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MINIMAL MODEL PROGRAM FOR ALGEBRAICALLY INTEGRABLE

FOLIATIONS ON KLT VARIETIES

JIHAO LIU, FANJUN MENG, AND LINGYAO XIE

Abstract. For lc algebraically integrable foliations on klt varieties, we prove the base-point-
freeness theorem, the contraction theorem, and the existence of flips. The first result resolves a
conjecture of Cascini and Spicer, while the latter two results strengthen a result of Cascini and
Spicer by removing their assumption on the termination of flips.

Moreover, we prove the existence of the minimal model program for lc algebraically integrable
foliations on klt varieties and the existence of good minimal models or Mori fiber spaces
for lc algebraically integrable foliations polarized with ample divisors on klt varieties. As a
consequence, we show that Q-factorial klt varieties with lc algebraically integrable Fano foliation
structures are Mori dream spaces. We also show the existence of a Shokurov-type polytope for
lc algebraically integrable foliations.
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1. Introduction

We work over the field of complex numbers C.
The goal of this paper is to prove the existence of the minimal model program (MMP) for lc

algebraically integrable foliations on varieties with mild singularities. One of our main theorems
is the following.

Theorem 1.1. Let X be a smooth projective variety and F an algebraically integrable foliation
with at worst log canonical singularities on X. Then the cone theorem, the contraction theorem,
and the existence of flips hold for KF and thus we can run a KF -MMP.

History on MMP for foliations. The minimal model program for foliations has been exten-
sively studied in the past several years not only due to its importance on the characterization
of the ambient variety and its tangent bundle, but also due to its close connection with major
conjectures of the classical minimal model program. For example, foliations have played a crucial
role in the proof of several key cases of the abundance conjecture for threefolds (cf. [Miy87]).

To prove the existence of the minimal model program, we need at least three ingredients:
the cone theorem, the contraction theorem, and the existence of flips. We can only run MMP
when all of them are known. For foliations in low dimensions, these three ingredients have been
established for surfaces [McQ08, Bru15] and threefolds [CS20, Spi20, CS21, SS22]. Although
it is difficult to achieve any of these results in dimension ≥ 4, there are some developments
on the minimal model program for foliations induced by dominant rational maps recently, i.e.
algebraically integrable foliations. For example, for algebraically integrable foliations, [ACSS21]
proved the cone theorem, while [CHLX23] proved the contraction theorem and the existence
of flips when the foliation has at worst Q-factorial foliated dlt singularities. These two results
together imply the existence of the minimal model program for algebraically integrable foliations
with at worst Q-factorial foliated dlt singularities.

MMP for lc foliations on klt varieties. It is known that we can run minimal model
program for algebraically integrable foliations with at worst Q-factorial foliated dlt singularities.
Q-factorial foliated dlt singularities are usually considered as a foliated version of Q-factorial dlt
singularities for usual pairs [CS21, CHLX23], and foliated log smooth singularities are always
Q-factorial foliated dlt.

However, Cascini and Spicer [CS23a] pointed out that it is necessary to consider the minimal
model program for foliations with singularities which are worse than Q-factorial foliated dlt.
One major motivation is that Fano foliations (i.e. foliations with ample anti-canonical divisor
−KF ) are never foliated dlt (cf. [AD13, Theorem 5.1]), and they form an important topic in
the theory of foliations. This makes [CHLX23] not applicable to Fano foliations.

To resolve this issue, we should consider the minimal model program for algebraically
integrable foliations with at worst log canonical (lc) singularities on klt varieties, which is natural
and necessary. In this paper, we prove the existence of the minimal model program under this
setting.

Theorem 1.2. Let (X,F , B)/U be an lc algebraically integrable foliated triple such that (X,∆)
is klt for some B ≥ ∆ ≥ 0. Let R be a (KF +B)-negative extremal ray/U . Then:

(1) (Contraction theorem) There exists a contraction/U contR : X → T of R.
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(2) (Existence of flips) If contR is a flipping contraction, then the flip/U X+ → T associated
to R exists.

Theorem 1.2 is known by [CS23a, Theorem 3.2] under the following additional assumptions:

• The termination of Q-factorial klt flips in dimension r = rankF .
• B = ∆ with rational coefficients.
• X is projective, and Q-factorial for statement (2).

Theorem 1.2 implies that we can run minimal model program for algebraically integrable
foliations with at worst lc singularities on klt varieties. In fact, under the assumptions of
Theorem 1.2, we can show that (X,∆) remains klt after each step of the minimal model
program. Therefore, with the help of the (relative) cone theorem [ACSS21, CHLX23], we prove
the following result on the existence of minimal model program:

Theorem 1.3 (Existence of minimal model program). Let (X,F , B)/U be an lc algebraically
integrable foliated triple such that (X,∆) is klt for some B ≥ ∆ ≥ 0. Then we may run a
(KF +B)-MMP/U . Moreover, for any birational map φ : X !!" X+ that is a sequence of steps
of a (KF +B)-MMP/U , (X+,∆+ := φ∗∆) is klt.

We remark that when X is Q-factorial, which is the most natural setting when we run MMP,
the condition that (X,∆) is klt for some B ≥ ∆ ≥ 0 is equivalent to the condition that X is
klt. In particular, Theorem 1.1 is a direct consequence of Theorems 1.2 and 1.3.

We also remark that Theorem 1.3 is known when (X,F , B)/U is Q-factorial foliated dlt by
[CHLX23, Theorem 2.1.1]. Although [CHLX23, Theorem 2.1.1] does not require X to be klt, X
is automatically klt by [CHLX23, Theorem 2.1.9]. Therefore, [CHLX23, Theorem 2.1.1] can be
viewed as a special case of Theorem 1.3.

Base-point-freeness theorem, good minimal models, and Mori fiber spaces. After the
establishment of the cone theorem, the contraction theorem, and the existence of flips, our next
goal is to show the existence of good minimal models or Mori fiber spaces. First, we prove the
existence of Mori fiber spaces for lc algebraically integrable foliations on klt varieties.

Theorem 1.4 (Existence of Mori fiber spaces). Let (X,F , B)/U be an lc algebraically integrable
foliated triple such that (X,∆) is klt for some B ≥ ∆ ≥ 0. Assume that KF +B is not pseudo-
effective/U .

Then we may run a (KF + B)-MMP/U with scaling of an ample/U R-divisor and any such
MMP terminates with a Mori fiber space of (X,F , B)/U .

Next, we deal with the existence of good minimal models. Unfortunately, since we do not
know the existence of minimal models for smooth projective varieties in dimension ≥ 5, we
cannot prove the existence of minimal models for lc algebraically integrable foliations on klt
varieties unconditionally. Nevertheless, we can prove the existence of good minimal models
when the boundary divisor contains an ample R-divisor, or when the numerical dimension is 0.

Theorem 1.5 (Existence of good minimal models with polarizations). Let (X,F , B)/U be an
lc algebraically integrable foliated triple such that (X,∆) is klt for some B ≥ ∆ ≥ 0. Let A be
an ample/U R-divisor on X such that KF +B +A is pseudo-effective/U . Then:

(1) We may run a (KF + B + A)-MMP/U with scaling of an ample/U R-divisor and any
such MMP terminates with a minimal model of (X,F , B +A)/U .

(2) The minimal model in (1) is a good minimal model.

We remark that similar statements for threefold foliations in [CS20, CS21, SS22] usually
require that (X,F , B + A) is lc as Bertini-type theorems generally fail. In comparison, we do
not need (X,F , B +A) to be lc in Theorem 1.5.

An interesting fact is that we use Theorem 1.5(1) to prove the following base-point-freeness
theorem, which in return gives us Theorem 1.5(2):
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Theorem 1.6 (Base-point-freeness theorem). Let (X,F , B)/U be an lc algebraically integrable
foliated triple such that (X,∆) is klt for some B ≥ ∆ ≥ 0. Let A be an ample/U R-divisor on
X such that KF +B +A is nef/U . Then:

(1) KF +B +A is semi-ample/U .
(2) If KF + B + A is Cartier, then OX(n(KF + B + A)) is globally generated/U for any

integer n≫ 0.

In particular, Theorem 1.6 solves [CS23a, Conjecture 4.1] which further assumes that B = ∆
and (X,F , B) is foliated dlt. We remark that [CHLX23, Theorem A] proved [CS23a, Conjecture
4.1] when (X,F , B) is Q-factorial foliated dlt but the non-Q-factorial case is much more difficult
to prove.

An immediate consequence of Theorems 1.5 and 1.6 is the finite generation of the log canonical
ring for lc polarized algebraically integrable foliations on klt varieties:

Theorem 1.7 (Finite generation of the log canonical rings with polarizations). Let (X,F , B)/U
be an lc algebraically integrable foliated triple such that (X,∆) is klt for some B ≥ ∆ ≥ 0. Let
A be an ample/U R-divisor on X such that B +A is a Q-divisor. Then the log canonical ring

R(X,KF +B +A) := ⊕+∞
m=0π∗OX(⌊m(KF +B +A)⌋)

is a finitely generated OU -algebra.

Another case when we have the existence of good minimal models is when X is projective
and the numerical dimension of the foliated triple is 0.

Theorem 1.8. Let (X,F , B) be a projective lc algebraically integrable foliated triple such that
(X,∆) is klt for some B ≥ ∆ ≥ 0. Assume that κσ(KF +B) = 0.

Then we may run a (KF +B)-MMP with scaling of an ample R-divisor and any such MMP
terminates with a minimal model (Xmin,Fmin, Bmin) of (X,F , B) such that KFmin

+Bmin ∼R 0.

Fano foliations and Mori dream spaces. As a consequence of Theorems 1.4 and 1.5, we
show that we can run MMP for any R-Cartier R-divisor on any klt projective variety with an
lc algebraically integrable Fano foliation structure, and any such MMP terminates with either
a good minimal model or a Mori fiber space. It implies that the ambient variety of an lc
algebraically integrable Fano foliation is a Mori dream space if the ambient variety is Q-factorial
klt.

Theorem 1.9. Let F be an lc algebraically integrable Fano foliation on a klt projective variety
X. Let D be an R-Cartier R-divisor on X. Then:

(1) We may run a D-MMP which terminates with either a good minimal model of D or a
Mori fiber space of D.

(2) X is a Mori dream space if it is Q-factorial.

In particular, D is semi-ample if it is nef, and the section ring R(X,D) is a finitely generated
C-algebra if D is a Q-divisor.

Theorem 1.9 also holds in the relative setting and for the foliated Fano type case. We refer
the readers to Theorem A.11 for the most general version of Theorem 1.9.

Minimal models in the sense of Birkar-Shokurov. We have studied the MMP for lc
algebraically integrable foliations on klt varieties in details in Theorems 1.2, 1.3, 1.4 and 1.5.
However, it is also interesting and important to consider the MMP for lc algebraically integrable
foliations when ambient varieties are not necessarily klt. They appear in birational geometry
naturally. For example, for a locally stable family f : (X,B) → Z, the foliation induced by
f is lc, but X may not be klt or even lc (the singularities of X can actually be very bad).
Recently, MMP for locally stable families has been established in [MZ23] when they study the
wall crossing for moduli of stable pairs.
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Unfortunately, we are unable to prove the contraction theorem or the existence of flips without
any assumption on the ambient variety. Therefore, it can be difficult to talk about minimal
models or Mori fiber spaces in this setting. One way to resolve this issue is to study minimal
models or Mori fiber spaces in the sense of Birkar-Shokurov, i.e. minimal models or Mori fiber
spaces which allow extraction of lc places (cf. [Sho96, Bir12]). We refer the readers to Definition
4.3 for details.

In this paper, we prove the following two results. First, an lc foliated triple polarized with an
ample divisor always has a minimal model or a Mori fiber space in the sense of Birkar-Shokurov.

Theorem 1.10. Let (X,F , B)/U be an lc algebraically integrable foliated triple and A ≥ 0 an
ample/U R-divisor on X. Then (X,F , B + A)/U has either a minimal model or a Mori fiber
space in the sense of Birkar-Shokurov.

Second, when the ambient variety is klt, we show that the existence of a minimal model or
a Mori fiber space in the sense of Birkar-Shokurov is equivalent to the termination of minimal
model program with scaling of ample divisors. While the latter obviously implies the former, to
prove the reverse is highly non-trivial, even for usual pairs (cf. [Bir12, Theorem 1.9(3)]).

Theorem 1.11. Let (X,F , B)/U be an lc algebraically integrable foliated triple. Assume that
(X,F , B)/U has a minimal model or a Mori fiber space in the sense of Birkar-Shokurov, and X
is potentially klt. Let A be an ample/U R-divisor on X. Then:

(1) Any (KF+B)-MMP/U with scaling of A terminates provided that the (KF+B)-MMP/U
with scaling of A exists.

(2) If there exists a klt pair (X,∆) such that B ≥ ∆ ≥ 0, then (X,F , B)/U has a minimal
model or a Mori fiber space.

A Shokurov-type polytope. Finally, as an important ingredient in the proof of our main
theorems, we prove the existence of a Shokurov-type polytope (cf. [BCHM10, Corollary 1.1.5])
for algebraically integrable foliations.

Theorem 1.12. Let (X,F , B :=
∑m

i=1 v
0
iBi)/Z be an lc algebraically integrable foliated triple

such that KF + B is nef/Z. Let v0 := (v01 , . . . , v
0
m). Then there exists an open subset U of the

rational envelope of v0 in Rm such that (X,F ,
∑m

i=1 viBi) is lc and KF +
∑m

i=1 viBi is nef/Z
for any (v1, . . . , vm) ∈ U .

Generalized foliated quadruples. Generalized foliated quadruples play an important role in
the proofs of the main theorems in many recent works (cf. [LLM23, LMX24, CHLX23]). In this
paper, generalized foliated quadruples are also crucially used due to the failure of Bertini-type
theorems for foliations. The generalized foliated quadruple version of all our main theorems
holds, although some of them require the nef part of the generalized foliated quadruple to be
NQC. We refer the readers to Appendix A for details.

For the convenience of the readers, we avoid using generalized foliated quadruples in the
statements and proofs of most of our results. We only essentially use this structure in Theorem
7.2 and its proof, and make remarks on why we need this structure in footnotes therein.

Main difficulties in the proof of the main theorems. Roughly speaking, [CHLX23,
Theorem A] established the MMP for algebraically integrable foliations that are Q-factorial
foliated dlt (which implies that the ambient variety is klt). However, Q-factorial foliated dlt
singularities might be too good to hope for in practice. Actually, [CHLX23] showed that (as
conjectured in [ACSS21]) such a foliation is induced by an equidimensional morphism f : X → Z
(not just a rational map). Moreover, (even though highly non-trivial) there exists an lc pair
structure (X,G) such that KF ∼f KX +G. Thanks to the cone theorem, the global KF -MMP
turns out to be over Z, hence is equivalent to a (KX + G)-MMP/Z whose theory is well-
established. Thus the authors of [CHLX23] were able to deduce many corresponding results.
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In general, things become much more complicated if the foliation is only induced by a
rational map, in which case we do not have an associated auxiliary pair structure to work
with. One natural idea is to consider the “dlt” modification (whose existence is proved in
[ACSS21, CHLX23]) g : X ′ → X such that g−1F is induced by a fibration f ′ : X ′ → Z ′

with some desired properties. As we have explained, it is very promising that corresponding
operations on X ′ can be conducted. The key point is how to descend them back to X. This
process is subtle because the modification g is not easy to control. For example, if we want to
show the semi-ampleness ofKF+A with ample A, the ampleness of A will not be preserved under
the modification since perturbation is not allowed due to the failure of Bertini-type theorems.
Probably, the best we could hope for is that the pullback of A under g stays ample on the
leaves of g−1F which are exactly (the reduction of) the fibers of f ′ : X ′ → Z ′. In this case, the
restrictions of g on the leaves are finite morphisms, but to descend semi-ampleness under finite
morphisms is quite subtle when the schemes (leaves of g−1F on X ′ and F on X) are not normal
(actually the properties of our leaves are even worse). Instead, it turns out that we need to
apply very deep and complicated MMP techniques (on X ′) to prove the desired semi-ampleness
results (e.g. base-point-free theorem) on X.

It is also important to notice that Fano foliations are never foliated dlt, and do not even
satisfy Property (∗). Actually if (X,F , B) is a projective lc foliated triple such that −(KF +B)
is ample, then F is not induced by a contraction (cf. [AD13, Theorem 5.1]). Moreover, many
Fano foliations are lc, and a lot of work contributed to the classification of lc Fano foliations on
smooth projective varieties (cf. [AD13, AD16]). Therefore, it is natural to consider the minimal
model program for lc algebraically integrable Fano foliations on smooth projective varieties (e.g.
Theorem 1.9).

Idea of the proof. The key idea of the proof is the following observation. Given two
contractions h : X ′ → X and f : X ′ → Z between normal quasi-projective varieties, there
exists a unique normal quasi-projective variety X̄ satisfying the following:

(1) h and f factor through X̄ .
(2) X̄ is “minimal” among all varieties satisfying (1). In other words, if there exists a variety

X ′′ such that h and f factor through X ′′, then the induced contractions X ′′ → X and
X ′′ → Z factor through X̄.

We call X̄ the core model of (h, f). It is natural and not difficult to observe the existence of
such a X̄ . For example, given two contractions X → Z0 and Z → Z0, then the normalization
of the main component of X ×Z0

Z, X̄ , is automatically the core model of (X̄ → X, X̄ → Z).
In many scenarios, X̄ → Z is viewed as a “base change” of X → Z0. For general contractions h
and f , the core model of (h, f) can be viewed as an analogue of such a base change but without
a base.

Pairs of contractions h : X ′ → X and f : X ′ → Z are very common in the study of
algebraically integrable foliations. Given an algebraically integrable foliation F on X, there
are many cases when h is a Q-factorial ACSS modification of F (or a (∗)-modification of F)
and f is a contraction which induces F ′ := h−1F . It is usually easier to study F ′ due to its
connection with an lc pair structure (X ′, B′ +G) (cf. [ACSS21, Proposition 3.6]). We will use
F ′ to study F .

The problem is that, when we study the minimal model program for F (e.g. contraction
theorem, existence of flips), we usually need to consider F together with a polarization of an
ample divisor A on X. However, A′ := h∗A is only big and nef and not ample. Moreover,
(X ′, B′ + G + A′) is only an lc pair polarized with a big and nef divisor, and we do not know
the existence of good minimal models for such pairs yet. It causes troubles for us to use the
minimal model program for (X ′, B′+G+A′) to study the minimal model program for KF +A.

Nevertheless, by using the core models we have introduced, we can resolve this problem. Let
X̄ be the core model of (h, f) with h̄ : X̄ → X, f̄ : X̄ → Z, and g : X ′ → X̄. Then:
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• Although Ā := h̄∗A is no longer ample, it is ample/Z.
• Let B̄ := g∗B′ and Ḡ := g∗G. Since g is a contraction over Z, (X̄, B̄ + Ḡ) is crepant to
(X ′, B′ +G) by the negativity lemma and thus it is lc.

In particular, X̄ not only has an lc pair structure associated to the foliation F̄ := h̄−1F (while
X does not necessarily have) but also preserves some information of X via the divisor Ā, at least
over Z. The core model X̄, instead of X ′, seems to be a more natural object for us to study
due to its uniqueness with respect to the base. Moreover, it preserves more core information of
X comparing to an arbitrary model X ′. This is why we call it as a “core model”. This is also
inspired by [MZ23, Proof of Theorem 1.5]. We study the basic properties of core models and its
relationship with foliations in Section 3.

In our case, the MMP/Z for (X̄, B̄ + Ḡ + Ā) with scaling of ample divisors behaves nicely.
Moreover, by our construction, (X̄, B̄ + Ḡ) has a close connection with the induced foliation F̄
on X̄, and we can show that the MMP/Z for KF̄ + B̄+ Ā with scaling of ample divisors behaves
nicely. By the cone theorem for algebraically integrable foliations ([ACSS21, Theorem 3.9]), any
(KF̄ + B̄+ Ā)-MMP is a (KF̄ + B̄+ Ā)-MMP/Z. Thus any (KF̄ + B̄+ Ā)-MMP with scaling of
ample divisors behaves nicely. Then we can use this fact to study the minimal model program
for KF + A with scaling of ample divisors, and hence for KF by adopting the some ideas from
[CS23a, CHLX23].

More precisely, the key idea of [CS23a, Proof of Theorem 3.2] is the following:

• We take a (∗)-model”1 of (X,F , B) which satisfies good properties. Achieving this
requires us to run the “first MMP” for a foliated log smooth model.

• We run the “second MMP” which contracts the strict transforms of the (KF+B)-negative
extremal rays. Termination of flips is needed here.

• We run the “third MMP” which contracts the strict transform of the exceptional divisor
of the (∗)-modification. Termination of flips is again needed here.

We follow the same idea to prove Theorems 1.2 and 1.3, but many arguments are different.
We do not need to run the “first MMP” and we shall directly use our core model X̄. We use
properties of the core model X̄ to show that the “second MMP” could terminate. Finally, we
can use the termination of MMP with scaling for klt generalized pairs of log general type to get
the termination of the “third MMP”.

There are several additional things to remark for our proof of Theorems 1.2 and 1.3.

(1) We need the minimal model program for generalized foliated quadruples because Bertini-
type theorems generally fail for algebraically integrable foliations. We need the concept
of generalized foliated quadruples to consider MMP with scaling of ample divisors in
more details. We need results on the minimal model program for generalized foliated
quadruples in [CHLX23].

(2) When the boundary B has irrational coefficients, we need to establish the existence of
a Shokurov-type polytope (Theorem 1.12) for algebraically integrable foliations in order
to show that the “third MMP” terminates. This is done in Section 6. Moreover, if we
consider the contraction theorem and the existence of flips for (non-NQC) generalized
foliated quadruples instead of foliated triples, the Shokurov-type polytope does not exist.
We need to resolve this issue by introducing and studying a special class of nef R-divisors,
namely “ϵ-nef R-divisors”. See Appendix B for details.

(3) When X is not Q-factorial, it can be tricky to run MMP on X̄ since X̄ may not be Q-
factorial either. In this case, we need to prove some results on the minimal model program
on X ′. Nevertheless, we can still use X̄ as an auxiliary variety to help us establish the
MMP on X ′, hence the “second MMP” on X ′. See Section 5 for details. Also, when
X is not Q-factorial, the arguments in [CS23a] no longer work for the existence of flips,

1They are called “Property (∗)-models” in [ACSS21] and the arXiv version of [CS23a]. Cascini suggested us
that the name “(∗)-models” is better.
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and we need an alternative argument. Our choice is to consider the ample model of a
special R-divisor over the base of the contraction. In this case, some basic properties on
different types of models of foliations need to be proved. See Section 4 for details.

Finally, we say a few more words about the proof of other main theorems. First, by using
core models, we establish an MMP on X̄ with scaling of the pullback of an ample divisor on X
in Section 5, and show that such a MMP terminates in some cases (Theorem 5.6). Theorem 1.10
follows from the establishment of such a MMP. Theorem 1.8 follows from the establishment of
such a MMP, the fact that movable divisors with zero numerical Iitaka dimension are numerically
trivial, and the abundance for numerically trivial algebraically integrable foliations.

To prove Theorems 1.4 and 1.5, we need to lift MMP to Q-factorial ACSS models. [CS23a,
Remark 3.3] briefly mentions such lifting for flips. We discuss the lifting of the MMP in more
details in Section 8, which allows divisorial contractions and non-Q-factorial MMP to be lifted.
More importantly, we show that MMP with scaling can also be lifted. This, together with the
results in Section 5, implies Theorems 1.4 and 1.5. Theorem 1.9 is a direct consequence of
Theorems 1.4 and 1.5, since any D-MMP is a (KF + (−KF + ϵD))-MMP for some 0 < ϵ ≪ 1
such that −KF + ϵD is ample. We remark that we need generalized foliated quadruples again
to prove these theorems due to the failure of Bertini-type theorems.

Finally, to prove Theorem 1.11, we need to show that the existence of minimal models in
the sense of Birkar-Shokurov for (X,F , B) is equivalent to the existence of minimal models of a
pair (X ′, B′ +G) which is related to (X,F , B). Therefore, we can use the known results on the
existence of minimal models for (X ′, B′ + G) to deduce Theorem 1.11. Such a relationship is
automatic when we have an equidimensional Property (∗) structure, but it is more complicated
when (X,F , B) does not satisfy Property (∗). The task is done in Section 4. A key observation
is to reinterpret an MMP/U which is also an MMP/Z as an MMP/ZU , where ZU is the core
model of (X → U,X → Z). The use of the auxiliary variety ZU will greatly help us transform
the (KF +B)-MMP into the (KX′ +B′ +G)-MMP and lead to the proof of Theorem 1.11.

Sketch of the paper. In Section 2 we recall some preliminary results on algebraically integrable
foliations and results in [CHLX23]. In Section 3 we introduce the concept of core models and
study its basic properties. In Section 4 we study different types of models for algebraically
integrable foliations. In Section 5 we use the concept of core models to study the MMP for
Q-factorial ACSS foliated triples polarized with the pullback of an ample divisor and prove
Theorem 1.10. In Section 6 we construct a Shokurov-type polytope for algebraically integrable
foliations and prove Theorem 1.12. In Section 7 we prove Theorems 1.2 and 1.3. In Section
8 we study the lifting of the minimal model program for algebraically integrable foliations to
Q-factorial ACSS models. In Section 9 we prove the rest of our main theorems for foliated
triples. In Section 10 we propose and discuss some remaining open problems on the minimal
model program for algebraically integrable foliations and prove some results that might be useful
for future applications. Finally, Appendices A and B focus on generalized foliated quadruple.
In Appendix A, we state and prove the generalized foliated quadruple version of our main
theorems. In Appendix B, we introduce the concept of ϵ-nefness, which is a replacement of the
Shokurov-type polytope for generalized foliated quadruples.

Acknowledgements. The authors would like to thank Caucher Birkar, Paolo Cascini, Guodu
Chen, Christopher D. Hacon, Jingjun Han, Junpeng Jiao, Yuchen Liu, Vyacheslav V. Shokurov,
Calum Spicer, Roberto Svaldi, Chenyang Xu, Qingyuan Xue, Ziwen Zhu and Ziquan Zhuang
for useful discussions. The third author has been partially supported by NSF research grants
no. DMS-1801851 and DMS-1952522, as well as a grant from the Simons Foundation (Award
Number: 256202).



Minimal model program for algebraically integrable foliations on klt varieties 9

2. Preliminaries

We will adopt the standard notations and definitions on MMP in [KM98, BCHM10] and
use them freely. For foliations and foliated triples, we adopt the notations and definitions in
[CHLX23] which generally align with [CS20, ACSS21, CS21] with possible minor differences.

2.1. Special notations.

Definition 2.1. A contraction is a projective morphism between varieties such that f∗OX = OY .

Notation 2.2. Let f : X !!" X ′ be a birational map between normal varieties. We denote by
Exc(f) the reduced divisor supported on the codimension one part of the exceptional locus of
f .

Notation 2.3. Let X be a normal variety and D,D′ two R-divisors on X. We define D∧D′ :=∑
P min{multP D,multP D′}P where the sum runs through all the prime divisors P on X. We

denote by SuppD the reduced divisor supported on D.

Definition 2.4. Let m be a positive integer and v ∈ Rm. The rational envelope of v is
the minimal rational affine subspace of Rm which contains v. For example, if m = 2 and

v =
(√

2
2 , 1−

√
2
2

)
, then the rational envelope of v is (x1 + x2 = 1) ⊂ R2

x1x2
.

Notation 2.5. A general choice of a real number a is a choice of a real number such that
a ̸∈ Q(Γ0) for a finite set Γ0 ⊂ R. Here Q(Γ0) is the field extension of Q by elements in Γ0. We
also say that a is general in R/Q.

2.2. Foliations.

Definition 2.6 (Foliations, cf. [ACSS21, CS21]). Let X be a normal variety. A foliation on X
is a coherent sheaf F ⊂ TX such that

(1) F is saturated in TX , i.e. TX/F is torsion free, and
(2) F is closed under the Lie bracket.

The rank of the foliation F is the rank of F as a sheaf and is denoted by rankF . The co-rank of
F is dimX−rankF . The canonical divisor of F is a divisor KF such that OX(−KF ) ∼= det(F).
If F = 0, then we say that F is a foliation by points.

Given any dominant map h : Y !!" X, we denote by h−1F the pullback of F on Y as
constructed in [Dru21, 3.2] and say that h−1F is induced by F . Given any birational map
g : X !!" X ′, we denote by g∗F := (g−1)−1F the pushforward of F on X ′ and also say that g∗F
is induced by F . We say that F is an algebraically integrable foliation if there exists a dominant
map f : X !!" Z such that F = f−1FZ , where FZ is the foliation by points on Z, and we say
that F is induced by f .

A subvariety S ⊂ X is called F-invariant if for any open subset U ⊂ X and any section
∂ ∈ H0(U,F), we have ∂(IS∩U ) ⊂ IS∩U , where IS∩U is the ideal sheaf of S ∩U . For any prime
divisor P on X, we denote ϵF (P ) := 1 if P is not F-invariant and ϵF (P ) := 0 if P is F-invariant.
For any prime divisor E over X, we define ϵF (E) := ϵFY (E) where h : Y !!" X is a birational
map such that E is on Y and FY := h−1F . For any R-divisor D on X, we denote by DF the
reduced divisor supported on the union of non-F-invariant components of D.

Definition 2.7 (Tangent, cf. [ACSS21, Section 3.4]). Let X be a normal variety, F a foliation
on X, and V ⊂ X a subvariety. Suppose that F is a foliation induced by a dominant rational
map X !!" Z. We say that V is tangent to F if there exists a birational morphism µ : X ′ → X,
an equidimensional contraction f ′ : X ′ → Z, and a subvariety V ′ ⊂ X ′, such that

(1) µ−1F is induced by f ′, and
(2) V ′ is contained in a fiber of f ′ and µ(V ′) = V .
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Definition 2.8 (Foliated triples). A foliated triple (X,F , B)/U consists of a normal quasi-
projective variety X, a foliation F on X, an R-divisor B ≥ 0 on X, and a projective morphism
X → U , such that KF +B is R-Cartier.

If F = TX , then we may drop F and say that (X,B)/U is a pair. If U is not important,
then we may drop U . If F is algebraically integrable, then we say that (X,F , B) is algebraically
integrable. If X is Q-factorial, then we say that (X,F , B) is Q-factorial. If we allow B to have
negative coefficients, then we shall add the prefix “sub-”. If B is a Q-divisor then we may add
the prefix “Q-”.

Definition 2.9 (Singularities). Let (X,F , B) be a foliated triple. For any prime divisor E over
X, let f : Y → X be a birational morphism such that E is on Y , and suppose that

KFY +BY := f∗(KF +B)

where FY := f−1F . We define a(E,F , B) := −multE BY to be the discrepancy of E with
respect to (X,F , B). If F = TX , then we define a(E,X,B) := a(E,F , B) which is the usual
discrepancy for pairs.

We say that (X,F , B) is lc (resp. klt) if a(E,F , B) ≥ −1 (resp. > −1) for any prime divisor
E over X. For foliated sub-triples, we define singularities in the same way and we shall add the
prefix “sub-” for the descriptions of singularities.

An lc place of (X,F , B) is a prime divisor E over X such that a(E,F , B) = −ϵF (E). An lc
center of (X,F , B) is the center of an lc place of (X,F , B) on X.

We remark that our definition of lc and klt singularities has some differences compared with
the classical definition [McQ08, CS20, ACSS21, CS21, CHLX23], where the −1 in the inequality
is replaced with −ϵF (E). The next lemma shows that the two definitions on lc coincide so we
are free to use results on “lc foliations” in literature. Moreover, there are good reasons why
we refine the definition of klt singularities, and we plan to use this new definition in all future
works. We refer the readers to Remark 10.1 for details.

Lemma 2.10. Let (X,F , B) be a foliated sub-triple. The following two conditions are equivalent:

(1) (X,F , B) is sub-lc.
(2) a(E,F , B) ≥ −ϵF (E) for any prime divisor E over X.

Proof. It is clear that (2) implies (1) so we only need to show that (1) implies (2). Suppose the
lemma does not hold. Then there exists a prime divisor E over X such that E is F-invariant
and a(E,F , B) < 0. Possibly replacing X by a high model, we may assume that E is on X and
X is smooth. Thus E is a component of B and multE B > 0. This contradicts [CS21, Remark
2.3]. #

Definition 2.11 (Potentially klt). Let X be a normal quasi-projective variety. We say that X
is potentially klt if (X,∆) is klt for some R-divisor ∆ ≥ 0.

Lemma 2.12. Let (X,B)/U be an lc pair such that X is potentially klt and A an ample/U
R-divisor. Then there exists a klt pair (X,∆) such that ∆ ∼R,U B +A.

Proof. There exist a klt pair (X,∆0) and a real number ϵ > 0 sufficiently small such that H0 :=
A+ϵ(B−∆0) is ample/U . Let H be a general member in |H0|R/U . Then∆ := (1−ϵ)B+ϵ∆0+H
satisfies our requirements. #

2.3. Special algebraically integrable foliations.

Definition 2.13 (Foliated log resolutions). We refer the readers to [CHLX23, Definition 6.2.1]
or [ACSS21, 3.2. Log canonical foliated pairs] for the definition of being foliated log smooth.

Let X be a normal quasi-projective variety, B an R-divisor on X, and F an algebraically
integrable foliation on X. A foliated log resolution of (X,F , B) is a birational morphism h :
X ′ → X such that

(X ′,F ′ := h−1F , B′ := h−1
∗ B + Exc(h))
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is foliated log smooth. The existence of foliated log resolutions for any such (X,F , B) is
guaranteed by [CHLX23, Lemma 6.2.4].

Definition 2.14 (Property (∗) foliations, [ACSS21, Definition 3.8], [CHLX23, Definition 7.2.2]).
Let (X,F , B) be a foliated triple. Let G ≥ 0 be a reduced divisor on X and f : X → Z a
contraction. We say that (X,F , B;G)/Z satisfies Property (∗) if the following conditions hold.

(1) F is induced by f and G is an F-invariant divisor.
(2) f(G) is of pure codimension 1, (Z, f(G)) is log smooth, and G = f−1(f(G)).
(3) For any closed point z ∈ Z and any reduced divisor Σ ≥ f(G) on Z such that (Z,Σ) is

log smooth near z, (X,B +G+ f∗(Σ− f(G))) is lc over a neighborhood of z.

We say that f , Z, and G are associated with (X,F , B).

Proposition 2.15 (cf. [ACSS21, Proposition 3.6], [CHLX23, Proposition 7.3.6]). Let (X,F , B)
be a foliated triple. Let G ≥ 0 be a reduced divisor on X and f : X → Z an equidimensional
contraction, such that (X,F , B;G)/Z satisfies Property (∗) and B is horizontal/Z. Then

KF +B ∼Z KX +B +G.

Definition 2.16. Let f : X → Z be a projective morphism between normal quasi-projective
varieties and G ≥ 0 an R-divisor on X. We say that G is super/Z if there exist ample Cartier
divisors H1, . . . ,Hm on Z such that G ≥

∑m
i=1 f

∗Hi, where m := 2dimX + 1.

Definition 2.17 (ACSS, cf. [CHLX23, Definitions 5.4.2, 7.2.2, 7.2.3]). Let (X,F , B) be an lc
foliated triple, G ≥ 0 a reduced divisor on X, and f : X → Z a contraction. We say that
(X,F , B;G)/Z is ACSS if the following conditions hold:

(1) (X,F , B;G)/Z satisfies Property (∗).
(2) f is equidimensional.
(3) There exists an R-Cartier R-divisor D ≥ 0 on X, such that Supp{B} ⊂ SuppD, and for

any reduced divisor Σ ≥ f(G) such that (Z,Σ) is log smooth,

(X,B +D +G+ f∗(Σ− f(G)))

is qdlt (cf. [dFKX17, Definition 35]).
(4) For any lc center of (X,F , B) with generic point η, over a neighborhood of η,

(a) η is the generic point of an lc center of (X,F , ⌊B⌋), and
(b) f : (X,B +G)→ (Z, f(G)) is a toroidal morphism,

If (X,F , B;G)/Z is ACSS and G is super/Z, then we say that (X,F , B;G)/Z is super ACSS. If
(X,F , B;G)/Z is (super) ACSS, then we say that (X,F , B)/Z and (X,F , B) are (super) ACSS.

2.4. Birational maps in MMP.

Definition 2.18. Let X → U be a projective morphism from a normal quasi-projective variety
to a variety. Let D be an R-Cartier R-divisor on X and φ : X !!" X ′ a birational map/U . Then
we say that X ′ is a birational model of X. We say that φ is D-non-positive (resp. D-negative,
D-trivial, D-non-negative, D-positive) if the following conditions hold:

(1) φ does not extract any divisor.
(2) D′ := φ∗D is R-Cartier.
(3) There exists a resolution of indeterminacy p : W → X and q : W → X ′, such that

p∗D = q∗D′ + F

where F ≥ 0 (resp. F ≥ 0 and Supp p∗F = Exc(φ), F = 0, 0 ≥ F , 0 ≥ F and
Suppp∗F = Exc(φ)).

Definition 2.19. Let X → U be a projective morphism from a normal quasi-projective variety
to a variety. Let D be an R-Cartier R-divisor on X and f : X → Z a contraction/U . We
say that f is a D-Mori fiber space/U if f is a contraction of a D-negative extremal ray/U and
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dimX > dimZ. If f : X → Z is a D-Mori fiber space/U for some R-Cartier R-divisor D, then
we say that f : X → Z is a Mori fiber space/U . If f is obviously a contraction/U or the “/U”
property is not important, then we may drop the “/U” in the definitions.

Definition 2.20. Let X → U be a projective morphism from a normal quasi-projective variety
to a variety. Let D be an R-Cartier R-divisor on X, φ : X !!" X ′ a D-negative map/U and
D′ := φ∗D.

(1) We say that X ′ is a minimal model/U of D if D′ is nef/U .
(2) We say that X ′ is a good minimal model/U of D if D′ is semi-ample/U .
(3) A contraction/U f : X ′ → Z is called a Mori fiber space/U of D if f is a D′-Mori fiber

space/U .

Lemma 2.21. Let X → U be a projective morphism from a normal quasi-projective variety to
a variety and F an extremal face in NE(X/U). Let H1,H2 be two supporting functions/U of F
and φ : X !!" X ′ an H1-trivial birational map/U . Then φ is H2-trivial.

Proof. Let p : W → X and q : W → X ′ be a resolution of indeterminacy. Then there exists a
unique extremal face FW of NE(W/U) such that p∗FW = F , NE(W/X) ⊂ FW , and p∗H1, p∗H2

are both supporting functions of FW .
Since φ is H1-trivial, q is p∗H1-trivial. Therefore, q only contracts p∗H1-trivial extremal

rays in NE(W/U), so q only contracts p∗H2-trivial extremal rays in NE(W/U). Thus q is
p∗H2-trivial, so φ is H2-trivial. #

Lemma 2.22. Let X → U be a projective morphism from a normal quasi-projective variety to a
variety. Let A,B be two R-divisors on X and let t be a real number such that t is general in R/Q
and A+ tB is R-Cartier. Then A,B are R-Cartier, and any (A+ tB)-trivial map φ : X !!" X ′

is A-trivial and B-trivial.

Proof. Let A′ and B′ be the images of A,B on X ′ respectively. Then A′ + tB′ is R-Cartier.
By [HLS19, Lemma 5.3], A,B,A′, B′ are R-Cartier. Let p : W → X and q : W → X ′ be a
resolution of indeterminacy, then

p∗A+ tp∗B = p∗(A+ tB) = q∗(A′ + tB′) = q∗A′ + tq∗B′.

By [HLS19, Lemma 5.3], p∗A = q∗A′ and p∗B = q∗B′. The lemma follows. #

2.5. Relative Nakayama-Zariski decompositions.

Definition 2.23. Let π : X → U be a projective morphism from a normal variety to a variety,
D a pseudo-effective/U R-Cartier R-divisor on X, and P a prime divisor on X. We define
σP (X/U,D) as in [LX23a, Definition 3.1] by considering σP (X/U,D) as a number in [0,+∞) ∪
{+∞}. We define Nσ(X/U,D) =

∑
Q σQ(X/U,D)Q where the sum runs through all prime

divisors on X and consider it as a formal sum of divisors with coefficients in [0,+∞) ∪ {+∞}.

Lemma 2.24 ([LX23a, Lemma 3.4(2)(3), Lemma 3.7(4)]). Let π : X → U be a projective
morphism from a normal variety to a variety and D a pseudo-effective/U R-Cartier R-divisor
on X. Let f : Y → X be a projective birational morphism. Then:

(1) For any exceptional/X R-Cartier R-divisor E ≥ 0 and any prime divisor P on Y , we
have

σP (Y/U, f
∗D + E) = σP (Y/U, f

∗D) + multP E.

(2) For any exceptional/X R-Cartier R-divisor E ≥ 0 on Y , we have

Nσ(X/U,D) = f∗Nσ(Y/U, f
∗D + E).

(3) SuppNσ(X/U,D) coincides with the divisorial part of B−(X/U,D).
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Lemma 2.25. Let X → U be a projective morphism from a normal variety to a variety and
φ : X !!" X ′ a birational map/U . Let D be an R-Cartier R-divisor on X such that φ is
D-negative and D′ := φ∗D. Then:

(1) The divisors contracted by φ are contained in SuppNσ(X/U,D).
(2) If D′ is movable/U , then SuppNσ(X/U,D) is the set of all φ-exceptional divisors.

Proof. Let p : W → X and q : W → X ′ be a resolution of indeterminacy. Then

p∗D = q∗D′ + E

for some E ≥ 0 that is exceptional/X ′ and SuppE contains the strict transforms of all φ-
exceptional divisors on W . By Lemma 2.24(1),

SuppE ⊂ SuppNσ(W/U, q∗D′ + E) = SuppNσ(W/U, p∗D),

By Lemma 2.24(2), Suppp∗E ⊂ SuppNσ(X/U,D). Therefore, any φ-exceptional divisor is
contained in SuppNσ(X/U,D).

If D′ is movable/U , then by Lemma 2.24(2), q∗Nσ(W/U, q∗D′ + E) = 0. Thus

SuppNσ(W/U, q∗D′ +E)

is q-exceptional. By Lemma 2.24(2) again, we have SuppNσ(X/U,D) = Supp p∗Nσ(W/U, q∗D′+
E), whose components are all φ-exceptional. (2) follows from (1). #

2.6. Generalized pairs and generalized foliated quadruples.

Remark 2.26. Generalized pairs ([BZ16, Definition 1.4]) and generalized foliated quadruples
([LLM23, Definition 1.2],[CHLX23, Definition 3.4.3]) will be inevitably used in this paper. They
are crucial for our proofs since Bertini-type theorems fail for foliations (cf. [DLM23, Example
3.4]). We need this notion to discuss the structures induced by MMP in a more accurate manner.

For b-divisors and generalized pairs, we will follow the notations and definitions in [BZ16,
HL23]. For generalized foliated quadruples, we shall follow [CHLX23].

Generalized pairs and generalized foliated quadruples are very technical concepts. To make
the statements in this paper more concise, for most results whose proofs for generalized foliated
quadruples are similar to the proofs for foliated triples, we will only prove the foliated triple
version and will not prove the generalized foliated quadruple version. We shall state the
corresponding generalized foliated quadruple version in Appendix A. We will freely use results
in [CHLX23] on generalized foliated quadruples.

We need some results on NQC R-divisors which are related to generalized pairs and generalized
foliated quadruples.

Definition 2.27 (NQC). Let X → U be a projective morphism from a normal quasi-projective
variety to a variety. Let D be a nef R-Cartier R-divisor on X and M a nef b-divisor on X.

We say that D is NQC/U if D =
∑

diDi, where each di ≥ 0 and each Di is a nef/U Cartier
divisor. We say that M is NQC/U if M =

∑
µiMi, where each µi ≥ 0 and each Mi is a nef/U

Cartier b-divisor.

Lemma 2.28 (cf. [BZ16, Lemma 4.4(3)]). Let (X,B)/U be a Q-factorial lc pair and L an
NQC/U R-divisor on X. Assume that X is klt. Then there exists a positive real number l0 such
that any sequence of steps of a (KX +B + lL)-MMP/U is L-trivial for any l > l0.

Lemma 2.29. Let (X,F , B)/U be an lc algebraically integrable foliated triple and D a nef/U
R-divisor on X such that D − (KF +B) is ample/U . Then D is NQC/U .

Proof. We write D =
∑c

i=1 riDi, where r1, . . . , rc are linearly independent over Q and each Di

is a Cartier divisor. We define D(v) :=
∑c

i=1 viDi for any v = (v1, . . . , vc) ∈ Rc. By [HLS19,
Lemma 5.3], D(v) is R-Cartier for any v ∈ Rc.
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Let L := D− (KF +B). Since ample/U is an open condition, there exists an open set V ∋ r

in Rc, such that 1
2L+D(v)−D is ample/U for any v ∈ V .

By [CHLX23, Theorem 2.3.1], there exist finitely many
(
KF +B + 1

2L
)
-negative extremal

rays/U R1, . . . , Rl, and Rj = R+[Cj] for some curve Cj . Since D is nef, D · Cj ≥ 0 for each j.
Thus possibly shrinking V , we may assume that for any v ∈ V , we have that D(v) · Cj > 0 for
any j such that D ·Cj > 0. Since r1, . . . , rc are linearly independent over Q, for any j such that
D · Cj = 0, we have D(v) · Cj = 0 for any v ∈ Rc. Therefore, D(v) · Cj ≥ 0 for any j and any
v ∈ V .

By the cone theorem [CHLX23, Theorem 2.3.1], for any curve C on X, we may write [C] =
η +

∑l
i=1 ai[Ci] where a1, . . . , al ≥ 0 and η ∈ NE(X/U)KF+B+ 1

2
L≥0. For any v ∈ V , since

D(v) · η =

(
KF +B +

1

2
L

)
· η +

(
1

2
L+D(v)−D

)
· η ≥ 0,

D(v) ·C ≥ 0. Therefore, D(v) is nef/U for any v ∈ V . We let v1, . . . ,vc+1 ∈ V ∩Qc be rational
points such that r is in the interior of the convex hull of v1, . . . ,vc+1. Then there exist positive
real numbers a1, . . . , ac+1 such that

∑c+1
i=1 ai = 1 and

∑c+1
i=1 aivi = r. Since D(vi) is a nef/U

Q-divisor for each i and D =
∑c+1

i=1 aiD(vi), D is NQC/U . #

Lemma 2.30. Let (X,F , B)/U be an lc algebraically integrable foliated triple and D an R-
divisor on X such that KF +B +D is NQC/U . Then there exists δ0 ∈ (0, 1) such that for any
δ ∈ (0, δ0), any (KF +B + (1− δ)D)-non-positive extremal ray/U is (KF +B +D)-trivial.

Proof. Let π : X → U be the induced morphism. Since KF +B +D is NQC/U , there exists a
positive real number ϵ such that (KF +B +D) · C ≥ ϵ for any curve C such that π(C) = {pt}
and (KF +B +D) · C > 0.

Let d := dimX. We show that δ0 := ϵ
2d+ϵ satisfies our requirements. Let R be a (KF +B +

(1−δ)D)-non-positive extremal ray/U . If R is not (KF+B+D)-trivial, then R is (KF+B+D)-
positive, hence (KF + B)-negative. By the length of extremal rays [CHLX23, Theorem 2.3.1],
R is spanned by a curve C such that π(C) = {pt} and 0 < −(KF + B) · C ≤ 2d. Thus for any
δ ∈ (0, δ0),

0 ≥ (KF +B + (1− δ)D) · C = (1− δ)(KF +B +D) · C + δ(KF +B) · C

≥ (1− δ)ϵ− 2dδ > ϵ− (2d + ϵ)δ0 = 0,

which is not possible. #

3. Core models

The goal of this section is to introduce two new types of birational models for algebraically
integrable foliations, namely core models and simple models. We shall also recall the definition
of ACSS models defined in [CHLX23, DLM23].

Roughly speaking, simple models are birational models of algebraically integrable foliations
that are weaker than “(∗)-models but still have potentially lc pair structures, while core models
are unique simple models which satisfy certain universal property. The use of core models is
crucial for the proof of our main theorems.

3.1. Core models for two contractions.

Definition-Lemma 3.1. Let X ′,X,Z be normal quasi-projective varieties and h : X ′ → X,
f : X ′ → Z contractions. Then there exists a unique normal quasi-projective variety X̄ up to
isomorphisms with two contractions h̄ : X̄ → X and f̄ : X̄ → Z satisfying the following.

(1) For any ample R-divisor A on X, h̄∗A is ample/Z.
(2) There exists a contraction g : X ′ → X̄ such that h̄ ◦ g = h and f̄ ◦ g = f .
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The variety X̄ is called the core model of (h, f) associated with (h̄, f̄).
Moreover, for any dominant map φ : X ′ !!" X ′′ such that K(X ′′) is algebraically closed in

K(X ′) (e.g. φ is a birational map or a contraction), and any contractions h′′ : X ′′ → X and
f ′′ : X ′′ → Z such that h′′ ◦ φ = h and f ′′ ◦ φ = f , X̄ is the core model of (h′′, f ′′) associated
with (h̄, f̄).

Proof. Step 1. In this step we construct h̄, f̄ , g which satisfy (2) such that (1) holds for a fixed
ample R-divisor A, and X̄ is unique. Let A be a fixed ample R-divisor on X. Then h∗A is
semi-ample, hence semi-ample/Z. Let g : X ′ → X̄ be the ample model/Z of h∗A. Then there
exists an induced contraction f̄ : X̄ → Z. Since the ample model of h∗A is h : X ′ → X, we have
an induced contraction h̄ : X̄ → X. We denote it by h̄. By the uniqueness of ample models, X̄
is unique.

Step 2. In this step we show that (1) holds for any ample R-divisor. Suppose that there
exists an ample R-divisor H on X such that h̄∗H is not ample/Z. Then by applying Step 1 to
H, h̄, f̄ , there exist contractions g′ : X̄ → X̄ ′, h̄′ : X̄ ′ → X, and f̄ ′ : X̄ ′ → Z such that h̄′∗H is
ample/Z. Since h̄∗H is not ample/Z, g′ is not an isomoprhism. Since g′ is a contraction/Z and
h̄∗A = g′∗h̄′∗A is ample/Z, g′ is finite and thus an isomorphism, which is a contradiction.

Step 3. In this step we prove the moreover part. There exist a birational morphism p : W → X ′

from a normal quasi-projective variety W and a projective surjective morphism q : W → X ′′

such that q = φ ◦p. Since K(X ′′) is algebraically closed in K(X ′), q is a contraction. Let X̄ ′′ be
the core model of (h′′, f ′′) associated with (h̄′′, f̄ ′′) and g′′ : X ′′ → X̄ ′′ the induced contraction.
Since both g ◦ p and g′′ ◦ q are ample models/Z of (h ◦ p)∗A = (h′′ ◦ q)∗A, the ample model/Z
of h∗A is isomoprhic to the ample model/Z of h′′∗A. Thus X̄ is the core model of (h′′, f ′′)
associated with (h̄, f̄). #

3.2. Core models for algebraically integrable foliations.

Definition 3.2 (Simple modifications). Let (X,F , B) and (X ′,F ′, B′) be two algebraically
integrable foliated triples and h : X ′ → X a birational morphism. Let f : X ′ → Z be a
contraction and G a reduced divisor on X ′. We say that h : (X ′,F ′, B′;G)/Z → (X,F , B) is a
simple modification if the following conditions hold.

(1) F ′ := h−1F and B′ := h−1
∗ (B ∧ SuppB) + Exc(h)F

′

.
(2) (X ′,F ′, B′) is lc.
(3) a(E,F , B) ≤ −ϵF (E) for any h-exceptional prime divisor E.
(4) KF ′ +B′ ∼Z KX′ +B′ +G.
(5) (X ′,F ′, B′;G)/Z satisfies Property (∗).

We say that h : (X ′,F ′, B′, G)/Z → (X,F , B) is an ACSS modification if it is a simple
modification and (X ′,F ′, B′;G)/Z is ACSS.

We say that h : (X ′,F ′, B′, G)/Z → (X,F , B) is a core modification if it is a simple
modification and h∗A is ample/Z for any ample R-divisor A on X.

If h : (X ′,F ′, B′, G)/Z → (X,F , B) is a simple (resp. ACSS, core) modification, then we also
say that h is a simple (resp. ACSS, core) modification of (X,F , B).

Definition 3.3 (Core models and ACSS models). Let (X,F , B) be an algebraically integrable
foliated triple and h : (X ′,F ′, B′, G)/Z → (X,F , B) a simple (resp. ACSS, core) modification.

We say that (X ′,F ′, B′;G)/Z, (X ′,F ′, B′)/Z, and (X ′,F ′, B′) are simple (resp. ACSS, core)
models of (X,F , B). Moreover, we say that h is

(1) Q-factorial if X ′ is Q-factorial,
(2) proper if the F-invariant part of SuppExc(h) is contained in SuppG,
(3) super if G is super/Z.

We will frequently use the following result on the existence of ACSS models:
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Theorem 3.4 ([CHLX23, Theorem 2.5.1],[ACSS21, Theorem 3.10]). Let (X,F , B) be an lc al-
gebraically integrable foliated triple. Then (X,F , B) has an ACSS model h : (X ′,F ′, B′;G)/Z →
(X,F , B) that is Q-factorial, proper and super.

Lemma 3.5. Let (X,F , B) be an lc algebraically integrable foliated triple and let h :
(X ′,F ′, B′;G)/Z → (X,F , B) be a simple model. Let f : X ′ → Z be the associated contraction
and let X̄ be the core model of (h, f) associated with (h̄, f̄). Let g : X ′ → X̄ be the induced
birational morphism, F̄ := g∗F ′, B̄ := g∗B′, and Ḡ := g∗G.

Assume that f is equidimensional. Then:

(1) KF ′ +B′ = g∗(KF̄ + B̄).
(2) KX′ +B′ +G = g∗(KX̄ + B̄ + Ḡ).
(3) h̄ : (X̄, F̄ , B̄; Ḡ)/Z → (X,F , B) is a core model.
(4) If h : (X ′,F ′, B′;G)/Z → (X,F , B) is proper (resp. super), then h̄ : (X̄, F̄ , B̄; Ḡ)/Z →

(X,F , B) is proper (resp. super).

Proof. (1) Let KF̄ + B̄′ := h̄∗(KF +B). Then

KF̄ + B̄ = g∗(KF ′ +B′) = g∗h
∗(KF +B) = g∗g

∗(KF̄ + B̄′) = KF̄ + B̄′.

Therefore, B̄′ = B̄, so KF ′ +B′ = g∗(KF̄ + B̄).
(2) By Proposition 2.15, we have

KX′ +B′ +G ∼Z KF ′ +B′ = g∗(KF̄ + B̄) ∼R,X̄ 0.

Since g is a birational morphism/Z,

KX′ +B′ +G ∼R,X̄ 0.

By applying the negativity lemma twice, we have

KX′ +B′ +G = g∗g∗(KX′ +B′ +G) = g∗(KX̄ + B̄ + Ḡ).

(3) Since X̄ is the core model of (h, f), we only need to show that h̄ : (X̄, F̄ , B̄; Ḡ)/Z →
(X,F , B) is a simple model by checking each condition of Definition 3.2.

Definition 3.2(1): By our construction, F̄ = h̄−1F and B̄ = h̄−1
∗ B + Exc(h̄)F̄ .

Definition 3.2(2): By (1), KF̄ + B̄ = h̄∗(KF +B). Since (X,F , B) is lc, (X̄, F̄ , B̄) is lc.
Definition 3.2(3): Since any h̄-exceptional divisor is also h-exceptional, it follows from our

construction.
Definition 3.2(4): It follows from (1) and (2).
Definition 3.2(5): We only need to check Definition 2.14 for (X̄, F̄ , B̄, Ḡ)/Z. Definition

2.14(1): Since F ′ is induced by f , F̄ is induced by f̄ . Since G is F ′-invariant, Ḡ is F̄-invariant.
Definition 2.14(2): (Z, f(G) = f̄(Ḡ)) is log smooth by assumption. Since G = f−1(f(G)),
Ḡ = f̄−1(f̄(G)). Definition 2.14(3): For any closed point z ∈ Z and any reduced divisor
Σ ≥ f̄(Ḡ) on Z such that (Z,Σ) is log smooth near z, (X ′, B′ + f∗(Σ − f̄(Ḡ))) is lc over a
neighborhood of z. By (2),

KX′ +B′ + f∗(Σ− f(G)) = g∗(KX̄ + B̄ + f̄∗(Σ− f̄(Ḡ))),

so (X̄, B̄ + f̄∗(Σ− f̄(Ḡ))) is lc over a neighborhood of z.
(4) It follows from the definitions of being proper or super. #

Remark 3.6. [ACSS21, CS23a] define “(∗)-models” and [CHLX23] defines “great ACSS
models”. We do not need these models in this paper. Nevertheless, we provide the readers
with the following table on the properties of different types of models. Note that “(∗)-models”
in [ACSS21] and [CS23a] are defined differently.

Lemma 3.7. Let (X,F , B) be an lc algebraically integrable foliated triple and let h :
(X ′,F ′, B′;G)/Z → (X,F , B) be a proper simple model. If X is potentially klt, then X ′ is
potentially klt.
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Table 1. Different types of simple models

Q-factorial Proper Super X ′ → Z equidim (X ′, B′ +G) X ′

Simple models N N N N lc lc•

Core models N N N N lc lc•

(∗)-models ([ACSS21]) N N N Y lc klt
ACSS models N N N Y qdlt klt•

(∗)-models ([CS23a]) Y Y N Y lc klt
Great ACSS models N Y Y Y qdlt klt•

Y: Yes. N: Not necessarily true. •: holds when X ′ is Q-factorial.

Proof. Let (X,∆) be a klt pair and let KX′ +∆̃′ := h∗(KX +∆). Then (X ′, ∆̃′) is sub-klt. Since
(X ′, B′ +G) is lc, (X ′, δ∆̃′ + (1− δ)(B′ +G)) is sub-klt for any δ ∈ (0, 1). Since G contains all
h-exceptional prime divisors that are F ′-invariant, and since SuppB′ contains all h-exceptional
prime divisors that are not F ′-invariant, we have δ∆̃′ + (1− δ)(B′ +G) ≥ 0 for any 0 < δ ≪ 1.
Therefore, (X ′, δ∆̃′ + (1− δ)(B′ +G)) is klt for any 0 < δ ≪ 1. In particular, X ′ is potentially
klt. #

4. Models for foliations

The goal of this section is to introduce and study the basic behaviors of different types of
models for foliated triples: weak lc models, minimal models, good minimal models, etc. We
will also introduce minimal models in the sense of Birkar-Shokurov and log minimal models for
foliations. Results in this section are similar to results in [Bir12, Section 2] and [HL23, Section
3] with some differences as we need to take invariant lc centers into consideration.

4.1. Definitions of minimal models and Mori fiber spaces.

Remark 4.1. In the classical definition of models, “log minimal model”,“good minimal model”,
or “log terminal model” (cf. [BCHM10, Bir12]) usually requires that the model is Q-factorial
dlt. This is because the initial structure on which we start running the MMP is usually Q-
factorial dlt. For foliations this is replaced by the condition “Q-factorial ACSS” [CHLX23].
However, since the singularities we are going to come up with in this paper is usually worse
than Q-factorial ACSS, we have to change these definitions a little bit in order to deal with
worse singularities. On the other hand, we still want to consider models of the objects we study
that have nice singularities after possibly extracting some lc places. Considering all these issues,
we will slightly change the notations in previous literature and define different models in the
following way:

• For models requiring good singularities (e.g. Q-factorial ACSS), we always keep the
word “log”. We always allow extraction of lc centers when considering these models.

• For models without these strict singularity conditions (e.g. only requiring lc), we shall
not use the word “log”. Moreover, if we allow extraction of lc centers, then we shall add
the prefix “bs-” or write “in the sense of Birkar-Shokurov”.

Definition 4.2 (Log birational model). Let (X,F , B)/U be a foliated triple, φ : X !!" X ′ a
birational map over U , E := Exc(φ−1) the reduced φ−1-exceptional divisor, and F ′ := φ∗F .
Assume that a(D,F , B) ≤ −ϵF (D) for any component D of E. We let

B′ := φ∗B +
∑

D

(−a(D,F , B))E

and say that (X ′,F ′, B′)/U is a log birational model of (X,F , B)/U , where the sum runs through
all components of E.
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Definition 4.3 (Minimal models). Let (X,F , B)/U be a foliated triple and (X ′,F ′, B′)/U a
log birational model of (X,F , B)/U such that KF ′ +B′ is nef/U .

(1) We say that (X ′,F ′, B′)/U is a bs-weak lc model or weak lc model in the sense of Birkar-
Shokurov of (X,F , B)/U , if for any prime divisor D on X which is exceptional over X ′,

a(D,F , B) ≤ a(D,F ′, B′).

(2) We say that (X ′,F ′, B′)/U is a bs-minimal model or minimal model in the sense of
Birkar-Shokurov of (X,F , B)/U , if for any prime divisor D on X which is exceptional
over X ′,

a(D,F , B) < a(D,F ′, B′).

(3) We say that (X ′,F ′, B′)/U is a bs-semi-ample model or semi-ample model in the sense of
Birkar-Shokurov of (X,F , B)/U if it is a bs-weak lc model of (X,F , B)/U and KF ′ +B′

is semi-ample/U .
(4) We say that (X ′,F ′, B′)/U is a bs-good minimal model or good minimal model in the

sense of Birkar-Shokurov of (X,F , B)/U if it is a bs-minimal model of (X,F , B)/U and
KF ′ +B′ is semi-ample/U .

If, in addition, the induced birational map X !!" X ′ does not extract any divisor, then we
say remove the initial “bs-” or the phrase “in the sense of Birkar-Shokurov” in the previous
definitions.

(5) We say that (X ′,F ′, B′)/U is a log minimal model of (X,F , B)/U if it is a bs-minimal
model of (X,F , B) and (X ′,F ′, B′) is Q-factorial ACSS.

(6) We say that (X ′,F ′, B′)/U is a good log minimal model of (X,F , B)/U if it is a log
minimal model of (X,F , B) and KF ′ +B′ is semi-ample/U .

We remark that, similar to [CHLX23], the definition of “log minimal model” in our paper
does not coincide with the classical definition with F = TX as Q-factorial ACSS is equivalent
to Q-factorial qdlt instead of Q-factorial dlt when F = TX .

Definition 4.4 (Mori fiber space). Let (X,F , B)/U be a foliated triple and let (X ′,F ′, B′)/U
be a log birational model of (X,F , B)/U . Let f : X ′ → Z be a (KF ′ +B′)-Mori fiber space/U .

(1) We say that (X ′,F ′, B′)→ Z is a bs-Mori fiber space, or a Mori fiber space in the sense
of Birkar-Shokurov of (X,F , B)/U , if for any prime divisor D on X which is exceptional
over X ′,

a(D,F , B) < a(D,F ′, B′).

(2) We say that (X ′,F ′, B′) → Z is a Mori fiber space of (X,F , B)/U if (X ′,F ′, B′) → Z
is a bs-Mori fiber space of (X,F , B)/U and the induced birational map X !!" X ′ does
not extract any divisor.

(3) We say that (X ′,F ′, B′)→ Z is a log Mori fiber space of (X,F , B)/U if it is a bs-Mori
fiber space of (X,F , B)/U and (X ′,F ′, B′) is Q-factorial ACSS.

Remark 4.5. The condition “Q-factorial ACSS” is a condition only for algebraically integrable
foliations. Therefore, “log minimal model”, “good log minimal model”, and “log Mori fiber
space” are only well-defined for algebraically integrable foliations. However, Definition 4.3(1-4)
and Definitions 4.4(1-2) are well-defined for arbitrary foliations. Therefore, many results in this
section also hold for arbitrary foliations.

We also remark that we do not have any requirement on the singularities of (X,F , B) and
(X ′,F ′, B′) in Definition 4.3(1-4) and Definitions 4.4(1-2). This is because in many cases, we
want to consider a generalized foliated quadruple polarized with an ample divisor A. Due to the
failure of Bertini-type theorems for foliations, usually the only thing we can do is to consider a
generalized foliated quadruple structure (X,F , B, Ā), i.e. we let A be the nef part. However,
this is inconvenient when the foliation is associated with some other pair structure, as many
theorems on pairs consider structures of the form (X,B + A) instead. Therefore, if we do not



Minimal model program for algebraically integrable foliations on klt varieties 19

have any singularity restrictions on the models, then using (X,F , B + A) will bring us more
flexibility when applying results of usual pairs.

4.2. Basic properties of models. In this subsection we prove several basics properties on
models of foliated triples. We remark that results in this section works for any foliated triples
without any requirement on algebraic integrability nor singularities, so we expect results in
this subsection to be useful for further applications, particularly to non-algebraically integrable
foliations.

Lemma 4.6 (cf. [Bir12, Remark 2.6], [HL23, Lemma 3.4]). Let (X,F , B)/U be a foliated triple
and let (X ′,F ′, B′)/U a bs-weak lc model of (X,F , B)/U associated with the birational map
φ : X !!" X ′. Let p : W → X and q : W → X ′ be birational morphisms such that q = φ ◦ p.
Assume that

p∗(KF +B) = q∗(KF ′ +B′) +E,

then E ≥ 0 and is exceptional/X ′.

Proof. For any prime divisor D that is an irreducible component of E,

multD E = a(D,F ′, B′)− a(D,F , B).

Therefore, if D is not exceptional/X, then:

• If D is not exceptional/X ′ , then multD E = 0 by Definition 4.2.
• If D is exceptional/X ′, then multD E ≥ 0 by Definition 4.3(1).

Therefore, p∗E ≥ 0. Since KF ′ + B′ is nef/U , q∗(KF ′ + B′) is nef/X, hence E is anti-nef/X.
By the negativity lemma, E ≥ 0.

If E is not exceptional/X ′, then there exists a component D of E that is not exceptional/X ′.
If D is not exceptional/X, then multD E = 0 by Definition 4.2, a contradiction. Thus D is
exceptional over X. In particular, φ extracts D. Since (X ′,F ′, B′)/U is a log birational model
of (X,F , B),

a(D,F ′, B′) = a(D,F , B),

which implies that multD E = 0, a contradiction. #

Lemma 4.7 (cf. [Bir12, Remark 2.7], [HL23, Lemma 3.5]). Let (X,F , B)/U be a foliated triple.
Let (X1,F1, B1)/U and (X2,F2, B2)/U be two bs-weak lc models of (X,F , B)/U with induced
birational maps φ : X1 !!" X2. Let h1 : W → X1 and h2 : W → X2 be two birational morphisms
such that φ ◦ h1 = h2. Then:

(1)

h∗1(KF1
+B1) = h∗2(KF2

+B2).

(2) If KF2
+B2 is semi-ample/U , then KF1

+B1 is semi-ample/U .
(3) If KF2

+B2 is ample/U , then φ is a morphism.

Proof. Let φ1 : X !!" X1 and φ2 : X !!" X2 be the induced birational maps. Possibly replacing
W with a higher model, we may assume that the induced birational map h : W → X is a
morphism. Let

Ei := h∗(KX +B)− h∗i (KXi +Bi)

for i ∈ {1, 2}. By Lemma 4.6, Ei ≥ 0 and is exceptional over Xi for i ∈ {1, 2}. Thus h1,∗(E2 −
E1) ≥ 0 and E1−E2 is nef/X1, and h2,∗(E1−E2) ≥ 0 and E2−E1 is nef/X2. By the negativity
lemma, E2 − E1 ≥ 0 and E1 − E2 ≥ 0. Thus E1 = E2, which implies (1). (2) immediately
follows from (1). By (1), if KF2

+ B2 is ample/U , then h2 : W → X2 is the ample model/U of
h∗(KF1

+B1), hence φ is the ample model/U of KF1
+B1. Since KF1

+B1 is semi-ample/U , φ
is a morphism. This implies (3). #
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Lemma 4.8. Let r be a positive real number. Let (X,F1, B1)/U and (X,F2, B2)/U be two
foliated triples such that

KF2
+B2 ≡U r(KF1

+B1)

Let (X ′,F ′
1, B

′
1)/U be a weak lc model (resp. minimal model) of (X,F1, B1)/U with induced

birational map φ : X !!" X ′. Let F ′
2 := φ∗F and B′

2 := φ∗B2. Then (X ′,F ′
2, B

′
2)/U is a weak

lc model (resp. minimal model) of (X,F2, B2)/U .
If (X ′,F ′

1, B
′
1)/U is a semi-ample model (resp. good minimal model) of (X,F1, B1)/U and

KF2
+B2 ∼R,U r(KF1

+B1),

(X ′,F ′
2, B

′
2)/U is a semi-ample model (resp. good minimal model) of (X,F2, B2)/U .

Proof. Let p : W → X and q : W → X ′ be a resolution of indeterminacy. By Lemma 4.6,

p∗(KF1
+B1) = q∗(KF ′

1
+B′

1) + E

for some R-divisor E ≥ 0 that is exceptional/X ′ . Then

p∗(KF2
+B2) ≡U rq∗(KF ′

1
+B′

1) + rE,

so
KF ′

2
+B′

2 = q∗p
∗(KF1

+B1) ≡ q∗(rq
∗(KF ′

1
+B′

1) + rE) = r(KF ′
1
+B′

1)

is nef/U . Moreover, if KF ′
1
+B′

1 is semi-ample/U and KF2
+B2 ∼R,U r(KF1

+B1), then

KF ′
2
+B′

2 ∼R,U r(KF ′
1
+B′

1)

is semi-ample/U .
We have

p∗(KF2
+B2) ≡U q∗(KF ′

2
+B′

2) + rE.

Therefore, for any prime divisor D on X which is exceptional over X ′,

a(D,F ′
2, B

′
2)− a(D,F2, B2) = −multD p∗(rE) = r(a(D,F ′

1, B
′
1)− a(D,F1, B1)).

Therefore, a(D,F2, B2) ≤ (resp. < ) a(D,F ′
2, B

′
2) if and only if a(D,F1, B1) ≤ (resp. <

) a(D,F ′
1, B

′
1). The lemma follows immediately from the definitions. #

4.3. Models under foliated log resolutions. From now on, we shall focus on different models
of foliations that are algebraically integrable and lc. We first study the relationship between
different types of models and foliated log resolutions. Of course, we expect results in this
section to hold in greater generalities provided that there is a proper definition of “foliated log
resolution” for non-algebraically integrable foliations.

We first recall the following result:

Theorem 4.9 ([CHLX23, Theorem 9.4.1]). Let (X,F , B)/U be a Q-factorial ACSS algebraically
integrable foliated triple such that KF + B ∼R,U E ≥ 0 and E is very exceptional/U . Then we
may run a (KF + B)-MMP/U with scaling of an ample/U R-divisor A and any such MMP
terminates with a good log minimal model (X ′,F ′, B′)/U such that KF ′ +B′ ∼R,U 0.

Definition 4.10 (Foliated log smooth model). Let (X,F , B) be an lc algebraically integrable
foliated triple and h : X ′ → X a foliated log resolution of (X,F , B) (cf. Definition 2.13). Let
F ′ := h−1F , and let B′ ≥ 0 and E ≥ 0 be two R-divisors on W satisfying the following.

(1) KF ′ +B′ = h∗(KF +B) + E,
(2) (X ′,F ′, B′) is foliated log smooth and lc.
(3) E is h-exceptional.
(4) For any h-exceptional prime divisor D such that

a(D,X,B) > −ϵF(E),

D is a component of E.
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We say that (X ′,F ′, B′) is a foliated log smooth model of (X,F , B).

Lemma 4.11. Let (X,F , B)/U be an lc algebraically integrable foliated triple. Let (W,FW , BW )
be a foliated log smooth model of (X,F , B).

Then any bs-weak lc model (resp. bs-minimal model, bs-semi-ample model, bs-good minimal
model, log minimal model, good log minimal model) of (W,FW , BW )/U is a bs-weak lc model
(resp. bs-minimal model, bs-semi-ample model, bs-good minimal model, log minimal model, good
log minimal model) of (X,F , B)/U .

Proof. We let h : W → X be the induced birational morphism. We may write

KFW +BW = h∗(KF +B) + E

for some E ≥ 0 that is h-exceptional, and D ⊂ SuppE for any h-exceptional prime divisor D
such that a(D,X,B) > −ϵF (E).

Claim 4.12. Let (X ′,F ′, B′)/U be a bs-weak lc model of (W,FW , BW )/U . Then

a(D,F , B) ≤ a(D,F ′, B′)

for any prime divisor D over X.

Proof. Let φW : W !!" X ′ be the induced birational map, and let p : V → W and q : V → X ′

be a common resolution such that q = φW ◦ p. By Lemma 4.6,

p∗(KFW +BW ) = q∗(KF ′ +B′) + F

for some F ≥ 0 that is exceptional over X ′. Then we have

p∗h∗(KF +B) = q∗(KF ′ +B′) + F − p∗E,

so
p∗E − F ∼R,X q∗(KF ′ +B′)

is nef/X. Since h∗p∗(F − p∗E) = h∗p∗F ≥ 0, by the negativity lemma, F ≥ p∗E. Thus
a(D,F , B) ≤ a(D,F ′, B′) for any prime divisor D over X. #

Proof of Lemma 4.11 continued. First we prove the bs-weak lc model case. Let (X ′,F ′, B′)/U
be a bs-weak lc model of (W,FW , BW )/U with induced birational map φW : W !!" X ′. By
Claim 4.12, we only need to show that (X ′,F ′, B′)/U is a log birational model of (X,F , B)/U .

Let φ : X !!" X ′ be the induced morphism and

B̃′ := φ∗B + Exc(φ−1)F
′

,

then we only need to show that B′ = B̃′. Since (X ′,F ′, B′)/U is a bs-weak lc model of
(W,FW , BW )/U , we have

B′ = (φW )∗BW + Exc(φ−1
W )F

′

.

Let D be a prime divisor on X ′. There are three cases:

Case 1. D is not exceptional over X. In this case,

−multD B̃′ = a(D,F ′, B̃′) = a(D,F , B) = a(D,FW , BW ) = a(D,F ′, B′) = −multD B′,

so multD B′ = multD B̃′.

Case 2. D is exceptional over W . In this case, D is a component of Exc(φ−1
W ) and a component

of Exc(φ−1), hence
multD B′ = ϵF (D) = multD B′′.

Case 3. D is exceptional over X but not exceptional over W . In this case,

−multD B′ = a(D,F ′, B′) = a(D,FW , BW ).
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Since E ≥ 0, a(D,FW , BW ) ≤ a(D,F , B). By Claim 4.12, a(D,F , B) ≤ a(D,F ′, B′). Thus

−multD B′ = a(D,F , B) = a(D,F ′, B′) = a(D,FW , BW ).

By Definition 4.10(4), a(D,F , B) = −ϵF (D), which implies that

multD B′ = ϵF (D) = multD Exc(φ−1)F
′

= multD B̃′.

Thus B′ = B̃′, so (X ′,F ′, B′)/U is a log birational model of (X,F , B)/U , and we are done for
the bs-weak lc model case.

Next we prove the bs-minimal model case. Suppose that (X ′,F ′, B′)/U be a bs-minimal
model of (W,FW , BW )/U . For any prime divisor D on X which is exceptional over X ′, h−1

∗ D
is a prime divisor on W which is exceptional over X ′. Thus

a(D,F , B) = a(D,FW , BW ) < a(D,F ′, B′).

The bs-minimal model case immediately follows from the bs-weak lc model case.
The bs-semi-ample model, bs-good minimal model, log minimal model, and good log minimal

model cases follow immediately from the bs-weak lc model and the bs-minimal model cases. #

4.4. Models under pullbacks.

Lemma 4.13. Let (X,F , B)/U be an lc algebraically integrable foliated triple and (X ′,F ′, B′)/U
a bs-weak lc model of (X,F , B)/U . Let (W,FW , BW ) be a foliated log smooth model of (X,F , B)
such that the induced birational map φW : W !!" X ′ is a morphism.

Then we may run a (KFW + BW )-MMP/X ′ with scaling of an ample/X ′ R-divisor which
terminates with a good minimal model (Y,FY , BY )/X ′ of (W,FW , BW )/X ′ such that

KFY +BY = q∗(KF ′ +B′).

where q : Y → X ′ is the induced morphism. In particular, (Y,FY , BY )/U is a log minimal model
of (W,FW , BW )/U .

Proof. Let h : W → X be the induced birational morphism. We have

KFW +BW = h∗(KF +B) + E

for some E ≥ 0 that is exceptional/X. By Lemma 4.6, we have

h∗(KF +B) = φ∗W (KF ′ +B′) + F

where F ≥ 0 is exceptional/X ′. Thus

KFW +BW ∼R,X′ F + E.

Claim 4.14. E is exceptional/X ′.

Proof. Let D be a component of E. By Definition 4.10(4), a(D,F , B) > −ϵF(E) and D is
exceptional/X.

Assume that D is not exceptional over X ′. Since (X ′,F ′, B′)/U is a log birational model
of (X,F , B)/U and (X,F , B) is lc, a(D,F ′, B′) = −ϵF (E). Since F ≥ 0, a(D,F , B) ≤
a(D,F ′, B′). Thus a(D,F , B) = −ϵF (E), hence D is not a component of E, a contradiction. #

Proof of Lemma 4.13 continued. By Claim 4.14, F +E is exceptional over X ′. By Theorem 4.9,
we may run a (KFW +BW )-MMP/X ′ with scaling of an ample/X ′ divisor, which terminates with
a good minimal model (Y,FY , BY )/X ′ of (W,FW , BW )/X ′ such that KFY + BY ∼R,X′ 0. In
particular, (Y,FY , BY ) is Q-factorial ACSS, and a(D,FW , BW ) < a(D,FY , BY ) for any prime
divisor D on W that is exceptional/Y . By the negativity lemma,

KFY +BY = q∗(KF ′ +B′).

The lemma follows. #
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Lemma 4.15. Let (X,F , B)/U be an lc algebraically integrable foliated triple. If (X,F , B)/U
has a bs-weak lc model (resp. bs-semi-ample model), then (X,F , B)/U has a log minimal model
(resp. good log minimal model).

Proof. By Lemma 4.7 we only need to prove the bs-weak lc model case. The lemma follows
immediately from Lemmas 4.11 and 4.13. #

Lemma 4.16. Let (X,F , B)/U and (Y,FY , BY )/U be two lc algebraically integrable foliated
triple, and let f : Y → X be a birational morphism such that

KFY +BY = f∗(KF +B) + E

for some E ≥ 0 that is exceptional/X and f∗FY = F . Then:

(1) Any bs-weak lc model of (X,F , B)/U is a bs-weak lc model of (Y,FY , BY )/U .
(2) If (X,F , B)/U has a bs-weak lc model (resp. bs-semi-ample model), then (Y,FY , BY )/U

has a log minimal model (resp. good log minimal model).

Proof. (1) Let (X ′,F ′, B′)/U be a bs-weak lc model of (X,F , B)/U , φ : X !!" X ′ the induced
birational map, and φY := φ ◦ f . Let p : W → Y and q : W → X ′ be a resolution of
indeterminacy, and let h := f ◦ p. By Lemma 4.6,

h∗(KF +B) = q∗(KF ′ +B′) + F

for some F ≥ 0 that is exceptional over X ′. Thus

p∗(KFY +BY ) = q∗(KF ′ +B′) + p∗E + F.

Thus a(D,FY , BY ) ≤ a(D,F ′, B′) for any prime divisor D over X ′. In particular, if
a(D,F ′, B′) = −ϵF(D), then a(D,FY , BY ) = −ϵF (D).

Since (X ′,F ′, B′)/U is a log birational model of (X,F , B)/U and (X,F , B) is lc,

B′ = φ∗B + Exc(φ−1)F
′

.

Let

B̃′ := (φY )∗BY + Exc(φ−1
Y )F

′

.

For any prime divisor D on X ′, there are two cases:

Case 1. D is not exceptional over X. In this case,

multD B′ = a(D,F ′, B′) = a(D,F , B) = a(D,FY , BY ) = a(D,F ′, B̃′) = −multD B̃′,

so multD B′ = multD B̃′.

Case 2. D is exceptional over X. In this case,

a(D,F ′, B′) = −multD B′ = −ϵF (D).

Since a(D,FY , BY ) ≤ a(D,F ′, B′) and (Y,FY , BY ) is lc, a(D,FY , BY ) = −ϵF (D). Therefore,
if D is not exceptional over Y , then

multD B̃′ = multD BY = −a(D,FY , BY ) = ϵF (D) = multD B′,

and if D is exceptional over Y , then

multD B̃′ = multD Exc(φ−1
Y )F

′

= ϵF (D) = multD B′.

Thus B′ = B′′, hence (X ′,F ′, B′)/U is a log birational model of (Y,FY , BY )/U . Since KF ′ +B′

is nef/U , and a(D,FY , BY ) ≤ a(D,F ′, B′) for any prime divisor D over X ′, (X ′,F ′, B′)/U is a
bs-weak lc model of (Y,FY , BY )/U , and we get (1).

(2) follows from (1), Lemma 4.15, and Lemma 4.7. #
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4.5. Minimal models and core models. In this subsection, we shall use core models to study
how the (bs-)minimal models of (X,F , B)/U are associated with the (bs-)minimal models of
(X,B +G)/U when (X,F , B;G) satisfies Property (∗). First we recall the following results in
[CHLX23] and [HH20]:

Lemma 4.17 (cf. [CHLX23, Lemma 9.2.1]). Let (X,F , B)/U be an lc algebraically integrable
foliated triple, G a reduced divisor on X, and f : X → Z a contraction, such that (X,F , B;G)/Z
satisfies Property (∗) and KF +B ∼R,U KX +B+G. Assume that G is super/Z. Let D ≥ 0 be
an R-divisor on X such that KF +B +D is nef/U .

Then any sequence of steps of a (KF +B)-MMP/U (with scaling of D) is a sequence of steps
of a (KX +B+G)-MMP/U (with scaling of D), and any sequence of steps of a (KX +B+G)-
MMP/U (with scaling of D) is a sequence of steps of a (KF + B)-MMP/U (with scaling of
D). Moreover, any sequence of steps of a (KF +B)-MMP/U or a (KX +B +G)-MMP/U is a
sequence of steps of an MMP/Z.

Theorem 4.18 ([HH20, Theorem 1.7]). Let (X,B)/U be an lc pair and A an ample/U R-
divisor on X such that (X,B + A) is lc and KX + B + A is nef/U . Assume that (X,B)/U
has a Q-factorial bs-minimal model or KX + B is not pseudo-effective/U . Then there exists a
sequence of (KX +B)-MMP/U with scaling of A which terminates with either a minimal model
or a Mori fiber space of (X,B)/U .

In Lemma 4.17, and many results in [CHLX23], we will come up with “MMP/U is always an
MMP/Z”. If we use the language of core models, then it is essentially saying that “MMP/U is
always an MMP/ZU , where ZU is the core model of (X → U,X → Z). We have the following
lemmas on showing this fact:

Lemma 4.19. Let (X,F , B)/U be an lc algebraically integrable foliated triple. Assume that the
associated morphism π : X → U is a contraction, and assume that F is induced by a contraction
f : X → Z. Let ZU be the core model of (π, f). Then:

(1) Any sequence of steps of a (KF +B)-MMP/U is a step of a (KF +B)-MMP/ZU .
(2) If (X,F , B) is Q-factorial ACSS and KF +B is nef/U , then KF +B is nef/ZU .
(3) (X,F , B)/U has a bs-weak lc model if and only if (X,F , B)/ZU has a bs-weak lc model.

Proof. (1) By the universal property of the core model (Definition-Lemma 3.1), we only need
to show that any contraction of a (KF +B)-negative extremal ray/U is a contraction/Z. This
follows from the (relative) cone theorem of algebraically integrable foliations [ACSS21, Theorem
3.9], [CHLX23, Theorem 2.3.1].

(2) If KF + B is not nef/U , then there exists a (KF + B)-negative extremal ray/U R.
By the (relative) cone theorem of algebraically integrable foliations ([ACSS21, Theorem 3.9],
[CHLX23, Theorem 2.3.1]), R is a a (KF + B)-negative extremal ray/Z. Since (X,F , B) is a
Q-factorial ACSS, there exists a contraction contR of R. By Definition-Lemma 3.1, contR is a
contraction/ZU , which is not possible as KF +B is nef/ZU . Therefore, KF +B is nef/U .

(3) First we suppose that (X,F , B)/U has a bs-weak lc model (X ′,F ′, B′)/U . Let
(W,FW , BW ) be a foliated log smooth model of (X,F , B)/U such that the induced map
W !!" X ′ is a morphism. By Lemma 4.13, we may run a (KFW + BW )-MMP/X ′ which
terminates with a log minimal model (Y,FY , BY )/X ′ such that (Y,FY , BY )/U is a log minimal
model of (W,FW , BW )/U . By (1), the induced birational map Y !!" ZU is a morphism, so
(Y,FY , BY )/ZU is a log minimal model of (W,FW , BW )/ZU . By Lemma 4.11, (Y,FY , BY )/ZU

is a log minimal model of (X,F , B)/ZU . This proves the only if part.
Next we prove the if part. Assume that (X,F , B)/ZU has a bs-weak lc model (X ′,F ′, B′)/ZU .

By Lemma 4.15, we may assume that (X ′,F ′, B′)/ZU is a log minimal model of (X,F , B)/ZU .
By Definition-Lemma 3.1, ZU is the core model of (X ′ → U,X ′ → Z). By (2), KF ′ + B′ is
nef/U , so (X ′,F ′, B′)/U is a bs-weak lc model of (X,F , B)/U . This proves the if part. #
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Lemma 4.20. Let (X,B)/U be a pair associated with contraction π : X → U . Let f : X → Z
be a contraction such that B is super/Z. Let ZU be the core model of (π, f). Then:

(1) If KX +B is nef/ZU then KX +B is nef/U .
(2) Any sequence of steps of a (KX + B)-MMP/U is a sequence of steps of a (KX + B)-

MMP/ZU .
(3) (X,B)/U has a minimal model if and only if (X,B)/ZU has a minimal model.

Proof. Let d := dimX.
(1) Let R be a (KX + B)-negative extremal ray/U . Then R which is spanned by a rational

curve C such that 0 < −(KX + B) · C ≤ 2d. We may assume that C is of minimal degree
among all rational curves which span R, i.e. for any rational curve C ′ such that [C ′] = R,
−(KX +B) · C ′ ≥ −(KX +B) · C.

Since B is super/Z, B =
∑2d+1

i=1 f∗Hi + B0 where Hi are ample Cartier divisors on Z and
B0 ≥ 0. If f(C) is not a point, then

(KX +B0) · C = (KX +B) · C −
2d+1∑

i=1

(f∗Hi · C) < −2d,

which contradicts the cone theorem. Therefore, f(C) is a point. The contraction of C exists
by the usual cone theorem, and it is a contraction/Z and a contraction/U . By the universal
property of the core models, the contraction of C is a contraction/ZU .

Therefore, any contraction of a (KX + B)-negative extremal ray/U is a contraction/ZU , so
any step of a (KX +B)-MMP/U (X,B) !!" (Y,BY ) is an MMP/ZU . Since B is super/Z, BY is
super/Z. By Definition-Lemma 3.1, ZU is the core model of (Y → U, Y → Z). We may replace
(X,B) with (Y,BY ) and continue this process.

(2) Suppose that (X ′, B′)/ZU is a minimal model of (X ′, B′)/U . Since the induced birational
map X !!" X ′ does not extract any divisor and is over Z, B′ is super/Z. If KX′ + B′ is not
nef/U , then there exists a step of a (KX′ + B′)-MMP/U . This step cannot be over ZU since
KX′ +B′ is nef/ZU . This contradicts (1), so (X ′, B′)/U is a minimal model of (X,B)/U .

Suppose that (X,B)/U has a minimal model. By Lemma 4.15, (X,B)/U has a log minimal
model. By Theorem 4.18, we may run a (KX + B)-MMP/U with scaling of an ample divisor
which terminates with a minimal model (X ′, B′)/U of (X,B)/U . By (1) the induced map
X ′ !!" ZU is a contraction. Therefore, (X ′, B′)/ZU is a minimal model of (X,B)/U . #

The following proposition is crucial for us to prove Theorem 1.11.

Proposition 4.21. Let (X,F , B)/U be an lc algebraically integrable foliated triple. Assume
that (X,F , B)/U has a bs-weak lc model. Then there exists an ACSS modification h :
(X ′,F ′, B′;G)/Z → (X,F , B) that is Q-factorial, proper, and super, and (X ′, B′ +G)/U has a
log minimal model.

Proof. Let (Y,FY , BY )/U be a bs-weak lc model of (X,F , B)/U . Let g : W → X be a foliated
log resolution of (X,F , B) associated with the equidimensional contraction fW : W → Z, such
that the induced birational map W !!" Y is a morphism, FW := g−1F is induced by fW , and
BW := g−1

∗ B + Exc(g)FW . Then there exists a reduced divisor GW ≥ 0 on W such that GW

is super/Z, Exc(g) ⊂ SuppGW , and (W,FW , BW ;GW )/Z is ACSS. Moreover, (W,FW , BW ) is
foliated log smooth.

Let π : X → U be the associated morphism and X → U ′ → U be the Stein factorization of
π. Possibly replacing U with U ′, we may assume that π is a contraction. Let ZU be the core
model of (π ◦ g, fW ). By Lemma 4.13, we may run a (KFW + BW )-MMP/U which terminates
with a log minimal model (X ′′,F ′′, B′′)/U of (W,FW , BW )/U . By Lemma 4.19, this MMP is a
(KFW + BW )-MMP/ZU , so (X ′′,F ′′, B′′)/ZU is a log minimal model of (W,FW , BW )/ZU . By
Lemma 4.17, KFW + BW ∼R,Z KW + BW + GW , so by Lemma 4.8, (X ′′, B′′ + G′′)/ZU is a
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minimal model of (W,BW + GW )/ZU , where G′′ is the image of GW on X ′′. By Lemma 4.20,
(W,BW +GW )/U has a minimal model.

By Theorem 4.9, we may run a (KFW + BW )-MMP/X with scaling of an ample/X divisor
which terminates with a log minimal model (X ′,F ′, B′)/X such that KF ′ + B′ ∼R,X 0. Let
φ : W !!" X ′ be the induced birational map and h : X ′ → X the induced birational morphism,
and let G := φ∗GW . By our construction, h : (X ′,F ′, B′;G)/Z → (X,F , B) is an ACSS
modification that is Q-factorial, proper, and super. By Lemma 4.17, φ is also a (KX +B +G)-
MMP/X.

Let p : V → W and q : V → X be a resolution of indeterminacy such that p is a log resolution
of (W,BW +GW ) and q is a log resolution of (X ′, B′+G). Let ∆V := p−1

∗ (BW +GW )+Exc(p).
Then (V,∆V ) is a (foliated) log smooth model of (W,BW +GW ) and (X ′, B′ +G). By Lemma
4.16, (V,∆V )/U has a bs-weak lc model. By Lemma 4.11, (X ′, B + G)/U has a bs-weak lc
model. By Lemma 4.15, (X ′, B +G)/U has a log minimal model. #

5. Existence of polarized log minimal models

The goal of this section is to prove Theorem 5.6, which essentially implies Theorem 1.10 and
is crucial for the proofs of Theorems 1.2 and 1.3. We first recall the following results on the
MMP for usual pairs.

Lemma 5.1 (cf. [TX24, Lemma 2.20]). Let (X,B + A)/U be an lc pair such that (X,B) is lc
and KX + B + A is nef/U . Then there exists a positive real number ϵ ∈ (0, 1) such that any
(KX +B + (1− ϵ)A)-MMP/U is (KX +B +A)-trivial for any ϵ ∈ (0, ϵ0).

Theorem 5.2. Let (X,B)/U be an lc pair and H ≥ 0 an R-divisor on X such that KX +B+H
is nef/U and (X,B + H) is lc. Assume that there exists an infinite sequence of (KX + B)-
MMP/U with scaling of H with scaling numbers λi such that limi→+∞ λi = λ and λ ̸= λi for
any i. Then (X,B + λH)/U does not have a bs-minimal model.

Proof. By [Bir12, Theorem 1.9(3)], (X,B + λH)/U does not have a bs-minimal model that is
Q-factorial dlt. By [Bir12, Corollary 3.7], (X,B+λH)/U does not have a bs-minimal model. #

Theorem 5.3 ([BCHM10, Corollary 1.4.2]). Let (X,B)/U be a Q-factorial pair and A ≥ 0 an
R-divisor on X such that B is big/U , (X,B + A) is klt, and KX + B + A is nef/U . Then any
(KX + B)-MMP/U with scaling of A terminates with either a minimal model or a Mori fiber
space of (X,B)/U .

Lemma 5.4. Let (X,B)/U be an lc pair. Let H ≥ 0 be an R-divisor on X such that (X,B+H)
is lc and KX +B +H is nef/U . Assume that for any µ ∈ [0, 1],

• either (X,B + µH)/U has a log minimal model, or
• KX +B + µH is not pseudo-effective/U .

Then there exists a (KX + B)-MMP/U with scaling of H which terminates after finitely many
steps.

Proof. Denote by this MMP

(X,B) := (X1, B1) !!" (X2, B2) !!" · · · !!" (Xi, Bi) !!" . . . .

Let Hi be the image of H on Xi for each i, and let

λi := inf{t | t ≥ 0,KXi +Bi + tHi is nef/U}

be the i-th scaling number of this MMP for each i.
If λ1 = 0 then there is nothing left to prove. So we may assume that λ1 > 0. By Lemma 5.1,

we may pick λ′1 ∈ (0,λ1) such that any sequence of a (KX+B+λ′1H)-MMP/U is (KX+B+λ1H)-
trivial.
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By Theorem 4.18, we may run a (KX +B+λ′1H)-MMP/U with scaling of a general ample/U
divisor A which terminates. We let

(X,B) := (X1, B1) !!" (X2, B2) !!" · · · !!" (Xk1 , Bk1)

be this sequence of the MMP/U . Then this sequence consists of finitely many steps of a (KX+B)-
MMP/U with scaling of H, with scaling numbers λ1 = λ2 = · · · = λk1−1. If KX + B + λ′1H is
not pseudo-effective/U , then we have already achieved a (KXk1

+Bk1)-Mori fiber space/U and
we are done. Otherwise,

KXk1
+Bk1 + λ′1Hk1

is nef/U , so we have λk1 ≤ λ
′
1 < λ1.

We may replace (X,B)/U with (Xk1 , Bk1)/U and continue this process. If this MMP does
not terminate, then we may let λ := limi→+∞ λi. Then λ ̸= λi for any i, and KXi +Bi + λiHi

is nef/U . Thus KX + B + λH is pseudo-effective/U . By Theorem 5.2, (X,B + λH) does not
have a log minimal model, which contradicts our assumption. Therefore, this MMP terminates
and we are done. #

Theorem 5.5 ([HH20, Theorem 1.5]). Let (X,B)/U be an lc pair and A an ample/U R-divisor
on X such that (X,B + A) is lc. Then (X,B +A)/U has a bs-semi-ample model or a bs-Mori
fiber space.

The following theorem is crucial for the proof of our main theorems.

Theorem 5.6. Let (X,F , B)/U be an lc foliated triple and let A,H be two ample/U R-divisors
on X. Let h : (X ′,F ′, B;G)/Z → (X,F , B) be a simple model of (X,F , B) that is proper and
super, H ′ := h∗H, and A′ := h∗A. Then:

(1) We may run a (KF ′+B′+H ′)-MMP/U with scaling of A′, say P, such that P terminates
with either a minimal model or a Mori fiber space of (X ′,F ′, B′ +H ′)/U .

(2) If X is potentially klt, then P can be any (KF ′ +B′ +H ′)-MMP/U with scaling of A′.

Proof. Possibly replacing A with a multiple, we may assume that KF +B+H+A is nef/U . Let
π : X → U be the induced projective morphism and let HU be a sufficiently ample R-divisor on
U . Possibly replacing A with A+ π∗HU and H with H + π∗HU , we may assume that A and H
are ample. Possibly replacing A and H, we may assume that A,H are general in |A|R and |H|R
respectively. In particular, (X ′, B′ +H ′ +G) is lc.

Since G is super/Z and (X ′,F ′, B′)/U is lc, by Lemma 4.17, any (KF ′ + B′ +H ′)-MMP/U
with scaling of A′ is a (KX′ +B′+H ′+G)-MMP/U with scaling of A′ and is an MMP/Z. Then
KF ′ +B′ +H ′ +A′ and KX′ +B′ +H ′ +A′ +G are nef/U . Let d := dimX.

Let X̄ be the core model of (h, f) associated with (h̄, f̄). Let g : X ′ → X be the induced
birational morphism. By Lemma 3.5(4), there exists a core model h̄ : (X̄, F̄ , B̄; Ḡ)/Z →
(X,F , B) that is proper and super. Let H̄ := h̄∗H and Ā := h̄∗A. By the definition of
core models, H̄ and Ā are ample/Z. Since Ḡ is super/Z,

Ḡ ≥
2 dimX+1∑

i=1

f̄∗Hi

where Hi are ample Cartier divisors on Z. Then there exists 0 < ϵ≪ 1 such that ϵH̄ + 1
2 f̄

∗H1

is ample. Let L̄ be a general element in
∣∣∣∣ϵH̄ +

1

2
f̄∗H1

∣∣∣∣
R

,

Ĥ := (1− ϵ)H̄, and Ĝ := Ḡ− 1
2 f̄

∗H1. Then

KX̄ + B̄ + Ĥ + Ĝ+ L̄ ∼R KX̄ + B̄ + H̄ + Ḡ
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and (X̄, B̄ + Ĥ + Ĝ+ L̄) is lc.

Step 1. First we prove the theorem when X is potentially klt. By Lemma 3.7, X̄ is potentially
klt. Since L̄ is ample, by Lemma 2.12, there exists a klt pair (X̄, ∆̄) such that

0 ≤ ∆̄ ∼R,U B̄ + Ĥ + Ĝ+
1

2
L̄.

Let KX′ + ∆̃′ := g∗(KX̄ + ∆̄). Then (X ′, ∆̃′) is sub-klt. Let 0 < δ ≪ 1 be a real number. Since
SuppG contains all g-exceptional prime divisors and (X ′, B′ +H ′ +G) is lc,

(X ′, ∆̂′ := δ∆̃′ + (1− δ)(B′ +H ′ +G))

is klt. Since g∗L̄ is big and nef, there exist ample R-divisors Ln and R-divisors E ≥ 0, such that

δ

2
g∗L̄ ∼R Ln +

1

n
E

for any positive integer n. Then for any n≫ 0, (X ′, ∆̂′+ 1
nE) is klt. Since Ln is ample/U , there

exists a klt pair (X ′,∆′) such that

0 ≤ ∆′ ∼R,U ∆̂′ + Ln +
1

n
E.

for some n≫ 0. By our construction and Lemma 3.5(2),

∆′ ∼R,U B′ +H ′ +G.

Now any (KF ′ + B′ +H ′)-MMP/U with scaling of A′ is a (KX′ +B′ +H ′ +G)-MMP/U with
scaling of A′, hence a (KX′ +∆′)-MMP/U with scaling of A′. By Theorem 5.3, any such MMP
terminates.

Step 2. Now we prove the general case. For any real number µ ∈ [0, 1] such that

KX′ +B′ +H ′ +G+ µA′

is pseudo-effective/U , by Lemma 3.5(2),

KX̄ + B̄ + H̄ + Ḡ+ µĀ

is pseudo-effective/U . Therefore,

KX̄ + B̄ + Ĥ + Ĝ+ (L̄+ µĀ)

is pseudo-effective/U . Since L̄ is ample and Ā is big and nef/U , L̄ + µĀ is ample/U . Since
H,A, L̄ are general,

(X̄, B̄ + Ĥ + Ĝ+ (L̄+ µĀ))/U

is lc. By Theorem 5.5,

(X̄, B̄ + Ĥ + Ĝ+ (L̄+ µĀ))/U

has a good minimal model.
Denote by f the contraction X → Z. Since

KX′ +B′ + (1− ϵ)H ′ +G−
1

2
f∗H1 + g∗(L̄+ µĀ) = g∗(KX̄ + B̄ + Ĥ + Ĝ+ (L̄+ µĀ)),

by Lemmas 4.15 and 4.16,
(
X ′, B′ + (1− ϵ)H ′ +G−

1

2
f∗H1 + g∗(L̄+ µĀ)

)/

U

has a good log minimal model. By Theorem 4.18,
(
X ′, B′ + (1− ϵ)H ′ +G−

1

2
f∗H1 + g∗(L̄+ µĀ)

)/

U
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has a minimal model. Since

B′ + (1− ϵ)H ′ +G−
1

2
f∗H1 + g∗(L̄+ µĀ) ∼R B′ +H ′ +G+ µA′,

by Lemma 4.8, (X ′, B′+H ′+G+µA′)/U has a good minimal model. By Lemma 4.15, (X ′, B′+
H ′ +G+ µA′)/U has a log minimal model.

By Lemma 5.4, there exists a (KX′ +B′ +H ′ +G)-MMP/U with scaling of A′, say P, which
terminates. By Lemma 4.17, this MMP/U is also a (KF ′ + B′ + H ′)-MMP/U with scaling of
A′. The theorem follows. #

6. A Shokurov-type polytope

The goal of this section is to prove Theorem 1.12.

Proof of Theorem 1.12. Let B(v) :=
∑m

i=1 viBi for any v := (v1, . . . , vm) ∈ Rm. By [DLM23,
Theorem 1.5], there exists an open subset U1 ∋ v0 in the rational polytope of v0, such that for
any v ∈ U1, (X,F , B(v)) is lc. We let c := dimU1 and let v1, . . . ,vc+1 be vectors in U1∩Qm such
that v0 is contained in the convex hull U2 spanned by v1, . . . ,vc+1. Then there exist positive
real numbers a1, . . . , ac+1 such that

∑c+1
i=1 aivi = v0 and

∑c+1
i=1 ai = 1. We let I be a positive

integer such that I(KF +B(vi)) is Cartier for each i. Let d := dimX and a0 := min1≤i≤c+1{ai}.
Consider the set

Γ :=
{∑

aiγi | γi ∈ [−2dI,+∞) ∩ Z
}
∩ (0,+∞).

We have γ0 := inf{γ ∈ Γ} > 0. We let U be the interior of the set
{

1

2d+ γ0
(2dr + γ0v)

∣∣∣∣∣v ∈ U2

}

.

We show that U satisfies our requirement. By our construction, (X,F , B(v)) is lc for any
v ∈ U so we only need to show that KF +

∑m
i=1 viBi is nef/Z for any v = (v1, . . . , vm) ∈ U . We

let R be an extremal ray in NE(X/U). There are three cases.

Case 1. (KF+B)·R = 0. In this case, (KF+B(v))·R = 0 for any v ∈ U1, so (KF+B(v))·R = 0
for any v ∈ U .

Case 2. (KF + B(vi)) · R ≥ 0 for any i. In this case, (KF + B(v)) · R ≥ 0 for any v ∈ U1, so
so (KF +B(v)) ·R ≥ 0 for any v ∈ U .

Case 3. (KF + B) · R > 0 and (KF + B(vj)) · R < 0 for some j. In this case, by the relative
cone theorem for algebraically integrable foliations (cf. [CHLX23, Theorem 2.2.1], [ACSS21,
Theorem 3.9]), R is spanned by a curve C such that (KF +B(vi) · C ≥ −2d for any i. Thus

I(KF +B(vi)) · C ∈ [−2dI,+∞) ∩ Z,

so

I(KF +B(v)) · C ∈ Γ0.

Then for any v ∈ U , there exists v′ ∈ U2 such that (2d+ γ0)v = 2dr + γ0v′. We have

I(KF +B(v)) · C =
γ0

2d+ γ0
I(KF +B(v′)) · C +

2d

2d+ γ0
I(KF +B(r)) · C

≥
γ0

2d+ γ0
· (−2d) +

γ0
2d+ γ0

· γ0 = 0,

so I(KF +B(v)) ·R ≥ 0. The theorem follows. #
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7. Proof of the contraction theorem and the existence of flips

We first prove the contraction theorem when the supporting function is not big, and then
prove the contraction and the existence of flips when the supporting function is big.

Proposition 7.1. Let (X,F , B)/U be an lc algebraically integrable foliated triple such that
(X,∆) is lc for some B ≥ ∆ ≥ 0. Let R be a (KF + B)-negative extremal ray/U and HR a
supporting function/U of R. Suppose that HR is not big/U . Then R is also a (KX+∆)-negative
extremal ray/U . In particular, there exists a contraction contR of R.

Proof. By [CHLX23, Theroem 2.2.1, Lemma 8.4.1], we may assume that

HR = KF +B +A

for some ample/U R-Cartier R-divisor A on X. Let π : X → U be the induced projective
morphism and X → U ′ → U the Stein factorization of π. Possibly replacing U with U ′, we may
assume that π is a contraction.

Let F be a general fiber of π. Then HF := HR|F is nef but not big. Let q := dimF and
AF := A|F , then there exists an integer 0 ≤ k ≤ q − 1 such that

Hk
F ·Aq−k

F > Hk+1
F · Aq−k−1

F = 0.

Let Di := HR for any 1 ≤ i ≤ k + 1, and let Di := A for any k + 2 ≤ i ≤ q. Then

(D1|F ) · (D2|F ) · · · · · · · (Dq|F ) = Hk+1
F ·Aq−k−1

F = 0

and

−(KF +B)|F · (D2|F ) · · · · · · · (Dq|F ) = (AF −HF ) ·H
k
F ·Aq−k−1

F = Hk
F ·Aq−k

F > 0.

Let M := HR +A = KF + B + 2A. Then M ′ is nef/U . By [CHLX23, Theorem 8.1.1], for any
general closed point x ∈ X, there exists a rational curve Cx such that x ∈ Cx, π(Cx) is a closed
point, Cx is tangent to F , and

0 = D1 · Cx = HR · Cx.

In particular, Cx spans R.
By Theorem 3.4, there exists an ACSS modification h : (X ′,F ′, B′;G)/Z → (X,F , B) that

is Q-factorial and proper. Then G contains any h-exceptional F ′-invariant prime divisor, and
SuppB′ contains any h-exceptional non-F ′-invariant prime divisor. In particular, Let ∆′ :=
h−1
∗ ∆. Since (X,∆) is lc, we may write

KX′ +∆′ + E+ = h∗(KX +∆) + E−

where E+, E− ≥ 0 are exceptional/X, and E+ ∧ E− = 0. Then

B′ +G ≥ ∆′ + E+ + SuppE− ≥ ∆′ + E+ − E−.

Let x be a general closed point in X and let C ′
x be the strict transform of Cx on X ′. Let

A′ := h∗A. Since x is a general closed point in X and Cx is tangent to F , C ′
x is tangent to F ′.

By Proposition 2.15,

0 = HR · Cx = h∗HR · C ′
x = (KF ′ +B′ +A′) · C ′

x = (KX′ +B′ +A′ +G′) · C ′
x

≥ (KX′ +∆′ + E+ −E− +A′) · C ′
x = h∗(KX +∆+A) · C ′

x

= (KX +∆+A) · Cx > (KX +∆) · Cx.

Therefore, R is a (KX +∆)-negative extremal ray. The existence of contR follows from the usual
contraction theorem for lc pairs. #
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Finally, we prove the contraction theorem and the existence of flips when the supporting
function is big. We remark that generalized foliated quadruples will inevitably be used in the
proof of the following theorem. For the convenience of the readers that are not familiar with
generalized pairs and/or generalized foliated quadruple, in the following proof, we write footnotes
whenever when we have to use generalized foliated quadruples and explain the reasons. We also
suggest the readers to consider M = N = 0 throughout the proof.

To prove this theorem, we need to use the concept of generalized foliated quadruples.
Nevertheless, we can stick to “NQC generalized foliated quadruples” as the non-NQC case
is harder to prove.

Theorem 7.2. Let (X,F , B,M)/U be an lc algebraically integrable generalized foliated quadru-
ple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M − N is nef/U . Let R be
a (KF + B + MX)-negative extremal ray/U and A an ample/U R-divisor on X, such that
HR := KF +B +MX +A is a supporting function/U of R and is big/U . Then:

(1) (Contraction theorem) HR is semi-ample/U . In particular, HR defines a contraction
contR : X → T . Moreover:
(a) If HR is Cartier, then for any integer m≫ 0, OX(mHR) is globally generated over

U .
(b) For any line bundle L on X such that L ·R = 0, L ∼= cont∗R LT for some line bundle

LT on T .
(2) (Existence of flips) The ample model/T X+ of KF +B +MX exists. Moreover:

(a) (X+,φ∗∆,N) is klt, where φ : X !!" X+ is the induced birational map.
(b) If contR is a small contraction, then the induced morphism X+ → T is a (KF +

B +MX)-flip/U .
(c) If X is Q-factorial, then:

(i) X+ is Q-factorial.
(ii) If contR is a divisorial contraction, then T = X+ and ρ(X) = ρ(T ) + 1.
(iii) If contR is a a small contraction, then ρ(X) = ρ(X+).

Proof. Step 1. We reduce to the case when (KX +∆+NX) ·R > 0.
Let ϵ ∈ (0, 1) be a real number such that (KX + ∆ + NX + ϵA) · R ̸= 0. By Lemma 2.12,

possibly replacing M with M+ ϵĀ, N with N+ ϵĀ2, and A with (1− ϵ)A, we may assume that
(KX +∆+NX) · R ̸= 0, and there exists a klt pair (X, ∆̃) such that

0 ≤ ∆̃ ∼R,U ∆+NX +A.

If (KX + ∆ + NX + A) · R < 0, then (KX + ∆̃) · R < 0, and the theorem follows from
the contraction theorem and the existence of flips for klt pairs. Thus we may assume that
(KX +∆+NX) · R > 0.

Step 2. In this step we construct an ACSS model (X ′,F ′, B′,M) of (X,F , B,M) and run
a sequence of steps of MMP φ′ : X ′ !!" Xn for this ACSS model to achieve a model
(Xn,Fn, Bn,M).

By Theorem 3.4 (Theorem A.21), there exists an ACSS model h : (X ′,F ′, B′,M;G) →
(X,F , B) that is Q-factorial, proper, and super. Then (X ′, B′ + G,M) is Q-factorial qdlt.
Therefore, (X ′, B′ +G,N) is qdlt and and X ′ is klt. Let

KX′ + h−1
∗ ∆+NX′ + E1 := h∗(KX +∆+NX) + E2

2We remark that this is the first place where we need to use the structure of generalized foliated quadruples.
Even if M = N = 0 at the beginning, since it may not be possible for us to get an lc foliated triple (X,F , B+A)
even if A is general in |A|R/U . Nevertheless, if the readers only care about the case when M = N = 0, then the
readers may always assume that M,N are NQC/U as this property is preserved throughout the proof.
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for some E1 ≥ 0, E2 ≥ 0 such that E1 ∧ E2 = 0. Since (X,∆,N) is klt, there exists a positive
real number t such that all coefficients of

∆′ := h−1
∗ ∆+ E1 + tExc(h)

are strictly less than 1. Since B′ +G ≥ Exc(h) and h∗(B′ +G) ≥ B ≥ ∆,

B′ +G ≥ h−1
∗ ∆+ Exc(h) ≥ ∆′.

Thus (X ′,∆′,N) is qdlt. Since ⌊∆′⌋ = 0, (X ′,∆′,N) is klt.
Let A′ := h∗A and H ′

R := h∗HR = KF ′ + B′ + MX′ + A′. By Theorem 5.6(2) (Theorem
A.41(2)), we may run a (KF ′ +B′+MX′ + 1

2A
′)-MMP/U with scaling of 1

2A
′ which terminates.

This MMP is also a sequence of steps of a (KF ′ + B′ +MX′)-MMP/U with scaling of A′. We
let

(X ′,F ′, B′,M) := (X0,F0, B0,M) !!" (X1,F1, B1,M) !!" · · · !!" (Xn,Fn, Bn,M) !!" . . .

be this MMP, let Ai,Hi be the images of A′,H ′
R on Xi for each i, and let

λi := inf{t ≥ 0 | KFi +Bi +MXi + λiA
′
i is nef/U}

be the scaling numbers. Let n be the smallest index such that λi < 1. Then the induced
birational map φ′ : X ′ !!" Xn is a sequence of steps of a (KF ′ + B′ + MX′ + λnA′)-MMP/U
and is (KF ′ +B′ +MX′ +A′)-trivial for each step.

Let ∆n, Gn be the images of ∆′, G on Xn respectively. By Lemma 4.17 (Lemma A.32), φ′ is
a sequence of steps of a (KX′ +B′ +G+MX′)-MMP/U , (Xn, Bn +Gn,M) is Q-factorial qdlt.
Since B′ + G ≥ ∆′, Bn + Gn ≥ ∆n. Since M −N is nef/U , (Xn,∆n,N) is Q-factorial qdlt.
Since ⌊∆n⌋ = 0, (Xn,∆n,N) is klt.

Step 3. In this step we construct an MMP ϕ : Xn !!" X̂ .

Claim 7.3. There exists a positive real number δ0 ∈ (0, 12) and a function µ : (0, δ0)→ (0,+∞),
such that for any δ ∈ (0, δ0) that is general in R/Q and any l > µ(δ), any sequence of steps of a

((KXn +∆n +NXn) + l(KFn +Bn +MXn + (1− δ)An))-MMP/U

is (KFn +Bn +MXn + (1− δ)An)-trivial, (KFn +Bn +MXn +An)-trivial, and An-trivial.

Proof. By Lemma 2.22, we only need to show that the MMP is (KFn +Bn+MXn +(1− δ)An)-
trivial. When M,N are NQC/U , by Theorem 1.12 (Theorem A.14), KFn+Bn+MXn+(1−δ)An

is NQC/U for any δ ∈ (0, 1 − λn), and the claim follows from Lemma 2.28 (Lemma A.18)3.
When M and N are not necessarily NQC/U , the proof is more complicated and the claim

follows from Proposition B.9. We remark that Proposition B.9 shows that we do not need δ to
be general in R/Q but we do not need this fact. #

Proof of Theorem 7.2 continued. By Lemma 2.29 (Lemma A.19), KF +B+MX+A is NQC/U4.
By Lemma 2.30 (Lemma A.20), there exists a real number δ1 ∈ (0, δ0) satisfying the following:

• δ1 is general in R/Q.
• δ1 < 1− λn.
• KF +B +MX + (1− δ1)A is big/U .
• B−(HR − 2δ1A/U) = B+(HR/U).
• R is an (HR−2δ1A)-negative extremal ray/U , and is the only (HR−2δ1A)-non-positive
extremal ray/U .

3We remark if we start with M = N = 0 then the NQC case is enough. We also remark that this is the second
place where we need generalized quadruples even if M = N = 0. This is because we need to apply Theorem 1.12
and Lemma 2.28 for KFn

+ Bn + MXn
+ (1 − δ)An. Even if M = 0, we still need to consider the generalized

foliated quadruple structure (Xn,Fn, Bn, (1− δ)Ā) as (Xn,Fn, Bn + (1− δ)An) may not be lc.
4This is the third time when we need to use generalized foliated quadruples. Even if M = 0, we need to

consider (X,F , B, Ā) as it is possible that (X,F , B +A) is not lc.
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Since δ1 < 1− λn, φ′ is a sequence of steps of a (KF ′ +B′ +MX′ + (1− δ1)A′)-MMP/U . Thus
there exists a positive real number l1 > µ(δ1) satisfying the following:

• δ1A+ 1
l1
(KX +∆+NX) and δ1A−

1
l1
(KX +∆+NX) are ample/U ,

• φ′ is a sequence of steps of a
(
(KF ′ +B′ +MX′ + (1− δ1)A

′) +
1

l1
(KX′ +∆′ +NX′)

)
-MMP/U,

hence a sequence of steps of a

((KX′ +∆′ +NX′) + l1(KF ′ +B′ +MX′ + (1− δ1)A
′))-MMP/U.

• l1 is general in R/Q.

Let
P := KFn +Bn +MXn + (1− δ1)An = Hn − δ1An.

Since (Xn,∆n,N) is klt, (Xn,∆n,N+ l1P) is klt. By our choice of δ1 and l,

KXn +∆n +NXn + l1PXn

is big. By [BZ16, Lemma 4.4(2)], we may run a

(KXn +∆n +NXn + l1PXn)-MMP/U

with scaling of an ample/U R-divisor which terminates with a good minimal model

(X̂, ∆̂,N+ l1P)/U

of (Xn,∆n,N + l1P)/U , and (X̂, ∆̂,N + l1P) is klt5. We let ϕ : Xn !!" X̂ be the induced
birational map. By our construction, ϕ is PXn-trivial.

Step 4. In this step we show that the induced birational map X !!" X̂ does not extract any
divisor and is HR-trivial.

Let ψ := X ′ !!" X̂ and α : X !!" X̂ be the induced birational maps. By our construction, ψ
is a sequence of steps of a

((KX′ +∆′ +NX′ + l1(KF ′ +B′ +MX′ + (1− δ1)A
′))-MMP/U.

Let
N := Nσ(X

′/U,KX′ +∆′ +NX′ + l1(H
′
R − δ1A

′)).

Since

KX′ +∆′ +NX′ + l1(H
′
R − δ1A

′) = h∗(l1(HR − δ1A) + (KX +∆+NX)) + (E2 + tExc(h)),

By Lemma 2.24(1), Exc(h) ⊂ SuppN . By Lemma 2.24(2)(3),

Supp f∗N = SuppNσ(X/U, l1(HR − δ1A) + (KX +∆+NX))

= B−(X/U, l1(HR − δ1A) + (KX +∆+NX)).

Since l1δA − (KX +∆+NX) and l1δ1A+ (KX +∆+NX) are ample/U ,

B−(X/U, l1(HR − δA) + (KX +∆+NX))

=B−(X/U, l1HR − (l1δ1A− (KX +∆+NX)))

⊂B+(X/U,HR),

and

B−(X/U, l1(HR − δA) + (KX +∆+NX))

=B−(X/U, l1(HR − 2δ1A) + (l1δ1A+ (KX +∆+NX)))

⊃B−(X/U,HR − 2δ1A) = B+(X/U,HR).

5This is the fourth time when a generalized pair or a generalized foliated quadruple structure is used.
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Therefore, Supp f∗N = B+(X/U,HR), so

SuppN = Exc(h) ∪ h−1
∗ SuppB+(X/U,HR).

By Lemma 2.25, Exc(ψ) = SuppN . In particular, the induced birational map α : X !!" X̂ does
not extract any divisor. Since ψ and h are H ′

R-trivial, α is HR-trivial.

Step 5. In this step we construct the contraction contR : X → T and prove (1).
Recall that by Step 1, we have (KX +∆ +NX) · R > 0. Thus there exists a positive real

number c such that
cA · R = (KX +∆+NX) · R.

Let
LR := l1HR − (KX +∆+NX) + cA.

Then LR ·R = 0. Since

LR = l1(HR − δ1A) + l1

(
δ1A−

1

l1
(KX +∆+NX)

)
+ cA,

R is the only (HR − δ1A)-negative extremal ray/U , and δ1A + 1
l1
(KX + ∆ + NX) and A are

ample/U , we have that LR is a supporting function/U of R. By Lemma 2.21, α is LR-trivial.
Let Â, ĤR, and L̂R be the images of A,HR and LR on X̂ respectively. Then L̂R is big and

nef, and
(
l1 +

c

δ1

)
ĤR = (KX̂ + ∆̂+NX̂) + L̂R +

c

δ1
(ĤR − δ1Â) = (KX̂ + ∆̂+NX̂) + L̂R +

c

δ1
PX̂ .

Since P descends to Xn, PXn is nef. Since ϕ is PXn-trivial, PX̂ is nef. Since (X̂, ∆̂,N+ l1P)

is klt, (X̂, ∆̂,N) is klt. Since LR is big/U and nef/U and α is LR-trivial, L̂R is big/U and
nef/U . Thus L̂R + c

δ1
PX̂ is big/U and nef/U . By the base-point-freeness theorem6, ĤR is semi-

ample/U , and OX̂(mHR) is globally generated/U if ĤR is Cartier. We let contR : X → T and

ĉontR : X̂ → T be the contractions/U induced by HR and ĤR respectively.
If HR is Cartier, then H ′

R is Cartier. Since φ′ is a sequence of steps of an MMP of a Q-factorial
ACSS generalized foliated quadruples and ϕ is a sequence of steps of an MMP of a klt pair,
ĤR is Cartier. Therefore, OX̂(mĤR) is globally generated/U for any integer m ≫ 0. Since

mHR = cont∗R(ĉontR)∗(mĤR), OX(mHR) is globally generated/U for any integer m≫ 0. This
implies (1.a).

We prove (1.b). Since L − (KF + B + MX) is ample/T , by (1.a), OX(mL) is globally
generated/T for any m ≫ 0. Thus mL ∼= cont∗R LT,m and (m + 1)L ∼= cont∗R LT,m+1 for line
bundles LT,m and LT,m+1 for any m≫ 0. We may let LT := LT,m+1 − LT,m.

Step 6. We prove (2) and conclude the proof of the theorem.
Since KX̂ + ∆̂ +NX̂ + l1PX̂ is semi-ample/U , it is semi-ample/T . Let β : X̂ → X+ be the

ample model/T of KX̂ + ∆̂+NX̂ + l1PX̂ . Since X̂ is a minimal model of

KX′ +∆′ +NX′ + l1(H
′
R − δ1A

′),

X+ is the ample model/T of

KX′ +∆′ +NX′ + l1(H
′
R − δ1A

′),

so the induced birational map X+ is the ample model/T of

(KX +∆+NX) + l1(HR − δ1A).

Since R is the only ((KX +∆+NX) + l1(HR − δ1A))-negative extremal ray/U , X+ is also the
ample model/T of KF +B +MX .

6Actually, we need the base-point-freeness theorem for generalized pairs (Lemma A.43) here.
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Since β is (KX̂ + ∆̂ + NX̂ + l1PX̂)-trivial and l1 is general in R/Q, by Lemma 2.22, β is

(KX̂ + ∆̂+NX̂)-trivial. Since (X̄, ∆̄,N) is klt, (X+,∆+,N) is klt, where ∆+ is the image of ∆̂
on X+. This implies (2.a). (2.b) follows from the definition of a flip.

The proof of (2.c) for the divisorial contraction case is similar to the proof of [KM98, Corollary
3.17], and the proof of (2.c) for the flipping contraction case is similar to [HL23, Theorem 6.1,
Step 3]. We omit these proofs. #

8. Lifting of the MMP

Lemma 8.1. Let (X,F , B)/U be an lc algebraically integrable foliated triple and A an ample/U
R-divisor on X. Let P :

(X,F , B) := (X0,F0, B0) !!" (X1,F1, B1) !!" · · · !!" (Xn,Fn, Bn)

be a sequence of steps of a (KF + B)-MMP/U with scaling of A and let Ai be the image of A
on Xi for each i. Let

λn := inf{t ≥ 0 | KFn +Bn + tAn is nef/U}.

Suppose that λn > 0. Then there exists a (KFn + Bn)-negative extremal ray/U R such that
(KFn +Bn + λnAn) ·R = 0.

Proof. P is also a sequence of steps of a (KF + B + λnA)-MMP/U with scaling of A.
By [CHLX23, Lemma 16.1.1], there exists an lc algebraically integrable generalized foliated
quadruple (Xn,Fn, B′

n,M
′)/U and an ample/U R-divisor A′

n such that

KFn +B′
n +A′

n +M′
Xn
∼R,U KFn +Bn + λnAn.

By Lemma 2.29 (Lemma A.19), KFn +B′
n+A′

n+M′
Xn

is NQC/U . Thus there exists a positive
real number ϵ0, such that for any curve C on Xn, either (KFn + Bn + λnAn) · C ≥ ϵ0 or
(KFn +Bn + λnAn) · C = 0. Since

λn := inf{t ≥ 0 | KFn +Bn + tAn is nef/U},

there exists a positive real number δ ∈
(
0, ϵ0

2 dimX+ϵ0

)
and a (KFn +Bn+(1− δ)λnAn)-negative

extremal ray/U R. If (KFn +Bn + λnAn) ·R ̸= 0, then R is spanned by a curve C such that

−2 dimX ≤ (KFn +Bn) · C < 0

and
(KFn +Bn + λnAn) · C ≥ ϵ0,

so (
KFn +Bn + λn ·

2 dimX

2 dimX + ϵ0
An

)
· C ≥ 0,

which is not possible. Therefore, (KFn +Bn + λnAn) ·R = 0 and we are done. #

Proposition 8.2. Let (X,F , B)/U be an lc algebraically integrable foliated triple. Let P :

(X,F , B) := (X0,F0, B0) !!" (X1,F1, B1) !!" · · · !!" (Xn,Fn, Bn) !!" . . .

be a (possibly infinite) sequence of (KF +B)-MMP/U . For each i ≥ 0, we let ψi : Xi → Ti and
ψ+
i : Xi+1 → Ti be the (i + 1)-th step of this MMP and let φi := (ψ+

i )
−1 ◦ ψi : Xi !!" Xi+1 be

the induced birational map. Let h : (Y,FY , BY ;G)/Z → (X,F , B) be an ACSS modification of
(X,F , B) that is Q-factorial, proper, and super. Let A be an ample/U R-divisor on X and let
Ai be the image of A on Xi for each i.

Then there exist a (possibly infinite) sequence PY of birational maps

(Y,FY , BY ) := (Y0,FY0
, BY0

) !!" (Y1,FY1
, BY1

) !!" · · · !!" (Yn,FYn , BYn) !!" . . .

satisfying the following. Let φi,Y : Yi !!" Yi+1 be the induced birational map. Then:
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(1) For any i ≥ 0, there exist an ACSS modification hi : (Yi,FYi , BYi ;Gi)/Z → (Xi,Fi, Bi)
that is Q-factorial, proper, and super, such that h0 = h and Gi is the image of G on Yi.

(2) For any i ≥ 0, hi+1 ◦ φi,Y = φi ◦ hi.
(3) For any i ≥ 0, φi,Y is a (KFi + BYi)-MMP/Ti and (Yi+1,FYi+1

, BYi+1
)/Ti is the output

of this MMP, such that φi,Y is not the identity map.
(4) PY is a sequence of steps of a (KFY +BY )-MMP/U .
(5) Suppose that P is an MMP/U with scaling of A. Let AY := h∗A and let AYi the image

of AY on Yi for each i. Let

λi := inf{t ≥ 0 | KFi +Bi + tAi is nef/U}

be the (i+ 1)-th scaling number. Then:
(a) φi,Y is a sequence of steps of a (KFYi

+ BYi)-MMP/U with scaling of AYi, and the
scaling number of each step of φi,Y is λi.

(b) PY is sequence of steps of a (KFY +BY )-MMP/U with scaling of AY .

Proof. Since (4) follows from (3) and (5.b) follows from (5.a), we only need to prove (1)(2)(3)
and (5.a).

Let n be a non-negative integer. We prove the proposition by induction on n and under the
induction hypothesis that we have already constructed (Yi,Fi, Bi;Gi)/U and hi for any i ≤ n and
φi,Y for any i ≤ n−1 which satisfy (1)(2)(3)(5). When n = 0, this follows from our assumption, so
we may assume that n > 0. We need to construct φn,Y , hn+1, and (Yn+1,Fn+1, Bn+1;Gn+1)/U .

We let Hn be a supporting function of the extremal ray/U contracted by ψn and let

Ln := Hn − (KFn +Bn),

such that Ln = λnAn if P is an MMP/U with scaling of A. Then Ln is ample/Tn. Now we run
a (KFYn

+BYn)-MMP/Tn with scaling of h∗nLn, then this MMP is also a (KFYn
+BYn +

1
2h

∗
nLn)-

MMP/Ti with scaling of h∗nLn. By Theorem 5.6, we may choose such an MMP which terminates
with a good minimal model (Yn+1,FYn+1

, BYn+1
)/Tn of (Yn,FYn , BYn)/Tn. Since Xn+1 is the

ample model/Tn of KFn + Bn, Xn+1 is also the ample model/Tn of KFYn+1
+ BYn+1

, so there

exists an induced birational morphism hn+1 : Yn+1 → Xn+1. Since KYn +BYn is not nef/Tn and
KYn+1

+BYn+1
is nef/Tn, φi,Y is not the identity map.

Let φn,Y : Yn !!" Yn+1 be the induced birational map. (1) for n + 1 immediately follows by
our construction and [CHLX23, Lemma 9.1.4]. (2)(3) for n + 1 follow immediately from our
construction. Since Hn ∼R,Tn 0, φn,Y is (h∗nHn)-trivial, so (5.a) for n + 1 immediately follows.
Thus (1)(2)(3) and (5.a) follow from induction on n and the proposition follows. #

9. Proof of the main theorems

Proof of Theorem 1.2. It follows from Proposition 7.1 and Theorem 7.2. #

Proof of Theorem 1.3. By Proposition 7.1 and Theorem 7.2, we can run a step of a (KF +B)-
MMP/U . By Theorem 7.2(2.a), after a step of the MMP φ : X !!" X ′ that is not a Mori fiber
space, (X ′,∆′ := φ∗∆) is klt. Thus we may continue this process. #

Proof of Theorem 1.1. It is a special case of Theorems 1.2 and 1.3. #

Theorem 9.1. Let (X,F , B)/U be an lc algebraically integrable foliated triple such that (X,∆)
is klt for some B ≥ ∆ ≥ 0. Let A be an ample/U R-divisor on X. Then we may run a
(KF +B)-MMP/U with scaling of A.

Proof. It follows from Theorem 1.3 and Lemma 8.1. #

Proof of Theorem 1.4. By Theorem 9.1, we can run a (KF + B)-MMP/U with scaling of any
ample/U R-divisor A. Let ϵ be a positive real number such that (KF +B + ϵA) is not pseudo-
effective/U .
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Let h : (X ′,F ′, B′;G)/Z → (X,F , B) be an ACSS modification of (X,F , B) that is Q-
factorial, proper, and super. By Proposition 8.2, any infinite sequence of steps of a (KF+B+ϵA)-
MMP/U with scaling of A induces an infinite sequence of steps of a (KF ′ +B′+ ϵh∗A)-MMP/U
with scaling of h∗A. By Theorem 5.6, any (KF ′ + B′ + ϵh∗A)-MMP/U with scaling of h∗A
terminates with a Mori fiber space/U . Thus any (KF + B + ϵA)-MMP/U with scaling of A
terminates with a Mori fiber space/U , and the theorem follows. #

Proof of Theorem 1.5(1). By Theorem 9.1 (actually, Theorem A.5), we can run a (KF +B+A)-
MMP/U with scaling of any ample/U R-divisor H. Let h : (X ′,F ′, B′;G)/Z → (X,F , B) be
an ACSS modification of (X,F , B) that is Q-factorial, proper, and super. By Proposition 8.2,
any infinite sequence of steps of a (KF +B +A)-MMP/U with scaling of H induces an infinite
sequence of steps of a (KF ′ + B′ + h∗A)-MMP/U with scaling of h∗H. By Theorem 5.6, any
(KF ′ +B′ + h∗A)-MMP/U with scaling of h∗H terminates with a minimal model/U . Thus any
(KF +B+A)-MMP/U with scaling of H terminates with a minimal model of (X,F , B+A)/U ,
and the theorem follows. #

Proof of Theorem 1.6. Let H := KF + B + A. By Lemma 2.29, H is NQC/U . Thus we have
H =

∑
aiHi for some nef/U Cartier divisors Hi on X and ai > 0 for each i. Let ϵ0 := min{ai}

and let l > 2 dimX
ϵ0

be an integer.
Let 0 < e≪ 1 be a real number such that

Â := A+ e(KF +B)− e(KX +∆)

is ample/U . Let K := (1− e)(KF +B) + e(KX +∆), then H = K + Â.

Claim 9.2. KF +B + Â is pseudo-effective/U .

Assume Claim 9.2, then KF + B + Â+ lH is also pseudo-effective/U . By Theorem A.7 and
Lemma B.6, there exists a positive integer l≫ 0 which does not depend on e, such that we may
run a (KF+B+Â+ lH)-MMP/U , each step of this MMP is H-trivial, and the MMP terminates
with a minimal model/U . Let Y be the output of this MMP and let BY ,∆Y ,HY , AY be the

images of B,∆,H,A on Y respectively. Let A := Â. By Theorem A.4, (Y,∆Y ,A) is klt. Since

(l + 1− el)H = K + Â+ (l − el)H = (1− e)(KF +B + Â+ lH) + e(KX +∆+ Â),

we have

KY +∆Y +AY +
1− e

e
(KFY +BY +AY + lHY ) =

l + 1− el

e
HY

is nef/U . Let

P := A+
1− e

e
(KFY +BY +AY + lHY ),

then (Y,∆Y ,P)/U is klt. Since Â is ample/U , AY is big/U . By [BZ16, Lemma 4.4(2)],
(Y,∆Y ,P)/U is a good minimal model of itself, so KY + ∆Y + PY is semi-ample/U . Thus
HY is semi-ample/U . Since X !!" Y is H-trivial, H is semi-ample/U . Moreover, if H is
Cartier, then HY is Cartier. By Lemma A.43, OY (nHY ) is globally generated/U for any integer
n≫ 0, and so OX(nH) is globally generated/U for any integer n≫ 0.

Finally we give the proof of Claim 9.2:
Let h : (X ′,F ′, B′;G)/Z → (X,F , B) be an ACSS modification that is Q-factorial, proper

and super. Suppose KF + B + Â is not pseudo-effective/U , then KF ′ + B′ + AX′ is also not
pseudo-effective/U . By [CHLX23, Proposition 9.3.2], we may run a (KF ′ +B′ +AX′)-MMP/U
which terminates with a Mori fiber space/U , and this MMP is also an MMP/Z. Since

KX′ +B′ +G+AX′ ∼R,Z KF ′ +B′ +AX′ ,

we have
(1− e)KF ′ + eKX′ +B′ + eG+AX′ ∼R,Z KF ′ +B′ +AX′ ,
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so this MMP is also a ((1−e)KF ′ +eKX′+B′+eG+AX′)-MMP/U . In particular, (1−e)(KF ′ +
B′ +AX′) + e(KX′ +B′ +G+AX′) is not pseudo-effective/U .

Since (X,∆) is klt and B ≥ ∆, from the definition of ACSS modification we see that

KX′ +B′ +G ≥ KX′ +∆′ = h∗(KX +∆),

hence (1− e)(KF ′ +B′ +AX′) + e(KX′ +∆′ +AX′) is not pseudo-effective/U either. However,
this is not possible as

(1− e)(KF ′ +B′ +AX′) + e(KX′ +∆′ +AX′) = h∗(KF +B +A) = h∗H.

#

Proof of Theorem 1.5(2). By Theorem 1.5(1) we can run a (KF + B + A)-MMP/U and it
terminate with a minimal model φ : X !!" X ′. In particular the corresponding birational
transform KF ′ + B′ + A′ is nef/U . Notice that (X ′,∆′ := φ∗∆) is klt by Theorem A.4. By
[CHLX23, Lemma 16.1.1], there exists a nef/U b-divisor N and an ample/U R-divisor Ã′ such
that

(1) (X ′,F ′, B′,N) is lc, and
(2) A′ ∼R,U Ã′ +NX′ .

Then it suffices to show KF ′ + B′ + NX′ + Ã′ is semi-ample/U , which follows from Theorem
A.8. #

Proof of Theorem 1.7. This is an immediate consequence of Theorem 1.5(2). #

Proof of Theorem 1.8. By Theorem 9.1, we can run a (KF +B)-MMP with scaling of any ample
R-divisor A. Let h : (X ′,F ′, B′;G)/Z → (X,F , B) be an ACSS modification of (X,F , B) that is
Q-factorial, proper, and super. By Proposition 8.2, any infinite sequence of steps of a (KF +B)-
MMP with scaling of A induces an infinite sequence of steps of a (KF ′ +B′)-MMP with scaling
of h∗A.

Suppose that this MMP does not terminate. Let λi be the scaling numbers of this MMP and
let λ := limi→+∞ λi. If λ > 0, then we have an infinite sequence of steps of a (KF ′ +B′ + λA′)-
MMP with scaling of h∗A, which contradicts Theorem 5.6. Therefore, λ = 0. Let

(X ′,F ′, B′) := (X0,F0, B0) !!" (X1,F1, B1) !!" · · · !!" (Xn,Fn, Bn) !!" . . .

be this MMP and let Ai be the image of h∗A on Xi for each i. Then there exists n > 0 such
that the induced birational map φi : Xn !!" Xi is small for any i ≥ n. Therefore,

KFn +Bn = lim
i→+∞

(φ−1
i )∗(KFi +Bi + λiAi)

is movable. Since κσ(KF+B) = 0, κσ(KFn+Bn) = 0. By [CHLX23, Lemma 4.2.4], KFn+Bn ≡
0, a contradiction. Therefore, any (KF +B)-MMP with scaling of A terminates with a minimal
model (Xmin,Fmin, Bmin) of (X,F , B) such that KFmin

+Bmin ≡ 0. By [DLM23, Theorem 1.4],
KFmin

+Bmin ∼R 0. #

Proof of Theorem 1.9(1). Let ϵ be a positive real number such that H := −KF + ϵD is ample.
Then any D-MMP is a (KF+H)-MMP. Since (X,F , 0, H̄) is an lc generalized foliated quadruple
andX is klt, by Theorems 1.4 and 1.5 (actually, Theorems A.6 and A.7), we may run a (KF+H)-
MMP with scaling of an ample divisor which terminates with either a good minimal model or a
Mori fiber space. #

Lemma 9.3. Let (X,F , B)/U be an lc algebraically integrable foliated triple such that (X,∆) is
klt for some B ≥ ∆ ≥ 0. Assume that −(KF +B) is ample/U and L1, ..., Lm be Cartier divisors
on X. Let E := ⊕m

i=1OX(Li) and π : Y = PX(E) → X be the corresponding projective bundle.
Then (Y,π∗∆) is klt and there exists BY ≥ π∗∆ such that

(1) (Y,π−1F , BY ) is lc,
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(2) −(Kπ−1F +BY ) is ample/U .

Proof. (Y,π∗∆) is klt by the smoothness of π. Let T be the union of the sections of π
corresponding to E $ Li, 1 ≤ i ≤ m. We will show BY := (1 − ϵ)T + π∗B satisfies our
requirements for any 0 < ϵ≪ 1.

By taking a foliated log resolution of (X,F , B) and considering the base change of π, we
can easily see by definition that (Y,π−1F , T + π∗B) is lc if and only if (X,F , B) is lc. Hence
(Y,π−1F , BY ) is lc as well.

Since Kπ−1F + T = π∗KF and T is π-ample, we have

−(Kπ−1F +BY ) ∼R,U −π
∗(KF +B) + ϵT

is ample/U for any 0 < ϵ≪ 1. #

Proof of Theorem 1.9(2). By Theorem 1.6 we have Pic(X)Q ≃ N1(X)Q. Choose a basis
L1, ..., Lm of Pic(X)Q such that each Li is a Cartier divisor on X and the convex hull of
L1, ..., Lm in N1(X)R contains the effective cone Eff(X). Let Y := PX(⊕m

i=1OX(Li)) and H
be the tautological line bundle OY (1). Note that H is a big Cartier divisor on Y . It is easy
to check that the Cox ring of X is finitely generated if and only if the section ring R(Y,H) is
finitely generated. By Lemma 9.3, there is a boundary divisor BY on Y such that (Y,π−1F , BY )
is lc and −(Kπ−1F + BY ) is ample. We can choose an ample divisor A on Y such that
Kπ−1F + BY + A ∼Q δH for a sufficiently small rational number δ > 0. By Theorem 1.7,
R(Y, δH) is finitely generated, and so is R(Y,H). Therefore, the Cox ring of X is also finitely
generated and hence X is a Mori dream space. #

Proof of Theorem 1.10. Let h : (X ′,F ′, B′;G)/Z → (X,F , B) be an ACSS model of (X,F , B)
that is Q-factorial, proper, and super. Let A′ := h∗A. Let H be an ample R-divisor on X
and let H ′ := h∗H. By Theorem 5.6, we may run a (KF ′ + B′ + A′)-MMP/U φ′ : X ′ !!" X ′′

which terminates with either a minimal model (X ′′,F ′′, B′′ + A′′)/U or a Mori fiber space
(X ′′,F ′′, B′′ + A′′) → T of (X ′,F ′, B′ + A′)/U , where B′′ and A′′ are the images of B′ and A′

on X ′′ respectively. Let φ : X !!" X ′′ be the induced birational map.
For any prime divisor D that is extracted by φ−1, D is also extracted by h, so

−multD(B
′′ +A′′) = a(D,F , B +A) ≤ a(D,F , B) = −ϵF (D).

Therefore, (X ′′,F ′′, B′′ + A′′) is a log birational model of (X,F , B). For any prime divisor D
on X that is exceptional/X ′′, D is also a prime divisor on X ′ that is exceptional/X ′′, so

a(D,F , B +A) = a(D,F ′, B′ +A′) < a(D,F ′′, B′′ +A′′).

Thus either (X ′′,F ′′, B′′ +A′′)/U is a bs-minimal model of (X,F , B +A)/U , or (X ′′,F ′′, B′′ +
A′′) → T is a bs-Mori fiber space of (X,F , B + A)/U . In particular, (X,F , B + A)/U has a
bs-minimal model or a bs-Mori fiber space. #

Proof of Theorem 1.11. There exists an ACSS modification h : (X ′,F ′, B′;G)/Z → (X,F , B)
that isQ-factorial, proper, and super, and (X ′, B′+G)/U has a log minimal model if (X,F , B)/U
has a bs-minimal model by Proposition 4.21. Let f : X ′ → Z be the associated contraction and
let A′ := h∗A. By Proposition 8.2, any infinite sequence of (KF + B)-MMP/U with scaling of
A induces an infinite sequence of (KF ′ +B′)-MMP/U with scaling of A′.

First we prove (1). Suppose that the MMP does not terminate. We let λi be the scaling
numbers of the (KF + B)-MMP/U with scaling of A and let λ := limi→+∞ λi. By Lemma
4.17, any (KF ′ + B′)-MMP/U with scaling of A′ is also a (KX′ + B′ + G)-MMP/U with A′,
and λ is also the limit of the scaling numbers of the (KX′ + B′ + G)-MMP/U with A′. By
Theorem 5.6, we have λ = 0. In particular, λ ̸= λi for any i and KF +B is pseudo-effective/U .
Thus (X,F , B)/U has a bs-minimal model, so (X ′, B′ + G)/U has a log minimal model. This
contradicts Theorem 5.2.

(2) follows from (1) and Theorem 9.1. #
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10. Further discussions

10.1. New definition of foliated klt singularities.

Remark 10.1. We remark that our definitions of lc and klt singularities in Definition 2.9
have some differences with the classical definitions [McQ08, Definition I.1.5], where the −1 is
replaced with −ϵF (E). The other definition is used in most literature (e.g. [CS20, ACSS21,
CS21, CHLX23]). Lemma 2.10 shows that our definition of “lc” coincides with the classical
definition of “lc”. We briefly explain why we change the definition of “klt”. This is with several
reasons:

(1) The classical “klt” is an empty condition in many scenarios. For any non-trivial
algebraically integrable foliation F (F ̸= TX), there are a lot of F-invariant divisors,
and each of them is an lc place. Therefore, the condition

a(E,F , 0) > −ϵF (E) for any prime divisor E over X

as in [McQ08, Definition I.1.5(3)] is a condition that cannot be satisfied by any non-
trivial algebraically integrable foliation. Similar issues may appear for foliations with
non-trivial algebraic parts.

(2) “Plt” is missing. For example, [CS23b, Theorem 1.1] established the correspondence via
adjunction to non-invariant divisors for lc singularities. But the “plt-klt” correspondence
is missing. This prevents us to prove a lot of things, e.g. the existence of “pl-flips” for
foliations in dimension 4.

(3) “Terminal” is also missing. [CS23b, Theorems 1.1, 3.16] can only show that “adjunction
of canonical (resp. terminal) singularities to non-invariant divisors is canonical (resp.
terminal)”. However, for usual pairs, we know that “adjunction of canonical singularities
to divisors is terminal”. One reason for this is that the definition of “terminal” for
foliations requires that the discrepancies of F-invariant divisors are > 0. Thus it is also
natural to ask whether we can establish the “canonical-terminal” correspondence if we
ignore the invariant lc places.

(4) There are substantial differences between non-invariant divisors and invariant divisors
and it is very important to use non-invariant divisors to lift sections. This is because we
usually have exact sequences of the form

OX(L− S)→ OX(L)→ OS(L|S)

which allow us to lift sections. Here L usually has an lc structure K + B and S is a
component of ⌊B⌋. However, if K = KF and S is an F-invariant divisor, then (X,F , B)
will not be lc by [CS21, Remark 2.3]. Therefore, non-invariant lc places behave better
than lc places in this scenario.

With the above discussion, we also propose the definition of “plt”:

Definition 10.2. Let (X,F , B) be a foliated triple. We say that (X,F , B) is plt if a(E,F , B) >
−ϵF(E) for any prime divisor E that is exceptional over X.

We propose the following questions on foliations with klt singularities.

Question 10.3 (cf. [CS23b, Theorem 1.1]). Let (X,F , B) be a (Q-factorial) plt foliated triple
and S a component of ⌊B⌋ with normalization Sν . Let FSν be the restricted foliation of F on
Sν and let

KFSν +DiffSν (F , B) := (KF +B)|Sν .

Is (Sν ,FSν ,DiffSν (F , B)) klt?

Question 10.4 (cf. [CS23a, Conjecture 4.2(2)]). Let (X,F , B) be a Q-factorial klt algebraically
integrable foliated triple such that (X,B) is klt. Is F induced by a contraction?
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Question 10.5 (cf. [CS21, Theorem 11.3]). Let (X,F , B) be a klt foliated triple such that
dimX = 3 and rankF = 2. Is F non-dicritical?

Finally, we remark that the existence of pl-flips is one crucial step towards the existence of
flips for usual varieties. With this in mind, we ask the following:

Question 10.6 (Pl-flip). Let (X,F , B) be a Q-factorial plt projective foliated triple and f :
X → Z a small contraction such that ρ(X/Z) = 1, −(KF + B) is ample/Z, S := ⌊B⌋ is
irreducible, and −S is ample/Z. Assume that dimX = 4. Does the flip X+ → Z of f exist?

10.2. MMP when the ambient variety is not klt. We still expect that the minimal
model program holds for lc algebraically integrable foliations even if the ambient variety is
not necessarily klt. We propose the following conjecture:

Conjecture 10.7 (MMP for algebraically integrable foliations). Let (X,F , B)/U be an lc
algebraically integrable foliated triple and R a (KF +B)-negative extremal ray. Then:

(1) (Contraction theorem) There exists a contraction/U contR : X → T of R.
(2) (Existence of flips) If contR is a flipping contraction, then the flip/U X+ → T associated

to R exists.
(3) (MMP) We can run a (KF +B)-MMP/U .

Theorem 1.10 provides some positive evidence towards Conjecture 10.7. In fact, if the
“minimal model in the sense of Birkar-Shokurov” in Theorem 1.10 is replaced with “good minimal
model in the sense of Birkar-Shokurov”, then Conjecture 10.7 will immediately follow.

Another positive evidence for Conjecture 10.7 is the case when F is induced by a locally stable
family f : (X,B) → Z. In this case, Conjecture 10.7 is essentially settled in [MZ23, Theorem
1.5] although it is not written in the language of foliations. We reinterpret [MZ23, Theorem 1.5]
in the following way and slightly improve this result.

Theorem 10.8 ([MZ23, Theorem 1.5]). Let f : (X,B) → Z be a locally stable family over a
normal variety with normal generic fiber and F the foliation induced by f . Let π : X → U be a
contraction. Then:

(1) KF = KX/Z and (X,F , B) is lc.
(2) We may run a (KF +B)-MMP/U and any sequence of steps of a (KF +B)-MMP/U is

a (KF +B)-MMP/Z.

Proof. (1) It follows from the definition of locally stable families [Kol23, Theorem-Definition
4.7].

(2) [MZ23, Theorem 1.5] implies that we can run a (KF +B)-MMP/Z. By the (relative) cone
theorem of algebraically integrable foliations ([CHLX23, Theorem 2.3.1], [ACSS21, Theorem
3.9]), any (KF +B)-MMP/U is a (KF +B)-MMP/Z and thus we can run it. #

We also have the following result for lc algebraically integrable foliations of co-rank 1.

Theorem 10.9. Let (X,F , B)/U be an lc algebraically integrable foliated triple such that
rankF = dimX − 1 and let A,H be two ample/U R-divisors on X. Then:

(1) If (X,F , B) is klt, then F is induced by a contraction f : X → Z.
(2) Suppose that F is induced by a contraction f : X → Z. Then:

(a) We may run a (KF +B)-MMP/U .
(b) We may run a (KF + B + A)-MMP/U with scaling of H which terminates with

either a good minimal model or a Mori fiber space of (X,F , B +A)/U .

Proof. (1) By [CHLX23, Theorem 2.1.10], F is induced by an almost holomorphic map f : X !!"

Z where Z is a curve. By the rigidity lemma, f is a contraction.
(2) Let h : (X ′,F ′, B′;G′)/Z ′ → (X,F , B) be a super ACSS modification of (X,F , B) whose

existence is guaranteed by Theorem 3.4. Since Z ′ is a curve, Z ′ ∼= Z. Therefore, X ′ → Z ′ factors
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through X, so X is the core model of (h,X ′ → Z). Thus (X,B + G) is lc, where G := h∗G′,
and KX +B +G ∼R,Z KF +B by Lemma 3.5. (2.a) follows from [CHLX23, Lemma 9.1.4] and
(2.b) follows from [CHLX23, Theorem 16.1.4]. #

Finally, we conjecture the following:

Conjecture 10.10 (Base-point-freeness). Let (X,F , B)/U be an lc algebraically integrable
foliated triple. Let A be an ample/U R-divisor on X such that KF +B +A is nef/U . Then:

(1) KF +B +A is semi-ample/U .
(2) If KF + B + A is Cartier, then OX(m(KF + B + A)) is globally generated/U for any

integer m≫ 0.

Appendix A. Generalized foliated quadruples

In this appendix, we discuss the generalized foliated quadruple version of our main theorems.
Due to technicality, we shall omit or only sketch the proofs of these theorems in this appendix.
This appendix is organized in the following way: first we shall define generalized foliated
quadruples and its related concepts. Then we shall state the generalized foliated quadruple
version of the main theorems of the paper and provide sketch of their proofs which relies on
results in the rest part of this appendix. Finally, we shall provide the generalized foliated
quadruple version of all other results in this paper.

A.1. Definitions.

Definition A.1. A generalized foliated quadruple (X,F , B,M)/U consists of a normal quasi-
projective variety X, a foliation F on X, an R-divisor B ≥ 0 on X, a projective morphism X →
U , and a nef/U b-divisor M, such that KF +B+MX is R-Cartier. We say that (X,F , B,M)/U
is NQC if M is NQC/U . If F = TX then we say that (X,B,M)/U is a generalized pair.

Remark A.2. We briefly remark the definitions of other concepts of generalized foliated
quadruples and generalized pairs.

(1) Related descriptions of generalized foliated quadruples are defined in the same way as
in Definition 2.8 (e.g. generalized foliated sub-quadruple).

(2) Singularities of generalized foliated quadruples are defined in the same way as in
Definition 2.9. We do not define “potentially generalized klt” as in Definition 2.11
because it is equivalent to “potentially klt”. See Lemma A.16 below.

(3) Foliated log resolution (Definition 2.13) and foliated log smooth model (Definition 4.10)
can be defined for generalized foliated quadruples in the same way by requiring that M
descends X ′.

(4) Property (∗) (Definition 2.14) and ACSS (Definition 2.17), can be defined for generalized
foliated quadruples in a similar way. The “qdlt” used for Definition 2.17(3) shall be
replaced by “qdlt” for generalized pairs defined in [CHLX23, Definition 7.1.1].

(5) Simple, core, ACSS modification/models defined in Definitions 3.2 and 3.3 can be defined
for generalized foliated quadruples in the same way.

(6) Log birational model (Definition 4.2), all types of models in Definition 4.3, and different
types of Mori fiber spaces in Definition 4.4, can be defined in the same way for generalized
foliated quadruples by following the principle that when taking these models, the nef part
M does not change.

A.2. Generalized foliated quadruple version of the main theorems.

Theorem A.3 (Theorem 1.2). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M−N is nef/U . Let R
be a (KF +B +MX)-negative extremal ray/U . Then:

(1) (Contraction theorem) There exists a contraction/U contR : X → Z of R.
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(2) (Existence of flips) If contR is a flipping contraction, then the flip/U X+ → T associated
to R exists.

Proof. It follows from Proposition A.42 and Theorem 7.2. #

Theorem A.4 (Theorem 1.3). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M −N is nef/U . Then
we may run a (KF +B +MX)-MMP/U . Moreover, for any birational map φ : X !!" X+ that
is a sequence of steps of a (KF +B +MX)-MMP/U , (X,∆+ := φ∗∆,N) is klt.

Proof of Theorem 1.3. By Proposition A.42 and Theorem 7.2, we can run a step of a (KF +B)-
MMP/U . By Theorem 7.2(2.a), after a step of the MMP φ : X !!" X ′ that is not a Mori fiber
space, (X ′,∆′ := φ∗∆) is klt. Thus we may continue this process. #

Theorem A.5 (Theorem 9.1). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M−N is nef/U . Let A
be an ample/U R-divisor on X. Then we may run a (KF + B +MX)-MMP/U with scaling of
A.

Proof. It follows from Theorem A.4 and Lemma A.44. #

Theorem A.6 (Theorem 1.4). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M−N is nef/U . Assume
that KF + B +MX is not pseudo-effective/U . Then we may run a (KF + B +MX)-MMP/U
with scaling of an ample/U R-divisor and any such MMP terminates with a Mori fiber space/U .

Proof. It follows from the same lines of the proof of Theorem 1.4 except that we replace Theorems
5.6, 9.1 and Proposition 8.2 with Theorems A.41, A.5 and Proposition A.45 respectively. #

Theorem A.7 (Theorem 1.5). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M−N is nef/U . Let A
be an ample/U R-divisor on X such that either B ≥ A ≥ 0 or M−N− Ā is nef/U . Then:

(1) We may run a (KF +B+A+MX)-MMP/U with scaling of an ample/U R-divisor and
any such MMP terminates with a minimal model of (X,F , B +A,M)/U .

(2) The minimal model in (1) is a good minimal model.

Proof. It follows from the same lines of the proof of Theorem 1.5 except that we replace Theorems
5.6, 9.1 and Proposition 8.2 with Theorems A.41, A.5 and Proposition A.45 respectively. #

Theorem A.8 (Theorem 1.6). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M−N is nef/U . Let A
be an ample/U R-divisor on X such that KF +B +A is nef/U . Then:

(1) KF +B +A+MX is semi-ample/U .
(2) If KF +B+A+MX is Cartier, then OX(n(KF +B+A+MX)) is globally generated/U

for any integer n≫ 0.

Proof. It follows the same proof of Theorem 1.6, except we replace Lemma 2.29 with Lemma
A.19. #

Theorem A.9 (Theorem 1.7). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N) is klt, where B ≥ ∆ ≥ 0 and M−N is nef/U . Let A be
an ample/U R-divisor on X such that B+A+MX is a Q-divisor. Then the log canonical ring

R(X,KF +B +A+MX) := ⊕+∞
m=0π∗OX(⌊m(KF +B +A+MX)⌋)

is a finitely generated OU -algebra.

Proof. This is an immediate consequence of Theorem A.7(2). #
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Theorem A.10 (Theorem 1.8). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M−N is nef/U . Assume
that κσ(KF +B +MX) = 0.

The we may run a (KF + B +MX)-MMP with scaling of an ample R-divisor and any such
MMP terminates with a minimal model (Xmin,Fmin, Bmin,M) of (X,F , B,M) such that KFmin

+
Bmin +MXmin

≡ 0. Moreover, if κι(KF +B +MX) = 0, then KFmin
+Bmin +MXmin

∼R 0.

Proof. Except the last sentence of the proof where [DLM23, Theorem 1.4] is applied to show
that KFmin

+Bmin ∼R 0, the proof of Theorem A.10 follows from the same lines of the proof of
Theorem 1.5 by replacing Theorems 5.6, 9.1 and Proposition 8.2 with Theorems A.41, A.5 and
Proposition A.45 respectively. In this case, we get a minimal model (Xmin,Fmin, Bmin,M) of
(X,F , B,M) such that KFmin

+Bmin +MXmin
≡ 0. The moreover part is obvious. #

Theorem A.11 (Theorem 1.9(1)). Let (X,F , B,M)/U be an lc algebraically integrable
generalized foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M − N
is nef/U . Assume that −(KF +B +MX) is ample/U . Let D be an R-Cartier R-divisor on X.
Then we may run a D-MMP which terminates with either a good minimal model/U of D or a
Mori fiber space/U of D.

Proof. It follows from the same lines of the proof of Theorem 1.9 except we replace Theorems
1.4 and 1.5 with Theorems A.6 and A.7 respectively. #

Theorem A.12 (Theorem 1.10). Let (X,F , B,M)/U be an lc algebraically integrable general-
ized foliated quadruple and A an ample/U R-divisor on X. Assume that either X is potentially
klt or M is NQC/U . Then (X,F , B,M + Ā)/U has either a minimal model or a Mori fiber
space in the sense of Birkar-Shokurov.

Proof. It is an immediate consequence of Theorem A.41. Note that the proof is even simpler
comparing to Theorem A.12 since A does not contribute to any singularity if it is in the nef part
rather than the boundary part. #

Theorem A.13 (Theorem 1.11). Let (X,F , B,M)/U be an NQC lc algebraically integrable
generalized foliated quadruple. Assume that (X,F , B,M)/U has a minimal model or a Mori
fiber space in the sense of Birkar-Shokurov and X is potentially klt. Let A be an ample/U
R-divisor on X. Then:

(1) Any (KF +B +MX)-MMP/U with scaling of A terminates.
(2) If there exists a klt generalized pair (X,∆,N) such that B ≥ ∆ ≥ 0 and M−N is nef/U ,

then (X,F , B,M)/U has a minimal model or a Mori fiber space.

Proof. It follows from the same lines of the proof of Theorem 1.11 except that we replace Lemma
4.17, Propositions 4.21 and 8.2, Theorems 5.2, 5.6, and 9.1 with Lemma A.32, Propositions A.36
and A.45, Theorems A.38, A.41, and A.5 respectively. #

Theorem A.14 (Theorem 1.12). Let (X,F , B :=
∑m

i=1 v
0
iBi,M =

∑n
i=1 µ

0
iMi)/Z be an lc

algebraically integrable generalized foliated quadruple such that KF + B + MX is nef/Z, each
Bi ≥ 0 is a Weil divisor, and each Mi is a nef/Z Cartier b-divisor.

Let v0 := (v01 , . . . , v
0
m, µ0

1, . . . , µ
0
n). Then there exists an open subset U of the rational envelope

of v0 in Rm+n, such that (X,F ,
∑m

i=1 viBi,
∑n

i=1 µiMi) is lc and KF+
∑m

i=1 viBi+
∑n

i=1 µiMi,X

is nef/Z for any (v1, . . . , vm, µ1, . . . , µn) ∈ U .

Proof. It follows from the same lines of the proof of Theorem 1.12 except we replace [DLM23,
Theorem 1.5] with [CHLX23, Theorem 2.4.7]. #

A.3. Generalized foliated quadruple version of other results.

Lemma A.15 (Lemma 2.10). Let (X,F , B,M) be a generalized foliated sub-quadruple. The
following two conditions are equivalent:
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(1) (X,F , B,M) is sub-lc.
(2) a(E,F , B,M) ≥ −ϵF (E) for any prime divisor E over X.

Proof. It follows from the same lines of the proof of Lemma 2.10. #

Lemma A.16 (Lemma 2.12). Let (X,B,M)/U be an lc g-pair such that (X,∆0,N)/U is klt
for some ∆0,N, and let A be an ample/U R-divisor on X. Then X is potentially klt, and there
exists a klt pair (X,∆) such that ∆ ∼R,U B +MX +A.

Proof. It is [HL22, Lemma 3.4]. #

Proposition A.17 (Proposition 2.15). Let (X,F , B,M) be a generalized foliated quadruple.
Let G ≥ 0 be a reduced divisor on X and f : X → Z an equidimensional contraction, such that
(X,F , B,M;G)/Z satisfies Property (∗) and B is horizontal/Z. Then

KF +B +MX ∼Z KX +B +G+MX .

Proof. It follows from [CHLX23, Proposition 7.3.6]. #

Lemma A.18 (Lemma 2.28). Let (X,B,M)/U be a Q-factorial lc g-pair and L an NQC/U
R-divisor on X such that X is klt. Then there exists a positive real number l0 such that any
sequence of steps of a (KX +B +MX + lL)-MMP/U is L-trivial for any l > l0.

Proof. It is [HL22, Lemma 3.22]. #

Lemma A.19 (Lemma 2.29). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple and let D be an nef/U R-divisor on X such that D − (KF + B + MX) is
ample/U . Then D is NQC/U .

Proof. It follows from the same lines of the proof of Lemma 2.29. Note that [CHLX23, Theorem
2.3.1] is applicable to generalized foliated quadruples. #

Lemma A.20 (Lemma 2.30). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple and D an R-divisor on X, such that KF + B +MX +D is NQC/U . Then
there exists δ0 ∈ (0, 1), such that for any δ ∈ (0, δ0), any (KF +B+MX+(1−δ)D)-non-positive
extremal ray/U is a (KF +B +MX +D)-trivial extremal ray/U .

Proof. It follows from the same lines of the proof of Lemma 2.30. Note that [CHLX23, Theorem
2.3.1] is applicable to generalized foliated quadruples. #

Theorem A.21 (Theorem 3.4). Let (X,F , B,M) be an lc algebraically integrable generalized
foliated quadruple. Then (X,F , B) has an ACSS model h : (X ′,F ′, B′,M;G)/Z → (X,F , B,M)
that is Q-factorial, proper, and super.

Proof. It is [CHLX23, Theorem 2.5.1]. #

Lemma A.22 (Lemma 3.5). Let (X,F , B,M) be an lc algebraically integrable generalized
foliated quadruple and let h : (X ′,F ′, B′,M;G)/Z → (X,F , B,M) be a simple model. Let
f : X ′ → Z the associated contraction, and let X̄ be the core model of (h, f) associated with
(h̄, f̄). Let g : X ′ → X̄ be the induced birational morphism, F̄ := g∗F ′, B̄ := g∗B′, and Ḡ := g∗G.

Assume that f is equidimensional. Then:

(1) KF ′ +B′ +MX′ = g∗(KF̄ + B̄ +MX̄).
(2) KX′ +B′ +G+MX = g∗(KX̄ + B̄ + Ḡ+MX̄).
(3) h̄ : (X̄, F̄ , B̄,M; Ḡ)/Z → (X,F , B,M) is a core model.
(4) If h : (X ′,F ′, B′,M;G)/Z → (X,F , B,M) is proper (resp. super), then h̄ :

(X̄, F̄ , B̄,M; Ḡ)/Z → (X,F , B,M) is proper (resp. super).

Proof. It follows from the same lines of the proof of Lemma 3.5 except that we use Proposition
A.17 instead of Proposition 2.15. #
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Lemma A.23 (Lemma 3.7). Let (X,F , B,M) be an lc algebraically generalized foliated
quadruple and let h : (X ′,F ′, B′,M;G)/Z → (X,F , B,M) be a proper simple model of
(X,F , B,M). If X is potentially klt, then X ′ is potentially klt.

Proof. By the same lines of the proof of Lemma 3.7, we can show that there exists a klt
generalized pair (X ′,∆′,N). The lemma follows from Lemma A.18. #

Lemma A.24 (Lemma 4.6). Let (X,F , B,M)/U be a generalized foliated quadruple and let
(X ′,F ′, B′,M)/U a bs-weak lc model of (X,F , B,M)/U associated with the birational map
φ : X !!" X ′. Let p : W → X and q : W → X ′ be birational morphisms such that q = φ ◦ p.
Assume that

p∗(KF +B +MX) = q∗(KF ′ +B′ +MX′) + E,

then E ≥ 0 and is exceptional/X ′.

Proof. It follows from the same lines of the proof of Lemma 4.6. #

Lemma A.25 (Lemma 4.7). Let (X,F , B,M)/U be a generalized foliated quadruple. Let
(X1,F1, B1,M)/U and (X2,F2, B2,M)/U be two bs-weak lc models of (X,F , B,M)/U with
induced birational maps φ : X1 !!" X2. Let h1 : W → X1 and h2 : W → X2 be two birational
morphisms such that φ ◦ h1 = h2. Then:

(1)
h∗1(KF1

+B1 +MX1
) = h∗2(KF2

+B2 +MX2
).

(2) If KF2
+B2 +MX2

is semi-ample/U , then KF1
+B1 +MX1

is semi-ample/U .
(3) If KF2

+B2 +MX2
is ample/U , then φ is a morphism.

Proof. It follows from the same lines of the proof of Lemma 4.7 except we replace Lemma 4.6
with Lemma A.24. #

Lemma A.26 (Lemma 4.8). Let r be a positive real number. Let (X,F1, B1,M1)/U and
(X,F2, B2,M2)/U be two generalized foliated quadruples such that

KF2
+B2 +M2,X ≡U r(KF1

+B1 +M1,X)

Let (X ′,F ′
1, B

′
1,M1)/U be a weak lc model (resp. minimal model) of (X,F1, B1,M1)/U with

induced birational map φ : X !!" X ′. Let F ′
2 := φ∗F and B′

2 := φ∗B2. Then (X ′,F ′
2, B

′
2,M2)/U

is a weak lc model (resp. minimal model) of (X,F2, B2,M2)/U .
If (X ′,F ′

1, B
′
1,M1)/U is a semi-ample model (resp. good minimal model) of (X,F1, B1,M1)/U

and
KF2

+B2 +M2,X ∼R,U r(KF1
+B1 +M1,X),

(X ′,F ′
2, B

′
2,M2)/U is a semi-ample model (resp. good minimal model) of (X,F2, B2,M2)/U .

Proof. It follows from the same lines of the proof of Lemma 4.8 except we replace Lemma 4.6
with Lemma A.24. #

Theorem A.27 (Theorem 4.9). Let (X,F , B,M)/U be a Q-factorial ACSS algebraically
integrable generalized foliated quadruple such that KF + B + MX ∼R,U E ≥ 0 and E is very
exceptional/U . Then we may run a (KF + B +MX)-MMP/U with scaling of an ample/U R-
divisor A and any such MMP terminates with a good log minimal model (X ′,F ′, B′,M)/U such
that KF ′ +B′ +MX ∼R,U 0.

Proof. It follows from [CHLX23, Theorem 9.4.1]. #

Lemma A.28 (Lemma 4.11). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple. Let (W,FW , BW ,M) be a foliated log smooth model of (X,F , B,M).

Then any bs-weak lc model (resp. bs-minimal model, bs-semi-ample model, bs-good minimal
model, log minimal model, good log minimal model) of (W,FW , BW ,M)/U is a bs-weak lc model
(resp. bs-minimal model, bs-semi-ample model, bs-good minimal model, log minimal model, good
log minimal model) of (X,F , B,M)/U .
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Proof. It follows from the same lines of the proof of Lemma 4.11 except we replace Lemma 4.6
with Lemma A.24. #

Lemma A.29 (Lemma 4.13). Let (X,F , B,M)/U be an lc algebraically integrable gener-
alized foliated quadruple and (X ′,F ′, B′,M)/U a bs-weak lc model of (X,F , B,M)/U . Let
(W,FW , BW ,M) be a foliated log smooth model of (X,F , B,M) such that the induced birational
map φW : W !!" X ′ is a morphism.

Then we may run a (KFW + BW + MW )-MMP/X ′ with scaling of an ample/X ′ R-divisor
which terminates with a good minimal model (Y,FY , BY ,M)/X ′ of (W,FW , BW ,M)/X ′ such
that

KFY +BY +MY = q∗(KF ′ +B′ +MX′).

where q : Y → X ′ is the induced morphism. In particular, (Y,FY , BY ,M)/U is a log minimal
model of (W,FW , BW ,M)/U .

Proof. It follows from the same lines of the proof of Lemma 4.13 except we replace Lemma 4.6
with Lemma A.24 and replace Theorem 4.9 with Theorem A.27. #

Lemma A.30 (Lemma 4.15). Let (X,F , B,M)/U be an lc algebraically integrable foliated
quadruple. If (X,F , B,M)/U has a bs-weak lc model (resp. bs-semi-ample model), then
(X,F , B,M)/U has a log minimal model (resp. good log minimal model).

Proof. By Lemma A.25 we only need to prove the bs-weak lc model case. The lemma follows
immediately from Lemmas A.28 and A.29. #

Lemma A.31 (Lemma 4.16). Let (X,F , B,M)/U and (Y,FY , BY ,M)/U be two lc algebraically
integrable generalized foliated quadruples, and let f : Y → X be a birational morphism such that

KFY +BY +MY = f∗(KF +B +MX) + E

for some E ≥ 0 that is exceptional/X and f∗FY = F . Then:

(1) Any bs-weak lc model of (X,F , B,M)/U is a bs-weak lc model of (Y,FY , BY ,M)/U .
(2) If (X,F , B,M)/U has a bs-weak lc model (resp. bs-semi-ample model), then

(Y,FY , BY ,M)/U has a log minimal model (resp. good log minimal model).

Proof. It follows from the same lines of the proof of Lemma 4.16 except that we replace Lemmas
4.6, 4.7, and 4.15 with Lemmas A.24, A.25, and A.30 respectively. #

Lemma A.32 (Lemma 4.17). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple, G a reduced divisor on X, and f : X → Z a contraction, such that
(X,F , B,M;G)/Z satisfies Property (∗) and KF +B+MX ∼R,U KX +B+G+MX . Assume
that G is super/Z. Let D ≥ 0 be an R-divisor on X such that KF +B +D +MX is nef/U .

Then any sequence of steps of a (KF +B +MX)-MMP/U (with scaling of D) is a sequence
of steps of a (KX +B +G+MX)-MMP/U (with scaling of D), and any sequence of steps of a
(KX +B +G+MX)-MMP/U (with scaling of D) is a sequence of steps of a (KF +B +MX)-
MMP/U (with scaling of D). Moreover, any sequence of steps of a (KF + B +MX)-MMP/U
or a (KX +B +G+MX)-MMP/U is a sequence of steps of an MMP/Z.

Proof. It follows from [CHLX23, Lemma 9.2.1]. #

We remark that the condition “NQC” is needed for the next theorem.

Theorem A.33 (Theorem 4.18). Let (X,B,M)/U be an NQC lc generalized pair and A an
ample/U R-divisor on X such that (X,B + A,M) is lc and KX + B + A + MX is nef/U .
Assume that (X,B,M)/U has a Q-factorial bs-minimal model or KX +B+MX is not pseudo-
effective/U . Then there exists a sequence of (KX +B +MX)-MMP/U with scaling of A which
terminates with either a minimal model or a Mori fiber space of (X,B)/U .

Proof. It follows from [TX24, Theorem A]. #
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Lemma A.34 (Lemma 4.19). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple. Assume that the associated morphism π : X → U is a contraction, and
assume that F is induced by a contraction f : X → Z. Let ZU be the core model of (π, f).
Then:

(1) Any sequence of steps of a (KF + B + MX)-MMP/U is a step of a (KF + B + MX)-
MMP/ZU .

(2) If (X,F , B,M) is Q-factorial ACSS and KF +B +MX is nef/U , then KF +B +MX

is nef/ZU .
(3) (X,F , B,M)/U has a bs-weak lc model if and only if (X,F , B,M)/ZU has a bs-weak lc

model.

Proof. It follows from the same lines of the proof of Lemma 4.19 except that we replace Lemmas
4.11, 4.13, 4.15 with Lemmas A.28, A.29, A.30 respectively. #

Lemma A.35 (Lemma 4.20). Let (X,B,M)/U be a generalized pair associated with contraction
π : X → U . Let f : X → Z be a contraction such that B is super/Z. Let ZU be the core model
of (π, f). Then:

(1) If KX +B +MX is nef/ZU then KX +B +MX is nef/U .
(2) Any sequence of steps of a (KX +B +MX)-MMP/U is a sequence of steps of a (KX +

B +MX)-MMP/ZU .
(3) If (X,B,M)/ZU has a minimal model then (X,B,M)/U has a minimal model.
(4) If (X,B,M)/U has a minimal model and M is NQC/U , then (X,B,M)/ZU has a

minimal model.

Proof. It follow from the same lines of the proof of Lemma 4.20 except that the length of extremal
ray control for pair is replaced by [CHLX23, Theorem 2.2.1(2)] for generalized pairs, and Lemma
4.15, Theorem 4.18 are replaced with A.30 and Theorem A.33 respectively. #

Proposition A.36 (Proposition 4.21). Let (X,F , B,M)/U be an lc algebraically integrable
generalized foliated quadruple. Assume that (X,F , B,M)/U has a bs-weak lc model. Then there
exists an ACSS modification h : (X ′,F ′, B′,M;G)/Z → (X,F , B,M) that is Q-factorial, proper,
and super, and (X ′, B′ +G,M)/U has a log minimal model.

Proof. It follows from the same lines of the proof of Proposition A.36 will the following
modifications: Lemmas 4.8, 4.11, 4.13, 4.15, 4.16, 4.17, 4.19, and Theorem 4.9 are replaced
by Lemmas A.26, A.28, A.29, A.30, A.31, A.32, A.34, and Theorem A.27 respectively, and
Lemma 4.20 is replaced with Lemma A.35(3). #

Lemma A.37 (Lemma 5.1). Let (X,B + A,M)/U be an NQC lc generalized pair such that
(X,B,M) is lc and KX + B + A + MX is NQC/U . Then there exists a positive real number
ϵ ∈ (0, 1) such that any (KX +B+ (1− ϵ)A+MX)-MMP/U is (KX +B+A+MX)-trivial for
any ϵ ∈ (0, ϵ0).

Proof. It follows from [TX24, Lemma 2.20]. #

Theorem A.38 (Theorem 5.2). Let (X,B,M)/U be a Q-factorial NQC lc generalized pair and
H ≥ 0 an R-divisor on X such that KX + B + H + MX is nef/U and (X,B + H,M) is lc.
Assume that X is klt, and there exists an infinite sequence of (KX + B + MX)-MMP/U with
scaling of H with scaling numbers λi such that limi→+∞ λi = λ and λ ̸= λi for any i.

Then (X,B + λH,M)/U does not have a bs-minimal model.

Proof. By [HL22, Theorem 4.1], (X,B + λH,M)/U does not have a log minimal model that
is Q-factorial dlt. By [HL23, Lemma 3.8], (X,B + λH,M)/U does not have a bs-minimal
model. #
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Lemma A.39 (Lemma 5.4). Let (X,B,M)/U be a Q-factorial NQC lc generalized pair such that
X is klt. Let H ≥ 0 be an R-divisor on X such that (X,B+H,M) is lc and KX +B+H+MX

is nef/U . Assume that for any µ ∈ [0, 1],

• either (X,B + µH,M)/U has a log minimal model, or
• KX +B + µH +MX is not pseudo-effective/U .

Then there exists a (KX +B +MX)-MMP/U with scaling of H which terminates after finitely
many steps.

Proof. It follows from the same lines of the proof of Lemma 5.4 except that we replace Lemma 5.1,
Theorem 4.18, Theorem 5.2 with Lemma A.37, Theorem A.33, Theorem A.38 respectively. #

Theorem A.40 (Theorem 5.5). Let (X,B,M)/U be an NQC lc generalized pair and A an
ample/U R-divisor on X such that (X,B +A,M) is lc. Then (X,B +A,M)/U has a bs-semi-
ample model or a bs-Mori fiber space.

Proof. It follows from [TX24, Theorems A,F]. #

Theorem A.41 (Theorem 5.6). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple and let A,H be two ample/U R-divisors on X. Let h : (X ′,F ′, B,M;G)/Z →
(X,F , B,M) be a simple model of (X,F , B,M) that is proper and super, H ′ := h∗H, and
A′ := h∗A. Assume that

• either X is potentially klt, or
• X ′ is Q-factorial klt and M is NQC/U .

Then:

(1) We may run a (KF ′+B′+H ′)-MMP/U with scaling of A′, say P, such that P terminates
with either a minimal model or a Mori fiber space of (X ′,F ′, B′ +H ′)/U .

(2) If X is potentially klt, then P can be any (KF ′ +B′ +H ′)-MMP/U with scaling of A′.

Proof. It follows from the same lines of the proof of Theorem 5.6 except the following differences:
we replace Lemmas 2.12, 3.5, 3.7, 4.8, 4.15, 4.16, 4.17, 5.4 and Theorem 5.5 with Lemmas A.16,
A.22, A.23, A.26, A.30, A.31, A.32, A.39 and Theorem A.40 respectively. We remark that
Lemma A.16 may need to be applied in Step 1 again in order to get the boundary ∆′. #

Proposition A.42 (Proposition 7.1). Let (X,F , B,M)/U be an lc algebraically integrable
generalized foliated quadruple such that (X,∆,N)/U is klt, where B ≥ ∆ ≥ 0 and M − N
is nef/U . Let R be a (KF +B+MX)-negative extremal ray/U and HR a supporting function/U
of R. Suppose that HR is not big/U . Then R is also a (KX +∆+NX)-negative extremal ray/U .
In particular, there exists a contraction contR of R.

Proof. It follows from the same lines of the proof of Proposition 7.1 except that we replace
Proposition 2.15 and Theorem 3.4 with Proposition A.17 and Theorem A.21 respectively, and
use [CHLX23, Theorem 2.2.1(4)] instead of the contraction theorem for lc pairs. #

Lemma A.43. Let (X,B,M)/U be a klt generalized pair and L a nef/U R-divisor on X such
that aL − (KX + B + MX) is big/U and nef/U for some a > 0. Then L is semi-ample/U .
Moreover, if L is Cartier, then OX(mL) is globally generated/U for any m≫ 0.

Proof. We have aL− (KX +B +MX) = Ln + 1
nE for some ample/U R-divisor Ln and E ≥ 0.

Let n ≫ 0 be an integer, then (X,∆ := B + 1
nE,M) is klt. and aL − (KX + ∆ + MX) is

ample/U . By [CHLX23, Theorem 2.2.7], L is semi-ample/U .
Assume that L is Cartier. Let p > a, q > a be two different prime numbers. Then pL−(KX+

∆ + MX) and qL − (KX +∆ + MX) are ample/U . By [CHLX23, Theorems 2.2.6], OX(prL)
and OX(qsL) are globally generated/U for some positive integers r, s. For any integer m ≫ 0,
m = bpr + cqs for some non-negative integers b, c. Thus OX(mL) is globally generated/U for
any m≫ 0. #
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Lemma A.44 (Lemma 8.1). Let (X,F , B,M)/U be an lc algebraically integrable generalized
foliated quadruple and A an ample/U R-divisor on X. Let P :

(X,F , B,M) := (X0,F0, B0,M) !!" (X1,F1, B1,M) !!" · · · !!" (Xn,Fn, Bn,M)

be a sequence of steps of a (KF +B +MX)-MMP/U with scaling of A and let Ai be the image
of A on Xi for each i. Let

λn := inf{t ≥ 0 | KFn +Bn + tAn +MX is nef/U}.

Suppose that λn > 0. Then there exists a (KFn + Bn +MXn)-negative extremal ray/U R such
that (KFn +Bn + λnAn +MXn) ·R = 0.

Proof. It follows from the same lines of the proof of Lemma 8.1. #

Proposition A.45 (Proposition 8.2). Let (X,F , B,M)/U be an lc algebraically integrable
generalized foliated quadruple such that either M is NQC/U , or X is potentially klt. Let P :

(X,F , B,M) := (X0,F0, B0,M) !!" (X1,F1, B1,M) !!" · · · !!" (Xn,Fn, Bn,M) !!" . . .

be a (possibly infinite) sequence of (KF+B+MX)-MMP/U . For each i ≥ 0, we let ψi : Xi → Ti

and ψ+
i : Xi+1 → Ti be the (i + 1)-th step of this MMP and let φi := (ψ+

i )
−1 ◦ ψi : Xi !!"

Xi+1 be the induced birational map. Let h : (Y,FY , BY ,M;G)/Z → (X,F , B,M) be an ACSS
modification of (X,F , B,M) that is Q-factorial, proper, and super. Let A be an ample/U R-
divisor on X and let Ai be the image of A on Xi for each i.

Then there exist a (possibly infinite) sequence PY of birational maps

(Y,FY , BY ,M) := (Y0,FY0
, BY0

,M) !!" (Y1,FY1
, BY1

,M) !!" · · · !!" (Yn,FYn , BYn ,M) !!" . . .

satisfying the following. Let φi,Y : Yi !!" Yi+1 be the induced birational map. Then:

(1) For any i ≥ 0, there exist an ACSS modification hi : (Yi,FYi , BYi ,M;Gi)/Z →
(Xi,Fi, Bi) that is Q-factorial, proper, and super, such that h0 = h and Gi is the image
of G on Yi.

(2) For any i ≥ 0, hi+1 ◦ φi,Y = φi ◦ hi.
(3) For any i ≥ 0, φi,Y is a (KFi + BYi +MYi)-MMP/Ti and (Yi+1,FYi+1

, BYi+1
,M)/Ti is

the output of this MMP, such that φi,Y is not the identity map.
(4) PY is a sequence of steps of a (KFY +BY +MY )-MMP/U .
(5) Suppose that P is an MMP/U with scaling of A. Let AY := h∗A and let AYi the image

of AY on Yi for each i. Let

λi := inf{t ≥ 0 | KFi +Bi + tAi +MXi is nef/U}

be the (i+ 1)-th scaling number. Then:
(a) φi,Y is a sequence of steps of a (KFYi

+ BYi + MYi)-MMP/U with scaling of AYi,
and the scaling number of each step of φi,Y is λi.

(b) PY is sequence of steps of a (KFY +BY +MY )-MMP/U with scaling of AY .

Proof. It follows from the same lines of the proof of Proposition 8.2 except that we replace
Theorem 5.6 with Theorem A.41. #

Appendix B. Nef divisors with real coefficients

In Step 3 of the proof of Theorem 7.2, we use Shokurov-type polytopes to construct an
MMP ϕ : Xn !!" X̄ which is (KFn + Bn + MXn + An)-trivial, which is no longer valid if M
is not NQC/U . This prevents us from proving the (possibly non-NQC) generalized foliated
quadruple variations of our main theorems. We still want to prove these variations, not only
for completeness but also for potential applications to the minimal model program on Kähler
varieties (cf. [DH23, DHY23]). In this appendix, we prove a result, Proposition B.9, as a
substitution of Shokurov-type polytopes for non-NQC generalized foliated quadruples, which is
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applied to the proof of Theorem 7.2 in Step 3. The key idea for our proof is to introduce the
notation of ϵ-nef R-divisors and study its behavior.

Definition B.1. Let ϵ be a positive real number and Γ a set of positive real numbers. Let
π : X → U be a projective morphism from a normal quasi-projective variety to a variety and
let D be a nef/U R-divisor on X.

(1) (ϵ-nef) We say that D is ϵ-nef /U if

D · C ≥ ϵ

for any curve C on X such that
• D · C > 0, and
• C spans an extremal ray in NE(X/U).

(2) (Γ-NQC) We say that D is Γ-NQC/U if we can write D =
∑

aiDi, such that each
ai ∈ Γ and each Di is nef/U Cartier. In addition, if each ai ≥ ϵ, then we say that D is
ϵ-NQC/U .

For any nef/U b-divisor M on X, we say that M is ϵ-nef /U (resp. Γ-NQC/U , ϵ-NQC/U) if
there exists a birational morphism Y → X, such that M descends to Y and MY is ϵ-nef/U
(resp. Γ-NQC/U , ϵ-NQC/U).

The following results are clear and we are free to use it in the rest of this appendix.

• Any ϵ-NQC/U R-divisor and b-divisor is ϵ-nef/U .
• If min{γ ∈ Γ} ≥ ϵ, then any Γ-NQC/U R-divisor and b-divisor is ϵ-NQC/U and ϵ-nef/U .
• Any NQC/U R-divisor and b-divisor is ϵ-NQC/U for some positive real number ϵ.

Lemma B.2. Let X → U be a projective morphism from a normal quasi-projective variety
to a variety and let M be an NQC/U b-divisor on X. Then there exist positive real numbers
a1, . . . , ak that are linearly independent over Q such that M is {a1, . . . , ak}-NQC/U .

Proof. We may write M =
∑m

i=1 viNi where each Ni is a nef/U b-Cartier b-divisor and each
vi > 0. Let v0 := (v0,1, . . . , v0,m) and let V be the rational polytope of v0 in Rm. Let M(v) :=∑m

i=1 viNi for any v = (v1, . . . , vm) in Rm.
Suppose that dimV = n, then we may take rational points v1, . . . ,vn+1 in V such that v is

contained in the interior of the convex hull of v1, . . . ,vn+1. Then there exist unique positive
real numbers b1, . . . bn+1 such that

∑n+1
i=1 bi = 1 and

∑n+1
i=1 bivi = v0. Moreover, b1, . . . , bn+1 are

linearly independent over Q. Let N be a positive integer such that NM(vi) is Cartier for each
i. Then we have

M =
n+1∑

i=1

bi
N

(NM(vi)).

We may take k := n+ 1 and ai :=
bi
N for each i. #

Lemma B.3. Let π : X → U be a projective morphism from a normal quasi-projective variety
to a variety. Let C be a curve on X such that π(C) is a point. Let

λ0 := inf{λ > 0 | there exists a curve C ′ ≡U λC,π(C ′) = {pt}}.

Then
λ0 := min{λ > 0 | there exists a curve C ′ ≡U λC,π(C ′) = {pt}}.

Proof. Suppose not, then there exists a sequence of curves Ci on X and a strictly decreasing
sequence of real numbers {λi}

+∞
i=1 , such that limi→+∞ λi = λ0, π(Ci) = {pt}, and Ci ≡ λiC for

each i. Let H be an ample Cartier divisor on X, then

λi =
Hi · C

H · C
,

so (H · C)λi is an integer for each i, which is not possible. #
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Lemma B.4. Let π : X → U be a projective morphism from a normal quasi-projective variety
to a variety and let D be a nef/U R-divisor on X. Let ϵ be a positive real number. Suppose that

D · C ≥ ϵ

for any curve C on X such that

• D · C > 0,
• C spans an extremal ray in NE(X/U), and
• for any curve C ′ on X so that C ′ ≡U λC for some real number λ > 0, we have λ ≥ 1.

Then D is ϵ-nef/U .

Proof. Suppose that D is not ϵ-nef/U . Then there exists a curve C ′ on X such that D ·C ′ > 0,
C ′ spans an extremal ray R in NE(X/U), and D · C ′ < ϵ. We let

λ0 := inf{λ > 0 | there exists a curve C ′′ ≡U λC ′,π(C ′) = {pt}}.

Then λ0 ≤ 1. By Lemma B.3, there exists a curve C0 on X such that C0 ≡U λ0C ′ and
π(C0) = {pt}. Then C0 spans R, and for any curve C ′′ on X so that C ′′ ≡U λC0 for some real
number λ > 0, we have λ ≥ 1. By our assumption, D · C0 ≥ ϵ. Therefore,

D · C ′ =
1

λ0
D · C0 ≥

ϵ

λ0
≥ ϵ,

a contradiction. #

Lemma B.5. Let d be a positive integer and ϵ a positive real number. Let a1, . . . , ak be positive
real numbers that are linearly independent over Q. Let δ0 :=

ϵ
2(2d+ϵ) . Then there exists function

τ : (0, δ0]→ R>0 depending only on d, ϵ, and a1, . . . , ak satisfying the following.
Let (X,F , B,M)/U be an lc algebraically integrable generalized foliated quadruple and N an

NQC/U b-divisor on X, such that

(1) (X,F , B,M +N) is lc,
(2) KF +B +MX is nef/U ,
(3) KF +B +MX +NX is ϵ-NQC/U , and
(4) N =

∑
aiNi, where each Ni is a nef/U Cartier b-divisor and each Ni,X is Cartier.

Then
KF +B +MX + (1− δ)NX

is τ(δ)-nef/U for any δ ∈ (0, δ0).

Proof. Let M := max
{

2d
ai

∣∣∣1 ≤ i ≤ k
}
. Consider the set

Γ0 :=

{

−
k∑

i=1

aiγi

∣∣∣∣∣γi ∈ Z ∩ (−∞,M ]

}

.

It is easy to see that Γ0 is a set whose only accumulation point is +∞. In particular,

γ0 := inf{γ ∈ Γ0 | γ > 0} = min{γ ∈ Γ0 | γ > 0} > 0.

In the following, we shall show that

τ : δ → min
{ ϵ
2
, δγ0

}

satisfies our requirements.
Fix δ ∈ (0, δ0). By Lemma B.4, we only need to show that (KF+B+MX+(1−δ)NX) ≥ τ(δ)

for any curve C on X satisfying the following:

• (KF +B +MX + (1− δ)NX ) · C > 0.
• C spans an extremal ray in NE(X/U).
• For any curve C ′ on X such that C ′ ≡U λC for some real number λ > 0, we have λ ≥ 1.
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For any such curve C, there are two possibilities.

Case 1. (KF +B +MX +NX) · C > 0. Since KF +B +MX +NX is ϵ-NQC/U ,

(KF +B +MX +NX) · C ≥ ϵ.

Suppose that (KF +B +MX + (1− δ)NX) · C < ϵ
2 . Then

(KF +B +MX) · C

=
1

δ
((KF +B +MX + (1− δ)NX) · C − (1− δ)(KF +B +MX +NX) · C)

<
1

δ

( ϵ
2
− (1− δ)ϵ

)
= ϵ−

ϵ

2δ
< ϵ−

ϵ

2δ0
= −2d.

Let R be the extremal ray spanned by C. Then R is a (KF +B +MX)-negative extremal ray.
By [CHLX23, Theorem 2.3.1], R is spanned by a curve C ′ such that

(KF +B +MX) · C ′ ≥ −2d.

Therefore, C ′ ≡ λC for some λ ∈ (0, 1), which is not possible. Therefore,

(KF +B +MX + (1− δ)NX) · C ≥
ϵ

2
≥ τ(δ).

Case 2. (KF +B +MX +NX) · C = 0.
Suppose that Ni,X · C > 2d

ai
for some i. Then

(KX +B +MX +NX − aiNi,X) · C < −2d.

Let R be the extremal ray spanned by C. Then R is a (KF +B+MX +NX −aiNi,X)-negative
extremal ray. By [CHLX23, Theorem 2.3.1], R is spanned by a curve C ′ such that

(KF +B +MX +NX − aiNi,X) · C ′ ≥ −2d.

Therefore, C ′ ≡ λC for some λ ∈ (0, 1), a contradiction.
Therefore, Ni,X · C ≤ 2d

ai
≤M for each i. We have

0 < (KF +B +MX + (1− δ)NX ) · C = −δ
∑

ai(Ni,X · C) ∈
{∑

(−δai)γi
∣∣∣γi ∈ Z, γi ≤M

}
.

Therefore,
(KF +B +MX + (1− δ)NX ) · C ≥ δγ0 ≥ τ(δ).

#

Lemma B.6. Let d be a positive integer and ϵ a positive real number. Let (X,F , B,M)/U be an
lc algebraically integrable generalized foliated quadruple of dimension d and D an ϵ-nef R-divisor
on X. Then for any real number l > 2d

ϵ , any single step of a

(KF +B +MX + lD)-MMP/U

is D-trivial.

Proof. Let R be a (KF +B+MX + lD)-negative extremal ray/U . Then D is a (KF +B+MX)-
negative extremal ray/U . By [CHLX23, Theorem 2.3.1], D is spanned by a curve C such that

0 < −(KF +B +MX) · C ≤ 2d.

Therefore, lD · C ≤ 2d, so D · C < ϵ. Therefore, D · C = 0, and the lemma follows. #

Lemma B.7. Let d be a positive integer and ϵ a positive real number. Then δ0 :=
ϵ

2d+ϵ satisfies
the following. Let (X,F , B,M)/U be an lc algebraically integrable generalized foliated quadruple
and D an R-divisor on X, such that KF +B+MX +D is ϵ-NQC/U . Then for any δ ∈ (0, δ0),
any (KF +B +MX + (1− δ)D)-non-positive extremal ray/U is a (KF +B +MX +D)-trivial
extremal ray/U .
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Proof. Fix δ ∈ (0, δ0) and let R be a (KF+B+MX+(1−δ)D)-non-positive extremal ray/U . If R
is not (KF+B+MX+D)-trivial, then R is (KF+B+MX+D)-positive, hence (KF+B+MX)-
negative. By [CHLX23, Theorem 2.3.1], R is spanned by a curve C such that 0 < −(KF +B +
MX) · C ≤ 2d. Since KF +B +MX +D is ϵ-NQC/U , (KF +B +MX +D) · C ≥ ϵ. Thus

0 = (KF +B +MX + (1− δ)D) · C

= (1− δ)(KF +B +MX +D) · C + δ(KF +B +MX) · C

≥ (1− δ)ϵ− 2dδ > ϵ− (2d+ ϵ)δ0 = 0,

which is not possible. The lemma follows. #

Lemma B.8. Let (X,F , B,M)/U be a Q-factorial ACSS algebraically integrable foliated
quadruple and D a Cartier divisor on X. Let φ : X !!" X ′ be a birational map that is a
step of a (KF +B +MX)-MMP/U such that φ is D-trivial. Then φ∗D is Cartier.

Proof. Let X
f
−→ T

g
←− X ′ be this step of the MMP. By [CHLX23, Theorem 16.1.3], OX(mD)

is globally generated over T for any m≫ 0. Therefore, mD = f∗Lm and (m+ 1)D = f∗Lm+1

for some Cartier divisors Lm, Lm+1 for any m≫ 0, so D = f∗(Lm+1 − Lm). Therefore, φ∗D =
g∗(Lm+1 − Lm) is Cartier. #

Proposition B.9. Let (X,F , B,M)/U be an lc algebraically integrable generalized foliated
quadruple and let N be an NQC/U b-divisor on X, such that

• (X,F , B,M +N) is lc,
• KF +B +MX is nef/U , and
• KF +B +MX +NX is NQC/U .

Then there exists a real number δ0 ∈ (0, 1) and a function µ : (0, δ) → (0,+∞) satisfying the
following. Assume that

(1) δ ∈ (0, δ0) is a real number,
(2) l > µ(δ) is a real number, and
(3) (X,F ′, B′,M′)/U is an lc algebraically integrable generalized foliated quadruple such that

one of the following conditions hold:
(a) (X ′,F ′, B′,M′) is Q-factorial ACSS.
(b) F ′ = TX and M′ is NQC/U .
(c) F ′ = TX and (X ′, B′,M′) is klt.

Then any sequence of steps of a

((KF ′ +B′ +M′
X) + l(KF +B +MX + (1− δ)NX ))-MMP/U

is (KF +B +MX + (1− δ)NX )-trivial, (KF +B +MX +NX)-trivial, and NX-trivial.

Proof. Let d := dimX.

Step 1. In this step we introduce real numbers ϵ, a1, . . . , ak, and b-divisors N1, . . . ,Nk. We
construct δ0 and µ so that they only depend on d, ϵ, a1, . . . , ak.

Since KF + B + MX + NX is NQC/U , there exists a positive real number ϵ such that
KF +B +MX +NX is ϵ-NQC/U .

Since N is an NQC/U b-divisor, by Lemma B.2, there exist positive real numbers a1, . . . , ak
that are linearly independent over Q, such that N =

∑k
i=1 aiNi, where each Ni is nef/U Cartier.

Since KF + B + MX + NX and KF + B + MX are R-Cartier, NX is R-Cartier. Therefore,
Ni,X is Q-Cartier for each i. We let I be a positive integer such that INi,X is Cartier for each
i. Possibly replacing each ai with

ai
I and Ni with INi, in the following, we shall assume that

Ni,X is Cartier for each i.
We let δ0 := ϵ

2(2d+ϵ) and let τ : (0, δ0)→ (0,+∞) be the function constructed in Lemma B.5

which depends only on d, ϵ, a1, . . . , ak. We define µ(δ) := 2d
τ(δ) .
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Step 2. In this step we prove the proposition by induction on the number of steps of the MMP.

Claim B.10. Let δ ∈ (0, δ0) and l > µ(δ) be two real numbers. Let n be a non-negative integer
and let

X := X0 !!" X1 !!" · · · !!" Xn !!" Xn+1

be a sequence of steps of a

((KF ′ +B′ +M′
X) + l(KF +B +MX + (1− δ)NX))-MMP/U.

For each j, we let Fj,F ′
j be the induced foliations of F ,F ′ on Xj , and let Bj, B′

j be the images
of B,B′ on Xj respectively. Then for any 0 ≤ j ≤ n+ 1,

(1) (Xj ,Fj , Bj ,M+N) is lc,
(2) KFj +Bj +MXj is nef/U ,
(3) Ni,Xj is Cartier for each i,
(4) KFj +Bj +MXj +NXj is ϵ-NQC/U ,
(5) (Xj ,F ′

j , B
′
j ,M

′) is lc, and
(a) if (X,F ′, B′,M′) is Q-factorial ACSS, then (Xj ,F ′

j , B
′
j ,M

′) is Q-factorial ACSS,
and

(b) if F ′ = TX and (X ′, B′,M′) is klt, then (Xj , B′
j ,M

′) is klt,
and

(6) if j ≤ n, then Xj !!" Xj+1 is (KFj +Bj +MXj + (1− δ)NXj )-trivial and Ni,Xj -trivial
for each i.

Proof. We prove Claim B.10 by induction on n. When n = 0, (1-5) hold by our construction.
By induction, we may assume that (1-5) hold for j ≤ n and (6) holds for j ≤ n − 1. By
Lemma B.5, KFn +Bn +MXn + (1− δ)NXn is τ(δ)-nef/U for any δ ∈ (0, δ0). By Lemma B.6,
Xn !!" Xn+1 is (KFn + Bn + MXn + (1 − δ)NXn)-trivial. By Lemma B.7, Xn !!" Xn+1 is
(KFn +Bn +MXn +NXn)-trivial, hence NXn-trivial. Since a1, . . . , ak are linearly independent
over Q, Xn !!" Xn+1 is Ni,Xn-trivial for any i. This deduces (6) for j = n.

We left to prove (1-5) for j = n+1. Since Xn !!" Xn+1 is (KFn +Bn +MXn + (1− δ)NXn)-
trivial, we get (1)(4) by induction hypothesis, and we have that Xn !!" Xn+1 is a step of a
(KF ′ +B′+M′

X)-MMP/U . By (6) for j = n, Xn !!" Xn+1 is (KFn +Bn+MXn)-trivial, so (2)
follows from the induction hypothesis. (3) follows from the induction hypothesis and Lemma
B.8. (5) follows from induction hypothesis and [CHLX23, Lemma 9.1.4]. #

Proof of Proposition B.9 continued. It immediately follows from Claim B.10(6). #
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