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Abstract

This paper addresses the decomposition of holographic
feature vectors in Hyperdimensional Computing (HDC)
aka Vector Symbolic Architectures (VSA). HDC uses high-
dimensional vectors with brain-like properties to represent
symbolic information, and leverages efficient operators to
construct and manipulate complexly structured data in a
cognitive fashion. Existing models face challenges in de-
composing these structures, a process crucial for under-
standing and interpreting a composite hypervector. We ad-
dress this challenge by proposing the HDC Memorized-
Factorization Problem that captures the common patterns
of construction in HDC models. To solve this problem
efficiently, we introduce HDQMF, a HyperDimensional
Quantum Memorized-Factorization algorithm. HDQMF is
unique in its approach, utilizing quantum computing to of-
fer efficient solutions. It modifies crucial steps in Grover’s
algorithm to achieve hypervector decomposition, achieving
quadratic speed-up.

1. Introduction

Hyperdimensional Computing (HDC), synonymously Vec-
tor Symbolic Architecture (VSA), has gained much pop-
ularity as a framework that provides a natural implemen-
tation of cognitive data structure [17]. It represents in-
formation using hypervectors, a type of holographic and
high-dimensional vector that satisfies brain-inspired prop-
erties [14]. It leverages simple and efficient operations -
bundle, bind, and permute - that support the three patterns
of combinations that cognitive scientists deemed essential
in a cognitive data structure: variable binding, sequential
structures, and hierarchy [3, 5]. This allows HDC models to
represent and manipulate complex and hierarchically struc-

tured data interpretably, where the similarity between the
hypervectors reflects their structural similarity and compo-
nential similarity in a well-defined manner, providing a di-
rect foundation for symbolic logical reasoning.

Recent work has shown great advantages of HDC in en-
hancing the cognitive capability of neural networks. [10]
proposes a neural-vector-symbolic architecture that tackles
the binding problem in neural networks by training an en-
coder network to generate HDC-like representation for sub-
sequence symbolic logic processing, significantly outper-
forming state-of-the-art pure DNN and neuro-symbolic Al
on Raven’s progressive matrices task in both accuracy and
efficiency scaling. Pioneering the development of a neural-
vector-symbolic architecture that addresses the limitations
of both neural networks and symbolic methods in accom-
plishing cognitive tasks, [10] has pointed out many limita-
tions of the current model, one of which is the decomposi-
tion problem that recurs in the general usage of HDC.

This paper focuses on the ability of HDC to provide de-
composition over a composite data structure. Fundamen-
tal to both perception and cognition, the decomposition
problem has been argued to manifest itself in various do-
mains, including visual scene analysis and analogical rea-
soning [1, 2, 5, 18]. Under the HDC framework, this prob-
lem was first modeled as the high-dimensional vector fac-
torization problem [5, 15]: given a hypervector that is the
binding of multiple atomic hypervectors, we want to find
all its constituents with only the codebooks, i.e. the list of
elementary hypervectors. Because the product of binding
does not preserve similarity with its components, this prob-
lem traditionally requires an exhaustive search over all pos-
sible combinations of the elementary hypervectors to solve
the factorization. The combinatorial nature of this prob-
lem makes the search size prohibitively large for exhaustive
searches in practice, limiting the utilization of HDC in prac-
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Figure 1. Overview of our approach. (a) The upstream network generates HDC-like holographic representation. (b) HDQMF performs
Holographic Feature Decomposition given the HDC-like representation and the salient codebooks. Our approach is inspired by Grover’s
algorithm. (c) The resulting decomposition can be used for subsequent cognitive tasks, including reasoning. (d) Our approach is specialized
for the memorized factorization problem, achieves quadratic speedup asymptotically, and is efficient in qubit usage.

tical scenarios. To the best of our knowledge, all existing
models, including [10], compromise by limiting the depth
of the data structures or using exhaustive search over all
possible combinations when necessary [15]. While effort
has been made to optimize the problem classically, given
the empirical results and the current limitation of the theo-
retical analysis tool for this problem [5, 15], we consider it
a safe assumption that all classical algorithms have asymp-
totic time complexity linear in the search space.

Besides the hardness of the problem, the high-
dimensional vector factorization problem also requires non-
trivial generalization to be applied in typical HDC models.
In practice, it is much more common that the hypervectors
in focus, like in [10], are a bundling of bound hypervec-
tors. To provide solutions more suitable for this case, we ad-
dress an extension of the high-dimensional vector factoriza-
tion problem, called the HDC Memorized-Factorization
Problem, that captures this additional complexity.

The assumption about the linear time complexity and the
added complexity of the factorization problem observed in
practice drive us to propose algorithms that can fundamen-
tally pass through the limit imposed by classical computa-
tion, which leads us to quantum computing (QC). Quan-
tum computers differ fundamentally from classical comput-
ers that use binary bits. Instead, quantum computers encode
information in quantum bits, or qubits, that can exist in a su-
perposition of states. Quantum algorithms are well-known
to asymptotically speed up certain types of problems, and
our factorization problem falls within this domain. In this
work, we propose a quantum algorithm for the extended
problem with crucial modification to Grover’s algorithm,
providing quadratic speed-up to classical solutions.

Fig. 1 shows an overview of our work and its general
context. Our contributions are as follows:

1. We propose HDQMF, the HyperDimensional Quantum
Memorized-Factorization algorithm, that addresses the
HDC Memorized-Factorization Problem. This algo-
rithm specializes in finding solutions to the extended
problem even with the presence of noise.

2. We provide analytical results, circuit-level implementa-
tion, and performance measures of our model. We intro-
duce a modified Grover’s algorithm suitable for random
and approximate search for arbitrary similarity distribu-
tions, with analytically tractable results.

3. We propose a hybrid framework for decoding the
bundling of bound hypervectors and compare our meth-
ods to state-of-the-art approaches. We show our approx-
imate Grover’s algorithm retains the quadratic speedup
and can be parallelized in a straightforward manner.

2. Background and Related work
2.1. Hyperdimensional Computing

Elementary Hypervectors. Hyperdimensional Computing
uses high-dimensional vectors, called hypervectors, to rep-
resent symbols. Each class of elementary symbols is typ-
ically represented by a codebook, consisting of a list of
high-dimensional, robust, holographic, and random hyper-
vectors [14] that preserve the desired measure of similarity,
or kernel, between different symbols within the class. In
the Multiply-Add-Permute (MAP) scheme [0] where the el-
ementary hypervectors are bipolar, we can impose the Kro-
necker kernel over a discrete set D by:

hy < Unif {—1,1}"
O(hg, hy) = zTy/D

Where h, is the encoding of the data point z € D, D is the
dimension of the hypervector, and Unif(S) is the uniform

x €D 0
z,y €D
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distribution over the support S. The randomizing property
of the generation and the high dimensionality ensures that
the kernel is well-approximated, such that §(hy, hy) ~ 1
for 2 = y, and ~ N(0,1/v/D) otherwise.

HDC Operators. The basic HDC operators are bundling
@, binding ®, and permutation p, which performs “su-
perposition”, variable binding, and ordering, respectively.
Bundling creates sets such that the resulting hypervector
preserves similarity with its constituents [14], while bind-
ing functions as an association operator such that the re-
sultant contains the information of both of its constituents
but is dissimilar to any of them [4]. In MAP, they are
element-wise addition and element-wise multiplication re-
spectively; such implementations align with the functional
aspects of the operators. For bundling, the set hypervector
hs = hy ®hy®h, for theset S = {z,y, 2z} C D computes
set membership efficiently:

S(hs,hw) =Y 8(hx, hw) = (w € S) )
kesS

For binding, the bound hypervector, between two or more
symbols, h(m,y) = hg; © hy, represents associations in that
(1) the association hypervector is dissimilar to any of its
components, §(h(z.y), hz) = 0, and (2) Unbinding one of
the atoms from the hypervector reveals the other, h(; ) ©
he = hy.

HDC Schemes. Using the basic HDC operators, one may
construct composite hypervectors representing more com-
plex data structures, including trees [5], graphs [29], and
finite state automata [20]. One of the most commonly used
schemes is the “bind-then-bundle” scheme, where attributes
of each object are bound together, and then multiple objects
are bundled to represent the object combination. Fig. 1(b)
implies an instance from such scheme:

hscene = hhemagon © hlarge (OXERNO) hlight

(3)
S hpentagon O] hlm‘ge (OXERNO) hdark

HDC in Action. HDC’s benefit lies in its

1. Representational robustness: each element of the hy-
pervector contributes evenly to encoding the informa-
tion (hence holographic) and high-dimensionality en-
sures that the information is encoded redundantly [14];

2. Interpretable and fast hypervector manipulation: every
transform by the HDC operator can be interpreted as a
certain type of structure manipulation [23, 30], and bind-
ing and bundling are element-wise (while circular shift
implements permutation); and

3. Fixed-width composition: the composite structures con-
structed from elementary ones with HDC operators, re-
gardless of the schemes, are of fixed dimensionality.

Collectively, HDC becomes a natural candidate for address-

ing the “binding problems” of neural networks [33] that

may provide an adequate description of real-world objects
or situations that can be represented by hierarchical and
nested compositional structures [10, 31].

To this end, [10] proposes a neural-vector-symbolic ar-

chitecture consisting of (1) a neuro-vector frontend to gen-
erate HDC-like (holographic) representation as perception
(Fig. 1(a)-(b)), and (2) a vector-symbolic backend to per-
form symbolic logic reasoning as cognition (Fig. 1(b)-(c)).
The efficient representation of object combination through
HDC connects the best of both worlds in solving cognitive
tasks. Most notably, like many other HDC models [7, 11—
13, 16, 19, 21, 22, 24-29, 34, 36], it uses the “bind-then-
bundle” scheme (Fig. 1(b)).
HDC Decompostion. Many use cases of HDC require
one to decompose a composite hypervector back to its el-
ementary components, and the decomposition process re-
quires some knowledge of the codebooks and the schemes.
If the codebooks are known, bundling and permutation
have clear arithmetic approaches for decoding, as bundling
preserves the similarity of its components, and permuta-
tion can be iteratively reversed. Since bound hypervec-
tors are dissimilar to their components, the problem be-
comes computationally harder. [5, 15], the state-of-the-art,
formalized the high-dimensional vector factorization prob-
lem to decompose bound vectors and developed a recurrent
network called the resonator network that showed practi-
cal advantages in decomposing a bound hypervector over
optimization-based approaches. Recent work has proposed
the problem of decomposing “bound-then-bundled” hyper-
vectors and applied resonator network to study its effective-
ness [9, 32]. In this work, we formulate this problem again
and design an algorithm particularly suited for the decom-
position.

2.2. Quantum Computing

Quantum Computing Basics. Quantum computing is
founded on the principle of applying various unitary oper-
ators to manipulate a set of wavefunctions, typically con-
structed using a class of two-level systems known as qubits
which enables quantum computers to represent information
as a superposition across all possible states.

A general quantum circuit is designed to implement a
unitary operator denoted as Uy within the Hilbert space.
This operator represents a binary function, f, mapping in-
puts from the set {0,1}" to outputs in {0,1}". The ca-
pacity to perform computations in superposition on any set
of states empowers quantum computing to potentially of-
fer significant speedup advantages over classical comput-
ers in various problem-solving scenarios. In this work, we
rely on multi-control gates such as the multi-control XOR
(MXOR) to implement the oracle. The MXOR gate com-
putes the XOR of the components of the n-dimensional
qubit state |F): MXOR |Z) |d) = |Z) |[d ® (Diz;)).
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Grover’s Algorithm. Grover’s algorithm aims to find a
specific item, often referred to as the target, within an un-
sorted database of size S. It can be summarised as follows:
1. Construct the initial superposition of states given by |.A)
2. Apply the oracle operator to U, to get U, |.A)

3. Apply the diffusion operator Up, to get UpU, |.A)

4. Repeat the previous two steps 7+/.S number of times,

and perform the measurements
The state preparation algorithm builds the operator U4

which generates a uniform superposition of all the possi-
ble states A: U4 ‘0> =D acA % |a) = |A). The Oracle
is the unitary operation that searches for the marked state
(which we shall denote |m)). It simply inverts the phase of

the marked state with U, |m) = —|m), and U, |a) = |a)
otherwise:
U (1 3 |a>> = LS C1meley. @
\/g acA \/g acA
The diffusion operator Up inverts the amplitudes of
the states in the codebook by the average. It is rep-
resented by the operator Up, Up = 2]A)(A| —

I = Uys (2 ’6> <6’ - I) U, with I the identity oper-
ator. The diffusion operator simply inverts the ampli-
tudes about the average amplitude as Up ) . 4 ¥(a) |a) =
>aea (1 —1(a)) |a), where pp = & >, . 4 ¥(a) is the av-
erage of the amplitudes.

After ~ 7+/S iterations, the probability of measuring
the marked state increases to a maximum value of about

50%, improving the likelihood of finding the marked state.

3. Memorized-Factorization Problem

The original high-dimensional vector factorization problem
problem is as follows [5].

Definition 1 (The Factorization Problem). Given F' code-
books Cy,--- ,Cr and a hypervector ¢, minimize ||c — é||
subjecttocy € C1,-+- ,cp € Crand ¢ = @il G

We may assume that each codebook C; is generated ran-
domly and independently as in the MAP scheme and that
the solution is unique. If we assume that all codebooks
have NV entries. The effective search space of the problem is
IE,|C;| = O(NT). In other words, it scales exponentially
with the number of factors and polynomially with the size
of the codebook, which makes the problem computationally
challenging.

As mentioned in Sec. 2.1, applications of associative
binding operations are typically combined with the oper-
ation of bundling to enable memorizing multiple items with
various attributes, where each set contains elements associ-
ated with each other. As we will show, our quantum solution

for approximate factorization also enables a direct applica-
tion toward decoding memorized-associative hypervectors
aka “pbound-then-bundled” hypervectors. We formally de-
fine the Memorized-Factorization Problem as follows:

Definition 2 (The HDC Memorized-Factorization Prob-
lem). Given F codebooks {C;}E_,, an integer k > 0, and
a vector ¢, minimize ||c — é||, where é = @le @il Ci jr
S.I. Cij €Cpi=1,--- JFg=1,--- S k.

4. HyperDimensional Quantum Memorized-
Factorization Algorithm

In this section, we introduce HDQMF which leverages the
power of quantum computing to solve the factorization
problem in an efficient and approximate manner. HDQMF
uses a modified form of Grover’s algorithm [8] to search
through all possible factorizations, and extract the most ac-
curate one through amplification. Moreover, we show that
our design is easily scalable, and, due to the additive nature
of the quantum phase, we are able to extend our design to
solve the more general memorized-factorization problem in
an efficient manner with minimal modification.

From HDC to Quantum. In HDQMF, we represent each
element of our hypervector by a two-component qubit state:
|0) will represent 1 and |1) will represent —1. The mul-
tiplication of the components of the vector will be rep-
resented by the XOR of the labels of the corresponding
states representing the hypervectors. We represent the
D—dimensional hypervector h; by the corresponding qubit
series |giqi....qh_1) = |G*). We can store multiple collec-
tions of hypervectors as |¢*) |¢?) - - - |¢"), which requires a
total of m x D qubits to represent the m hypervector factors.
The binding of two HDC vectors h; © h; is represented by
Fod) = ’(qi @) (g © g3)--(dp 1 @ q%71)>- The
Oracle will need to implement the binding operation as part
of its overall calculations. We will demonstrate a method to
perform this that requires a number of gates linear to the di-
mension. The initialization of the qubits to lie in all possible
states defined by the codebook can be done using a polyno-
mial number of circuits and qubits through the algorithm
described in [35]. We impose that the factors belong to the
codebook Mpy N« p, Where F' is the number of factors, NV
is the number of candidate vectors for each factor, and D is
the dimension of the hypervector. Defining ¢} to be the nth
vector at the f** factor, the goal of the state preparation al-

gorithm is to construct the following state: U4 ‘6> ‘6 > =

= (2, 1)) -+ - (3, @), which represent all pos-
sible factorizations. This is implemented sequentially, by
applying the algorithm of [35] to each factor individually

by defining the operator U}, ‘6> = \/% (3=, 1a%)), which
constructs a uniform superposition of all vectors belonging
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to the k*" factor of the codebook. By defining the tensor
product operator Upnq = 1l ® U/’i/[, where each term acts
on a different set of qubits as

Uaa[0) - [0) = (ke[ ) (Vae]) - (U5 9))

(&)

we can generate a uniform superposition of all factors with
a polynomial circuit complexity and qubit requirement.
Key Modification. In our application of Grover’s algo-
rithm, the marked state will not have an exact phase of —1
applied by the oracle. Rather, the phase shift will be related
to the similarity § € [0, 1] with a “true state” which is cal-
culated by the oracle, and the phase shift is €™, § = 1
corresponds to an exact match and § = 0 to random noise.
With such an oracle, we modify the algorithm to:
1. Construct the initial superposition of states given by |.A)
2. Apply either U, or U, ! in alternate iterations, start-
ing with U1
3. Apply the diffusion operator Up
4. Repeat the previous two steps %\@ number of times,
and perform the measurements
In the limit of real phase with § = 0 or 1, our algorithm
reduces to the original Grover’s algorithm. As we will see,
the application of the inverse U, operator in alternate steps
results in iterative phase cancellation, allowing an exact an-
alytical description of the evolution of the amplitudes with
any similarity distribution. This allows us to show that
the algorithm behaves similarly to the original Grover al-
gorithm, where the efficiency of the algorithm (in terms of
the optimal iterations required) can be related to the distri-
bution of phases.

4.1. Approximate Factorization Algorithm

The key aspect of Grover’s algorithm is the oracle, which
identifies the “marked” states, and inverts their phase to —1.
The difficulty in exact quantum search is the binary decision
for the oracle, requiring a case-by-case check for whether
the output satisfies some specific pattern.

In our design, we exploit the randomness of hypervec-
tors to approximately distinguish the marked and unmarked
states. In our design, the phase inversion will not be an ex-
act —1 for the marked states. Instead, the oracle multiplies
each state by a phase factor ¢™®, where ¢ is the similar-
ity between the multiplied factors ¢ and the given vector ¢.
For relatively large dimensions, ¢ ~ 0 for randomly cho-
sen factorizations, while ¢ ~ 1 for correct factorizations.
We expect this algorithm to work well because the num-
ber of hypervectors that are highly similar is exponentially
small compared to the whole space of hypervectors. Thus,
the standard deviation of ¢ is expected to be small. With
a small spread in the similarity, we expect our algorithm to
efficiently extract a factorization that is likely correct.

(a ) Construct the XOR of all the N factors
|(gi)1) [(4i)2)
I(@)n) @) — ¥
[(@3)1) 1%t Components |(d3)2) o 2"¢ Componcnts
. : R oo o
I(@i)) I(a)2)
[0) Mo@)=a) 00— | @ (d)2) = g2)
(b) g —Uz(po) . (c) Restore the
Auxilliary Qubits to
"""" - la2) —Uz(¢y) - |0) by Reversing the
. . Operations of (a)
———————— - lap) — Uz($p) -"eeeve

Figure 2. The design of the oracle, involving (a) constructing the
binding of the vectors, (b) performing the phase similarity opera-
tion, and (c) uncomputing the bound vector.

One key property of the quantum phase is that even if
the operation is applied to a certain subset of qubits, the
phase shift ¢?™® is nonetheless applied to the whole sys-
tem. Thus, if an operation 1 (resulting in phase ¢™%1) is
applied to one subset of qubits, and another operation 2 (re-
sulting in phase e!"%2), then the system accumulates a phase
e™(#1+¢2)  This additive global property of the quantum
phase is exploited to generalize our search algorithm for
the memorized-factorization problem. Suppose we have M
quantum systems running in parallel, with each system rep-
resenting one of the possible factorizations. A generic state
in this system can be written as |S1) |S2) - - |Sar), with | S;)
representing a possible factorization for one of the elements
v; bundled in ¢ = @le vj, with v; = @f;l ¢,j. Our
oracle is designed to implement U, |S;) = e073(e:vi) |G,
where the product of factors represented by |.S;) is v;, and 6
is a scale factor to be fixed later. Applying the oracle to each
|S;) sequentially in the whole system results in the phase,

UO (Hi ‘SZ>) = HiUO |SZ> = eie’rz‘bf‘ﬂi ‘Sl> . (6)

Thus, the total phase accumulated now is ¢ =
0 (1 + P2+ - - +¢nr). If all the M states |\S;) represent
factorizations of some v;, then the total phase is ¢ = 1.
However, unlike the previous algorithm, there are now var-
ious cases for the phase, since it could be that only some
m < M states represent correct factorizations, and the re-
sulting phase would be ¢ = 7; + Noise, where Noise is
a noise term from some (approximately gaussian) distribu-
tion. We thus have a cascading levels of phase similarity ¢,

taking values ¢ = i for: =0,1,2,.., M.
4.2. Oracle Design

The key aspect of the approximate search algorithm is to
have an approximate oracle that can identify different states
based on their similarity. Given a state |S) = |c1) - - [cr),
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representing a specific factorization, the oracle needs to cal-
culate the product ¢ = @f;l ¢;, and then calculate the sim-
ilarity ¢ with a target vector v such that there is a phase
change of ¢/™®. The first step of multiplying the factors to
construct ¢ is performed using the MXOR gate which en-
ables multiplication with a minimum number of gates. This
required D auxiliary qubits to store the output (which must
be later uncomputed). We show this design in Fig. 2(a).
Next, the oracle needs to induce a phase change using
the similarity of ¢ with a given target vector v. The similar-
ity function is given by §(¢,v) = & Z].Dzl(l;)j(v)j, where
j indexes the components of the vectors, and b=1-2¢
is the bipolar (1, —1) representation. Our design of the ora-
cle exploits this additivity of the similarity to enable an effi-
cient phase transformation, which is illustrated in Fig. 2(b).
Moreover, the components of ¢ are either 0 or 1, while
the vector v can be any generic real number. Thus, the
oracle simply applies Pauli Z-gate U(¢;) in sequence on
each qubit representing the component of (¢);, with angle
;= —’R’%. The gate U (¢) multiplies the state |¢) with a
phase factor e?¢(2=1) |¢), for ¢ = 0, 1. Since (¢); is either
1 or 0, with phase change e*”% or e”% respectively,

(v);(B);

the phase shift is simply e 5 . Thus, after applying
this phase operator to all the qubits, the total phase accumu-

L () (B
lated will be T2, '™ 5"

oracle.

If we had multiple, say M factorizations, that needed
to be bundled together in the end, then we simply require
the oracle to apply the phase shift operation U(¢;) with

= ¢'™9(&v) | a5 required by the

¢; = —HW% on all the qubits, where 6 is a scale factor
which we will discuss later. The resulting overall phase ac-
cumulated will be IT0. | ¢?070(é:0) — ¢ifm 3321 8(év) This
design of the oracle is scalable since it requires only the
application of local phase shifts on the individual qubits.
Moreover, there is no requirement to maintain entangle-
ment since the oracle does not do a binary check for a
marked/unmarked state. As we will show in the next sec-
tion, the optimal value of 6 is § = 1.

5. Analytical Study

In this section, we analytically investigate the expected be-
havior of our algorithm. We denote the amplitude of all the
states by the vector &,,, where n is the iteration of the al-
gorithm, and each component denotes the amplitude of a
basis state. We also define p, = >,(d)i/NFM to be
the average value of the components, where N is the
total number of states. Additionally, let d? be the similar-
ity associated with each state. We initialize the amplitude

to a; = \/ﬁf, where T is a vector with all compo-
nents 1. An iteration of the original Grover’s algorithm
evolves the amplitude as @p11 = (2p, — @) - ¢. In

(d) 109 (b) 107 4(Totalsim)
—0
oo >os 1
@© 102 b= —\:
—_ -
O 102 S 06{ —3
g 107 g oal 4 x10° A
O 10 <
—
101 a o2
108 x10°
0.0
0 1 2 3 4 5 0 25 50 75 100 125 150 175 200
m Nigr
( (d)
. " .
—
208 7
= —9
0 06 —11
© — 13
Q 04
3 /
—
o o2
0.0

0 25 50 75 100 125 150 175 200
Nitr Nitr

0 25 50 75 100 125 150 175 200

Figure 3. Noiseless results in the D — oo limit (a) the exponen-
tial decay in the degeneracy for each m (b) The probability as a
function of iteration, showing the system is effectively governed
by m = 0 and m = 1 (c) as M increases, then the peak probabil-
ity is achieved at a lower iteration (d) The optimal value of 6 = 1
which requires the lowest number of iterations for the peak prob-
ability. Weuse N = 100, F = 3,0 = 1, K = 20, M = 5 unless
mentioned otherwise.

our modification, however, the applied phase transforma-
tion changes sign in each step, with the transformations
Gonti = (2U2nti-1 — Gopnti-1) - ¢* ! fori = 0,1. By
expanding the recurrence relation, we find

Gon = 2fign_19" — 2Hon_a + @an_a, @)
Gon1 = 2ian—26 — 2ian_3 + Gan_s, (8)

where we used the fact that ¢* - ¢ = 1, since each compo-
nent of ¢ is a phase value. We first find the mean amplitude
by averaging over the components to find,

( H2n ) -G (Hzn—2) G = (4|/\2 -1 2>\*> ’
Hon—1 H2n—1 2) -1
where ) is the average component of (E, which can be writ-
tenas A = V. NFM % (Since dy = ﬁ(ﬂ*) Note that in
the case of the traditional Grover’s algorithm, A = 1 — 2r,
where r is the fraction of the marked state over all the states.
The eigenvalues of G are given by 74 = —1 + 2|2 &
2|Aliy/1 — |A|2. Since they satisfy |y+| = 1, the eigenval-
ues are phase values. The corresponding eigenvectors are
Te = (A2 £i]A/T—[A2,A) = (25, ). Solving the
recurrence equations, we find the mean value to transform:

H2an 1 n—1- —
= —F— o Us=fin- (9)
(vors) = e 78 =

By substituting this into the recurrence relationship, we can
find a closed form for ds,,, @o,_1. Defining v1 = e*%,
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Figure 4. Distribution of similarities for various M, which show
M + 1 clusters, one for each value of similarity. The degeneracy
decays with increasing similarity.

an—1 = cos (2520) w, b, = (2a, —1)/VNFM,

Sin b

and ¢, = (ap + an—1 — 1)/(AWNFM) we have

Qop_1 = (ECn — by. (10)

Using these results, we can find that the approximate num-
ber of iterations required for Grover’s algorithm to reach
the optimal state as Ny, ~ 7/(2+/2(1 — |A])) in the limit
of |A] < 1 (which is what we will mostly deal with in our

— e
Qop = @by — Cp,

use cases). Note that in the original Grover’s algorithm,
A = (A—B)/(A+ B), where A is the number of unmarked
states (with phase 1) and B is the number of marked states
(with phase —1), and in the limit of B < A we recover the

original result of Ny ~ /%

In order for the algorithm to efficiently identify the
marked state with a high probability, we need to mini-
mize the value of Nj,, which is done by minimizing the
value of |A|. In our application, we can calculate the ex-
act value of X\ in the D — oo limit (where the similar-
ities are either 1 or 0, without noise). When M vectors
are bundled together, m of them can match with the bun-
dled set ¢ = @?Zlvj, and the remaining M — m do not.
If they match, then they can be one of the k possible vec-
tors, and if they do not then they can be one of the remain-
ing N F _ k vectors. Thus, the total number of such ar-
rangements is given by k™ (N ¥ — k)™= (M) " The cor-
responding phase factor is given by e?™™. Thus, we find
5 = Z"L(eierrk)m(NF_k)Mfm(%) B ((Eieﬂ'_l)k_,’_NF)IW

= > km(NF,k)Mfm(J‘"{ = NME
From this expression, we can deduce that the optimal num-
ber of iterations (minimum |A|) is achieved when 6§ = 1

(so that €’ = —1). In this limit, A can be approximately
F (N —2k)™ 2k M

found to be (when N* > k) A = 5z — = 1 — 7.

The optimal number of iterations is thus Ny, = 7 %

6. Results

We show simulated results of the approximate Grover’s al-
gorithm for the factorization and memorized factorization.
The primary parameters we need to vary are the number of

e
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Figure 5. The correlation of probability and similarity after one
iteration (left), and the evolution of the probability of marked state
(right) for D = 50, 500, 5000 (top, middle, bottom). Blue, red,
green, and yellow mark m = 0, 1, 2 and 3 respectively. As D in-
creases, the similarity values get more clustered and the maximum
probability of finding a marked state also increases drastically. We
use F=3,N=5and K = 7.

(D, K) || Resonator Network [5] HDQMF

Ps Ny Pf Ng P, Ny Ng
(50,10) |[0.06 20 0.15 338 0.025 2 72
(50,20) |[0.07 26 0.12 368 0.017 2 91
(500, 10) || 0.10 34 0.19 338 0.064 3 44
(500, 20) 0.18 35 0.18 195 [|0.041 2 47

Table 1. Comparison of quantum search with resonator network,
highlighting the optimality of quantum search. Ps is the maximum
probability of finding the correct factorization for quantum search
and the probability it converges to the correct factorization for the
resonator network. N7 is number of iterations to converge/reach
P.. Ng = Np/P; is the effective number of steps required. Py is
the probability of non-convergence for the resonator network.

factors F', the number of terms to be bundled together K,
the number of codebook entries [NV, and the dimension D.
We note that the factorization problem is a specialized case
of the memorized-factorization problem with K = 1. A
comparison with the SOTA, the resonator network, is shown
in Tab. 1, highlighting the efficiency of HDQMF.

The effect of the various parameters on the efficiency
of the algorithm is primarily through the similarity and the
level of noise in similarity introduced by the oracle. We
assume that each property being bound together results in a
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Figure 6. Memorizing a scene with numbers, colors, and locations. The bundled vector is first generated (using alternate means, for
example a neural network), and then decomposed using both the quantum algorithm and the resonator network. With D = 50 (top), the
resonator network does not converge while the quantum algorithm correctly identifies the marked state. At D = 500 (bottom), the quantum
algorithm and resonator network correctly identify the marked state, but the resonator network requires more iterations.

unique random vector representing the object, which results
in N¥' different combinations possible for the search space
in each object being memorized. If there are K different
items, then the noise in the similarity will increase with K
if there are mismatches. This noise is also related to that due
to M, which is the number of bundled vector being consid-
ered in the algorithm to perform the search operation. In the
worst-case scenario where there are no matches, the noise
is proportional to /K M/ D.

Noiseless case. We first show the noiseless case of the prob-
ability distribution evolution over the iteration. Essentially,
this involves taking the limit of D — oo, and the simi-
larity now depends only on M. We show various cases of
M in Fig. 3. (a) shows the degeneracy of each state, de-
creasing exponentially in m, the number of matching terms.
(b) shows the iterations of the probability for each similar-
ity ¢ in a system with M/ = 4. As we can see, the 2,3
and 4 matches have probabilities many orders of magni-
tude smaller than the probability of 0 or 1 match. In (c),
we show that by increasing M, the maximum probability
for the marked states is reached at smaller iterations, as
expected from our theoretical understanding. Finally, we
demonstrate the optimality of # = 1 in (d), which shows
that the maximum probability is achieved for the smallest
N, itr at 0=1.

Noisy case. Next, we analyze the impact of noise by gen-
erating the similarity directly from a randomly sampled
codebook. We show the similarity distribution in Fig. 4,
for M = 1,2,3. The distribution is a combination of
M + 1 Gaussians, centered upon each integer similarities.
The width of the Gaussian is proportional to /kM/D.
In Fig. 5, we show a correlation between the probabil-

ity and similarity, and the probability of finding a marked
state as a function of iterations, for various dimensions
D = 50,500, 5000 (from top to bottom). As D increases,
there are two effects: (i) the similarity gets more clustered
together, with the probability getting larger and (ii) the peak
probability at optimal iteration increases drastically.

Use case demonstration. In Fig. 6, we show a case study
where we memorize a set of numbers in a scene. The num-
bers can be 0 to 9, with 7 possible colors, 3 possible verti-
cal locations and 3 horizontal locations. With dimensions
D = 50 and D = 500 the quantum algorithm correctly
decomposes the bundled representation within a few itera-
tions. The resonator network, however, does not converge
for D = 50, and often fails in the case of D = 500, while
requiring more iterations.

7. Discussion and Conclusion

Limitations. While the algorithm speeds up the hypervec-
tor decomposition, the practicality of HDQMF relies on the
quality of quantum computers. As quantum technology is
still developing, there are limitations to the number of qubits
available, the stability of quantum states, and the overall re-
liability of quantum computations. Our approach will likely
be used in conjunction with classical solutions.
Conclusion.  We investigated the HDC Memorized-
Factorization Problem, which captures the common con-
struction patterns of hypervectors. We proposed HDQMF,
based on Grover’s algorithms, that addresses this extended
factorization problem. We analytically showed and ex-
perimentally verified that our algorithm achieves quadratic
speedup and can be parallelized straightforwardly.
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