that there is an 0 < A < A\/2 such that
Kx, + B;+ B, is not Kahler over S. Then, by Theorem 3.11 there is a proper
bimeromorphic morphism X; — Z over S, where Z is the log canonical model
for Kx, + B; + Bx; over S. So there is a curve C' C X; (over S) such that
(Kx, + B; + Bxr;) - C = 0. Also, note that there is a 0 < p < 1 such that

(3.5) Bri = (1 — p)Boi + pBx-

As observed above, Kx, + B;+ f; and Kx, + B;+ 35 ; are both nef over S, and
thus from (3.5) it follows that (Kx, + B; + fo,) - C = (Kx, + Bi+ 35;)-C = 0.
Then again from (3.3) (with A replaced by \) it follows that (Kx, + B; + 31.) -
C = 0. In particular, C' is not vertical over X¢ (as Kx, + B; + (1, is Kéahler
over X°¢). However, since Kx, + B; + fp; = ¥fw where w is Kéhler over S, it
follows that (Kx, + B; + [o,) - C > 0; this is a contradiction to (3.3).

Finally replacing A by A/2 completes the proof of Claim 3.20.

Note that as observed above, X --+ X, is a log canonical model for Ky +
B+ 3y (over S) for all 3; € P; and 0 < A < X. The decomposition 9™ = UP;
induces a corresponding decomposition of Q" — {f7"} = UQ™ where each Q"
is the polytope spanned by 8° and P; excluding 37, and Q' := {37'} is a 0-
dimensional polytope. We then obtain a decomposition ' = U, where €; is
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the inverse image of Q". Finally we replace Q' by Q'N{f’ € ' : ||’ =G| <
A} for some fixed norm || - ||. This completes the proof. O

3.3. Existence of Mori Fiber Space. In this subsection we will show that
it Kx + B+ Bx is not pseudo-effective, then we can run an MMP which ends
with a Mori fiber space.

First we will show that if Kx + B + Bx is big, then we can run a terminating
MMP with scaling of a very general Kéhler class. Using this result, we will
then show that we can also obtain a Mori fiber in the non pseudo-effective
case.

Theorem 3.21. Let (X, B+ 3) be a Q-factorial generalized dlt pair such that
Kx + B + Bx s big, where X is a compact Kdhler 3-fold. Let w be a very
general Kihler class in Hy,(X) such that Kx 4+ B+ Bx +w is a Kdhler class.
Then we can run a terminating Kx + B + Bx-MMP with scaling of w.

Proof. To run the Kx + B + Bx-MMP with scaling of w, we will inductively
construct a sequence of bimeromorphic maps ¢; : X; --+ X;;; and real num-
bers t; > t;;1 for ¢ > 0 such that Xy = X and t; = 1 and the following
conditions are now satisfied

(1) (X;, B; + Bx, + tiw;) is a generalized dlt pair,

(2) Kx, + Bi + Bx, + tiw; is nef,

(3) Kx, + B; + Bx, + (t; — €)w; is Kéhler for 0 < e < 1,

(5) X; is Q-factorial and w; € Hys(X;) is very general.
The base of the induction is clear. Assume that we have constructed (X;, B; +
Bx, + tiw;) as above. Let

tiv1:=inf{s > 0| Kx, + B; + Bx, + sw; is nef}.

If t;11 = 0, then the MMP terminates and X --» X, is a log terminal model
for (X, B+ Bx). Thus we may assume that t;;; > 0.

Let ¢ : X; — Z; be the log canonical model for Ky, + B;+ B3, +t;11w; (which
exists by Theorem 3.6; note that (X;, B; + Bx, + ti11w;) is generalized dlt but
not necessarily generalized klt, however if w' = t; jw+€B; for 0 < € < 1, then
(Xi, (1 — €)B; + Bx, + w)) is generalized klt and so Theorem 3.6 applies).

Since 1; : X; — Z; is bimeromorphic, the fibers of ¢; are covered by curves.
Since w; is very general in Hé’é(Xi) and (Kx, + B; + Bx, + tiziw;) -C =0
for any 1;-exceptional curve C' C X, it follows that p(X;/Z;) = 1 and ¥ is a
contraction of a Kx, + B; + Bx,-negative extremal ray R; spanned by (any)
one of these curves, i.e. R; = R=2%[C]. If ¢/; is a divisorial contraction, then we
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let ¢; = 1); and
Kx, ., + Bisv1 + Bx,yy +tisiwiyr = Vi (Kx, + Bi + Bx, + tiaw;).

If v); is a small contraction, then it is a Kx, + B; + Bx, flipping contraction
(as it is w-positive).

Claim 3.22. Let X --+ X;41 be the log canonical model of Kx + B + Bx +
(tiv1 — €)w (for any 0 < e < 1). Then ¢; : X; --» X1 is the flip of ;.

Proof. By Theorem 3.19, we may assume that there is an ¢y > 0 such that
X --» X;.1 is the log canonical model of Kx + B + Bx + (tix1 — €)w for
any 0 < € < ¢. In particular, Ky, , + Biy1 + Bx,., + tiziwi+1 is nef and
hence admits a morphism ;" : X;;; — Z to the log canonical model of
(Xit1, Big1 + Bx,,, + tiziwiy1) (which exists by Theorem 3.6). Since X --»
X1 is Kx+B+Bx +t;,1w non-positive, then X --» Z is also the log canonical
model of Kx + B + Bx + t;;1w and hence Z = Z;. Note that —(Kyx, + B; +
Bx, + (t; — €)w;) is Kéhler over Z; and Kx,,, + Bit1 + Bxit1 + (L1 — €)wita
is Kéhler over Z; and so X; --» X; is a Kx, + B; + Bx, + (tis1 — €)w;-
flip. Since Ky, + B; + Bx, + tijiw; =z, 0, it follows that X; --+» X;,; is a
Kx, + B; + Bx,-flip. O

It is easy to check that properties (1-5) hold for (X1, Biv1i + Bx,,, +
tir1wir1). Repeating the above procedure we obtain a sequence of Kx + B +
Bx + (t; — €;)w distinct log canonical models where 0 < t; —¢; < 1. By The-
orem 3.19, this sequence can not be infinite and so the above minimal model
program with scaling terminates and the proof is complete. O

The next result shows that if Kx + B + Bx is not pseudo-effective, then
we can run a terminating Kx + B + Bx-MMP with scaling of a very general
Kahler class and end with a Mori fiber space.

Theorem 3.23. Let (X, B+ ) be a Q-factorial generalized kit pair, where X
18 a compact Kdhler 3-fold. Assume that Kx + B+ Bx is not pseudo-effective,
and let w be a very general Kdhler class in Hyg(X) such that Kx + B+ Bx +w
1s Kdhler. Then we can run the Kx + B + Bx-MMP with scaling of w and
obtain ¢ : X --+ X' such that Kx+ B'+ Bx + 1w’ is pseudo-effective but not
big for some 0 < 7 < 1, and there is a Mori-fiber space g : X' — W.

Proof. We define
7:=1inf{s > 0| Kx + B 4 Bx + sw is pseudo-effective}

and
t1:=inf{s >0 : Ky + B+ Bx + sw is nef}.
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Then Kx 4+ B + Bx + 7w is pseudo-effective but not big. By Theorem 3.17,
there is a log terminal model ¢ : X --» X’ and a morphism g : X’ — Z of
normal Kéhler varieties such that Ky, + B’ + Bx + 7w’ = g*ay, where ay is
a Kahler class. Since Kx + B + Bx + 7w is not big, g is not bimeromorphic.
We begin by proving that we can run a Ky + B + Bx-MMP with scaling of
w terminating with a log terminal model of Ky + B + Bx + T7w. Indeed, if X;
is a step of this MMP, then let ¢;,; := inf{s > 0: Kx, + B; + Bx, + sw; is nef}.
If t;y1 > 7, then Kx, + B; + Bx, + tit1w; is big and by Theorem 3.21 we can
run this MMP. Thus as long as t; > 7, we can continue running this MMP and
it will stop once we have t; = 7 for some i (note that every step of this MMP
is also a step of Kx + B + Bx-MMP with the scaling of w). However, it is not
clear whether this MMP will terminate after finitely many steps. Assume by
contradiction that this MMP does not terminate. We claim that lim¢;, = 7.
If not, then let lim¢; = 79 > 7; note that 7 = inf{¢; : ¢ > 0}. Then every
step of the above MMP is also a step of Kx + B + Bx + 1ow-MMP, but since
Kx + B+ Bx + 1w big (as 19 > 7), this MMP terminates by Theorem 3.21,
a contradiction. Now from Claim 3.18 we observe that
(3.6)
N(Kx+B+Bx+tw) = N(Kx+B+Bx+71w) forallt>0st. 0<t—7 <1

Thus by Theorem A.11 we may assume that X; --+ X’ is a small bimeromor-
phic map for ¢ > 0. Then from the proof of Theorem 3.21, it follows that
Kx, + B; + Bx, + tw; is Kahler for any ¢t > 0 satisfying ¢; >t > t,;,. We may
also assume that if 0 < to—7 < 1, then a(F, X, B4+ Bx +tow) < a(E, X', B'+
Bx +tow') for all p-exceptional divisors and that (X', B'+ Bx: +tow') is gener-
alized klt. Fix tq as above. By Theorem 3.17, there is a morphism g : X’ — Z
such that Ky + B’ + Bx + 7w’ = g*ay where ayz is Kahler on Z. Let
b > 0 be a constant such that ay - C' > b for any curve C' on Z and fix
T<t< %. By Theorem 3.21 there is a sequence of Ky + B’ + By + tw'-
flips X} --» X}, with 0 < j < j — 1 ending with X’ --» X?, a log terminal
model of (X', B" + Bxs + tw'). Then X --» X% is a log terminal model of

(X, B + Bx + tw). Since w is very general in Hyl(X), we may assume that
t; >t > t;41 for some ¢ > 0; then Kx, + B; + Bx, + tw; is Kéhler as argued
above. Since X§ --» X; is a small bimeromorphic map, by Lemma 2.16 it’s an
isomorphism, i.e. X§ =

We claim that each flip ¢; : X} -—» X7, for 0 < j < j—1is Kx/ + B' +
Bx' + Tw'-trivial. We prove this by induction on i. Suppose that X = X’ and
the claim holds for the first & — 1 flips, then each flip is a flip over Z and so
there is a morphism g; : Xj — Z such that Kx; + By + Bx; + 7w, = (g;)"az.
Observe that vy, ..., ¢Yp_1 are Kx + B’ + Bxr + Aw'-flips for any 7 < A < to,
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as each of the them are Ky + B’ + Bx/ + 7w'-trivial. Recall that az-C > b for
every curve C' C Z. Let X --» X, be the next Ky + B'+ Bx +tw'-flip and
Cy a corresponding flipping curve. Since Kx; + By, + Bx; + 7w, is nef, we may
assume that this curve is also a Kx/+ B’ 4+ Bx/ +tow’-flipping curve, and hence
by Corollary 2.23 we may assume that —(Kx; + By + Bx; + towy,) - Cy, < 6.
Moreover, if (Kx; + Bj,+Bx; +7w),)-Cy > 0, then (Kx: + By +B8x; +7wy)-Cy, >
b. Observe that

to t—
[(XI;—i—B;/g—l—ﬁxlle—Hfu);€ =3 (KX/ +Bk+ﬁxf +7’wk)+t (KX/ +Bk+ﬁxf +towy,)-

o—T o—T

Since 7 < t < Y9187 and hence b(ty — t) + 6(7 —t) > 0, we then have

b+6
b(to —t) 6(t—1)
to — T to — T
Since this is impossible, we have (Kx; + B}, + Bx; + 7wy) - Cp = 0 and hence
Vi is Ky + B; + Bx: + Tw;-trivial and the induction is complete.

Since X L= X, for some i > 0, we may assume that there is a morphism

gi - X; — Z such that Kx, + B;+Bx, +7w; = g} az. But this leads to an imme-
diate contradiction, since if X; --+ X, is a flip and ¥; is a flipping curve for
the KX+B+ﬁX—MMP with scaling of w, then (Kx, + B;+Bx, +tiy1w;)-2; =0
and w;-Y; > 0so that (Kx,+B;+Bx, +7w;)-X; < 0, but (Kx, +B;+7w;)-%; =
az - gi«(2;) > 0.
This shows that our Kx + B + Bx-MMP with scaling of w terminates after
finitely many steps producing a log terminal model of Kx + B + Bx + Tw.
Let ¢ : X --» X’ be the composite maps of this MMP so that Ky + B’ +
Bx + 1w = ¢.(Kx + B+ Bx + 7w) is nef, and by Theorem 3.14 there is
a morphism ¢ : X’ — Z to a normal compact Kéhler variety Z such that
Kx + B'+ Bx + 7w = g*ay, where ay is a Kédhler class on Z.

> 0.

0>(KX,;+B];+ﬁXI;+tw];)'Ck2

We will now show that we have a Mori fiber space. Observe that —(Kx/ +
B)|x. = (Bx + 17w')|x. is big for general points z € Z; in particular X, is
Moishezon and K + B’ not pseudo-effective over Z. Thus by Theorem 2.35,
we can run a Ky + B’-MMP over Z which terminates with a Mori fiber space
h: X" — W over Z. Note that each step of this MMP is Ky + B’ + Bx/+71w'-
trivial.

Now we will show that the induced map ¢ : X’ --» X" is an isomorphism. To
see this, let ¢’ : X’ — Y be the first contraction of the above MMP over 7,
and Y is a curve contracted by ¢’. Let C be a curve contained in a general fiber
of g : X' — Z. Then ¥ and C are linearly independent in N;(X'), however
they are both Kx» + B’ + Bx + 7w/-trivial, contradicting the fact that w is
very general in Hyl(X). Thus ¢ : X’ --» X" is an isomorphism and Z = W.
In particular, p(X’'/Z) = 1 and —(Kx + B’) is g-ample. We will show that
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—(Kx+B'+8x/) is g-Kéhler. To that end, let F' be a general fiber of g. Now if
dim Z = 2, then dim F' = 1, and since w’ is a modified Kéahler class, w’'- F > 0.
This implies that —(Kx/ + B' 4+ Bxs) - F' > 0, and hence —(Kx, + B’ + Bx)
is g-Kahler, as p(X'/Z) = 1. If dim Z < 1, then w'|F is a big class on F. Let
{Ci}ier be a covering family of curves in F'. Then o' - Cy = W'|p - Cy > 0, and
thus —(Ky+ B+ Bx/) - C; = —(Kx+ B'+ Bx/)|r - C; > 0. This shows that
—(Kx + B'+ Bx) is g-Kéhler, since p(X'/Z) = 1. This completes our proof.

O

Proof of Theorem 1.5. This follows from Theorem 3.23. O

3.4. Cone Theorem. In this section we will prove the cone theorem for gen-
eralized pairs in dimension 3. We start with the following lemma.

Lemma 3.24. Let (X, B+03) be a Q-factorial generalized kit pair, where X is a
compact Kdahler 3-fold. Let w be a Kahler class such that o := Kx+ B+ 8x+w
1s nef but not Kdahler. Then there is a rational curve C' C X such that a-C = 0
and 0 > (Kx + B+ Bx) - C > —6.

Proof. It Kx + B + Bx is nef, then « is Kéahler, which is a contradiction. So
we may assume that Ky + B+ Bx is not nef. We may write w = n+w’, where
n and W' are very general Kéhler classes in Hé’é(X ). Replacing B by 8 + €7
and w by w — en = (1 — €)w + ew’, we may assume that Ky + B + By is not
nef, Bx is big, Kx + B + Bx is either big or not pseudo-effective, and w is
a very general class in Hé’é(X ). By Theorems 3.21 and 3.23 we can run the
Kx + B + Bx-MMP with scaling of w. Let f : X — Z be the first flipping
or divisorial contraction, or fiber type contraction, and C' the curve spanning
the corresponding extremal ray; then o - C' = 0. If f is a flipping contraction,
then the result follows from Theorem 2.21.
So now on assume that f is either a divisorial contraction or a fiber type
contraction. Then there is a family of f-vertical curves {I";};c7 in X such that
either Uyerl'y = E is the exceptional divisor of f or Uyer['y = X, respectively.
Then in the former case Bx|g is pseudo-effective, since Bx is modified nef (see
[Bou04, Proposition 2.4]). Therefore Bx - 'ty = Bx|g - It > 0 (as {I't}er is a
moving family of curves in £); in the latter case By -I'; > 0, since modified nef
implies pseudo-effective. In particular, Bx - C' > 0 for all f-exceptional curves
in either case, and so 0 > (Kx + B+ Bx)-C > (Kx + B) - C. But then f is
a Kx + B-negative contraction and —(Kx + B) is f-ample (as p(X/Z) = 1).
Then by [DO23, Theorem 4.2] there is a rational curve I' such that f.I' = 0
and 0 > (Kx+B+8x)-I' >(Kx+B)-I' > —6.

O
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Now we are ready to prove the Cone Theorem 1.6.

Proof of Theorem 1.6. By a Douady space argument (see [Toml16, Lemma
4.4]), there are at most countably many families of curves {I';};,c; such that
(Kx+B+Bx)-I'; <0and I'; - o = 0 for some nef class «;. Let R = Rxo[I'}]
be a Kx + B + Bx-negative extremal ray. We make the following claim.

Claim 3.25. There is a Kahler class w such that o := Kx + B+ 8x tw is nef
but not Kahler and a* NNA(X) = R.

Proof. Fix a norm || - || on N1(X) and let S be the unit sphere in N{(X), i.e.
S :={y e N(X): |} =1} Let S:=8NNA(X); then S is a compact
subset of NA(X) such that for any v € NA(X)\ {0}, Ty € S Moreover, from
[HP16, Corollary 3.16] it follows that a class o € Hy5(X) is Kahler if and only
ifa-y>0forall yeS.

There is a unique point r € R such that RN.S = {r}. Let n be a (1,1
nef supporting class of R; then nt N NA(X) = R. For ¢ > 0, let B, :=

{s €S : |[ls—r|l <e}. Choosing 0 < ¢ < 1 we may assume that B. C
NA(X)(kx+B+8x)<0- Then clearly n — (Kx + B + Bx) is positive on B, i.e.
(3.7) (n—(Kx +B+Bx))-s>0forall s € B..

Now define S, := S\ B.. Observe that n-s > 0 for all s € S.. Since S,
compact, there exist positive real numbers 6 > 0 and M > 0 such that n-s > ¢
and —(Kx + B+ Bx)-s > —M for all s € S.. Then for t > 0, t6 — M > 0,
and thus

(3.8) (tn—(Kx+B+Bx))-s>(td— M) >0 forallseS.

Since 7 is nef, from (3.7) we have (tn—(Kx+B+8x))-s > 0 for all s € B, and
t > 1. Recall that S = B.US,, and thus we have (tn— (Kx+ B+ 8x))-s >0
for all s € S, and hence tn — (Kx + B + n) is Kéhler for ¢ > 0. Let w :=
tn — (Kx + B+ Bx) for some t > 0. Then « :=tn = Kx + B+ B3x +w proves
our claim. O

It then follows from Lemma 3.24 that we may assume 0 > (Kx + B+ B3x) -
I'; > —6 for all such T7.

Let V = NA(X) k4 B48y>0+ 2y RT[Ty]. By [HP16, Lemma 6.1] it suffices
to show that NA(X) = V (note that [HP16, Lemma 6.1] is only stated for Ky,
but the same proof works for Kx + B+ By). Since NA(X) is a closed strongly
convex cone, it is the convex hull of its extremal rays. Thus if the inclusion
V C NA(X) is strict, then there is a Kx + B + Bx-negative extremal ray
R € NA(X) not contained in V.

Then by Lemma 3.24 and Claim 3.25 it follows that there is a rational curve
C C X such that a - C = 0, where « is the nef supporting class of R. But
then [C] € at NV is an immediate contradiction.
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Finally, if By is big, then by [Bou04, Def. 3.7 and Pro. 3.8], we may write
Bx = N +n, where N > 0 is an effective R-divisor and 7 is a modified Kahler
class, i.e. n = f.n where f : X’ — X is bimeromorphic and ' is Kahler on X".
Let v be a Kahler class on X, then n — ey is modified Kahler for 0 < e < 1.
Replacing n by n — ey and ey by v we may write Bx = N +n+, where N > 0
is an effective R-divisor and 7 is a modified Kahler class and v is Kéhler. We
then have

Kx+B+Bx=Kx+ (B+eN)+ (1 —€)Bx +en+ ey,

where (X, (B4 €eN)+ (1 —€)Bx +en+ey) is generalized kit for any 0 < € < 1.
Let B := B+ €N and Bex := (1 — €)Bx + en. Since Bey is modified Kéhler,
by the proof of Lemma 3.2, Bex -I'; > 0 for I'; not contained in f(Ex(f)) and
hence for all but finitely many 7. Then taking limit as e — 07, we see that
Bx - I'; > 0 for all but finitely many ¢ . Therefore fex - I'; > en - I'; > 0 for all
but finitely many i. So if (Kx+ B+ Bx)-I'; = (Kx + Be+Bex +ev) -1, <0,
then arguing as above we get

E’YFZS—(KX—FBE—'—ﬁEX)FZS—(KX—FBE)FZS(S

for all but finitely many ¢, and hence, by a Douady space argument, such

curves belong to finitely many families.
O

Next we will establish an analog of [BCHM10, Corollary 1.1.5] for log ter-
minal models.

3.5. Geography of Minimal Models.

Theorem 3.26. Let X be a normal compact Kdhler 3-fold, v : X' — X a
log resolution of a kit pair (X, B), and €' a compact convex polyhedral set of
closed positive (1,1) currents on X' such that for every ' € ', (X, B+0) is a

generalized klt pair, where B = (. Assume that one of the following conditions
hold:

(i) Kx + B+ Bx is big for every 8/ € Q' (and B = /'), or

(ii) there is a bimeromorphic morphism m: X — S.
Then there ezists a finite polyhedral decomposition Q' = USY, and finitely many
bimeromorphic maps ;; : X --+» X;; (resp. finitely many bimeromorphic
maps i X --» X;; over S) such that if 1 : X --»Y is a weak log canonical
model for Kx + B+ Bx (resp. a weak log canonical model for Kx + B + Bx
over S) for some B' € QU (with B = B'), then ¢ = 1;; for some i, j.

Proof. Arguing as in the proof of Theorem 3.19, we will prove both cases (i) and
(ii) simultaneously. We will use the convention that in case (i), S = Specan(C)
and we remark that in case (ii) the condition that Kx + B 4 By is big over S
is automatic as 7 is bimeromorphic. By compactness, it suffices to prove the
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result on a neighborhood of any g € €. For simplicity of notation, from now
on we will write  on X to denote Bx and so on. Note that v : X’ — X is alog
resolution of (X, B + () for any g € Q = 1,Q). By [Bou02, Theorem 1.4], we
may assume that v*(Ky + B+ 3y) = w'+ F where ' is Kéhler and F' > 0 has
simple normal crossings support. Let B’ := v, 1B+ (1—§)Ex(v) for 0 < § < 1.
Then the weak log canonical models of Kx:+B'+ " and Kx+B+v, 3 coincide
for every ' € V. Replacing (X, B) by (X', B’) and Q by Q' we may assume
that all 5 € Q are nef and descend to X, and Kx + B + g = w + F', where w
is Kahler, F' > 0 and B + F' has simple normal crossings support.

Pick § > 0 such that (X, B+ JF) is kIt and consider the linear map L(5) =
715(8 +650). Note that L(B) = fy and L(R2) C Q contains a neighborhood
of fy. Since

Kx+B+0F+f+0w = Kx+B+B+0(Kx+B+py) = (14+0)(Kx+B+L(3)),

replacing B by B+ dF and (8 by 5+ dw we may assume that § = n -+, where
7 is a fixed Kéhler class and 7 :=  — v is nef for any § € Q. Let {v1,...,7,}
be Kihler forms whose classes in H5(X) form a basis of Hyg(X). For € > 0
define

p
QE::{B-FZ?%’% P BE |l <e 1<i<ph
i—1

For 0 < € < 1 we may assume that Kx + B + 3 is generalized klt and big
(over S), and ' is Kéhler for any ' € Q°. By Theorem 3.19, there exists a
finite polyhedral decomposition (2 = Uj;¢ ;€25 and finitely many bimeromorphic
maps ¥$ 1 X --» X¢ (over S) such that if ¢ : X --+ Z is a log canonical model
for Kx + B + ' (over S) for some 3’ € €, then ¢ = 5. Suppose now that
¢ : X --» Y is a weak log canonical model of Kx + B + 3, where g €
and let  be a Kahler class on Y. Since {v1,...,7,} spans HEM(X) and ¢, :
Héé(X) — Hé’é(Y) is surjective by Lemma 2.14, we may pick ti,...,t, such
that ¢.(> 7 tivi) =n. For any 0 < 0 < 1, it follows that ¢ is a log canonical
model for Ky + B+ 8+ Y5 (6t;)y; and that 8" := 5+ >0 (0t;)y; € Q°. But
then, there exists j € J such that 8" € 25 and hence ¢ = 5.

We now let {€2;};c; be the finite polyhedral decomposition induced by re-
fining the finite polyhedral cover of Q given by {Q$ N Q};c;. For each i € [
we let {1 ;} = {5}jes. Suppose now that ¢ : X --» Y is a weak log canon-
ical model for Kx + B + 3 where 8 € €;, then as observed above ¢ is a log
canonical model for Ky +B+3+> 7 (6t;)y; and 8" := S+ 7 (6t:)y: € Q.
Thus 8" € Qf for an appropriate j and hence ¢ = 5 € {1;;} as required.

Proof of Theorem 1.5. Immediate from Theorem 3.26.
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Corollary 3.27. Let (X, B + ) be a generalized kit 3-fold and w : X — S a
proper morphism such that either 7 is bi-meromorphic or S = Specan(C) and
Kx + B+ 3 is big, then (X, B+ () has finitely many minimal models.

3.6. Minimal Models are Connected by Flops. In this section we will
prove that minimal models are connected by flops. Recall that if (X, B + f3)
is a compact generalized klt pair and f; : X — X, are log terminal models
for i = 1,2, then X; are Q-factorial, Kx, + B; + 3; = fi.(Kx + B + ) is
nef and X; --+ X5 is an isomorphism in codimension 1. We will show that
3-fold log terminal models are connected by flips, flops and inverse flips, and in
particular two generalized klt Calabi-Yau pairs are connected by flops, which
generalizes a result of Kollar for terminal varieties, see [Kol89, Theorem 4.9].

First we define the inverse flip.

Definition 3.28. Let (X, B+ 3) be a Q-factorial compact Kéahler generalized
klt pair and ¢ : X --+ X’ a small bimeromorphic map. If ¢ is a Ky + B+ Gx-
flip, then we call ¢~ : X’ --» X an inverse flip (or anti-flip) of Kx + B + Bx.

Theorem 3.29. Let (X;, B; + Bx,) be compact Q-factorial generalized kit
Kdhler 3-folds, where Kx, + B; + Bx, s nef fori = 1,2 and ¢ : X; --» X5
a bimeromorphic map which is an isomorphism in codimension 1. Then the
following hold:

(1) ¢ decomposes as a finite sequence of flips, flops and inverse flips.

(2) Suppose that there is a positive constant b > 0 such that following
holds: whenever (Kx, + By + Bx,) - C > 0 for some curve C' C X,
then (Kx, + By + Bx,) - C > b holds. Then ¢ decomposes as a finite
sequence of flops.

Remark 3.30. Note that if (X, By + Bx,) is a good minimal model, then
there is a morphism f : X; — Z; and a Kahler form w; on Z; such that
Kx, + By + Bx, = ffwy. Let b :== inf{¥ -w; | ¥ C Z; is a curve}. So if
(Kx, + B1 + Bx,) - C > 0 for some curve C C Xi, then ¥ = f1,C # 0 and
(Kx, + B1 +Bx,) - C = w; -3 > b. If instead Kx, + By is Q-Cartier (and
B; = 0), then k(Kx, 4+ By) is Cartier for some k > 0 and let b = 7. Thus, in
both of these cases, the hypothesis of (2) are satisfied.

Proof. Let wy be a Kiahler form on X, and and w; := ¢, 'w,, then by Lemma
3.31, w; has local potentials, it is modified nef and (X3, By + 3 + €wy) is
generalized klt for some 0 < ¢g < 1. We now run a Kx, + By + Bx, + €w-
MMP with scaling of a sufficiently big multiple of a very general Kahler class,
where 0 < € < ¢ is any fixed real number.

By Theorem 3.21, this MMP terminates with a minimal model (X™, B™ +
Bxm + ew™), ¥+ X5 --» X™. In particular, Kxm + B™ + Bxm + ew™ is nef
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and big. Since (X3, By + By, + €ws) is a generalized log canonical model of
(X1, B1 + Bx, + €wq), there is a morphism X™ — X,. Since this is a small
bimeromorphic map of Q-factorial varieties, it is in fact an isomorphism by
Lemma 2.15. Now observe that from Lemma A.9 it follows that N(Kx, + By +
Bx, +ewr) = 0, and thus by Theorem A.11 there are no divisorial contractions
in the above MMP. So every step of this MMP is a Kx, + By + Bx, + €w;-
flip, which are in particular either flips, flops or inverse flips with respect to
Kx, + By + Bx, (depending on whether the Ky, + By + By, + ew; flipping
contraction is Ky, + B; + Bx,-negative, trivial or positive respectively).

Suppose now that we are in case (2) and so there is a positive constant
b > 0 such that (Kx, + By + Bx,) - C > b for all curves C' C X; such that
(Kx, + B1 + Bx,) - C > 0. We now run a Kx, + By + Bx, + ew;-MMP
with scaling of a sufficiently big multiple of a very general Kahler class, where
0 < e < beg/(b+6) is any fixed real number; this MMP terminates by Theorem
3.21. Now let K; := Kx, + By + Bx, + tw;. Suppose that C; C X; is a K-
flipping curve for t = €. Then C; -w; < 0 as Kx, + By + By, is nef, and hence
Ch is a K, flipping curve and so we may assume that 0 > K, - C; > —6 by
Lemma 3.24. If Iy - C; > 0, then

0>K.-C = (1—5)/co-cl+i/cgo-cl > <1—i)b—65 >0
€0 €o €o €0

which is impossible. Therefore Ky - C; = 0 and the first flip X; --+» X" is a
Kx, + By + Bx,-flop. It follows that KX1+ + B + ij is nef. Suppose that
C C X is a curve such that (KX1+ + B + BX1+) -C' > 0, then we claim that
in fact (Ky+ + Bf +p v#) - € = b and hence we may continue the procedure
inductively. Thus we obtain a sequence of flips for the (X7, By + Bx, + ew1)
MMP with scaling which are also Kx, + B; 4 Bx,-flops connecting X; and Xj.
To see the claim, let p: Y — X, and ¢ : Y — X" be a common resolution.
Then by the negativity lemma p*(Kx, + Bi + Bx,) = ¢"(Kx+ + B + Bx+)-
Since (KX1+ + B —I—BX1+)-C' > 0, then C'is not contained on the indeterminacy
locus of X" --» X (i.e. it is not contained in the flipped locus). Let C C X be
the strict transform of C', then (Kx, +B1+8x,)-C = (KX1+ +Bf+ﬁX1+)-C’ >0

and so (KX1+ +Bf+ﬁxl+) C=(Kx, +Bi+8x,)-C>hb.
O
Lemma 3.31. Let ¢ : X --» X' be a bimeromorphic map between two normal
compact Kdhler 3-folds. Let w' be a Kahler form on X'. If X has Q-factorial

klt singularities, then w := ¢*w' is a closed positive (1,1) current on X with
local potentials.

Proof. Let W be a resolution of the graph of ¢, and p : W — X and ¢ :
W — X' are the induced bimeromorphic morphisms such that p is projective.
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Then w = ¢*w' = p.qg*w'. Since p is projective and X has Q-factorial klt
singularitites, by [DH20, Lemma 2.27], there is an R-divisor £ and an (1,1)
class o € Hé’é(X ) such that [¢*w’+ E] = p*a. Then by the negativity lemma,
E > 0 is an effective divisor; in particular, ¢*w’+ E is a positive current. Thus
from [HP16, Lemma 3.4] it follows that w = ¢*w’ = p.¢*w’ = p.(¢*w' + F) has
local potentials.

O

Proof of Theorem 1.4. This is (1) of Theorem 3.29.
U

APPENDIX A. BOUCKSOM-ZARISKI DECOMPOSITION

We will use the definition of Boucksom-Zariski decomposition of a (1,1)
pseudo-effective class a € Hé’é(X ) on a compact complex manifold as in
[Bou04, Definition 3.7]. We will also define the Lelong number of a pseudo-
effective (1,1) class a (on a manifold) as in [Bou04, Definition 3.1]. The main
result of this section is Theorem A.11.

We recall Boucksom’s definition of the negative part of a pseudo-effective
(1,1) class.

Definition A.1. [Bou04, Definition 3.7] Let X be a compact complex manifold
and « is a pseudo-effective (1, 1) class on X. Then we define the negative part
N(«) of a as follows:
N(e) == > v(a,P)P,
PcX
where P is a prime Weil divisor on X.
From [Bou04, Theorem 3.12(i)] it follows that N(«) is an effective R-divisor.

Remark A.2. Let X be a compact Kahler manifold and « is a pseudo-effective
(1,1) class. If N(«a) is the negative part of the Boucksom-Zariski decomposi-
tion and if @« = 4+ D, where ( is a modified nef class, and D is an effective
R-divisor, then N(a) = N(8+ D) < N(8) + N(D) < D by [Bou04, Pro.
3.2(ii) and Pro. 3.11(ii)]. In particular, for any prime Weil divisor @) on X,
v(a, Q) < multg(D).

The following result will be useful for the proof of our main theorem in this
section.

Lemma A.3. Let f : Y — X be a proper bimeromorphic morphism of analytic
varieties where X is relatively compact. Let E be an effective f-exceptional R-
Cartier divisor on Y. Then there is a component E' of E such that E' is
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covered by an analytic family of curves {Ciler such that E - Cy < 0 and
f:Cy =0 forallt €T.

Proof. Let v : Y — Y be a resolution of singularities and £ = v*E. We may
assume that f = f o v is a projective morphism. Let m := dim f(SuppE).
Replacing X by a Stein open neighborhood we may assume that X is a Stein
space. Now we cut X by m general hyperplanes of X, and replace Y and Y
by the corresponding inverse images. Then f(SuppF) is a finite set of points
on X. Next since f is projective, possibly shrinking X further we may assume
that there is a very ample divisor on Y. Thus cutting Y by n — 2 hyperplanes
(n = dimY), we may assume that that Y is a smooth surface. Next we
replace X by the Stein factorization of f:Y — X and thus assume that
X is a normal surface and f is a projective bimeromorphic morphism from a
smooth surface to a normal surface and E is an effective f-exceptional divisor
onY. Let F = Zle a;C;. Since the intersection matrix of the exceptional
curves of f form a negative definite matrix by [KMO98, Lemma 3.40], we have
0> E? = Zle a;(E - C;), and thus E - C; < 0 for some 1 < i < ¢. Note that
E-vC;= E- C; < 0 and hence C} is not v-exceptional.

Since X is relatively compact, it can be covered by finitely many Stein open
sets, and thus the lemma follows. 0

Definition A.4. Let X be a normal analytic variety and D = > a;D; and
D' = > a;D; are two R-divisors on X. Then we define the R-divisor D A D’

as
DAD" = Z min{a;, a,}D;.

Lemma A.5. Let f :' Y — X be a proper bimeromorphic morphism from a
compact complex manifold Y to a normal compact analytic variety X and o
is a pseudo-effective (1,1) class on X. If E > 0 is an effective f-exceptional
R-divisor, then v(f*a+ E, P) = v(f*a, P) + multp(E) for every prime Weil
divisor P on Y. In particular, N(f*a+ E) = N(f*a) + E.

Proof. Let E =" a;F;. By remark A.2, we have N(f*a+ F) < N(f*a)+ E
and so v(f*a+ E, F) < v(f*a, E) + a;. To see the reverse inequality, suppose
that f*a + F = g + N is the Boucksom-Zariski decomposition of f*a + E
so that N = > v(f*a+ E,Q)Q. We claim that E < N. To see this, define
N :=N-NAEFE and £/ .= E— N A E, so that f*a+ E' = 8+ N'. We
must show that £’ = 0. If this is not the case, then, by Lemma A.3, there is a
component F; of E' which is covered by curves {C}}er such that E' - C; < 0
and f.C; = 0 for all t € T. But then the family of curves {C;};er is not
contained in the support of N’ and so

O>E'Ct:(f*a—|—El)Ct2N'Ct20
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This is a contradiction, and hence £ < N. Then f*a = 8+ N’, where f is
modified nef and N’ = N — E > 0. This implies that

v(ffa, E;) < multg, (N') = multg, (N) — multg, (E) = v(f*a+ E, E;) — a;.

Putting all of these together, we have that v(f*a + E, E;) = v(f*a, E;) + a;
and hence N(f*a+ F) = N(f*«a) + E.
U

Now we are ready to define the negative part of a pseudo-effective (1,1)
class on a normal variety and prove the main result of this appendix.

Definition A.6. Let X be a normal compact Kahler variety and o € Hyg(X)
a pseudo-effective class. Let f : Y — X be a resolution of singularities X.
Then we define the negative part N(«) as follows:

N(a) = f(N(fa)).
The following Lemma A.7 guarantees that this definition is independent of the
choice of resolution f.

Lemma A.7. Let X be a normal compact Kdhler variety and o € HSL(X) a
pseudo-effective class. Let f :Y — X and g : Z — X be two resolutions of
singularities of X. Then

FN(ffa)) = g.(N(g")).

Proof. 1t is easy to see from the definition of Lelong numbers that if f : Y — X
is a proper bimeromorphic map of compact Kahler manifolds and P is a prime
divisor on Y and Q = f.P # 0, then v(a,Q) = v(f*«, P) and therefore
(N (fra)) = g.(N(g"a)).

Passing to the general situation, let W be a common resolution of Y and Z,
and p: W — Y and ¢ : W — Z are the projections. Then p*(f*a) = ¢*(g* ),
and thus (fop).N(p*(f*a)) = (90q)«N(¢*(9*«)). Then from what we observed
above it follows that f.N(f*a) = ¢g.N(g*«) and we are done.

O

Remark A.8. From our definition above and Remark A.2 it follows that if «
is a pseudo-effective class on a normal compact analytic variety X, then N(«)
is an effective R-divisor on X. Moreover, if a and  are two pseudo-effective
classes on a normal compact analytic variety X, then N(a+p3) < N(a)+N ().

Lemma A.9. Let f : X' — X be a proper bimeromorphic morphism of normal
compact Kihler varieties. Let o/ € Hé’é(X’) be a nef class such that o := f.of
is contained in Hy(X). Then N(a) = 0.

Proof. Let g : X” — X' be a resolution of singularities of X’. Then we have
(fog)*a = g*ad'+ E, where FE is f o g-exceptional R-divisor. By the negativity
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lemma it follows that E is an effective divisor. Therefore by Lemma A.5,
N((fog)a) = N(g*/) + E = E, since g*« is nef. Then from the definition
we have N(«a) = (fog).(E)=0. O

Definition A.10. Let ¢ : X --» X’ be a bimeromorphic contraction of normal
. C . 1,1 !

compact analytic varieties. Let a € Hgn(X) and assume that o/ = ¢.a €

Hé’é(X ). We say that ¢ is a-negative, if for any common resolution p : W —

X and ¢ : W — X', we may write

pa=qad +E,

where E/ > 0 is an effective R-divisor such that it is g-exceptional and Supp(p.E)
consists precisely the ¢-exceptional divisors on X.

The following theorem is the main result of this section.

Theorem A.11. Let ¢ : X --+ X' be a bimeromorphic contraction of normal
compact Kdhler varieties. Let (X, B + Bx) and (X', B' + Bx) be generalized
dlt pairs such that Kx + B+ Bx is pseudo-effective and B'+Bx = ¢.(B+Bx).
If ¢ is Kx + B + Bx-negative, then the divisors contracted by ¢ are contained
in the support of N(Kx + B + Bx). In particular, if Kx + B' + Bx: is nef,
then the divisors contracted by ¢ are precisely the divisors in the support of
N(Kx + B + Bx).

Proof. Let W be a compact Kéhler manifold resolving the map ¢, and p : W —
X and ¢ : W — Y are the projections. Since ¢ is Kx + B + Bx-negative, we
have

(A1) p'(Kx +B+Bx)=q¢(Kx + B +8x)+FE,

where E' > 0 is an effective g-exceptional divisor and the support of p, F is the
set of divisors contracted by ¢.
Then by Lemma A.5

N(p"(Kx+B+Bx)) = N(¢"(Kx+B'+B8x/)+E) = N(¢"(Kx/+B'+8x))+E,

and by Definition A.6, N(Kx+ B+ 8x) = p«(N(¢"(Kx +B'+B8x/))+ E). In
particular, the ¢-exceptional divisors are contained in the support of N(Kx +
B+ Bx).
Moreover, if Kx/ + B’ + Bx is nef, then N(¢*(Kx + B+ Bx/)) = 0, and so
N(Kx + B+ Bx) = p.E and we are done.

L]
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