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UNIFORM RATIONAL POLYTOPES OF FOLIATED THREEFOLDS AND

THE GLOBAL ACC

JIHAO LIU, FANJUN MENG, AND LINGYAO XIE

Abstract. In this paper, we show the existence of uniform rational lc polytopes for foliations
with functional boundaries in dimension ≤ 3. As an application, we prove the global ACC
for foliated threefolds with arbitrary DCC coefficients. We also provide applications on the
accumulation points of lc thresholds of foliations in dimension ≤ 3.
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1. Introduction

We work over the field of complex numbers C.
Foliations are important and interesting objects in geometry. Particularly in the minimal

model program (MMP), they play a critical role in Miyaoka’s proof of some important cases
of the abundance conjecture in dimension three [Miy87] (see also [Kol+92, Chapter 9]). In
recent years, progress has been made in the direction of extending the MMP to the setting
of foliations, particularly in low dimension. To be specific, the foundations of the MMP for
foliated surfaces (cf. [McQ08, Bru15]), foliated threefolds (cf. [CS20, Spi20, CS21, SS22]),
and algebraically integrable foliations (cf. [ACSS21, CHLX23, CS23a, LMX24b] have been
laid. Many classical questions from the MMP can be asked in the setting of foliations, such
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as the ascending chain condition (ACC) conjecture for minimal log discrepancies and the ACC
conjecture for lc thresholds [Che22, Che23b].

In a recent work [LLM23], the first two authors and Y. Luo established the rational case of
the global ACC for foliated threefolds, i.e., given any lc foliated log Calabi-Yau triple (X,F , B)
of dimension 3 whose coefficients belong to a set Γ of rational numbers satisfying the descending
chain condition (DCC), the coefficients of B belong to a finite set depending only on Γ. The
goal of this paper is to prove the global ACC in its full generality for foliations in dimension 3.

Theorem 1.1. Let Γ ⊂ [0, 1] be a DCC set. Then there exists a finite set Γ0 ⊂ Γ satisfying the
following. Let (X,F , B) be a projective lc foliated triple of dimension ≤ 3 such that KF +B ≡ 0
and B ∈ Γ (i.e. the coefficients of B belong to Γ). Then B ∈ Γ0.

Theorem 1.1 is an analogue of [HMX14, Theorem 1.5] for foliated pairs of dimension ≤ 3.
Y.-A. Chen proved Theorem 1.1 in dimension 2 ([Che22, Theorem 2.5]).

Remark 1.2 (Q-coefficients versus R-coefficients). In an earlier work [LLM23, Theorem 1.1],
Theorem 1.1 was established for the case when Γ ⊂ Q. Despite its technicality, it is important
to consider pairs and foliated triple structures with real coefficients for future applications.

For example, when considering the minimal model program with scaling, we need to consider
a sequence of scaling numbers λi. In many scenarios we need to consider the limit of the scaling
numbers λ := limi→+∞ λi. However, it is possible that λ is an irrational number when each λi

is rational. Thus, we need to study pairs with real coefficients.
For example, pairs with real coefficients are necessary to develop the theory of uniform rational

polytopes, which implies the global ACC. The theory of uniform rational polytopes allows us
to reduce plenty of questions related to pairs and triples with real coefficients to the case of
rational coefficients. Although seemingly technical, this theory (as well as a weaker version,
the theory of rational polytopes) is known to be very useful for usual pairs in many different
contexts, such as the minimal model program with scaling ([Sho92, BCHM10]), accumulation
points of minimal log discrepancies ([Liu18, HLS19, HL22]), construction of special minimal
model programs ([Kol21, HL23]), and the effective Iitaka fibration conjecture [CHL23]. For
further details about this theory, we refer the reader to [Nak16, HLS19, HLQ21].

Due to the failure of effective birationality for foliations [SS23, Paragraph before Theorem
1.4], the proof of the rational case of the global ACC for foliated threefolds heavily relies on
the index theorem of surfaces, which only works for the rational coefficient case. Therefore,
there are essential difficulties in extending [LLM23, Theorem 1.1] to the general case when the
coefficients of B belong to an arbitrary DCC set Γ ⊆ R.

To resolve this issue, we prove the existence of uniform rational lc polytopes for foliations in
dimension ≤ 3. This result is crucial for the proof of our main theorem, Theorem 1.1, and has
potential applications in the study of foliations and their singularities.

Theorem 1.3. Let v01, . . . , v
0
m be positive numbers and v0 := (v01 , . . . , v

0
m). Then there exists an

open set U ∋ v0 of the rational envelope of v0 satisfying the following.
Let (X,F , B =

∑m
j=1 v

0
jBj) be a projective foliated lc triple of dimension ≤ 3, where Bj ≥ 0

are distinct Weil divisors. Then (X,F , B =
∑m

j=1 vjBj) is lc for any (v1, . . . , vm) ∈ U .

We remark that the projectivity condition in Theorem 1.3 is expected to be unnecessary. We
add this condition for consistency with references, e.g. [CS20].

When dimX = 2, Theorem 1.3 was proved in [LMX24a]. Theorem 1.3 is an analogue of
the theory of uniform rational lc polytopes for usual pairs with functional boundaries [HLS19,
Theorem 5.6].

The proof of Theorem 1.1 is an application of the theory of uniform rational polytopes which
allows us to reduce Theorem 1.1 to the case of rational coefficients. This reduction greatly
simplifies the arguments and allows us to bypass the difficulties arising from the lack of effective
birationality for foliations.
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As a direct corollary of Theorem 1.3, we obtain the following result on the accumulation
points of lc thresholds of foliations. Again, the projectivity condition is added in Corollary 1.4
only for consistency with references.

Corollary 1.4. Let Γ ⊂ [0, 1] be a DCC set such that Γ̄ ⊂ Q. We consider the set of foliated lc
thresholds in dimension 3

lctfol(3,Γ) := {lct(X,F , B;D) | dimX = 3,X is projective, B ∈ Γ,D ∈ N+}.

Then the accumulation points of lctfol(3,Γ) are rational numbers.

Idea and sketch of the proof. We start with the proof of Theorem 1.1. Since we work in dimension
3, it is not difficult to reduce Theorem 1.1 to the case when there exists a contraction π : X → Z
such that the general fibers of π are tangent to F and dimZ > 0, i.e. the setting of Proposition
5.2. In this case, the usual global ACC implies that the coefficients of the horizontal/Z part
of B belong to a finite set, so we only need to worry about the vertical/Z part of B. We let
BZ be the discriminant part of the canonical bundle formula of π : (X,F , B) → Z. Then the
coefficients of BZ belong to a DCC set by the ACC for lc thresholds of foliations.

At this point, we prove by using contradiction: if the coefficients of B do not belong to a finite
set, then we may construct a boundary B̄ ≥ B sufficiently close to B whose coefficients belong
to a finite set, and KF + B̄ ∼R,Z 0. By the ACC for lc thresholds of foliations, the discriminant
part B̄Z induced by the canonical bundle formula of π : (X,F , B̄) → Z has coefficients which
are larger and sufficiently close to the ones of BZ , and its coefficients also belong to a DCC set.
Therefore, the coefficients of BZ belong to a DCC but not finite set. For the rational coefficient
case, we get a contradiction to the global ACC of foliated log Calabi-Yau triples polarized with
a semi-ample divisor [LLM23, Lemma 7.2], but this can no longer work for the real coefficient
case.

To deal with this issue, the key idea is the following: we would like to find positive real
numbers a1, . . . , ak depending only on the coefficient set Γ, so that we have a decomposition
KF+B̄ =

∑
ai(KF+B̄i), where

∑
ai = 1, (X,F , B̄i) is lc, B̄i is a Q-divisor, andKF+B̄i ∼Q,Z 0

for each i. With such decomposition established, we may let B̄Zi be the discriminant part induced
by the canonical bundle formula of π : (X,F , B̄i) → Z for each i. By using similar arguments
as the rational coefficient case, we can compare the coefficients of

∑
aiB̄Zi and BZ and get a

contradiction, which leads to a proof of Theorem 1.1. The remaining difficulty is to find such a
decomposition KF + B̄ =

∑
ai(KF + B̄i), which is nothing but Theorem 1.3.

Next we turn to the proof of Theorem 1.3. Due to technicality, in the following, we provide
the reader with a sketch of the proof of Theorem 1.3 for the following special case: m = 1,

v0 =
(√

2
2

)
, and S := B1 is a prime divisor. The general case follows from similar lines of proof.

To prove this special case of Theorem 1.3, we only need to show that there exists a rational

number a >
√
2
2 (which does not depend on X) such that (X,F , aS) is lc. By passing to a dlt

model of (X,F ,
√
2
2 S) we may assume that (X,F ,

√
2
2 S) is Q-factorial dlt. (Here divisors with

coefficient 1 may appear but will not influence the proof. For simplicity, let us ignore them.)
Suppose Theorem 1.3 does not hold in this case, then there exists a sequence (Xi,Fi, aiSi) such

that ai is strictly decreasing, limi→+∞ ai =
√
2
2 , and ai is the lc threshold of Si with respect to

Fi. We suppose that Ei is a prime divisor which achieves the lc threshold. Since (Xi,Fi,
√
2
2 Si) is

Q-factorial dlt, it can be reduced to the case when Ei is Fi-invariant. Moreover, we may assume
that centerXi Ei is a closed point, as other cases can be reduced to the lower dimensional cases
which are proved in [LMX24a].

Now there is a key observation: suppose that there exists an extraction gi : Yi → Xi of Ei.

Let FYi := g−1
i Fi and SYi := (g−1

i )∗Si, then KFYi
+ aiSYi ∼R,Xi 0 but KFYi

+
√
2
2 SYi is anti-

ample/Xi. Therefore, for the normalization Vi of any non-trivial lc center of (Yi,FYi , aiSYi) in

Ei (e.g. normalization of Ei), (KFYi
+ aiSYi)|Vi ≡ 0 but (KFYi

+
√
2
2 SYi)|Vi ̸≡ 0. Therefore, if
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we can achieve precise adjunction formulas of foliated threefolds to FYi-invariant lc centers, the

coefficients of (KFYi
+ aiSYi)|Vi and (KFYi

+
√
2
2 SYi)|Vi will be controlled. Now we can use lower

dimensional results to get a contradiction in this case. With this observation in mind, there are
two things we need to do:

(1) Establish precise adjunction formulas to invariant lc centers. The whole Section 3 is
dedicated to it. The proofs generally follow from the same lines of the proofs of the
adjunction formulas in [CS20, CS21] but we provide more details. It is important to
note that for the rank two case, when the minimal lc center is not a divisor, we need
to consider adjunction to the normalization of lc centers of dimension 1 as well (see
Theorem 3.5(6)).

(2) Show the existence of the extraction gi : Yi → Xi of Ei. This is our key lemma, see
Lemma 4.5, and Subsections 4.1, 4.2 are dedicated to it. More precisely, we shall prove
the existence of such gi : Yi → Xi after a suitable substitution of Xi and Ei.

The proof of Lemma 4.5 is as follows: first we take a dlt modification Wi → Xi of
(Xi,Fi, aiSi) which extracts Ei. It may extract some divisors that are lc centers of

(Xi,Fi,
√
2
2 Si). By replacing Xi with a higher model, we may assume that any divisor

extracted by Wi → Xi is not an lc place of (Xi,Fi,
√
2
2 Si). Now KFWi

+
√
2
2 SWi ∼R,Xi Fi

where Fi ≥ 0 is supported on the exceptional divisor of Wi → Xi. Now we may run a

(KFWi
+

√
2
2 SWi)-MMP/Xi with scaling of an ample divisor. By the general negativity

lemma [Bir12, Lemma 3.3] this MMP contracts Fi. Since Xi is Q-factorial, it must
terminate with Xi, and the last step of the MMP must be a divisorial contraction. We
may let gi : Yi → Xi be the last step of this MMP. By our construction, gi extracts a
prime divisor E′

i which achieves the lc threshold of Si with respect to Fi (although it is
possible that E′

i ̸= Ei). This suffices our requirements.
It is worth to mention that our key Lemma, Lemma 4.5, is proved to be important

in the study of log canonicity for foliations, although we cannot find any analogue of it
in the study of log canonicity for usual pairs. In later works, analogues of Lemma 4.5
have played crucial roles in the proofs of the ACC for lc thresholds and the existence of
uniform rational polytopes for algebraically integrable foliations ([DLM23, Lemma 5.1])
and algebraically integrable generalized foliated quadruples ([CHLX23, Lemma 10.2.1]).

Finally, with both (1) and (2) settled, we can get pair (resp. foliated pair) structures of (KFYi
+

aiSYi)|Vi and (KFYi
+

√
2
2 SYi)|Vi with coefficients controlled and good numerical properties when

rankF = 2 (resp. rankF = 1). Now we may use [Che23a, Theorem 3.6] and [Nak16, Theorem

3.8, Corollary 3.9] to study the coefficients of (KFYi
+ aiSYi)|Vi and (KFYi

+
√
2
2 SYi)|Vi and

conclude our proof.
To be specific, when rankF = 2, [Che23a, Theorem 3.6] and [Nak16, Theorem 3.8, Corollary

3.9] can be applied directly to our setting to check the coefficients of (KFYi
+ aiSYi)|Vi and

(KFYi
+

√
2
2 SYi)|Vi and conclude the proof of Theorem 1.3 in this case (see Subsection 4.4).

When rankF = 1, it is easy to check that the restricted foliation FEν
i
of Fi on the normalization

Eν
i of Ei has a non-pseudo-effective foliated canonical divisor, hence it is algebraically integrable.

Therefore, we can consider the intersection numbers of (KFYi
+aiSYi)|Eν

i
and (KFYi

+
√
2
2 SYi)|Eν

i

with a general member of the family of leaves of FEν
i
and apply [Che23a, Theorem 3.6] and

[Nak16, Theorem 3.8, Corollary 3.9] again to conclude the proof of Theorem 1.3 in this case (see
Subsection 4.3).

Structure of this paper. Section 2 introduces some preliminary results for foliations. Section
3 proves the precise adjunction formulas for foliations in dimension ≤ 3 to invariant divisors
(Theorems 3.2, 3.3, and 3.5). Section 4 establishes the theory of uniform rational polytopes
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for foliations with functional boundaries in dimension ≤ 3, and proves Theorem 1.3. Section 5
provides the proofs of Theorem 1.1 and Corollary 1.4.

Acknowledgements. We thank Paolo Cascini, Yen-An Chen, Omprokash Das, Christopher D.
Hacon, Jingjun Han, and Yuchen Liu for helpful discussions. We would like to acknowledge the
assistance of ChatGPT in polishing the wording. The third author is partially supported by NSF
research grants no: DMS-1801851, DMS-1952522 and by a grant from the Simons Foundation;
Award Number: 256202.

2. Preliminaries

We will work over the field of complex numbers C. Throughout the paper, we will mainly work
with normal quasi-projective varieties to ensure consistency with the references. However, most
results should also hold for normal varieties that are not necessarily quasi-projective. Similarly,
most results in our paper should hold for any algebraically closed field of characteristic zero.
We will adopt the standard notations and definitions in [Sho92, KM98, BCHM10] and use them
freely. For foliations and foliated (sub-)triples, we will follow the notations and definitions
in [LLM23], which are mostly consistent with those in [CS20, Spi20, ACSS21, CS21]. For
generalized pairs and generalized foliated quadruples, we will follow the notations and definitions
in [HL23, LLM23].

2.1. Sets.

Definition 2.1. Let Γ ⊂ R be a set. We say that Γ satisfies the descending chain condition
(DCC) if any decreasing sequence in Γ stabilizes, and Γ satisfies the ascending chain condition
(ACC) if any increasing sequence in Γ stabilizes. We define

Γ+ := {0} ∪

{
n∑

i=1

γi

∣∣∣∣ n ∈ N+, γ1, . . . , γn ∈ Γ

}

.

and define Γ̄ to be the closure of Γ in R.

Definition 2.2. Let m be a positive integer and v ∈ Rm. The rational envelope of v is
the minimal rational affine subspace of Rm which contains v. For example, if m = 2 and

v = (
√
2
2 , 1−

√
2
2 ), then the rational envelope of v is (x1 + x2 = 1) ⊂ R2

x1x2
.

2.2. Foliations.

Definition 2.3 (Special divisors on foliations, cf. [CS21, Definition 2.2]). Let X be a normal
variety and F a foliation on X. For any prime divisor C on X, we define ϵF (C) := 1 if C is not
F-invariant, and ϵF (C) := 0 if C is F-invariant. If F is clear from the context, then we may
use ϵ(C) instead of ϵF (C). For any R-divisor D on X, we define

DF :=
∑

C|C is a component of D

ϵF (C)C.

Let E be a prime divisor over X and f : Y → X a projective birational morphism such that E
is on Y . We define ϵF (E) := ϵf−1F (E). It is clear that ϵF (E) is independent of the choice of f .

Definition 2.4. Let X be a normal variety, F a foliation on X, and B an R-divisor on X,
such that either rankF = dimX − 1 or dimX = 3 and rankF = 1. A foliated log resolution
of (X,F , B) is a projective birational morphism f : Y → X such that (Y,FY := f−1F , BY :=
f−1
∗ B +E) is foliated log smooth (cf. [CS21, Definition 3.1], [LLM23, Definition 4.2]), where E
is the reduced exceptional divisor of f . A foliated resolution of F is a foliated log resolution of
(X,F , 0).
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2.3. Dlt models.

Definition 2.5 (Dlt singularities). Let (X,F , B) be a foliated triple.

(1) Suppose that rankF = dimX − 1. We say that (X,F , B) and (F , B) are dlt if
(a) (X,F , B) is lc,
(b) every component of B is generically transverse to F , and
(c) there exists a foliated log resolution of (X,F , B) which only extracts divisors E of

discrepancy > −ϵ(E).
(2) Suppose that dimX = 3 and rankF = 1. We say that (X,F , B) and (F , B) are dlt if

(a) (X,F , B) is lc, and
(b) F has simple singularities [CS20, Definition 2.32].

We remark that dlt implies non-dicritical (cf. [CS21, Theorem 11.3] and [CS20, Lemma 2.8]).

Definition 2.6 (Dlt modification). Let (X,F , B) be an lc foliated triple. An dlt modification
of (X,F , B) is a birational morphism f : Y → X satisfying the following. Let FY := f−1F , E
the reduced exceptional divisor of f , and BY := f−1

∗ B + EFY .

(1) Y is Q-factorial klt,
(2) KFY

+BY = f∗(KF +B), and
(3) (Y,FY , BY ) is dlt.

We say that (Y,FY , BY ) is a dlt model of (X,F , B) and (FY , BY ) is a dlt model of (F , B).

2.4. A perturbation formula. We recall a weaker version of Theorem 1.3 which will be crucial
for the proof of our theorems.

Theorem 2.7 ([LLM23, Theorem 1.7]). Let v01 , . . . , v
0
m be positive integers, v0 := (v01 , . . . , v

0
m),

and (X,F , B =
∑m

i=1 v
0
iBi) an lc foliated triple of dimension ≤ 3, where Bi ≥ 0 are distinct

Weil divisors. Then there exists an open set U ∋ v0 of the rational envelope of v0, such that
(X,F , B =

∑m
i=1 viBi) is lc for any (v1, . . . , vm) ∈ U .

Note that the major difference between Theorem 2.7 and Theorem 1.3 is that the set U may
depend on (X,F , B) in Theorem 2.7.

3. Precise adjunction formulas to invariant divisors

To prove Theorem 1.3, we need several precise adjunction formulas to divisors that are
invariant to foliations. Although there are many results on adjunction formulas of foliations
in the literature [Bru02, Bru15, CS20, Spi20, CS21, SS22, Che22], the statements of these
results are insufficient for our purposes, as we need an accurate description of the coefficients
of the different foliated triples. For instance, when applying the adjunction formula to two
distinct foliated triples (X,F , B =

∑
bjBj) and (X,F , B′ =

∑
b′jBj), we need to understand

the relationship between the coefficients of the differents of two distinct triples. Additionally,
we require adjunction formulas for triples with R-coefficients rather than Q-coefficients. In this
section, we provide precise adjunction formulas for invariant divisors, even if they may be well-
known to experts. The key differences between these formulas and the traditional adjunction
formulas for foliations are the following:

• We have a more accurate control of the coefficients of the foliated different Ci. This
will be helpful when applying adjunction to two or more triples and considering their
behavior.

• We deal with R-coefficients rather than Q-coefficients.
• We only need to control the singularities of one foliated triple (X,F , B =

∑
bjBj) to

get an adjunction formula for all foliated triples of the form (X,F , B′ =
∑

b′jBj), even
if the singularities of the latter triple may not be controlled.

We refer the reader to [CS21, Lemma 3.18], [CS20, Proposition 2.16], [SS22, Lemma 3.11],
[Che22, Proposition 3.10, Theorem 4.6] for related references.
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Finally, we remark that a recent paper of Cascini and Spicer [CS23b] has established the
adjunction formula of foliations to non-invariant divisors in all dimensions. We expect that the
ideas in [CS23b] to provide a precise adjunction formula of foliations to non-invariant divisors
in any dimensions.

3.1. Surface case. In this subsection we prove Theorem 3.2. We actually do not need the
precise adjunction formula for surfaces to prove our main theorems, Theorems 1.1 and 1.3, but
we include the result for completeness.

Lemma 3.1. Let (X ∋ x,F , B) be an lc (resp. terminal) foliated germ such that X ∋ x is
terminal. Let f : Y → X be the minimal resolution of X ∋ x and I := det(D(f)). Then there
exists a unique F-invariant curve C which passes through x, and (B · C)x ≤ 1

I (resp. < 1
I ).

Proof. The existence and uniqueness of C follows from [LMX24a, Theorems 3.19, 4.1]. Moreover,
by [LMX24a, Theorem 4.1], (X ∋ x,B + C) is lc. Let

KCν +BC := (KX +B + C)|Cν ,

where Cν is the normalization of C, then (Cν ∋ x,BC) is lc. By [LMX24a, Theorem 3.19], I is
the local Cartier index of X ∋ x. Thus

1 ≥ (resp. > )multxBC =
I − 1

I
+ (B · C)x

and the lemma follows. !

Theorem 3.2 (Surface case). Let (X,F , B =
∑m

j=1 bjBj) be a dlt foliated triple such that
dimX = 2, rankF = 1, and Bj are the irreducible components of B. Assume that

• C is an F-invariant curve on X,
• Cν is the normalization of C,
• P1, . . . , Pn are all closed points on C that are singular points of X or contained in
C ∩ SuppB, and

• Q1, . . . , Ql are all closed points on C such that Z(F , C,Qi) ∈ N+. We refer the reader
to [Bru02, Section 2] for the definition of Z(F , C,Qi).

Then there exist positive integers w1, . . . , wn and non-negative integers {wi,j}1≤i≤n,1≤j≤m, such
that for any real numbers b′1, . . . , b

′
m, we have the following.

(1) By identifying Qi with its inverse image in Cν under the normalization Cν → C, we
have
⎛

⎝KF +
m∑

j=1

b′jBj

⎞

⎠
∣∣∣∣∣
Cν

= KCν +
n∑

i=1

wi − 1 +
∑m

j=1wi,jb′j
wi

Pi +
l∑

i=1

Z(F , C,Qi)Qi.

(2) wi is the local Cartier index (i.e. order of the local fundamental group) of Pi for each i.
(3) For any i such that wi = 1, wi,j > 0 for some j.
(4) If (X,F ,

∑m
j=1 b

′
jBj) is lc, then
(

Cν,
n∑

i=1

wi − 1 +
∑m

j=1wi,jb′j
wi

Pi +
l∑

i=1

Qi

)

is lc, i.e.
∑m

j=1wi,jb′j ≤ 1 for any i.

Proof. Since (X,F , B) is dlt, X is klt (cf. [LMX24a, Corollary 3.20]), so X is Q-factorial.
First we prove (1)(2). By definition, for any closed point Q ̸∈ Supp(B) ∪ Sing(X), the

vanishing order of KF |Cν at Q is equal to Z(F , C,Q). Thus if Q is a non-singular point of C,
then we may identify Q with its inverse image in Cν . If Q is a singular point of C, then since
(X,F , B) is dlt, Q is a nodal singularity of C and Z(F , C,Q) = 0.
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Therefore, to prove (1)(2), we only need to show that for any 1 ≤ i ≤ n, C is non-singular at

Pi and the vanishing order of (KF +
∑m

j=1 b
′
jBj)|Cν at Pi is equal to

wi−1+
∑n

j=1 wi,jb
′

j

wi
, and wi is

equal to the index of Pi.
By [LMX24a, Theorem 3.19], each Pi is either a non-singular point of X or a cyclic quotient

singularity of X. By [LMX24a, Theorem 4.1], (X ∋ Pi, C) is plt. Thus C is non-singular at Pi.
We let πi : Xi → X̃ be an index 1 cover of X ∋ Pi, P ′

i := π−1
i (Pi), Ci := π∗

iC, and Bj,i := π∗
iBj

for any j. Then Ci is non-singular at P ′
i , and

multP ′

i

⎛

⎝

⎛

⎝
m∑

j=1

b′jBj,i

⎞

⎠
∣∣∣∣∣
Ci

⎞

⎠ =
m∑

j=1

b′j(Bj,i · Ci)P ′

i
.

Moreover, we have deg(πi) = wi, the index of Pi, for each i. We let wi,j := (Bj,i · Ci)P ′

i
for any

i, j. (1)(2) now follow from the Hurwitz formula (cf. [Spi20, Proposition 3.7]).
Since Pi ∈ Sing(X) ∪ (C ∩ SuppB), if wi = 1, then Pi ∈ C ∩ SuppB. Thus (Bj,i · Ci)P ′

i
̸= 0

for some j, and (3) follows.
Since wi,j := (Bj,i · Ci)P ′

i
for any i, j, by Lemma 3.1,

1

wi
≥ (B · C)Pi =

1

wi
(π∗

iB · Ci)P ′

i
=

1

wi

⎛

⎝
m∑

j=1

b′jBj,i · Ci

⎞

⎠

P ′

i

=
m∑

j=1

wi,jb′j
wi

,

and (4) follows. !

3.2. Threefold rank one case.

Theorem 3.3 (Threefold rank one case). Let (X,F , B =
∑m

j=1 bjBj) be a dlt foliated triple
such that dimX = 3, rankF = 1, and Bj are the irreducible components of B. Let S be an
F-invariant surface in X and Sν the normalization of S. Suppose that Bj is Q-Cartier for
any j. Then there exist a rank 1 foliation FS on Sν, prime divisors C1, . . . , Cn on Sν, and
non-negative integers {wi,j}1≤i≤n,0≤j≤m, such that for any real numbers b′1, . . . , b

′
m, we have the

following adjunction formula
⎛

⎝KF +
m∑

j=1

b′jBj

⎞

⎠
∣∣∣∣∣
Sν

= KFS
+

n∑

i=1

wi,0 +
∑m

j=1wi,jb′j
2

Ci.

We remark that there is no control of the singularities of
(
Sν ,FS ,

∑n
i=1

wi,0+
∑m

j=1 wi,jb
′

j

2 Ci

)
even

if (X,F ,
∑m

j=1 b
′
jBj) is dlt.

Proof. The proof is parallel to [CS20, Propositon 2.16]. For the reader’s convenience we give a
full proof here.

By [CS23b, Proposition-Definition 3.6, Remark 3.7], there exists a naturally defined restricted
foliation FS on Sν of F such that rankFS = 1. We prove the following claim.

Claim 3.4. For any prime divisor D on Sν and any prime divisor L on X, 2L is Cartier near
the generic point of the image of D in S.

Proof. Since (X,F , B) is dlt, F has simple singularities. Let ηD be the generic point of the
image of D in S. If F has canonical but not terminal singularity near ηD, then by the definition
of simple singularities, 2L is Cartier near ηD. Thus we may assume that F is terminal near ηD.
By [CS20, Lemma 2.12], the image of D in S is not F-invariant. By [CS20, Lemma 2.6], ηD is
not contained in Sing(X), so L is Cartier near ηD and we are done. !



UNIFORM RATIONAL POLYTOPES OF FOLIATED THREEFOLDS AND THE GLOBAL ACC 9

Proof of Theorem 3.3 continued. By Noetherian property, we only need to show that for any
prime divisor D on Sν , there exist non-negative integers d0, . . . , dn such that

⎛

⎝KF +
m∑

j=1

b′jBj

⎞

⎠
∣∣∣∣∣
Sν

= KFS
+

d0 +
∑m

j=1 djb
′
j

2
D

for any real numbers b′1, . . . , b
′
m near the generic point of D. By Claim 3.4, 2KF and 2Bj are

Cartier near the image of the generic point of D on S. Then we may let dj := 2multD(Bj |Sν ) for
any j ≥ 1. Moreover, the map Ω1

X⊗Ω1
X → OX(2KF ) naturally restricts to a map Ω1

X |S⊗Ω1
X |S →

OS(2KF ). By [AD14, Lemma 3.7], Ω1
X |S ⊗ Ω1

X |S → OS(2KF ) extends uniquely to a map
Ω1
Sν ⊗ Ω1

Sν → OSν (2KF ). By construction of FS , Ω1
Sν ⊗ Ω1

Sν → OSν (2KF ) factors through
OSν (2KFS

). Thus there exists a Weil divisor M ≥ 0 on Sν such that

2KF |Sν = 2KFS
+M.

In particular, near the generic point of D, there exists a positive integer d0 such that M = d0D.
Then d0, . . . , dm satisfy our requirements. !

3.3. Threefold rank two case.

Theorem 3.5 (Threefold rank two case). Let (X,F , B =
∑m

j=1 bjBj) be a dlt foliated triple
such that dimX = 3, rankF = 2, and Bj are the irreducible components of B. Assume that

• S is an F-invariant surface in X,
• Sν is the normalization of S,
• X̂ is the formal completion of X along S,
• D1, . . . ,Du are all F-invariant divisors on X̂ that are not equal to S, and
• KX , S,

∑u
i=1Di are Q-Cartier, and Bj is Q-Cartier for any j.

Then there exist prime divisors C1, . . . , Cn, T1, . . . , Tl on Sν, positive integers w1, . . . , wn,λ1, . . . ,λl,
{ei,k}1≤i≤l,1≤k≤ni

, and non-negative integers {wi,j}1≤i≤n,1≤j≤m, {ei,k,j}1≤i≤l,1≤k≤ni,1≤j≤m, such
that for any real numbers b′1, . . . , b

′
m, we have the following.

(1) ⎛

⎝KF +
m∑

j=1

b′jBj

⎞

⎠
∣∣∣∣∣
Sν

= KSν +
n∑

i=1

wi − 1 +
∑m

j=1wi,jb′j
wi

Ci +
l∑

i=1

λiTi.

(2)
⎛

⎝K
X̂
+ S +

u∑

i=1

Di +
m∑

j=1

b′jBj

⎞

⎠
∣∣∣∣∣
Sν

= KSν +
n∑

i=1

wi − 1 +
∑m

j=1wi,jb′j
wi

Ci +
l∑

i=1

Ti.

(3) If (X,F ,
∑m

j=1 b
′
jBj) is lc, then
(

Sν ,
n∑

i=1

wi − 1 +
∑m

j=1wi,jb′j
wi

Ci +
l∑

i=1

Ti

)

is lc.
(4) For any i such that λi ≥ 2,

(a) Ti is an lc center of (X,F , 0),
(b) F has simple singularities at the generic point of Ti, and
(c) for any general closed point x in Ti, there are exactly two different separatrices of

F containing x. One of these two separatrices is a strong separatrix of F at x, and
the other is S, which is not a strong separtrix of F at x.

(5) For any i such that S is a strong separatrix along any general closed point in Ti, λi = 1.
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(6) Let T ν
i be the normalization of Ti for each i. For any i such that λi ≥ 2, there exist

a Weil divisor Pi ≥ 0 on T ν
i and prime divisors (closed points) Pi,1, . . . , Pi,ni on T ν

i

satisfying the following.
(a)

⎛

⎝KF +
m∑

j=1

b′jBj

⎞

⎠
∣∣∣∣∣
T ν
i

= KT ν
i
+ Pi +

ni∑

k=1

ei,k − 1 +
∑m

j=1 ei,k,jb
′
j

ei,k
Pi,k.

(b) Any component of SuppPi is an lc center of (X,F , 0).
(c) If (X,F ,

∑m
j=1 b

′
jBj) is lc, then

(

T ν
i , (Pi)red +

ni∑

k=1

ei,k − 1 +
∑m

j=1 ei,k,jb
′
j

ei,k
Pi,k

)

is lc.

Proof. The proof can be done by following the same lines of the proofs of [CS21, Lemma 3.18,
Corollary 3.20, Lemma 3.22] and [Che22, Proposition 3.10]. Here we provide a short proof by
only using the results in [Spi20, CS21] and not their proofs.

Step 1. We prove (2) and (3). By [Spi20, Lemma 8.14], (X̂, S +
∑u

i=1Di +B) is lc. We let

KSν +D(∆) :=

(

K
X̂
+ S +

u∑

i=1

Di +∆

) ∣∣∣∣∣
Sν

for any R-Cartier R-divisor ∆. Let C be a prime divisor on Sν and ηC the generic point of C. If
(X̂, S +

∑u
i=1Di) is lc but not klt at ηC , then ηC is not contained in Bj for any j. By [Kol+92,

16.7 Corollary], the coefficient of C in D(∆) is either 0 or 1 for any R-divisor ∆ such that
Supp∆ = SuppB. If (X̂, S +

∑u
i=1Di) is klt at ηC , then by [HLS19, Theorem 3.10], there exist

positive integer wC and non-negative integers wC,j , such that for any real numbers b′1, . . . , b
′
m,

the coefficient of C in D(
∑m

j=1 b
′
jBj) is equal to

wC − 1 +
∑m

j=1wC,jb′j
wC

.

This implies (2). (3) follows from (2) and [HLS19, Theorem 3.10] ([Kol+92, 16.9 Proposition]
for the Q-coefficient case).

In the following, we let C1, . . . , Cn.T1, . . . , Tl, w1, . . . , wn, and {wi,j}1≤i≤n,1≤j≤m be as in (2).

Step 2. We prove (1).

Claim 3.6. Suppose that (X,F ,
∑m

j=1 b
′
jBj) is lc. Then (1) holds.

Proof. By Theorem 2.7, there exist vectors b1, . . . , bm+1 ∈ Qm and real numbers a1, . . . , am+1 ∈
(0, 1], such that bi = (bi,1, . . . , bi,m), (X,F , Bi :=

∑m
j=1 bi,jBj) is lc for any i,

∑m+1
i=1 ai = 1, and

∑m+1
i=1 aibi = (b′1, . . . , b

′
m). By [CS21, Corollary 3.20],

(
KF +Bk

) ∣∣∣∣∣
Sν

= KSν +
n∑

i=1

wi − 1 +
∑m

j=1wi,jbk,j

wi
Ci +

l∑

i=1

λi,kTi.

where λi,k are positive integers.
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Suppose that λr,k ̸= λr,k′ for some r and some k ̸= k′. Let N be a sufficiently large positive
integer, then by [CS21, Corollary 3.20] and (2), there exist positive integers µ1, . . . , µl, such that

KSν +
n∑

i=1

wi − 1 +
∑m

j=1wi,j(
1
N bk,j +

N−1
N bk′,j)

wi
Ci +

l∑

i=1

µiTi =

(
KF +

1

N
Bk +

N − 1

N
Bk′
) ∣∣∣∣∣

Sν

=KSν +
n∑

i=1

wi − 1 +
∑m

j=1wi,j(
1
N bk,j +

N−1
N bk′,j)

wi
Ci +

l∑

i=1

1

N
(λi,k + (N − 1)λi,k′)Ti,

which is not possible as µr is an integer but 1
N (λr,k +(N − 1)λr,k′) is not. Thus for any i, λi,k is

a constant for any k, so we may let λi := λi,k for any i. (1) immediately follows in this case. !

Proof of Theorem 3.5 continued. (1) follows immediately from Claim 3.6 and linearity of the
coefficients of B1, . . . , Bm.

Step 3. We conclude the proof in this step.
(4) By [CS21, Corollary 3.20], the generic point of Ti is not contained in Sing(X).
Suppose that Ti is not an lc center of (X,F , 0). Then (X,F , 0) is terminal at the generic

point of Ti. By [CS21, Lemma 3.14], S is the unique F-invariant divisor passing through the
generic point of Ti. Thus

∑u
i=1Di = 0 near the generic point of Ti. By (2), the generic point of

Ti is contained in Sing(X), a contradiction. Thus Ti is an lc center of (X,F , 0), which implies
(4.a). Since (X,F , 0) is dlt, F has simple singularities near the generic point of Ti, which is
(4.b). (4.c) follows from (4.b), [CS20, Lemma 3.14], and [CS21, Corollary 3.20].

(5) It immediately follows from (4).
(6) By (4), we may let S′ be the strong separatrix along Ti and S′ν the normalization of S′.

Then by (1)(3)(5),
⎛

⎝KF +
m∑

j=1

b′jBj

⎞

⎠
∣∣∣∣∣
S′ν

= KS′ν +
∑

k

w′
k − 1 +

∑m
j=1w

′
k,jb

′
j

w′
k

C ′
k +

∑

k

λ′
kT

′
k.

for some prime divisors C ′
k, T

′
k, positive integers w′

k,λ
′
k, and non-negative integers w′

k,j, such
that the images of T ′

i and Ti in X coincide, λ′
i = 1, and

(

S′ν ,
∑

k

w′
k − 1 +

∑m
j=1w

′
k,jb

′
j

w′
k

C ′
k +

∑

k

T ′
k

)

is lc. In particular, the normalization of T ′
i is T ν

i . By [Kol+92, 16.6.3, 16.7 Corollary] and
[HLS19, Theorem 3.10], we have

(KF +
m∑

j=1

b′jBj)|T ν
i
= (KS′ν +

∑

k

w′
k − 1 +

∑m
j=1w

′
k,jb

′
j

w′
k

C ′
k +

∑

k

λ′
kT

′
k)|T ν

i

= KT ν
i
+ P ′

i +
ni∑

k=1

ei,k − 1 +
∑m

j=1 ei,k,jb
′
j

ei,k
Pi,k +

∑

λ′

k≥2

(λ′
k − 1)T ′

k|T ν
i
.

for some non-negative integer ni, positive integers {ei,k}
ni

k=1, {ei,k,j}1≤k≤ni,1≤j≤m, and an effective
Weil divisor Pi ≥ 0, such that

• (

T ν
i , P

′
i +

ni∑

k=1

ei,k − 1 +
∑m

j=1 ei,k,jb
′
j

ei,k
Pi,k

)

is lc, and
• SuppT ′

k|T ν
i
⊂ SuppP ′

i for any k ̸= i.
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For any point D ⊂ SuppP ′
i , by [CS21, Lemma 3.22] (applied to the case when b′j = 0 for

every j), D is an lc center of (X,F , 0). Since (X,F , 0) is dlt, Ti is Cartier near D. Thus∑
λ′

k≥2(λ
′
k − 1)T ′

k|T ν
i
is an effective Weil divisor and we may let Pi := P ′

i +
∑

λ′

k≥2(λ
′
k − 1)T ′

k|T ν
i
.

(6.a) and (6.b) immediately follow, and (6.c) follows from the adjunction formula for usual
pairs. !

4. Uniform rational polytopes

In this section, we establish the theory of uniform rational polytopes and functional divisors
for foliations in dimension ≤ 3 and prove Theorem 1.3.

4.1. Log canonical thresholds. In this subsection, we define the lc thresholds of foliations.
Our definition is slightly different from the traditional definition since we need to consider lc
thresholds of R-divisors which are not necessarily effective.

Definition 4.1 (Lc thresholds). Let (X,F , B) be an lc foliated sub-triple and D an R-Cartier
R-divisor on X. An lc threshold (lct for short) of D with respect to (X,F , B) is a real number
t0, such that

(1) (X,F , B + t0D) is sub-lc, and
(2) for any positive real number δ, either (X,F , B + (t0 + δ)D) or (X,F , B + (t0 − δ)D) is

not sub-lc.

When D ≥ 0, the lc threshold of D with respect to (X,F , B) is unique, and we denote the lc
threshold of D with respect to (X,F , B) by lct(X,F , B;D).

The following lemma indicates that lc thresholds can always be achieved in dimension ≤ 3.

Lemma 4.2. Let (X,F , B) be a sub-lc foliated sub-triple of dimension ≤ 3 and D an R-Cartier
R-divisor on X. Let B(t) := B + tD for any real number t. Then there exist t1, t2 ∈ R ∪
{−∞,+∞}, such that

(1) t1 ≤ 0 ≤ t2,
(2) for any real number t, (X,F , B(t)) is sub-lc if and only if t1 ≤ t ≤ t2, and
(3) if t1 ̸= t2, then for any i ∈ {1, 2},

• either ti ∈ {−∞,+∞}, or
• there exists a prime divisor Ei over X, such that a(Ei,X,F , B(ti)) = −ϵF (Ei) and
a(Ei,X,F , B(t)) > −ϵF(Ei) for any t ∈ (t1, t2).

Proof. We may let t1 := inf{t | (X,F , B(t)) is sub-lc} and t2 := sup{t | (X,F , B(t)) is sub-lc}.
(1) immediately follows.

By [LLM23, Theorem 4.5], there exists a foliated log resolution f : Y → X of (X,F , B).
Let KFY

+ BY (t) := f∗(KF + B(t)) for any real number t where FY := f−1F . Possibly
replacing (X,F , B(t)) with (Y,FY , BY (t)), we may assume that (X,F ,SuppB ∪ SuppD) is
foliated log smooth. By [LLM23, Lemma 4.3], (X,F , B(t)) is lc if and only if for any component
T of SuppB ∪ SuppD, multT B(t) ≤ ϵF (T ). Since the coefficients of B(t) are affine functions,
t1 = min{t | (X,F , B(t)) is sub-lc} or −∞, and t2 = max{t | (X,F , B(t)) is sub-lc} or +∞.
This implies (2). (3) immediately follows from (2). !

4.2. Special dlt models. In this subsection we prove some key lemmas related to dlt models
of different foliated triples.

Lemma 4.3. Let c,m be be positive integers, r1, . . . , rc real numbers such that 1, r1, . . . , rc are
linearly independent over Q, r := (r1, . . . , rc), and s1, . . . , sm : Rc+1 → R Q-linear functions.
Assume that

• (X,F , B(r) :=
∑m

i=1 si(1, r)Bi) is an lc foliated triple of dimension ≤ 3, and
• Bi ≥ 0 are distinct Weil divisors and si(1, r) ≥ 0 for each i.
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Let f : Y → X be a dlt modification of (X,F , B(r)) with prime exceptional divisors E1, . . . , En,
FY := f−1F , B(v) :=

∑m
i=1 si(1,v)Bi for any v ∈ Rc, and BY (v) := f−1

∗ B(v)+
∑n

i=1 ϵF (Ei)Ei.
Then for any v ∈ Rc,

(1) KFY
+BY (v) = f∗(KF +BY (v)), and

(2) (X,F , B(v)) is lc if and only if (Y,FY , BY (v)) is lc.

Proof. There exist Q-divisors M0, . . . ,Mc, such that B(1, v1, . . . , vc) = M0 +
∑c

i=1 viMi for any
v1, . . . , vc. By [HLS19, Lemma 5.3], Mi is Q-Cartier for any 1 ≤ i ≤ m. Then for any j,

−ϵF (Ej) = a(Ei,F , B(r)) = a(Ej ,F ,M0)−
m∑

i=1

rimultEj Mi,

so multEj Mi = 0 for each i. This implies (1) and (2) follows from (1). !

Lemma 4.4. Let (X,F , B) be an lc foliated triple and M an R-Cartier R-divisor on X, such
that for any positive real number δ, either (X,F , B+ δM) is not lc or (X,F , B− δM) is not lc.
Assume that

• either dimX ≤ 3 and rankF = dimX − 1, or
• dimX = 3, rankF = 1, and X is projective.

Then one of the following holds.

(1) There exists a prime divisor D on X, such that a(D,F , B) = −ϵF(D) and multD M ̸= 0.
(2) There exists a dlt modification f : Y → X of (X,F , B) with prime f -exceptional divisors

E1, . . . , En satisfying the following.
(a) Let KFY

+ BY := f∗(KF + B), where FY := f−1F . Then there exists a positive
real number δ such that (Y,FY , BY + δ{BY }) is dlt.

(b) There exists an integer 1 ≤ i ≤ n, such that multEi M ̸= 0.

Proof. By Lemma 4.2(2), there exists a prime divisor E that is exceptional over X, such that
a(E,X,F , B) = −ϵF (E) and multE M ̸= 0. If E is on X, then either (1) holds, so we may
assume that E is exceptional over X. By [LLM23, Theorem 4.5], we may let g : Z → X be a
log resolution of (X,F ,SuppB ∪ SuppM) such that E is on Z. Let F1, . . . , Fm be the prime
g-exceptional divisors, FZ := g−1F , BZ := g−1

∗ B, and MZ := g−1
∗ M . By [LLM23, Lemma 4.3]

and the definition of dlt singularities,
(

Z,FZ ,Supp(BZ +MZ) +
m∑

i=1

ϵF (Fi)

)

is dlt, and

KFZ
+BZ −

m∑

i=1

a(Fi,F , B)Fi = g∗(KF +B).

Let F :=
∑m

i=1(ϵF (Fi) + a(Fi,F , B))Fi. Then F ≥ 0 is exceptional over X and E ̸⊂ SuppF .
Since KFZ

+BZ+
∑m

i=1 ϵF (Fi)Fi ∼R,X F , by [LLM23, Theorem 5.9], we may run a (KFZ
+BZ+∑m

i=1 ϵF (Fi)Fi)-MMP/X which terminates with a good minimal model (cf. [LLM23, Definition
5.5]) (Y,FY , BY )/X of (Z,FZ , BZ +

∑m
i=1 ϵF (Fi)Fi)/X such that KFY

+ BY ∼R,X 0 and the
divisors contracted by Z ""# Y are exactly those contained in SuppF . Then (Y,FY , BY ) is Q-
factorial dlt and the induced birational morphism f : Y → X is a dlt modification of (X,F , B).

Since (Z,FZ ,Supp(BZ +MZ)+
∑m

i=1 ϵF (Fi)) is dlt, there exists a positive real number δ such
that (Z,FZ , BZ +

∑m
i=1 ϵF (Fi)Fi + δ{BZ}) is dlt and the induced birational map Z ""# Y is

also a partial (KFZ
+BZ +

∑m
i=1 ϵF (Fi)Fi + δ{BZ})-MMP for some positive real number δ. By

[LLM23, Theorem 5.8], (Y,FY , BY + δ{BY }) is dlt. Thus (2.a) holds.
Let E1, . . . , En be the prime f -exceptional divisors. Since E ̸⊂ SuppF , we may let i be the

index such that Ei is the image of E on Y . Thus (2.b) holds. !
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Lemma 4.5 (Key Lemma). Let (X,F , B) be an lc foliated triple and M an R-Cartier R-divisor
on X, such that

• – either dimX ≤ 3 and rankF = dimX − 1, or
– dimX = 3, rankF = 1, and X is projective,

• (X,F , B +M) is lc,
• (X,F , B + (1 + ϵ)M) is not lc for any positive real number ϵ,
• SuppB = Supp(B +M), and
• for any prime divisor D on X such that a(D,F , B +M) = −ϵF (D), multD M = 0.

Then there are two projective birational morphisms h : X ′ → X and g : Y ′ → X ′ and a real
number t ∈ (0, 1) satisfying the following.

(1) h is a dlt modification of (X,F , B + tM).
(2) For any prime h-exceptional divisor D, a(D,F , B) = −ϵF (D). In particular, multD M =

0 and a(D,F , B + sM) = −ϵF (D) for any real number s.
(3) g extracts a unique prime divisor E. In particular, −E is ample over X ′.
(4) a(E,F , B +M) = −ϵF(E) and a(E,F , B) > −ϵF (E). In particular, multE M > 0 and

a(E,F , B + sM) > −ϵF (E) for any real number s < 1.
(5) Let BY ′ ,MY ′ be the strict transforms of B,M on Y ′ respectively, FY ′ := (h◦g)−1F , and

FY ′ :=
∑

D is a prime h◦g-exceptional divisor

ϵF (D)D.

Then (Y ′,FY ′ , BY ′ + tMY ′ + FY ′) is Q-factorial dlt.

Proof. By Lemma 4.4, there exists a dlt modification f : Y → X of (X,F , B + M) satisfying
the following: let FY := f−1F , BY := f−1

∗ B,MY := f−1
∗ M , KFY

+ BY := f∗(KF + B), and
E1, . . . , En the prime f -exceptional divisors, then

• (Y,FY , BY +MY + δ{BY +MY }+
∑n

i=1 ϵF (Ei)Ei) is dlt for some positive real number
δ, and

• multEi M ̸= 0 for some 1 ≤ i ≤ n.

Since SuppB = Supp(B +M), (Y,FY , BY + tMY +
∑n

i=1 ϵF (Ei)Ei) is dlt for some t ∈ (0, 1).
Since (X,F , B) and (X,F , B +M) are lc, (X,F , B + tM) is lc. Thus

KFY
+BY + tMY +

n∑

i=1

ϵF (Ei)Ei ∼R,X

n∑

i=1

(ϵF (Ei) + a(Ei,F , BY + tMY ))Ei ≥ 0.

By [LLM23, Theorem 5.9], we may run a (KFY
+BY + tMY +

∑n
i=1 ϵF (Ei)Ei)-MMP/X which

terminates with a good minimal model (X ′,F ′, B′ + tM ′ + F ′)/X of (Y,FY , BY + tMY +∑n
i=1 ϵF (Ei)Ei)/X such that KF ′ + B′ + tM ′ + F ′ ∼R,X 0, where B′,M ′, F ′ are the images

of BY ,MY ,
∑n

i=1 ϵF (Ei)Ei on X ′ respectively. Then (X ′,F ′, B′ + tM ′ + F ′) is Q-factorial dlt
and the induced morphism h : X ′ → X is a dlt modification of (X,F , B + tM).

By construction, the divisors contracted by the induced birational map Y ""# X ′ are all
divisors Ei such that ϵF (Ei) > a(Ei,F , BY + tMY ). Since multEi M ̸= 0, Y ""# X ′ contracts
Ei, hence Y ""# X ′ contains a divisorial contraction. We let g : Y ′ ""# X ′ be the last step of the
(KFY

+BY + tMY +
∑n

i=1 ϵF (Ei)Ei)-MMP/X. Since X ′ is Q-factorial and KF ′ +B′ + tM ′ +
F ′ ∼R,X 0, g is a divisorial contraction of a prime divisor E.

We show that h, g and t satisfy our requirements.
(1)(5) immediately follow from our construction.
For any prime divisorD onX ′ that is exceptional over X, the center ofD on Y is a divisor that

is exceptional over X. Since f : Y → X is a dlt modification of (X,F , B+M), a(D,F , B+M) =
−ϵF(D). By (1), h is a dlt modification of (X,F , B + tM), so a(D,F , B + tM) = −ϵF(D).
Thus multD M = 0, so a(D,F , B) = −ϵF (D). This implies (2).

Since g is a divisorial contraction of a prime divisor E, by the negativity lemma, −E is
ample/X ′. This implies (3).
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Since the center of E on Y is a divisor that is exceptional over X, a(E,F , B+M) = −ϵF (E).
Since E is contracted by the (KFY

+BY + tMY +
∑n

i=1 ϵF (Ei)Ei)-MMP/X: Y ""# X ′,

a(E,F , B + tM) = a(E,F ′, B′ + tM ′ + F ′) > −ϵF(E).

Thus a(E,F , B) > −ϵF (E). This implies (4). !

4.3. Threefold rank one case. In this subsection, we prove a slightly weaker version of
Theorem 1.3 when dimX = 3 and rankF = 1.

Proposition 4.6. Let c,m be positive integers, r1, . . . , rc real numbers such that 1, r1, . . . , rc are
linearly independent over Q, r := (r1, . . . , rc), and s1, . . . , sm : Rc+1 → R Q-linear functions.
Then there exists a positive real number δ depending only on r and s1, . . . , sm satisfying the
following. Assume that

(1) (X,F , B =
∑m

i=1 si(1, r)Bi) is a projective lc foliated triple such that dimX = 3 and
rankF = 1,

(2) Bi ≥ 0 are distinct Weil divisors (possibly 0) and si(1, r) ≥ 0, and
(3) B(t) :=

∑m
i=1 si(1, r1, . . . , rc−1, t)Bi for any t ∈ R.

Then (X,F , B(t)) is lc for any t ∈ (rc − δ, rc + δ).

Proof. We let si(t) := si(1, r1, . . . , rc−1, t) for any t ∈ R. If si(rc) = 0, then si(t) = 0 for any t,
so we may assume that si(rc) ̸= 0 for any i. By Lemma 4.3 and [LLM23, Theorem 5.7], possibly
replacing (X,F , B(rc)) with a dlt model, we may assume that (X,F , B(rc)) is Q-factorial dlt.
In particular, F is non-dicritical.

We only need to prove that there exists a positive real number ϵ depending only on r and
s1, . . . , sm, such that for any lc threshold t0 of (X,F , B(t)), |t0 − rc| > ϵ. Thus we may assume
that (X,F , B(t)) has an lc threshold t0. Since 1, r1, . . . , rc are linearly independent over Q,
rc ̸= t0. Moreover, there exists a positive real number δ1 depending only on r and s1, . . . , sm,
such that for any t ∈ (rc − δ1, rc + δ1) and any i, si(t) ≥ 1

2si(rc) > 0. In particular, for any
t ∈ (rc − δ1, rc + δ1), SuppB(t) = SuppB(rc), Supp⌊B(t)⌋ = Supp⌊B(rc)⌋, and B(t) ≥ 1

2B(rc).
We may assume that t0 ∈ (rc − δ1, rc + δ1). In particular, we may assume that (X,F , B(t0))

does not have an lc center in codimension 1 that is also an lc center of (X,F , B(rc)). Thus
(X,F , B(t0)) has an lc center x such that dim x̄ ≤ 1, and x is not an lc center of (X,F , B(rc)).
In particular, x ∈ SuppB(rc).

By Lemma 4.5 (more precisely, X,F , B,M in Lemma 4.5 correspond to ourX,F , B(rc), B(t0)−
B(rc) respectively), possibly replacing (X,F , B(t)), we may assume that there exists a divisorial
contraction g : Y → X of a prime divisor E and a real number s satisfying the following. Let
BY (t) be the strict transform of B(t) on Y for any t and FY := g−1F , then:

• s ∈ (rc, t0) if rc < t0, and s ∈ (t0, rc) if t0 < rc,
• (X,F , B(s)) is Q-factorial dlt, (X,F , B(rc)) is lc, and (X,F , B(t0)) is lc. In particular,
since rankF = 1, by definition, (X,F , B(rc)) and (X,F , B(t0)) are dlt.

• −E is ample over X,
• (Y,FY , BY (s) + ϵF (E)E) is Q-factorial dlt, and
• a(E,F , B(t0)) = −ϵF (E) and a(E,F , B(rc)) > −ϵF (E). In particular, (Y,FY , BY (t0)+
ϵF (E)E) is lc.

Since (X,F , B(s)) is Q-factorial dlt, F is non-dicritical, so E is FY -invariant and ϵF (E) = 0.
Let V be the normalization of centerX E, Eν the normalization of E, g|Eν : Eν → V the induced
projective surjective morphism with Stein factorization

Eν π
−→ W

τ
−→ V,

and F a general fiber of π. Then since −E is ample over X,

KFY
+BY (rc) = g∗(KF +B(rc)) + a(E,F , B(rc))E ∼R,X a(E,F , B(rc))E
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is anti-ample/X. Thus
(KFY

+BY (rc))|F

is anti-ample. Moreover, since

KFY
+BY (t0) = g∗(KF +B(t0)) ∼R,X 0,

we have that
(KFY

+BY (t0))|F ∼R 0.

We let x be the generic point of centerX E and let Eν be the normalization of E. Since
(Y,FY , BY (s)) is Q-factorial dlt, by Theorem 3.3, there exist prime divisors C1, . . . , Cn on Eν ,
non-negative integers {wi,j}0≤i≤n,1≤j≤m, and a rank 1 foliation FE on Eν , such that

(KF +BY (t))|Eν = KFE
+

n∑

i=1

wi,0 +
∑m

j=1wi,jsj(t)

2
Ci

for any real number t. There are two cases.

Case 1. dim x̄ = 1. We let

h(t) :=
n∑

i=1

wi,0 +
∑m

j=1wi,jsj(t)

2
(Ci · F )

for any real number t. Then KFE
· F + h(t) ̸= 0 when t ̸= t0 and KFE

· F + h(t0) = 0. In
particular, h(t) is not a constant function. Since F is an irreducible component of a general
fiber, Ci · F ≥ 0 for any i and F 2 = 0. In particular, h(t0) ≥ 0, and h(t0) = 0 if and only if
Ci · F = 0 for any i. Recall that sj(t0) ≥

1
2sj(rc) > 0 for any j. Therefore, since h(t) is not a

constant function, h(t0) > 0. There are two cases.

Case 1.1. F is not FE-invariant. In this case, since Eν is smooth near F ,

0 = KFE
· F + h(t0) > KFE

· F = (KFE
+ F ) · F = tang(FE , F ) ≥ 0,

a contradiction.

Case 1.2. F is FE-invariant. In this case, since Eν is smooth near F ,

0 = KFE
· F + h(t0) > KFE

· F = Z(FE , F )− χ(F ),

so KFE
· F = Z(FE , F )− χ(F ) ∈ {−1,−2}. Thus

h(t0) =
n∑

i=1

ci,0 +
∑m

j=1 ci,jsj(t0)

2
(Ci · F ) ∈ {1, 2}.

Since sj(t0) ≥
1
2sj(rc) > 0 for any j, there are finitely many possibilities of ci,j (which do not

depend on t0) for any i such that Ci · F ̸= 0. Thus there are only finitely many possibilities of
h(t). Since h(t0) = 0 and h is not a constant function, there are only finitely many possibilities
of t0. The proposition follows in this case.

Case 2. dim x̄ = 0. In this case F = Eν and x is a closed point. We let

C(t) :=
n∑

i=1

wi,0 +
∑m

j=1wi,jsj(t)

2
Ci.

Then KFE
+ C(t0) ∼R 0, and KFE

+ C(rc) is anti-ample. Therefore, C(t0) ̸= 0, so KFE
is not

pseudo-effective. By [CP19, Theorem 1.1], [LLM23, Theorem 3.1], FE is algebraically integrable.
By [Dru21, 3.5], there exists a projective birational morphism f : V → Eν and a contraction
τ : V → Z to a curve Z, such that FV := f−1FE is induced by τ , i.e. τ is the family of leaves
of F . Let LV be a general fiber of τ , L := f∗LV , and LY the image of L on Y .

Claim 4.7. For any i such that wi,j ̸= 0 for some j, Ci · L is well-defined and is an integer.
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Proof. We only need to show that L is Cartier near any closed point y ∈ Ci ∩ L. Since
(Y,FY , BY (rc)) is lc and sj(rc) > 0 for any j, SuppBY (t) does not contain any lc center of
(Y,FY , 0) for any real number t. Since wi,j ̸= 0 for some j, Ci does not contain any lc center
of (Y,FY , 0). In particular, the image of y in Y is not an lc center of (Y,FY , 0). Since FY

has simple singularities, FY is terminal near y. By [CS20, Lemma 2.12(1)], FY is induced by a
fibration near y up to a quasi-étale cover. Therefore, there are only finitely many FY -invariant
curves passing through the image of y in Y . Thus, there are only finitely many FE-invariant
curves passing through y, so y is a non-dicritical singularity of FE . Since LV is a general fiber
of τ , f is an isomorphism near a neighborhood of y, and LV is smooth near f−1(y). Thus L is
smooth near y. Therefore, L is Cartier near y and we are done. !

Proof of Proposition 4.6 continued. We let

h(t) :=
n∑

i=1

∑m
j=1wi,jsj(t)

2
(Ci · L)

for any real number t, then h(rc) ≥ 0, h(t0) ≥ 0, and h(t) = BY (t) · LY for any t. Since

0 > (KFY
+BY (rc)) · LY = KFY

· LY + h(rc),

we have that (

KFE
+

n∑

i=1

wi,0

2
Ci

)

· L = KFY
· LY < 0.

Since FY has simple singularities, for any closed point y ∈ LY such that FY is not terminal at
y, 2KFY

is Cartier near y. By [CS20, Proposition 2.16(3)(4), Proposition 3.3],

KFY
· LY = −2 +

1

2
λ+

u∑

i=1

µi − 1

µi

where λ, u are non-negative integers and µi are positive integers. Therefore,

0 > (KFY
+BY (rc)) · LY = −2 +

1

2
λ+

u∑

i=1

µi − 1

µi
+

n∑

i=1

m∑

j=1

wi,j(Ci · L)

2
sj(rc)

and

0 = (KFY
+BY (t0)) · LY = −2 +

1

2
λ+

u∑

i=1

µi − 1

µi
+

n∑

i=1

m∑

j=1

wi,j(Ci · L)

2
sj(t0).

We consider the g-pair
⎛

⎝P1, BP1(t) :=
u∑

i=1

µi − 1

µi
Pi,M(t) :=

λ

2
Q̄0 +

n∑

i=1

m∑

j=1

wi,j(Ci · L)

2
sj(t)Q̄i,j

⎞

⎠

where Pi, Q0, Qi,j are distinct points on P1. Then (P1, BP1(t0),M(t0)) is lc, KP1 + BP1(t0) +
M(t0)P1 ≡ 0, and KP1 + BP1(rc) + M(rc)P1 ̸≡ 0. The proposition now follows from [Che23a,
Theorem 3.6] (which is essentially [Nak16, Theorem 3.8, Corollary 3.9] but the latter does not
discuss the dimension 1 case). !

4.4. Threefold rank two case. In this subsection, we prove a slightly weaker version of
Theorem 1.3 when dimX = 3 and rankF = 2.

Proposition 4.8. Let c,m be positive integers, r1, . . . , rc real numbers such that 1, r1, . . . , rc are
linearly independent over Q, r := (r1, . . . , rc), and s1, . . . , sm : Rc+1 → R Q-linear functions.
Then there exists a positive real number δ depending only on r and s1, . . . , sm satisfying the
following. Assume that

(1) (X,F , B =
∑m

i=1 si(1, r)Bi) is an lc foliated triple such that dimX = 3 and rankF = 2,
(2) Bi ≥ 0 are distinct Weil divisors (possibly 0) and si(1, r) ≥ 0, and
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(3) B(t) :=
∑m

i=1 si(1, r1, . . . , rc−1, t)Bi for any t ∈ R.

Then (X,F , B(t)) is lc for any t ∈ (rc − δ, rc + δ).

Proof. Step 1. In this step we apply Lemma 4.5 and reduce to the case when (X,F , B) is
Q-factorial dlt with additional good properties. This step is very similar to the beginning of the
proof of Proposition 4.6.

We let si(t) := si(1, r1, . . . , rc−1, t) for any t ∈ R. If si(rc) = 0, then si(t) = 0 for any i, so
we may assume that si(rc) ̸= 0 for any i. By Lemma 4.3 and [LLM23, Theorem 5.7], possibly
replacing (X,F , B(rc)) with a dlt model, we may assume that (X,F , B(rc)) is Q-factorial lc and
(X,F , 0) is dlt. In particular, F is non-dicritical. (We remark that (X,F , B(rc)) is actually dlt
here, but later we will replace the foliated triple (X,F , B(rc)) again and it may no longer be
dlt).

We only need to prove that there exists a positive real number ϵ depending only on Γ and
r, such that for any lc threshold t0 of (X,F , B(t)), |t0 − rc| > ϵ. Thus we may assume that
(X,F , B(t)) has an lc threshold t0. Since 1, r1, . . . , rc are linearly independent over Q, rc ̸= t0.
Moreover, there exists a positive real number δ1, such that for any t ∈ (rc − δ1, rc + δ1) and
any i, si(t) ≥

1
2si(rc) > 0. In particular, for any t ∈ (rc − δ1, rc + δ1), SuppB(t) = SuppB(rc),

Supp⌊B(t)⌋ = Supp⌊B(rc)⌋, and B(t) ≥ 1
2B(rc).

We may assume that t0 ∈ (rc − δ1, rc + δ1). In particular, we may assume that (X,F , B(t0))
does not have an lc center in codimension 1 that is also an lc center of (X,F , B(rc)). Thus
(X,F , B(t0)) has an lc center x such that dim x̄ ≤ 1, and x is not an lc center of (X,F , B(rc)).
In particular, x ∈ SuppB(rc).

By Lemma 4.5 (more precisely, X,F , B,M in Lemma 4.5 correspond to ourX,F , B(rc), B(t0)−
B(rc) respectively), possibly replacing (X,F , B(t)), we may assume that there exist a divisorial
contraction g : Y → X of a prime divisor E and a real number s satisfying the following: let
BY (t) be the strict transform of B(t) on Y for any t and FY := g−1F , then

• s ∈ (rc, t0) if rc > t0, and s ∈ (t0, rc) if t0 < rc,
• (X,F , B(s)) is Q-factorial dlt, (X,F , B(rc)) is lc, and (X,F , B(t0)) is lc,
• −E is ample over X,
• (Y,FY , BY (s) + ϵF (E)E) is Q-factorial dlt, and
• a(E,F , B(t0)) = −ϵF (E) and a(E,F , B(rc)) > −ϵF (E). In particular, (Y,FY , BY (t0)+
ϵF (E)E) is lc.

Step 2. We deal with the case when ϵF (E) = 1.
Suppose that ϵF (E) = 1. Since (Y,FY , BY (s)+ ϵF (E)) is Q-factorial dlt, FY is non-dicritical.

By [CS21, Remark 2.16] and [Spi20, Lemma 3.11], over the generic point of centerX E,

• (X,B(rc)) is lc, and (X,B(t0)) is lc, and
• a(E,X,B(t0)) = −1 and a(E,X,B(rc)) > −1.

The proposition follows from [Nak16, Theorem 1.6] (see also [HLS19, Theorem 5.6]) in this case.

Step 3. From now on we can assume that ϵF (E) = 0. We summarize some known properties
in this step.

Let V be the normalization of centerX E, Eν the normalization of E, g|Eν : Eν → V the
induced projective surjective morphism with Stein factorization

Eν π
−→ W

τ
−→ V,

and F a general fiber of π. Then since −E is ample over X,

KFY
+BY (rc) = g∗(KF +B(rc)) + a(E,F , B(rc))E ∼R,X a(E,F , B(rc))E

is anti-ample/X. Thus
(KFY

+BY (rc))|F
is anti-ample. Moreover, since

KFY
+BY (t0) = g∗(KF +B(t0)) ∼R,X 0,
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we have that

(KFY
+BY (t0))|F ∼R 0.

By Theorem 3.5, there exist positive integers w1, . . . , wn, λ1, . . . ,λk, non-negative integers
{wi,j}1≤i≤n,1≤j≤m, and prime divisors C1, . . . , Cn, T1, . . . , Tl, such that for any real number t,
we have

(KFY
+BY (t)) |Eν = KEν +

n∑

i=1

wi − 1 +
∑m

j=1wi,jsj(t)

wi
Ci +

l∑

i=1

λiTi.

We let

BE(t) :=
n∑

i=1

wi − 1 +
∑m

j=1wi,jsj(t)

wi
Ci +

l∑

i=1

λiTi

and

B̃E(t) :=
n∑

i=1

wi − 1 +
∑m

j=1wi,jsj(t)

wi
Ci +

l∑

i=1

Ti

for any real number t. By Theorem 3.5(3), (Eν , B̃E(t0)) and (Eν , B̃E(rc)) are lc.

Step 4. We deal with the case when dimF = 1.
Suppose that dimF = 1. We let

h(t) := BE(t) · F =
n∑

i=1

wi − 1 +
∑m

j=1wi,jsj(t)

wi
(Ci · F ) +

l∑

i=1

λi(Ti · F )

for any real number t. Then h(t) is an affine function, h(rc) ≥ 0, and h(t0) ≥ 0.
In this case, we have KEν · F + h(t0) = 0 and KEν · F + h(rc) < 0. Thus KEν · F < 0, so F

is a smooth rational curve. Since F 2 = 0, KEν · F = −2. Thus

−2 +
n∑

i=1

wi − 1 +
∑m

j=1wi,jsj(t)

wi
(Ci · F ) +

l∑

i=1

λi(Ti · F ) = 0.

We consider the pair
⎛

⎝P1, BP1(t) :=
n∑

i=1

wi − 1 +
∑m

j=1wi,jsj(t)

wi

(Ci·F )∑

k=1

Pi,k +
l∑

i=1

λi(Ti·F )∑

k=1

Qi,k

⎞

⎠

for any real number t, where Pi,k are Qi,k are distinct points on P1. Then (P1, BP1(t0)) is lc,
KP1 +BP1(t0) ≡ 0, and KP1 +BP1(rc) ̸≡ 0, The proposition now follows from [Che23a, Theorem
3.6].

Step 5. We conclude the proof in this step. Now we may assume that F = Eν and dimF = 2.
Then KEν +BE(t0) ∼R 0, and KEν +BE(rc) is anti-ample. By [Nak16, Theorem 3.8, Corollary
3.9], we may assume that BE(t) ̸= B̃E(t) for any t. Thus ci ≥ 2 for some i. We let T ν

i be the
normalization of Ti.

By Theorem 3.5, there exist a non-negative integer ni, positive integers ei,1, . . . , ei,ni , non-
negative integers {ei,k,j}1≤k≤ni,1≤j≤m, a Weil divisor Pi ≥ 0 on T ν

i , and prime divisors
Pi,1, . . . , Pi,ni on T ν

i , such that for any real number t,

(KFY
+BY (t))|T ν

i
= KT ν

i
+BTi(t) := KT ν

i
+ Pi +

ni∑

k=1

ei,k − 1 +
∑m

j=1 ei,k,jsj(t)

ei,k
Pi,k,

and (

T ν
i ,SuppPi +

ni∑

k=1

ei,k − 1 +
∑m

j=1 ei,k,jsj(t0)

ei,k
Pi,k

)
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is lc. Moreover, we have KT ν
i
+ BTi(t0) ∼R 0 and KT ν

i
+ BTi(rc) is anti-ample. Thus T ν

i = P1.
We consider the g-pair

(

P1, B′
P1(t) :=

ni∑

k=1

ei,k − 1 +
∑m

j=1 ei,k,jsj(t)

ei,k
Pi,k,M := P̄i

)

for any real number t. Then (P1, B′
P1(t0),M) is lc, KP1+B′

P1(t0)+MP1 ≡ 0, and KP1+B′
P1(rc)+

MP1 ̸≡ 0. The proposition now follows from [Che23a, Theorem 3.6]. !

Remark 4.9. The same arguments as of Proposition 4.6 can also be helpful to simplify the
proof of the rank 2 case of the ACC for foliated lc thresholds for threefolds [Che22, Theorem
3.11]. By applying Lemma 4.5, we do not need the argument from [Che22, Page 15] to [Che22,
End of Section 3].

4.5. Proof of Theorem 1.3.

Theorem 4.10. Let c,m be positive integers, r1, . . . , rc real numbers such that 1, r1, . . . , rc are
linearly independent over Q, r := (r1, . . . , rc), and s1, . . . , sm : Rc+1 → R Q-linear functions.
Then there exists a positive real number δ depending only on r and s1, . . . , sm satisfying the
following. Assume that

(1) (X,F , B =
∑m

i=1 si(1, r)Bi) is an lc foliated triple such that rankF < dimX ≤ 3,
(2) Bi ≥ 0 are distinct Weil divisors (possibly 0) and si(1, r) ≥ 0,
(3) B(t) :=

∑m
i=1 si(1, r1, . . . , rc−1, t)Bi for any t ∈ R, and

(4) if dimX = 3 and rankF = 1, then X is projective.

Then (X,F , B(t)) is lc for any t ∈ (rc − δ, rc + δ).

Proof. If rankF = 0 then B(t) = 0 for any t and there is nothing left to prove, so we may
assume that rankF > 0. The theorem follows from Propositions 4.6 and 4.8 and [LMX24a,
Theorem 1.8]. !

Proof of Theorem 1.3. If F = TX , then the theorem is [HLS19, Theorem 5.6]. So we may assume
that rankF < dimX.

We apply induction on c. When c = 1, Theorem 1.3 directly follows from Theorem 4.10. When
c ≥ 2, by Theorem 4.10, there exists a positive integer δ depending only on r1, . . . , rc, s1, . . . , sm,
such that for any t ∈ (rc − δ, rc + δ), (X,F ,

∑m
i=1 si(1, r1, . . . , rc−1, t)Bi) is lc. We pick rational

numbers rc,1 ∈ (rc − δ, rc) and rc,2 ∈ (rc, rc + δ) depending only on r1, . . . , rc, s1, . . . , sm. By
induction on c, there exists an open subset U0 ∋ (r1, . . . , rc−1) of Rc−1, such that for any
v ∈ U0, (X,F ,

∑m
i=1 si(1,v, rc,1)Bi) and (X,F ,

∑m
i=1 si(1,v, rc,2)Bi) are lc. We may pick U :=

U0 × (rc,1, rc,2). !

5. Proofs of Theorem 1.1 and Corollary 1.4

The following result is a variation of the ACC for lc thresholds [Che22, Theorem 0.5] for
foliations in dimension ≤ 3, which is more useful in some scenarios.

Proposition 5.1. Let Γ ⊂ [0, 1] be a DCC set of real numbers and α a positive real number.
Then there exists a function g : Γ̄ → Γ̄ satisfying the following.

(1) g ◦ g = g and g(Γ̄) is a finite set.
(2) γ + α ≥ g(γ) ≥ γ for any γ ∈ Γ̄.
(3) g(γ) ≤ g(γ′) for any γ, γ′ ∈ Γ̄ such that γ ≤ γ′.
(4) For any non-negative integer m and lc foliated triple (X,F ,

∑m
i=1 biBi), such that

dimX ≤ 3, bi ∈ Γ for any i, and Bi are effective Q-Cartier Weil divisors, we have
that (

X,F ,
m∑

i=1

g(bi)Bi

)

is lc.
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Proof. We may assume that Γ = Γ̄. Let

Γ′ := {lct(X,F , B;D) | dimX ≤ 3,X is projective, B ∈ Γ̄,D ∈ N+}.

By [Che22, Theorem 0.5], Γ′ is an ACC set. By [HLS19, Lemma 5.17], there exists a function
g : Γ̄ → Γ̄, such that (1-3) hold, and for any β ∈ Γ′ and γ ∈ Γ̄ such that β ≥ γ, we have
β ≥ g(γ).

Suppose that (X,F ,
∑m

i=1 g(bi)Bi) is not lc. Then m ≥ 1, and there exists 0 ≤ j ≤ m − 1,

such that (X,F ,
∑j

i=1 g(bi)Bi +
∑m

i=j+1 biBi) is lc and (X,F ,
∑j+1

i=1 g(bi)Bi +
∑m

i=j+2 biBi) is
not lc. Let

b := lct

⎛

⎝X,F ,
∑

i ̸=j+1

g(bi)Bi;Bj+1

⎞

⎠ ,

then bj+1 ≤ b < g(bj+1) and b ∈ Γ′, which is not possible. Thus (X,F ,
∑m

i=1 g(bi)Bi) is lc and
we are done. !

Proposition 5.2. Let Γ ⊂ [0, 1] be a DCC set. Then there exist a finite set Γ0 ⊂ Γ depending
only on Γ satisfying the following. Assume that

(1) (X,F , B) is a projective lc foliated triple of dimension ≤ 3,
(2) B ∈ Γ,
(3) π : X → Z is a contraction such that 0 < dimZ < dimX,
(4) there exists a foliation FZ on Z such that F = π−1FZ ,
(5) KF +B ∼R 0, and
(6) if dimX = 3, rankF = 2, and dimZ = 2, then Z is klt.

Then B ∈ Γ0.

In the proof of Proposition 5.2, we will introduce a lot of sets of coefficients depending only
on Γ. For the reader’s convenience, we note that the sets with/without the subscript “0” are
finite/DCC sets in the following proof.

Proof. By [HMX14, Theorem 1.5], we may assume that rankF < dimX. If rankF = 0, then
B = 0 and there is nothing left to prove. So we may assume that 1 ≤ rankF ≤ 2.

By [LLM23, Theorem 5.7], possibly replacing Γ with Γ ∪ {1}, we may assume that (X,F , B)
is a Q-factorial projective dlt foliated triple of dimension ≤ 3.

Let F be a general fiber of π and BF := B|F . Then

KF +BF = (KX +B)|F = (KF +B)|F ∼R 0,

and BF ∈ Γ. Since (X,F , B) is lc, (F,BF ) is lc. By [HMX14, Theorem 1.5], there exists a finite
set Γ′

0 ⊂ Γ such that BF ∈ Γ′
0.

By [Che22, Theorem 2.5], we may assume that dimX = 3. By [LLM23, Proposition 6.4(2)],
there exists a projective lc generalized foliated quadruple (Z,FZ , BZ ,M) induced by a canonical
bundle formula π : (X,F , B) → Z (see [LLM23, Definition 1.2] for the definition) Then KFZ

+
BZ +MZ ∼R 0.

We let Bh be the horizontal/Z part of B and Bv the vertical/Z part of B. Then Bh ∈ Γ′
0.

Let Γ̄ be the closure of Γ. By Proposition 5.1, there exist a finite set Γ′′
0 ⊂ Γ̄ depending only on

Γ and an R-divisor B̄ ∈ Γ′′
0, such that

• Γ′
0 ⊂ Γ′′

0,
• B̄ ≥ B and Supp B̄ = SuppB,
• (X,F , B̄) is lc, and
• B̄h = Bh, where B̄h is the horizontal/Z part of B̄.

In particular, 0 ≤ B̄ −B is vertical/Z.

Claim 5.3. Proposition 5.2 holds if dimZ = 1.



22 JIHAO LIU, FANJUN MENG, AND LINGYAO XIE

Proof. In this case, rankF = 2 and FZ is the trivial foliation, so KFZ
+BZ +MZ ∼R 0 implies

that BZ = 0. Suppose that there exists a component D of B that is vertical over Z. We let
P = π(D), then

sup{t | (X,F , B + tπ∗P ) is sub-lc over P} < 1.

By [LLM23, Proposition 6.4(2)], multP BZ > 0, a contradiction. Therefore, all components of
B are horizontal over Z. Since Bh ∈ Γ′

0, Proposition 5.2 follows in this case. !

Proof of Proposition 5.2 continued. By Claim 5.3, we may assume that dimZ = 2. Since
(X,F , B̄) is lc, (X,F , B) is dlt, and Supp B̄ = SuppB, we have that (X,F , 12(B̄ + B)) is dlt.
By [LLM23, Theorem 5.8], we may run a (KF + 1

2(B̄ + B))-MMP/Z which terminates with a
log minimal model (cf. [LLM23, Definition 5.5]) of (X,F , 12(B̄ +B))/Z. Since

1

2
(KF + B̄) ∼R KF +

1

2
(B̄ +B),

this MMP is also a (KF + B̄)-MMP which terminates with a weak lc model (cf. [LLM23,
Definition 5.5]) (X ′,F ′, B̄′)/Z of (X,F , B̄)/Z. We let π′ : X ′ → Z be the induced contraction
and B′ the image of B on X ′.

Claim 5.4. KF ′ + B̄′ ∼R,Z 0.

Proof. Since KF ′ +B′ ∼R 0, we only need to show that B̄′−B′ ∼R,Z 0. By assumption, B̄′−B′

is nef/Z. There are two cases.

Case 1. rankF = 1. In this case, FZ = 0, so KFZ
+ BZ + MZ ∼R 0 implies that BZ = 0.

Therefore, for any component D of B that is vertical over Z, D is very exceptional over Z. Thus
B̄−B is very exceptional over Z, so B̄′−B′ is very exceptional over Z. By [Bir12, Lemma 3.3],
B̄ −B = 0 and we are done.

Case 2. rankF = 2. In this case, by our assumption, Z is klt. Thus Z is Q-factorial. For any
prime divisor D on Z, we define

νD := sup{t | B̄′ −B′ − π∗D ≥ 0}

and let
L′ := B̄′ −B′ −

∑

D is a prime divisor on Z

νDπ
′∗D.

Then L′ ≥ 0 and L′ is very exceptional over Z. By [Bir12, Lemma 3.3], L′ = 0. Thus

B̄′ −B′ =
∑

D is a prime divisor on Z

νDπ
′∗D ∼R,Z 0

and we are done. !

Proof of Proposition 5.2 continued. By Claim 5.4, KF ′ + B̄′ ∼R,Z 0. Since KF ′ + B′ ∼R 0,
B̄′−B′ ∼R,Z 0. By Theorem 1.3 and [HLS19, Lemma 5.3], there exist real numbers a1, . . . , ak ∈
(0, 1], a finite set Γ′′′

0 ⊂ Q ∩ [0, 1] depending only on Γ, and Q-divisors B̄′
1, . . . , B̄

′
k ∈ Γ′′′

0 on X ′,
such that

•
∑k

i=1 ai = 1 and
∑k

i=1 aiB̄
′
i = B̄′,

• (X ′,F ′, B̄′
i) is lc for each i,

• (X ′,F ′, B′
i := B̄′

i − (B̄′ −B′)) is lc for each i, and
• KF ′ + B̄′

i ∼Q,Z 0 and KF ′ +B′
i ∼R,Z 0 for each i.

By [LLM23, Proposition 6.4(2.a)(3)], we may let (Z,FZ , Bi,Z ,Mi) and (Z,FZ , B̄i,Z ,Mi)
be projective lc generalized foliated quadruples induces by canonical bundle formulas of
(X ′,F ′, B′

i) → Z and (X ′,F ′, B̄′
i) → Z respectively. We let M′ :=

∑k
i=1 aiMi (note that it

is possible that M′ ̸= M), and let B′
Z :=

∑k
i=1 aiBi,Z . Then KFZ

+ B′
Z + M′

Z ∼R 0. Since
dimZ = 2, by [LLM23, Proposition 6.4(4)], there exists a positive integer I depending only on
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Γ, such that for each i, we may choose Mi such that IMi is base-point-free, I(KF ′ + B′
i) ∼

Iπ′∗(KFZ
+Bi,Z +Mi,Z), and I(KF ′ + B̄′

i) ∼ Iπ′∗(KFZ
+ B̄i,Z +Mi,Z).

By [Che22, Theorem 0.5] and [LLM23, Proposition 6.4(2)], there exists a DCC set Γ′ ⊂ [0, 1]
depending only on Γ such that B̄i,Z , Bi,Z ∈ Γ′. Since KFZ

+ Bi,Z + Mi,Z ∼R 0, by [LLM23,
Lemma 7.2], there exists a finite set Γ′′′′

0 depending only on Γ such that B′
i,Z ∈ Γ′′′′

0 for any i.
Possibly replacing Γ′′′′

0 , we may assume that B′
Z ∈ Γ′′′′

0 .

We let B̄Z :=
∑k

i=1 aiB̄i,Z . Then there exists a DCC set Γ′′ ⊂ (0, 1] depending only on Γ
such that for any component D of B̄Z −B′

Z , multD(B̄Z −B′
Z) ∈ Γ′′. Since the coefficients of B̄′

belongs to the finite set Γ′′
0, the coefficients of

B′ = B̄′ − π′∗(B̄Z −B′
Z)

belong to an ACC set depending only on Γ. Since B′ ∈ Γ, the coefficients of B′ belong to a
finite set Γ̃0 depending only on Γ. In this case, by Theorem 1.3 and [HLS19, Lemma 5.3], there
exist real numbers c1, . . . , ck ∈ (0, 1] and a finite set Γ̃′

0 ⊂ Q ∩ [0, 1] depending only on Γ, and
Q-divisors B̃′

1, . . . , B̃
′
k ∈ Γ̃′

0 on X ′, such that

•
∑k

i=1 ci = 1 and
∑k

i=1 ciB̃
′
i = B′,

• (X ′,F ′, B̃′
i) is lc for each i, and

• KF ′ + B̃′
i ∼Q 0 for each i.

By [LMX24a, Theorem 1.3], there exists a positive integer I depending only on Γ such that
I(KF ′ + B̃′

i) ∼ 0 for each i. Thus for any prime divisor E over X ′, a(E,F ′, B̃′
i) belong to the

discrete set {
k

I

∣∣∣∣ k ≥ −I, k ∈ Z

}
.

In particular, for any component D of B,

multD B = −a(D,F , B) = −a(D,F ′, B′) = −
k∑

i=1

cia(D,F ′, B̃′
i)

belongs to a discrete set. Since multD B ∈ [0, 1], multD B belongs to a finite set Γ0. The theorem
follows. !

Proof of Theorem 1.1. By [Che22, Theorem 2.5], we may assume that dimX = 3. By [LLM23,
Theorem 5.7], possibly replacing Γ with Γ∪{1} and (X,F , B) with its dlt model, we may assume
that (X,F , B) is Q-factorial dlt. If B = 0, then there is nothing left to prove, so we may assume
that B ̸= 0, hence KF is not pseudo-effective. By [CP19, Theorem 1.1],[LLM23, Theorem 3.1],
there exists an algebraically integrable foliation 0 ̸= E ⊂ F . If F is algebraically integrable,
then by [ACSS21, Theorem 3.10], possibly replacing (X,F , B), we may assume that there exists
a contraction π : X → Z such that F is induced by π and Z is smooth, and the theorem follows
from Proposition 5.2. Thus we may assume that F is not algebraically integrable.

Let S be a component of B and let b := multS B. By [LLM23, Lemma 8.2], there exists a
birational map f : X ""# X ′ and a contraction π′ : X ′ → Z such that f does not extract any
divisor, S is not contracted by f , F ′ := f∗F is induced by a foliation FZ on Z (i.e., F ′ = π′−1FZ),
dimZ = 2, and Z is klt. Let B′ := f∗B and S′ := f∗S. Then S′ ̸= 0. Since KF + B ∼R 0,
KF ′ +B′ ∼R 0 and (X ′,F ′, B′) is lc. By Proposition 5.2, there exists a finite set Γ0 depending
only on Γ such that b ∈ Γ0. Since S can be any component of B, B ∈ Γ0, and we are done. !

Theorem 5.5. Let c be a non-negative integer, r1, . . . , rc real numbers, and Γ ⊂ [0, 1] a DCC
set, such that Γ̄ ⊂ SpanQ(1, r1, r2, . . . , rc). The the accumulation points of

{lct(X,F , B;D) | dimX ≤ 3, (X,F , B) is lc, B ∈ Γ,D ∈ N+}

belong to SpanQ(1, r1, r2, . . . , rc).
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Proof. Suppose the theorem does not hold. By [Che22, Theorem 0.5], there exist a sequence
of lc foliated triples (Xi,Fi, Bi) of dimension ≤ 3 and effective Q-Cartier Weil divisors Di on
Xi, such that ti := lct(Xi,Fi, Bi;Di) is strictly decreasing, Bi ∈ Γ, and t := limi→+∞ ti ̸∈
SpanQ(1, r1, r2, . . . , rc). We write Bi =

∑mi
j=1 bi,jBi,j, where Bi,j are the irreducible components

of Bi. Possibly replacing (Xi,Fi, Bi) with a dlt model and replacing Di with its pullback, we
may assume that (Xi,Fi, Bi) is Q-factorial dlt.

Since (Xi,Fi, Bi + tiDi) is lc, (Xi,Fi, Bi + tDi) is lc, and the coefficients of Bi + tDi belong
to a DCC set depending only on Γ. By Proposition 5.1, there exists a function g : Γ̄ → Γ̄, such
that

(1) g ◦ g = g and Γ0 := g(Γ̄) is a finite set,
(2) g(γ) ≥ γ for any γ ∈ Γ̄,
(3) g(γ) ≤ g(γ′) for any γ, γ′ ∈ Γ̄ such that γ ≤ γ′, and
(4) ⎛

⎝Xi,Fi,
mi∑

j=1

g(bi,j)Bi,j + tDi

⎞

⎠

is lc for any i.

Since Γ0 is a finite set, we have Γ0 = {b̄1, . . . , b̄m} for some non-negative integer m, and we may
write

∑mi
j=1 g(bi,j)Bi,j =

∑m
j=1 b̄jCi,j where Ci,j are effective Weil divisors.

By our assumption, b̄j ∈ SpanQ(1, r1, . . . , rc) for each j and t ̸∈ SpanQ(1, r1, . . . , rc). We let
V be the rational envelope of (b̄1, . . . , b̄m, t) in Rm+1, then V = V ′ ×R, where V ′ is the rational
envelope of (b̄1, . . . , b̄m) in Rm. By Theorem 1.3, there exist an open subset U ′ ∋ (b̄1, . . . , b̄m)
of V ′, and an open subset W ∋ t of R, such that (Xi,Fi,

∑m
j=1 vjCi,j + wDi) is lc for any

(v1, . . . , vm) ∈ U ′ and w ∈ W . In particular,
⎛

⎝Xi,Fi,
m∑

j=1

b̄jCi,j + wDi

⎞

⎠ =

⎛

⎝Xi,Fi,
mi∑

j=1

g(bi,j)Bi,j + wDi

⎞

⎠

is lc for any w ∈ W . Possibly passing to a subsequence, we may assume that there exists a real
number w0 ∈ W such that w0 > ti for any i. Then (Xi,Fi,

∑mi
j=1 g(bi,j)Bi,j +w0Di) is lc for any

i, so (Xi,Fi, Bi +w0Di) is lc for any i, so

ti = lct(Xi,Fi, Bi;Di) ≥ w0 > ti,

a contradiction. !

Proof of Corollary 1.4. It immediately follows from Theorem 5.5 by taking c = 0. !
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