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VANISHING THEOREMS FOR GENERALIZED PAIRS

BINGYI CHEN, JIHAO LIU, AND LINGYAO XIE

Abstract. We establish the Kodaira vanishing theorem and the Kawamata-Viehweg vanishing
theorem for lc generalized pairs. As a consequence, we provide a new proof of the base-point-
freeness theorem for lc generalized pairs. This new approach allows us to prove the contraction
theorem for lc generalized pairs without using Kollár’s gluing theory.
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1. Introduction

We work with the field of complex numbers C. All generalized pairs are assumed to be NQC
generalized pairs (cf. [HL22]) in this paper.

The theory of “generalized pairs” (abbreviated as “g-pairs”) holds significant importance in
modern birational geometry. It was initially introduced by Birkar and Zhang in their study on
effective Iitaka fibrations [BZ16]. Since then, this theory has proven to be crucial in various
aspects of birational geometry, including the proof of the Borisov-Alexeev-Borisov conjecture
[Bir19, Bir21a], the theory of complements [Bir19, Sho20], the connectedness principle [Bir20,
FS23], non-vanishing theorems [LMPTX22], the minimal model program for Kähler manifolds
[DHY23, HX23], and foliations [LLM23], etc. For a comprehensive overview of the theory of
g-pairs, we refer interested readers to [Bir21b].

An important aspect of the study of g-pairs is their minimal model program. The foundations
for the minimal model program of klt g-pairs and Q-factorial dlt g-pairs were established in
[BZ16, HL22]. Recently, progress has been made towards the minimal model program theory
for lc g-pairs. Specifically, a series of recent works [HL21, LX22, Xie22] have established the
cone theorem, contraction theorem, base-point-freeness theorem, and the existence of flips for
lc g-pairs. This enables us to run the minimal model program for lc g-pairs in a comprehensive
manner. For further related works, we refer readers to [Has22a, Has22b, LT22, LX23, TX23].

Apart from the minimal model program, there are numerous other topics within classical
birational geometry that are worth discussing in the context of lc g-pairs. For instance, it is
known that lc g-pairs have Du Bois singularities [LX22]. In this paper, we establish several
vanishing theorems for lc g-pairs. The first main theorem of the paper is the following:
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2 BINGYI CHEN, JIHAO LIU, AND LINGYAO XIE

Theorem 1.1. Let (X,B,M)/U be an lc generalized pair associated with projective morphism
f : X → U , D a Cartier divisor on X such that D − (KX + B +MX) is nef/U and log big/U
with respect to (X,B,M) (cf. Definition 2.4), Y a union of lc centers of (X,B,M) such that
Y ̸= X, and IY the defining ideal sheaf of Y on X. Then:

(1) Rif∗OY (D) = 0 for any positive integer i.
(2) Rif∗OX(D) = 0 for any positive integer i.
(3) The map f∗OX(D) → f∗OY (D) is surjective.
(4) Rif∗(IY ⊗OX(D)) = 0 for any positive integer i.

Remark 1.2. We briefly explain the history on results that are related to Theorem 1.1.

(1) WhenM = 0 and (X,B) is klt, Theorem 1.1(1)(3) become trivial, and Theorem 1.1(2)(4)
are both equivalent to the usual relative Kawamata-Viehweg vanishing theorem (cf.
[KMM87, Theorem 1-2-7]).

(2) When M = 0 and D − (KX + B + MX) is ample/U , Theorem 1.1(2) becomes the
usual Kodaira vanishing theorem for lc pairs [Fuj09, Theorem 4.4] and Theorem 1.1(4)
is [Amb03, Theorem 7.3] and [Fuj11, Theorem 8.1].

(3) WhenM = 0, Theorem 1.1(2)(3)(4) follow from [Amb03, Theorem 7.3], [Fuj17, Theorem
6.3.4(2)] and Theorem 1.1(1) follows from [Fuj14, Theorem 1.14]. Note that Theorem
1.1(2) becomes the usual Kawamata-Viehweg vanishing theorem for lc pairs.

(4) In fact, [Amb03, Theorem 7.3], [Fuj17, Theorem 6.3.4(2)] prove the qlc case of Theorem
1.1. Since any qlc pair is always an lc g-pair [Fuj22, Remark 1.9], Theorem 1.1 implies
[Amb03, Theorem 7.3], [Fuj17, Theorem 6.3.4(2)] for qlc pairs.

(5) There is no previously written result when M ̸= 0, but the case when MX is R-Cartier
and D − (KX +B +MX) is ample/U can be easily deduced from [HL21, Lemma 5.18]
and the Kodaira vanishing theorem for lc pairs.

Theorem 1.1 immediately implies the Kodaira vanishing theorem for lc g-pairs and the
Kawamata-Viehweg vanishing theorem for lc g-pairs. We provide the precise statement of these
results here as they are more useful for direct applications.

Theorem 1.3 (Kodaira vanishing theorem for lc generalized pairs). Let (X,B,M) be a
projective lc generalized pair, and let D be a Cartier divisor on X such that D−(KX+B+MX)
is ample. Then H i(X,OX (D)) = 0 for any positive integer i.

Theorem 1.4 (Relative Kawamata-Viehweg vanishing for lc generalized pairs). Let (X,B,M)/U
be an lc generalized pair associated with morphism f : X → U , and let D be a Cartier divisor
on X such that D − (KX +B +MX) is nef/U and log big/U with respect to (X,B,M). Then
Rif∗OX(D) = 0 for any positive integer i.

It was anticipated by Hashizume [Has22b, Page 77, Line 24-25] that Theorem 1.3 would play
a pivital role in establishing the base-point-freeness theorem for lc g-pairs. Despite the base-
point-freeness theorem’s prior proof in [Xie22, Theorem 1.4], we endeavor to explore the viability
of Hashizume’s approach. Leveraging the implications of Theorem 1.1, we provide a new proof
of the base-point-free theorem for lc g-pairs, thereby fulfilling Hashizume’s expectation. It is
noteworthy that our proof diverges significantly from the one in [Xie22], as the latter relies
heavily on Kollár’s gluing theory for g-pairs, while our novel approach bypasses this necessity.

Theorem 1.5 (Base-point-freeness theorem for lc generalized pairs, cf. [Xie22, Theorem 1.4]).
Let (X,B,M)/U be an lc g-pair and D a nef/U Cartier divisor on X, such that aD − (KX +
B+MX) is ample/U for some positive real number a. Then OX(mD) is globally generated over
U for any integer m ≫ 0.

As an immediate application, we have the following semi-ampleness theorem for lc g-pairs.

Theorem 1.6 (Semi-ampleness theorem for lc generalized pairs, cf. [Xie22, Theorems 1.2]). Let
(X,B,M)/U be an lc g-pair and D a nef/U R-Cartier R-divisor on X, such that D − (KX +
B +MX) is ample/U . Then D is semi-ample/U .
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We remark that [Xie22, Theorem 1.4] is stronger than Theorem 1.5 since [Xie22, Theorem
1.4] only requires that aD − (KX + B +MX) is nef/U and log big/U . Nonetheless, Theorem
1.5 is strong enough for us to immediately deduce the contraction theorem for lc g-pairs [Xie22,
Theorem 1.5] without using Kollár’s gluing theory (see Remark 4.3).

Theorem 1.7 (Contraction theorem for lc generalized pairs, cf. [Xie22, Theorem 1.5]). Let
(X,B,M)/U be an lc generalized pair and F a (KX +B+MX)-negative extremal face/U . Then
there exists a contraction/U contF : X → Z of F satisfying the following.

(1) For any integral curve C on X such that the image of C in U is a closed point, contF (C)
is a point if and only if [C] ∈ F .

(2) OY = (contF )∗OX . In other words, contF is a contraction.
(3) For any Cartier divisor D on Y such that D ·C = 0 for any curve C contracted by contF ,

there exists a Cartier divisor DY on Y such that D = cont∗F DY .
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discussions and constant support to the second and third authors. The first author would like
to thank Caucher Birkar for constant support. The second author would like to thank Yuchen
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acknowledge the assistance of ChatGPT in polishing the wording. The third author is partially
supported by NSF research grants no: DMS-1801851, DMS-1952522 and by a grant from the
Simons Foundation; Award Number: 256202.

2. Preliminaries

Throughout the paper, we will mainly work with normal quasi-projective varieties to ensure
consistency with the references. However, most results should also hold for normal varieties
that are not necessarily quasi-projective. Similarly, most results in our paper should hold for
any algebraically closed field of characteristic zero. We will adopt the standard notations and
definitions in [KM98, BCHM10] and use them freely. For generalized pairs, we will follow the
notations as in [HL21].

2.1. Definition of generalized pairs.

Definition 2.1 (b-divisors). Let X be a normal quasi-projective variety. We call Y a birational
model over X if there exists a projective birational morphism Y → X.

Let X !!" X ′ be a birational map. For any valuation ν over X, we define νX′ to be the center
of ν on X ′. A b-divisor D over X is a formal sum D =

∑
ν rνν where ν are valuations over X

and rν ∈ R, such that νX is not a divisor except for finitely many ν. The trace of D on X ′ is
the R-divisor

DX′ :=
∑

νX′ is a divisor

rννX′ .

If DX′ is R-Cartier and DY is the pullback of DX′ on Y for any birational model Y over X ′,
we say that D descends to X ′ and D is the closure of DX′ , and write D = DX′ .

Let X → U be a projective morphism and assume that D is a b-divisor over X such that
D descends to a birational model Y over X. If DY is nef/U , then we say that D is nef /U . If
DY is a Cartier divisor, then we say that D is b-Cartier. If D can be written as an R≥0-linear
combination of nef/U b-Cartier b-divisors, then we say that D is NQC/U .

We let 0 be the b-divisor 0̄.
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Definition 2.2 (Generalized pairs). A generalized pair (g-pair for short) (X,B,M)/U consists
of a normal quasi-projective variety X associated with a projective morphism X → U , an R-
divisor B ≥ 0 on X, and an NQC/U b-divisor M over X, such that KX +B+MX is R-Cartier.

If M = 0, a g-pair (X,B,M)/U is called a pair and is denoted by (X,B) or (X,B)/U .
If U = {pt}, we usually drop U and say that (X,B,M) is projective. If U is not important,

we may also drop U .

Definition 2.3 (Singularities of generalized pairs). Let (X,B,M)/U be a g-pair. For any prime
divisor E and R-divisor D on X, we define multE D to be the multiplicity of E along D. Let
h : W → X be any log resolution of (X,SuppB) such that M descends to W , and let

KW +BW +MW := h∗(KX +B +MX).

The log discrepancy of a prime divisor D on W with respect to (X,B,M) is 1−multD BW and
it is denoted by a(D,X,B,M).

We say that (X,B,M) is lc (resp. klt) if a(D,X,B,M) ≥ 0 (resp. > 0) for every log
resolution h : W → X as above and every prime divisor D on W . We say that (X,B,M) is dlt
if (X,B,M) is lc, and there exists a closed subset V ⊂ X, such that

(1) X\V is smooth and BX\V is simple normal crossing, and
(2) for any prime divisor E over X such that a(E,X,B,M) = 0, centerX E ̸⊂ V and

centerX E\V is an lc center of (X\V,B|X\V ).

We refer the reader to [Has22a, Theorem 6.1] for equivalent definitions of dlt g-pairs.
Suppose that (X,B,M) is lc. An lc place of (X,B,M) is a prime divisor E over X such

that a(E,X,B,M) = 0. An lc center of (X,B,M) is either X, or the center of an lc place of
(X,B,M) on X. The non-klt locus Nklt(X,B,M) of (X,B,M) is the union of all lc centers of
(X,B,M) except X itself.

We note that the definitions above are independent of the choice of U

Definition 2.4 (Log big). Let (X,B,M)/U be a g-pair and D an R-Cartier R-divisor D on
X. We say that D is log big/U with respect to (X,B,M) if D|V is big/U for any lc center V of
(X,B,M). In particular, D is big/U .

2.2. Universal push-out diagram.

Definition 2.5. We say a commutative diagram of schemes

C
j

!!

q

""

Y

p

""

D i
!! X

is a universal push-out diagram if for any scheme T , the induced diagram

Hom (X,T )
◦i

!!

◦p

""

Hom (D, T )

◦q

""

Hom (Y, T )
◦j

!! Hom (C, T )

is a universal pull-back diagram of sets.

Lemma 2.6. Let X be a semi-normal variety and let π : Xn → X be the normalization of X.
Let Z be a reduced closed subvariety of X such that X \Z is normal. Let Y := π−1(Z) associated
with the reduced scheme structure. Denote the induced morphism Y → Z by πY . Then we have
the following universal push-out diagram
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Y

πY

""

!

" j
!! Xn

π
""

Z !

" i
!! X

and a short exact sequence

0 → OX
π∗⊕i∗
−−−−→ π∗OXn ⊕OZ

j∗−π∗

Y−−−−→ (πY )∗OY → 0,(2.1)

where i, j are the natural closed immersions.

Proof. Since j is a closed immersion and πY is a finite morphism, by [Kol13, Theorem 9.30],
[Kol95, 8.1], we have a universal push-out diagram

Y

πY

""

!

" j
!! Xn

π′

""

Z !

" i′
!! X ′

where

X ′ := SpecX Ker[π∗OXn ⊕OZ

j∗−π∗

Y−−−−→ (πY )∗OY ].

Therefore, it suffices to prove the short exact sequence (2.1) exists. Let J be the conductor
ideal sheaf of π : Xn → X, which can be regarded as both an OX -module and an OXn-module
via the inclusion OX ↪→ OXn . By [Kol95, 5.5.3], J is its own radical in OXn and hence is its
own radical in OX . Let IY ,IZ be the ideal sheaves of Y,Z respectively. Since X \ Z is normal,
IZ ⊂ J .

Claim 2.7. IZ · OXn = IZ .

Proof. Let I ′ := IZ · OXn , then IZ ⊂ I ′ ⊂ J . Since Z is reduced, we only need to prove that
the sub-schemes defined by IZ and I ′ in X have the same support. Thus we only need to prove
that the sub-schemes defined by IZ and I ′ in X have the same support near any point x ∈ X.

If x ∈ SuppOX/J , then x ∈ SuppOX/I ′ ⊆ Z and we are done.
If x /∈ SuppOX/J , then X is normal at x, hence π : Xn → X is an isomorphism near x.

Therefore, IZ = I ′ and SuppOX/I ′ = Z near x. #

Claim 2.8. IZ = IY in OXn .

Proof. By definition, IY is the radical of IZ in OXn . Since IZ ⊂ J and J is its own radical in
OXn , IY is contained in J and hence is an ideal sheaf of OX . Therefore, IY is the radical of IZ
in OX . Since Z is reduced, IZ = IY in OXn . #

Proof of Lemma 2.6 continued. By Claims 2.7 and 2.8, we may consider the question locally
and assume that X = SpecA,Xn = SpecB, and IZ = IY = I. Then the map

φ : B ⊕A/I → B/I, (b, a+ I) +→ (b− a) + I

is surjective and the map

ψ : A → B ⊕A/I, a +→ (a, a+ I)

is injective. Thus

(b, a+ I) ∈ Kerφ ⇐⇒ b ∈ A and (b, a+ I) = (b, b+ I) ⇐⇒ (b, a+ I) ∈ Im(ψ),

so (2.1) is a short exact sequence and we are done. #
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2.3. Union of lc centers of generalized pairs.

Definition 2.9 (Union of lc centers). Let (X,B,M) be an lc g-pair. A union of lc centers of
(X,B,M) is a reduced scheme Y = ∪Yi, where each Yi is an lc center of (X,B,M). We denote
by S(X,B,M) the set of all unions of lc centers of (X,B,M). We remark that

(1) ∅ is also considered as a union of lc centers, and
(2) a union of lc center may be represented in different ways. For example, if Y1 and Y2 are

two lc centers such that Y1 ! Y2, then Y1 ∪ Y2 and Y2 are the same union of lc centers.

Definition 2.10 (Adjacent unions of lc centers). Let (X,B,M) be an lc g-pair. For any two
unions of lc centers Y, Y ′ ∈ S(X,B,M), we say that Y and Y ′ are adjacent in S(X,B,M) if

(1) Y ! Y ′ or Y ′ ! Y , and
(2) there does not exist any Y ′′ ∈ S(X,B,M) such that Y ! Y ′′ ! Y ′ or Y ′ ! Y ′′ ! Y .

An lc center V is called minimal in S(X,B,M) if V and ∅ are adjacent in S(X,B,M).

Lemma 2.11. Let (X,B,M)/U be an lc g-pair, W a union of lc centers of (X,B,M), and
π : W n → W the normalization of W . Suppose that dimW ≥ 1. Then there exists an lc g-pair
(W n, BWn ,MWn

)/U , such that

(1) KWn +BWn +MWn

Wn ∼R,U (KX +B +MX)|Wn .
(2) For any lc center L of (W n, BWn ,MWn

), π(L) is an lc center of (X,B,M).
(3) For any lc center C of (X,B,M), π−1(C) is a union of lc centers of (W n, BWn ,MWn

).

Proof. We may assume that W is irreducible and W ̸= X.
Let f : Y → X be a dlt modification (cf. [HL22, Proposition 3.10]) of (X,B,M), such

that there exists a prime divisor S ⊂ ⌊BY ⌋ such that f(S) = W , where KY + BY + MY :=
f∗(KX + B + MX). Let WY be an lc center of (Y,BY ,M) which is minimal with respect to
inclusion under the condition f(WY ) = W . Since (Y,BY ,M) is dlt, by repeatedly applying
adjunction (cf. [HL22, Proposition 2.10]), we get a dlt g-pair (WY , BWY

,MWY )/U such that

KWY
+BWY

+MWY

WY
:= (KY +BY +MY )|WY

.

By construction, there exists a naturally induced projective surjective morphism fW : WY → W n

such that KWY
+BWY

+MWY

WY
∼R,Wn 0. By [LX22, Lemma 3.19], [LX23, Theorem 2.14], there

exists an lc g-pair (W n, BWn ,MWn

)/U , such that

• (W n, BWn ,MWn

) is induced by a canonical bundle formula of (WY , BWY
,MWY ) → W n,

• any lc center of (W n, BWn ,MWn

) is the image of an lc center of (WY , BWY
,MWY ), and

• the image of any lc center of (WY , BWY
,MWY ) onW n is an lc center of (W n, BWn ,MWn

).

We show that (W n, BWn ,MWn

) satisfies our requirement.
(1) It immediately follows from our construction.
(2) L is the image of an lc center LY of (WY , BWY

,MWY ). By repeatedly applying [LX22,
Lemma 3.18], LY is an lc center of (Y,BY ,M). Since KY + BY +MY := f∗(KX + B +MX),
f(LY ) = π(L) is an lc center of (X,B,M).

(3) f−1(C) is a union of lc centers of (Y,BY ,M). Since (Y,BY ,M) is dlt, f−1(C) ∩WY is
a union of lc centers of (Y,BY ,M). By [LX22, Lemma 3.18], f−1(C) ∩ WY is a union of lc
centers of (WY , BWY

,MWY ). Hence π−1(C) = fW (f−1(C) ∩ WY ) is a union of lc centers of
(W n, BWn ,MWn

). #

Lemma 2.12. Let (X,B,M) be an lc g-pair. Let Y and Y ′ be two unions of lc centers, such
that Y ′ ! Y , and Y and Y ′ are adjacent in S(X,B,M). Let π : Y n → Y be the normalization
of Y and let Y ′′ := π−1(Y ′) with the reduced scheme structure. Denote the induced morphism
Y ′′ → Y ′ by π′′. Then there exist a universal push-out diagram
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Y ′′ ! " j
!!

π′′

""

Y n

π

""

Y ′ ! " i
!! Y

and a short exact sequence

0 → OY
π∗⊕i∗
−−−−→ π∗OY n ⊕OY ′

j∗−π′′∗

−−−−−→ π′′∗OY ′′ → 0,

where i, j are the natural closed immersions.

Proof. By [LX22, Theorem 4.10] and [Kol13, Theorem 9.26], Y is semi-normal. Let L be an lc
center contained in Y but not contained in Y ′. Since Y ′ and Y are adjacent in S(X,B,M), we
have

Y \Y ′ = L\(L ∩ Y ′),

and L ∩ Y ′ is the union of all lc centers of (X,B,M) that are contained in L but not equal to
L. By [LX22, Theorem 4.10], Y \ Y ′ is normal. The lemma follows from Lemma 2.6. #

3. Proof of the vanishing theorems

In this section, we prove Theorem 1.1, which immediately implies Theorems 1.3 and 1.4.

Lemma 3.1. Let (X,B,M)/U be an lc g-pair associated with morphism f : X → U , and D
a Cartier divisor on X such that D − (KX + B + MX) is nef/U and log big/U with respect
to (X,B,M). Let W = Nklt(X,B,M) with the reduced scheme structure, and let IW be the
defining ideal sheaf of W on X. Then:

(1) Rif∗(IW ⊗OX(D)) = 0 for any i > 0.
(2) f∗OX(D) → f∗OW (D) is surjective.

Proof. By [Xie22, Lemma 2.4], there exists a pair (X,∆) such that L−KX −∆ is ample/U and
W = Nlc(X,∆). (1) follows from [Fuj11, Theorem 8.1]. (2) follows from (1) and the long exact
sequence

0 → f∗(IW ⊗OX(D)) → f∗OX(D) → f∗OW (D) → R1f∗(IW ⊗OX(D)) → . . . .

#

Lemma 3.2. Let (X,B,M)/U be an lc g-pair associated with morphism f : X → U , and D
a Cartier divisor on X such that D − (KX + B +MX) is nef/U and log big/U with respect to
(X,B,M). Let Y and Y ′ be two unions of lc centers, such that Y ′ ! Y , and Y and Y ′ are
adjacent in S(X,B,M). Let π : Y n → Y be the normalization of Y , Y ′′ := π−1(Y ′) with the
reduced scheme structure, and π′′ := π|Y ′′.

Y ′′ ! " j
!!

π′′

""

Y n

π

""

Y ′ ! " i
!! Y

Then the induced map

f∗π∗OY n(D|Y n) → f∗π
′′
∗OY ′′(D|Y ′′)

is surjective.

Proof. By Lemma 2.11, there exists an lc g-pair (Y n, BY n ,MY n

)/U , such that

• KY n +BY n +MY n

Y n ∼R,U (KX +B +MX)|Y n ,
• for any lc center L of (Y n, BY n ,MY n

), π(L) is an lc center of (X,B,M), and
• for any lc center C of (X,B,M), π−1(C ∩Y ) is a union of lc centers of (Y n, BY n ,MY n

).
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Then D|Y n − (KY n +BY n +MY n

Y n) is nef/U and log big/U with respect to (Y n, BY n ,MY n

).
Let Y0 be a connected component of Y n and let Y ′′

0 := Y ′′ ∩ Y0. We claim that

either Y ′′
0 = Y0 or Y ′′

0 = Nklt(Y0, BY n |Y 0 ,MY n

|Y 0).(3.1)

Indeed, if this is not the case, then there exists an lc center L of (Y0, BY n |Y 0 ,MY n

|Y 0) such that
L ̸= Y0 and L is not contained in Y ′′

0 . Then Ỹ := π(Y ′′ ∪ L) ∈ S(X,∆,M) and Y ′ ! Ỹ ! Y ,
which contradicts the condition that Y ′, Y are adjacent. By (3.1) and Lemma 3.1(2),

f∗π∗OY0
(D|Y0

) → f∗π
′′
∗OY ′′

0
(D|Y ′′

0
)

is surjective. Thus
f∗π∗OY n(D|Y n) → f∗π

′′
∗OY ′′(D|Y ′′)

is surjective. #

Proof of Theorem 1.1. We apply induction on dimX. When dimX = 1 the theorem is obvious.
For any union of lc centers Z of (X,B,M), we define m(Z) to be the number of lc centers of

(X,B,M) that are contained in Z. We let W := Nklt(X,B,M), associated with the reduced
scheme structure.

Step 1. In this step we prove (1) when Y is minimal in S(X,B,M).
By [LX22, Theorem 4.10], Y is normal. If dimY = 0 then we are done. Otherwise, by Lemma

2.11, there exists a klt g-pair (Y,BY ,MY )/U such that KY +BY +MY
Y ∼R,U (KX +B+MX)|Y .

Hence D|Y −(KY +BY +MY
Y ) is nef/U and big/U . By [Xie22, Lemma 2.4], there exists a klt pair

(Y,∆Y ) such that D|Y − (KY +∆Y ) is ample/U . (1) follows from the usual Kawamata-Viehweg
vanishing theorem (cf. [KMM87, Theorem 1-2-7]).

Step 2. In this step we prove (1).
We apply induction on m(Y ). When m(Y ) = 1, Y is minimal in S(X,B,M) and we are done

by Step 1. Thus we may assume that m(Y ) > 1. Then there exists a union of lc centers Y ′ such
that Y ′ ! Y , and Y and Y ′ are adjacent in S(X,B,M). Since m(Y ′) < m(Y ), by induction on
m(Y ), we have

Rif∗OY ′(D) = 0(3.2)

for any positive integer i.
Let π : Y n → Y be the normalization of Y , and let Y ′′ := π−1(Y ′) with the reduced scheme

structure. Let i : Y ′ ↪→ Y and j : Y ′′ ↪→ Y n be the natural inclusions, and let π′′ := π|Y ′′ . By
Lemma 2.12, there exists a universal push-out diagram

Y ′′ ! " j
!!

π′′

""

Y n

π

""

Y ′ ! " i
!! Y

and a short exact sequence

0 → OY
π∗⊕i∗
−−−−→ π∗OY n ⊕OY ′

j∗−π′′∗

−−−−−→ π′′∗OY ′′ → 0.(3.3)

By Lemma 2.11, there exists an lc g-pair (Y n, BY n ,MY n

)/U , such that

• KY n +BY n +MY n

Y n ∼R,U (KX +B +MX)|Y n ,
• for any lc center L of (Y n, BY n ,MY n

), π(L) is an lc center of (X,B,M), and
• for any lc center C of (X,B,M), π−1(C ∩Y ) is a union of lc centers of (Y n, BY n ,MY n

).

Then D|Y n − (KY n + ∆Y n + MY n

Y n) is nef/U and log big/U with respect to (Y n, BY n ,MY n

),
and Y ′′ is a union of lc centers of (Y n, BY n ,MY n

). Since dimY n < dimX and π is a finite
morphism, by induction on dimX we have

Ri(f ◦ π)∗OY n(D|Y n) = Rif∗
(
π∗(OY n(D|Y n)

)
= 0(3.4)
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and

Ri(f ◦ π′′)∗OY ′′(D|Y ′′) = Rif∗
(
π′′∗OY ′′(D|Y ′′)

)
= 0.(3.5)

By the short exact sequence (3.3), we have a short exact sequence

0 → OY (D)
π∗⊕i∗
−−−−→ π∗OY n(D|Y n)⊕OY ′(D)

j∗−π′′∗

−−−−−→ π′′∗OY ′′(D|Y ′′) → 0,

which induces a long exact sequence

0 → f∗OY (D) → f∗π∗OY n(D|Y n)⊕ f∗OY ′(D)
j∗−π′′∗

−−−−−→ f∗π
′′
∗OY ′′(D|Y ′′) → · · ·

· · · → Rif∗OY (D) → Rif∗
(
π∗(OY n(D|Y n)

)
⊕Rif∗OY ′(D) → Rif∗

(
π′′∗OY ′′(D|Y ′′)

)
→ · · · .

Hence, it follows from (3.2), (3.4), (3.5) and Lemma 3.2 that Rif∗OY (D) = 0 for any positive
integer i.

Step 3. In this step we prove (2) and prove (3)(4) when Y = W = Nklt(X,B,M).
We have the long exact sequence

0 → f∗(IW ⊗OX(D)) → f∗OX(D) → f∗OW (D) → . . .

. . . → Rif∗(IW ⊗OX(D)) → Rif∗OX(D) → Rif∗OW (D) → . . .

By (1), Rif∗OW (D) = 0 for any positive integer i. By Lemma 3.1(1), Ri(IW ⊗ f∗OX(D)) = 0
for any positive integer i. This implies (2), and also implies (3)(4) when Y = W .

Step 4. We prove (3)(4) in this step, hence conclude the proof of the theorem.
We apply induction on m(W )−m(Y ). When m(W )−m(Y ) = 0, Y = W and we are done by

Step 3. Thus we may assume that m(W )−m(Y ) > 0. Then there exists a union of lc centers
Ỹ such that Y ! Ỹ ⊂ W , and Y and Ỹ are adjacent in S(X,B,M).

Let π̃ : Ỹ n → Ỹ be the normalization of Ỹ , and let Ŷ := π̃−1(Y ) with the reduced scheme
structure. Let ĩ : Y ↪→ Ỹ and j̃ : Ŷ ↪→ Ỹ n be the natural inclusions, and let π̂ := π̃|

Ŷ
. By

Lemma 2.12, there exists a universal push-out diagram

Ŷ !

" j̃
!!

π̂

""

Ỹ n

π̃
""

Y !

" ĩ
!! Ỹ

and a short exact sequence

0 → OỸ

π̃∗⊕ĩ∗
−−−−→ π̃∗OỸ n ⊕OY

j̃∗−π̂∗

−−−−→ π̂∗OŶ
→ 0.

which induces a short exact sequence

0 → OỸ (D)
π̃∗⊕ĩ∗
−−−−→ π̃∗OỸ n(D|Ỹ n)⊕OY (D)

j̃∗−π̂∗

−−−−→ π̂∗OŶ
(D|

Ŷ
) → 0.

So we have the left exact sequence

0 → f∗OỸ (D)
π̃∗⊕ĩ∗
−−−−→ f∗π̃∗OỸ n(D|Ỹ n)⊕ f∗OY (D)

j̃∗−π̂∗

−−−−→ f∗π̂∗OŶ
(D|

Ŷ
).(3.6)

By Lemma 3.2,
j̃∗ : f∗π̃∗OỸ n(D|Ỹ n) → f∗π̂∗OŶ

(D|
Ŷ
)

is surjective. Thus by an easy map tracing of (3.6) we have that

ĩ∗ : f∗OỸ (D) → f∗OY (D)

is also surjective. Since m(W )−m(Ỹ ) < m(W )−m(Y ), by induction on m(W )−m(Y ),

f∗OX(D) → f∗OỸ (D)

is surjective. This implies (3).
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We have the long exact sequence

0 → f∗(IY ⊗OX(D)) → f∗OX(D) → f∗OY (D) → . . .

. . . → Rif∗(IY ⊗OX(D)) → Rif∗OX(D) → Rif∗OY (D) → . . . ,

so (4) follows immediately from (1)(2)(3). #

Proof of Theorem 1.3. It immediately follows from Theorem 1.1(2) by letting U = {pt}. #

Proof of Theorem 1.4. It immediately follows from Theorem 1.1(2). #

4. Base-point-freeness for lc g-pairs

In this section, we prove Theorems 1.5, 1.6, and 1.7.

Lemma 4.1. Let a be a positive real number, (X,B,M)/U an lc g-pair, and D a nef/U Cartier
divisor on X such that aD − (KX + B + MX) is ample/U . Let Y be a minimal lc center of
(X,B,M) if (X,B,M) is not klt, and let Y := X if (X,B,M) is klt. Let DY := D|Y . Then for
any integer m ≫ 0,

(1) OY (mDY ) is globally generated over U ,
(2) |mD/U | ≠ ∅, and
(3) Y is not contained in Bs |mD/U |.

Proof. When (X,B,M) is klt, by [Xie22, Lemma 2.4], there exists a klt pair (X,∆) such that
D − (KX +∆) is ample/U . By the usual base-point-freeness theorem (cf. [KMM87, Theorem
3-1-1]), the lemma follows.

When (X,B,M) is not klt, by [LX22, Theorem 4.10], Y is normal. By Theorem 1.1(3),
the map f∗OX(mD) → f∗OY (mDY ) is surjective for any positive integer m ≥ a. Thus (2)(3)
follow from (1) and we only need to prove (1). If dimY = 0 then there is nothing left to
prove. If dimY > 0, then by Lemma 2.11, there exists a klt g-pair (Y,BY ,MY )/U such that
KY + BY + MY

Y ∼R,U (KX + B + MX)|Y and Nklt(Y,BY ,MY ) = Nklt(X,B,M)|Y . Thus
DY − (KY + BY +MY

Y ) is nef/U and big/U with respect to (Y,BY ,MY ). By [Xie22, Lemma
2.4], there exists a klt pair (Y,∆Y ) such that DY − (KY + ∆Y ) is ample/U . By the usual
base-point-freeness theorem (cf. [KMM87, Theorem 3-1-1]), the lemma follows. #

Proof of Theorem 1.5. By Lemma 4.1, we may let m0 be the minimal positive integer such that
|mD| ≠ ∅ for any integer m ≥ m0.

Claim 4.2. Let {pi}
+∞
i=1 be a strictly increasing sequence of positive integers. There exist a non-

negative integer M and integers i1 < i2 < · · · < iM+1 satisfying the following. Let sk :=
∏k

l=1 pil
for any 1 ≤ k ≤ M + 1, then

(1) |s1D/U | ̸= ∅,
(2) Bs |skD/U | " Bs |sk+1D/U | for any 1 ≤ k ≤ M , and
(3) Bs |sM+1D/U | = ∅.

Proof. We may take i1 to be any integer such that pi1 ≥ m0, then (1) holds.
Suppose that we have already found i1, . . . , ik for some positive integer k. Let d := dimX,

let H1, · · · ,Hd+1 be d+1 be general elements in |skD/U |, and let H := H1 + · · ·+Hd+1. Then
(X,B+H,M) is lc outside Bs |skD/U |. If Bs |skD/U | = ∅, then we may let M := k− 1 and we
are done. Thus we may assume that Bs |skD/U | ≠ ∅.

Since every Hj contains Bs |skD/U |, by [Kol+92, Theorem 18.22], (X,B + H,M) is not lc
near Bs |skD/U |. Let

c := sup{t | t ≥ 0, (X,B + tH,M) is lc},

then c ∈ [0, 1), and there exists at least one lc center of (X,B + cH,M) which is contained in
Bs |skD/U |. Let S be the set of all lc centers of (X,B+cH,M) that are contained in Bs |skD/U |,
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and let Y be a minimal lc center in S. Since

(a+ sk(d+ 1))D − (KX +B + cH +MX) ∼R sk(d+ 1)(1− c)D + (aD − (KX +B +MX))

is ample/U , by Lemma 4.1, there exists a positive integer n, such that for any integer m ≥ n,
|mskD/U | ≠ ∅ and Bs |mskD/U | does not contain Y . In particular, Bs |mskD/U | ! Bs |skD/U |.
We may let ik+1 be any integer such that ik+1 > ik and pik+1

≥ n. This construction implies
(2). (3) follows from (2) and the Noetherian property. #

Proof of Theorem 1.5 continued. We let {pi}
+∞
i=1 and {qj}

+∞
j=1 be two strictly increasing sequence

of prime numbers, such that pi ̸= qj for any i, j. By Claim 4.2, there exist two non-negative
integers M,N and positive integers i1 < i2 < · · · < iM+1 and j1 < j2 < · · · < jN+1, such
that OX(

∏M+1
l=1 pilD) and OX(

∏N+1
l=1 qilD) are globally generated/U . Let p :=

∏M+1
l=1 pil and

q :=
∏N+1

l=1 qil , then p and q are coprime. Therefore, for any integer m ≫ 0, we may write
m = bp+ cq for some non-negative integers b, c, hence

Bs |mD/U | ⊂ Bs |pD/U | ∪ Bs |qD/U | = ∅.

Therefore, OX(mD) is globally generated over U for any integer m ≫ 0. #

Proof of Theorem 1.6. By the theory of Shokurov-type rational polytopes (cf. [HL22, Propo-
sition 3.20]) and the theory of uniform rational polytopes (cf. [HLS19, Lemma 5.3], [Che20,
Theorem 1.4]), we may assume that D is a Q-divisor. The theorem immediately follows from
Theorem 1.5. #

Proof of Theorem 1.7. (1)(2) By the cone theorem [HL21, Theorem 1.1(1-4)], F is a finitely
dimensional rational (KX +B+MX)-negative extremal face/U . Thus there exists a nef Cartier
divisor L on X that is the supporting function of F . Then L− (KX + B +MX) is ample. By
Theorem 1.5, mL is base-point-free/U , hence defines a contraction/U . Denote this contraction
by contF . Then contF satisfies (1) and (2).

(3) Since D − (KX + B +MX) is ample/Z, by Theorem 1.5, OX(mD) is globally generated
over Z for any integer m ≫ 0. Since D ·C for any curve C contracted by contF , contF is defined
by |mD| for any integer m ≫ 0. Thus mD = f∗DY,m and (m+1)D = f∗DY,m+1 for any integer
m ≫ 0. We may let DY := DY,m+1 −DY,m. #

Remark 4.3. Kollár’s gluing theory for generalized pairs was originally established in [LX22,
Construction 4.12] to glue glc crepant structures. This theory was further developed in [Xie22].
Although we have extensively referenced both [LX22] and [Xie22], it is important to note that
we have only cited results before [LX22, Theorem 4.10] from [LX22] and only cited [Xie22,
Lemma 2.4] from [Xie22]. None of these cited results are dependent on Kollár’s gluing theory for
generalized pairs (although [LX22, Theorem 4.10] used the idea of stratification). Consequently,
the proofs of our main theorems are independent of Kollár’s gluing theory for generalized pairs.
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