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ACC FOR GENERALIZED LOG CANONICAL THRESHOLDS

FOR COMPLEX ANALYTIC SPACES

CHRISTOPHER HACON AND LINGYAO XIE

Abstract. We show that generalized log canonical thresholds for complex
analytic spaces satisfy the ACC and we characterize the accumulation points.

1. Introduction

Throughout this paper we work with pairs (X,B) where X is a normal complex
analytic variety and B is an effective R-divisor such that KX + B is R-Cartier.
Understanding the singularities of such pairs plays a fundamental role in recent
advances in the birational classification of algebraic varieties. One important
measure of these singularities are the log canonical thresholds. If (X,B) is log
canonical and D is a non-zero effective R-Cartier divisor, then the log canonical
threshold is

lct(X,B;D) := sup{t|(X,B + tD) is log canonical}.

Understanding the behaviour of log canonical thresholds is essential in a variety
of contexts such as, for example, the termination of flips, moduli problems,
and K-stability (see, for example, [Birkar07], [HMX18], [XZ21]). Perhaps the
most important result in this context is the solution, by Hacon-McKernan-Xu, of
Shokurov’s “ACC for LCT’s conjecture” [HMX14] which we will now recall.

A set I of non-negative real numbers satisfies the ascending chain condition or
ACC (resp. the descending chain condition or DCC) if any non decreasing sequence
i1 ≤ i2 ≤ . . . (resp. any non increasing sequence i1 ≥ i2 ≥ . . .) is eventually constant.
Let I, J be two DCC sets of nonnegative real numbers and n a natural number. We
define

LCTn(I, J) := {lct(X,B;D)|dimX = n, coeff(B) ∈ I, coeff(D) ∈ J}

to be the set of all log canonical thresholds of n-dimensional lc pairs (X,B) with
respect to divisors D such that the coefficients of B and D belong to I and
J respectively. When X is quasi-projective, then by [HMX14, Theorem 1.1], it
follows that the set LCTn(I, J) satisfies the ACC and that one can characterize the
accumulation points under mild assumptions on the DCC sets I, J . By [HMX14,
Theorem 1.1], it follows that if I ⊂ [0, 1], the only possible accumulation point of I
is 1, and I = I+ := {0} ∪ {j =

∑r
k=1 ik ∈ [0, 1]|ik ∈ I}, then the only accumulation

points of LCTn(I,N) are LCTn−1(I,N) \ {1}.
Recently, generalized pairs have begun playing an increasingly more prominent

role in birational geometry (see [Birkar21] and references therein). It has become
apparent that it is important to also study singularities in this context. The analog
of the main results of [HMX14], for generalized pairs where proven in [BZ16], [Liu18],
and have already found several important applications.
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2 CHRISTOPHER HACON AND LINGYAO XIE

Naturally, it is also expected that the ACC for LCT’s will play an important
role in many of other contexts such as analytic varieties, foliated pairs, varieties in
positive and mixed characteristics etc. (see eg. [Fuj22b], [Chen22], [Sato21]). In view
of recent progress in the minimal model program for analytic varieties ([DHP22],
[Fuj22a]), it is expected that the results of [HMX14] should also hold for analytic
varieties. Fujino has in fact shown that Shokurov’s ACC for LCT’s conjecture
holds for analytic varieties [Fuj22b]. One interesting phenomenon that occurs in the
analytic case (which does not happen in the algebraic case or for compact analytic
varieties) is that if λ = lct(X,B;D), then it is possible that (X,B + λD) is klt i.e.
there is no divisor E over X of log discrepancy a(E;X,B + λD) = 0 (see [Fuj22b,
Example 1.3]). This is somewhat troubling as typically, many proofs by induction
on the dimension involve studying the restriction of KX +B+λD to an appropriate
divisor E over X of log discrepancy a(E;X,B + λD) = 0.

The purpose of this paper is to show that the results of [HMX14] hold for
generalized pairs on analytic varieties. In the process, we will show that log canonical
thresholds λ = lct(X,B;D) are always computed by divisors of log discrepancy 0,
for an auxiliary pair (X ′, B′ + λD′). We believe that results of this nature will find
many applications in upcoming works on the minimal model program for Kähler
varieties.

We will now give a more precise description of the main results of this paper. Let
I, J be DCC sets and n ∈ N, f : X ′ → X a proper biholomorphic map of analytic
varieties, (X,B +M), M ′, P ′, P , D be as in Definition 2.3 so that

(1) (X,B +M) is glc of dimension n,
(2) M ′ =

∑
µjM ′

j whereM
′
j are relatively nef Cartier divisors onX ′, and µj ∈ I,

(3) P ′ =
∑

νkP ′
k where P ′

k are relatively nef Cartier divisors on X ′, and νk ∈ J ,
(4) the coefficients of B belong to I and the coefficients of D belong to J .

Then GLCTn(I, J) ⊂ R is the set consisting of all the possible generalized log
canonical thresholds glct(X,B +M ;D+P ) where (X,B +M ;D+ P ) are as above
(see Definition 2.3).

Theorem 1.1. The set GLCTn(I, J) satisfies the ACC.

Moreover, we give a precise description of the accumulation points of generalized
log canonical thresholds as in [HMX14, Theorem 1.11] and [Liu18, Theorem 1.7]:

Theorem 1.2. If 1 is the only accumulation point of the DCC set I ⊂ [0, 1] and
1 ∈ I = I+, then the accumulation points of GLCTn(I) := GLCTn(I,N) belong to
GLCTn−1(I).

2. Preliminaries

Let X be a normal complex analytic space. A prime divisor P on X is an
irreducible and reduced closed subvariety of codimension one. An R-divisor (resp.
Q-divisor) D on X is a locally finite formal sum D =

∑
diDi of distinct prime

divisors Di with with coefficients di ∈ R (resp. di ∈ Q). If for some point x ∈ X
there is a neighborhood x ∈ U ⊂ X such that the restriction D|U of the R-divisor
(resp. Q-divisor) D is a finite R-linear (resp. Q-linear) combination of Cartier
divisors, then we say that D is R-Cartier (resp. Q-Cartier) at x ∈ X. If D is
R-Cartier (resp. Q-Cartier) at every x ∈ X then we say that D is R-Cartier (resp.
Q-Cartier).

Definition 2.1. We say that (X,B +M) is a generalized pair if there is a proper
biholomorphic map f : X ′ → X and an f -nef R-Cartier divisor M ′ such that

(1) X ′ and X are normal,
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(2) M = f∗M ′ and B ≥ 0,
(3) KX +B +M is R-Cartier.

We call B the boundary part and M the nef part of the generalized pair. We can
always replace X ′ by a higher model that factors through f , and M ′ by its pullback.

We can write
KX′ +B′ +M ′ = f∗(KX +B +M)

and we say that the generalized pair (X,B+M) is generalized log canonical (glc) at
x ∈ X if there is a neighborhood x ∈ U ⊂ X such that (X ′, B′)|U is sub-lc ([Fuj22a,
Remark 3.2]) and is generalized kawamata log terminal (gklt) at x ∈ X if there is
a neighborhood x ∈ U ⊂ X such that (X ′, B′)|U is sub-klt ([Fuj22a, Remark 3.2]).
We can also define a(E,X,B +M) := a(E,X ′, B′) for any divisor over X. We say
that Z is a log canonical center (resp. log canonical place) of a (X,B +M) glc pair
if Z is the image of an lc center of (X ′, B′) (resp. a log canonical place of (X ′, B′)).

We say that a glc pair (X,B +M) is generalized divisorially log terminal (gdlt)
if we can choose f : X ′ → X (in the definition) to be a log resolution of (X,B) such
that the log discrepancy is a(E,X,B +M) > 0 for every f -exceptional divisor E.

Definition 2.2. A set I ⊂ R satisfies the ACC (resp. DCC) if any non-decreasing
(resp. non-increasing) sequence Ik ∈ I is eventually constant. We let ∂I be the set
of accumulation points of I and Ī = I ∪ ∂I. If I ⊂ [0,+∞), then

I+ = {0} ∪ {
l∑

k=1

ik ∈ [0, 1] | ik ∈ I}, and

D(I) = {a ≤ 1|a =
m− 1 + f

m
, m ∈ N+, f ∈ I+}.

If I ⊂ [0, 1], then we let

Φ(I) = {1−
r

m
|r ∈ I,m ∈ N+}.

Definition 2.3. (Generalized log canonical thresholds for complex analytic spaces).
Let (X,B+M) be a generalized log canonical pair and let D be an effective R-Cartier
R-divisor on X and P = f∗P ′ where P ′ is a nef divisor onX ′. Let c be the supremum
of all real numbers such that (X,B +M + t(D + P )) is generalized log canonical,
then c is called the generalized log canonical threshold of D + P with respect to
(X,B +M) and is denoted by lct(X,B +M ;D + P ).

Lemma 2.4. If (X,B +M) and D+ P are as above, then (X,B +M + c(D +P ))
is generalized log canonical.

Proof. This follows directly from the definition. !

Remark 2.5. Note that the above definition differs from the one in [Fuj22b] as
there does not necessarily exist a non-kawamata log terminal center of (X,B+M +
c(D+P )). The issue is that X may not be compact. In this case, we may not have a
log resolution, and the divisor D may have infinitely many components see [Fuj22b,
Example 1.3]. If however X is (relatively) compact, then log resolutions exist, the
two definitions agree, and we always have a log canonical center of (X,B + M +
c(D + P )) see [Fuj22b, Remark 1.4.].

The next theorem is the analogue of dlt-blowups of generalized pairs in the
complex analytic setting:

Theorem 2.6. (Dlt-blowup) Let X be a normal complex variety and (X,B + M)
a generalized pair as in Defintion 2.1. Let U be any relatively compact Stein open
subset of X and let V be any relatively compact open subset of U . Then we can
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take a Stein compact subset W of U such that Γ(W,OX ) is noetherian, V ⊂ W , and
after shrinking X around W suitably, we can construct a projective bi-meromorphic
morphism g : Y → X from a normal complex variety Y with the following properties:

(1) Y is Q-factorial over W ,
(2) a(E,X,B +M) ≤ 0 for every g-exceptional divisor E on Y ,
(3) (Y,B≤1

Y +MY ) is gdlt, where KY +BY +MY = f∗(KX +B +M).

Proof. We will freely shrink X suitably without mentioning it explicitly. By taking
a resolution of singularities, we can assume that f : X ′ → X is a projective bi-
meromorphic morphism such that f−1(U) is smooth and Exc(f)∪ Supp(f−1B) is a
simple normal crossing divisor on f−1(U). Let E be any f -exceptional divisor such
that f(E)∩U ̸= ∅. Then, by enlarging V suitably, we may assume that f(E)∩V ̸= ∅.
By [Fuj22a, Lemma 2.16], we can take a Stein compact subset W of U such that
Γ(W,OX) is noetherian and that V ⊂ W .

Write KX′ +B′+M ′ = f∗(KX +B+M) as in Definition 2.1 and let B′ =
∑

aiDi

be the irreducible decomposition. Now we define a boundary

∆ =
∑

0<ai<1

aiDi +
∑

ai≥1

Di + ϵ
∑

Ei , 1 ≫ ϵ > 0,

where Ei are all the f -exceptional divisors such that a(E,X,B +M) > 0. Then we
have KX′ +∆+M ′ = f∗(KX +B +M) +F and we see that −f∗F is effective. Let
A be a general ample (over X) Q-divisor such that (X ′,∆ + A + M ′) is gdlt and
KX′ +∆ + A +M ′ is nef over W . Notice that for any t > 0, tA +M ′ is f -ample.
Therefore (over W ) we can write KX′ +∆ + tA +M ′ ∼Q,f KX′ +∆t for some klt
pair (X ′,∆t). Then by [Fuj22a] we can run a (KX′ +∆+M ′)-MMP with scaling of
A over X over W .

Let (X0,∆0 +M ′) := (X ′,∆ +M ′), F0 := F , M0 := M ′ and A0 := A. Then we
obtain a sequence of divisorial contractions and flips:

(X0,∆0 +M0)
φ0

""# (X1,∆1 +M1)
φ1

""# · · ·
φi−1

""# (Xi,∆i +Mi)
φi
""#

where ∆i,Mi, Fi, Ai are the corresponding birational transforms. We also have the
scaling numbers

1 ≥ λ0 ≥ λ1 ≥ · · · ≥ λi ≥ · · · ≥ 0

such that KXi
+∆i +Mi + λiAi is nef over W . Then by [Fuj22a, Lemma 13.7] we

know that KXk
+∆k+Mk ∈ Mov(Xk/X;W ) for some k ≥ 0. Thus by the negativity

lemma (cf. [Fuj22a, Lemma 4.9]) we have −Fk ≥ 0 over W . Hence −Fk is effective
over some open neighborhood of W . Let Y := Xk, g : Xk → X, MY = Mk and
KY +BY +MY = g∗(KX +B +M). Then (Y,BY +MY ) satisfies (1-3) above. !

3. Proof of the main theorems

Lemma 3.1. We fix a positive integer n and a set 1 ∈ I ⊂ [0,∞]. Assume that
f : X ′ → X is a projective morphism, and we have R-divisors B,D ≥ 0 on X and
nef R-divisors M ′, P ′ on X ′ such that

(1) (X,B+M) and (X,B +D+M +P ) are (n+1)-dimensional glc pairs with
data given by M ′ and P ′, where M = f∗M ′, P = f∗P ′.

(2) M ′ =
∑

µjM ′
j, where M ′

j are relatively nef Cartier divisors and µj ∈ I.
(3) P ′ =

∑
νkP ′

k, where P ′
k are relatively nef Cartier divisors and νk ∈ I.

(4) The coefficients of B,D,M ′ + P ′ belong to I.

We further assume that there exists a non-gklt center V of (X,B + D + M + P )
such that V is not a non-gklt center of (X,B +M) and dimV ≤ dimX − 2. Then
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we can construct a generalized log canonical pair (S,∆+N) with S′ → S and N ′ as
in Definition 2.1 such that

(1) S is a projective variety of dimension at most n,
(2) the coefficients of ∆ belong to D(I),
(3) KS +∆+N is numerically trivial,
(4) N ′ =

∑
aiN ′

i , where N ′
i are relatively nef Cartier divisors and ai ∈ I, and

at least one of the following happens:

(i) Some component of ∆ has coefficient of the form

m− 1 + α+ c

m
where m is a positive integer, α ∈ I+, and c ∈ I is the coefficient of some
component of D or P ′.

(ii) N ′
i is not numerically trivial for some i and ai = g + νk, where g ∈ I and

νk > 0 is a coefficient of P ′.

Proof. We can replace V with a maximal (with respect to inclusion) glc center of
(X,B + D + M + P ) satisfying dimV ≤ dimX − 2 and V is not a glc center of
(X,B +M). Let Q be an analytically sufficiently general point of V . Consider an
open neighborhood U of Q and a Stein compact subset W of X such that U ⊂ W
and that Γ(W,OX ) is noetherian. By Theorem 2.6, after shrinking X around W
suitably, we can construct a projective bimeromorphic morphism π : Y → X with
KY +BY +DY +MY + PY = π∗(KX +B +D +M + P ) such that

(1) Y isQ-factorial overW , andBY ,DY ,MY , PY are pushforwards of B′,D′,M ′,
P ′ (after possibly replacing X ′ by a higher model),

(2) (Y,BY +DY +MY +PY ) is gdlt, where BY +DY is the boundary part and
MY + PY is the nef part,

(3) a(E,X,B +D +M + P ) = 0 holds for every π-exceptional divisor E, and
(4) there exists a π-exceptional divisor F such that π(F ) = V .

Let D̂ be the birational transform of D on X ′ and D̂Y be the pushforward of D̂
on Y . We first claim that we can choose F in (4) such that (D̂Y + PY )|Fv is not
numerically trivial, where v ∈ V ∩U is an analytically sufficiently general point. Let
E = π∗(D+P )− D̂Y −PY , then we can see E ≥ 0 since (X,B+M) is glc and every
π-exceptional divisor Ei has log discrepancy a(Ei;B +D+M + P ) = 0. Moreover,
since V is not a log canonical center of (X,B +M), E is non-trivial. Therefore by
[BCHM10, Lemma 3.6.2] (see also [Fuj22a, Section 11]) there is a component F of
E with a covering family of curves C (contracted over X) such that E · C < 0. So
(D̂Y +PY ) ·C > 0 for such curves and hence (D̂Y +PY )|F is not numerically trivial
over sufficiently general points of V .

After replacing X ′ by a higher model, we may assume that g : X ′ → Y is a
projective morphism. Let KX′ +∆′ + M ′ + P ′ = f∗(KX + B + D +M + P ) and
F ′ be the birational transform of F on X ′. Let ∆F ′ be the R-divisor defined by
the adjunction KF ′ +∆F ′ = (KX′ +∆′)|F ′ and ∆F ,MF , PF be the pushforwards of
∆F ′ ,M ′|F ′ , P ′|F ′ , then these data define a generalized pair (F,∆F +MF +PF ) with
nef part MF + PF as in Definition 2.1 and we have

(KY +BY +DY +MY + PY )|F ∼R KF +∆F +MF + PF .

Following [BZ16, Definition 4.7 and Remark 4.8], (F,∆F +MF +PF ) is generalized
log canonical.

Next we calculate the coefficients of ∆F , cutting by hyperplanes in Y we can
assume that dimY = 2 (note that we are working over a Stein set W and Y is
projective over W ). Let p ∈ F be a point and lp be the Cartier index at p ∈ Y .
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In this case we may assume that F ′ is a normal curve isomorphic to F (since F is
already normal), so we may also regard p as a point on F ′. Then by classification
of klt surface singularities we obtain that

multp∆F =
lp − 1

lp
+multp(BY +DY − F )|F +multp((g

∗(MY + PY )−M ′ − P ′)|F ′)

=
lp − 1 + β + γ

lp
∈ D(I)

where multp(BY +DY − F )|F = β
lp
, multp((g∗(MY + PY ) −M ′ − P ′)|F ′) = γ

lp
and

β, γ,β + γ ∈ I+ by the assumptions on the coefficients of B +D and M ′ + P ′.
Let S (resp. S′) be the general fiber of the Stein factorization of F → V (resp.

F ′ → V ), ∆ = ∆F |S , N ′ = (M ′+P ′)|S′ , N = (MF +PF )|S . Then, these data define
a generalized pair (S,∆+N) with nef part N as in Definition 2.1 and we have

(1) (S,∆+N) is glc,
(2) KS +∆+N ∼R 0,
(3) the coefficients of N ′ belong to I,
(4) (D̂Y + PY )|S is not numerically trivial.

If P ′|S′ is not numerically trivial, then (ii) in the statement is satisfied and we are
done. So we can assume that P ′|S′ ≡ 0, hence PF |S ≡ 0. If we write g∗(PY ) = P ′+G
and let GS be the pushforward of G|S′ on S, then we have

(D̂Y + PY )|S = PF |S +GS + D̂S ≡ GS + D̂S ̸= 0,

where D̂S := D̂Y |S . Let RF be the pushforward of (g∗(MY + PY )−M ′ − P ′)|F ′ on
F and RS := RF |S , then multp(RF ) =

γ
lp

in the previous computation. Notice that

D̂S ≤ (BY +DY −F )|S and GS ≤ RS, therefore GS + D̂S ̸= 0 implies that (i) holds.
!

Theorem 3.2. Let Λ be a DCC set of non-negative real numbers and d a positive
integer. Assume Xi, Bi,Mi,M ′

i ,Di, P ′
i , P

′
i are as in Definition 2.3 such that for any

i ≥ 1,

(1) (Xi, Bi +Mi) are glc pairs of dimension d,
(2) M ′

i =
∑

µi,jM ′
i,j where M ′

i,j are relatively nef Cartier divisors and µi,j ∈ Λ,
(3) P ′

i =
∑

νi,kP ′
i,k where P ′

i,k are relatively nef Cartier divisors and νi,k ∈ Λ,
(4) the coefficients of Bi and Di belong to Λ,
(5) (Xi, Bi +Mi + tiDi + tiPi) is glc and has a glc center Vi which is not a glc

center of (Xi, Bi +Mi) for some ti > 0.

Then T = {ti}i≥1 is an ACC set.

Proof. Assume that the sequence {ti}i≥1 is strictly increasing, if dimVi = d − 1,
then we have 1− tiλi = λ′

i ∈ Λ ∩ [0, 1] for some 0 < λi ∈ Λ. Let

Γ1 := {
1

λ
| 0 < λ ∈ Λ}, Γ2 := {1− λ′ | λ′ ∈ Λ ∩ [0, 1]},

then Γ1, Γ2, and Γ1 · Γ2 are ACC sets and {ti}i≥1 ⊂ Γ1 · Γ2. This contradicts
the assumption that {ti}i≥1 is strictly increasing, therefore we can assume that
dimVi ≤ d− 2.

Let I := Λ∪(T ·Λ)∪(Λ+T ·Λ), then I is also a DCC set. Possibly replacing {ti}i≥1

by a subsequence, by Lemma 3.1 and [BZ16, Theorem 1.6], one of the following
happens:

(i) mi−1+αi+tici
mi

belongs to a finite set Λ0 for every i ≥ 1, where mi ∈ N∗,
αi ∈ I+ and 0 < ci ∈ I.

(ii) gi+ tivi,k belongs to a finite set Λ0 for every i ≥ 1, where gi ∈ I and vi,k > 0.
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In either case we can conclude that ti must belong to a finite set Λ1, which is a
contradiction and we are done. !

It is easy to see that Theorem 1.1 is equivalent to the following theorem by taking
Λ = I ∪ J , whose algebraic case is exactly [BZ16, Theorem 1.5].

Theorem 3.3. (ACC for generalized lc thresholds.) Fix Λ be a DCC set of
nonnegative real numbers and d a natural number. Then there is an ACC set Θ
depending only on Λ and d such that if (X,B+M), M ′, P ′, P , D are as in Definition
2.3, and

(1) (X,B +M) is glc of dimension d,
(2) M ′ =

∑
µjM ′

j where M ′
j are relatively nef Cartier divisors and µj ∈ Λ,

(3) P ′ =
∑

νkP ′
k where P ′

k are relatively nef Cartier divisors and νk ∈ Λ, and
(4) the coefficients of B and D belong to Λ,

then the generalized lc threshold glct(X,B + M ;D + P ) of D + P with respect to
(X,B +M) belongs to Θ.

Proof. Suppose that c = glct(X,B + M ;D + P ) > 0, then there exists a non-
increasing sequence ci ≥ ci+1 ≥ · · · with limi→∞ ci = c and relatively compact open
subsets Ui ⊂ X such that ci = glct(Ui, Bi +Mi;Di +Pi) where Bi+Mi+Di +Pi =
(B +M +D + P )|Ui

. By Remark 2.5 we know that (Ui, Bi +Mi + ciDi + ciPi) has
a glc center which is not a glc center of (Ui, Bi +Mi). Since the closure of a DCC
set is also a DCC set, it suffices to consider relatively compact varieties X, and then
the statement follows from Theorem 3.2. !

Proof of Theorem 1.2. Suppose c is an accumulation point of GLCTn(I), then again
there exists a non-increasing sequence ci ≥ ci+1 ≥ · · · with limi→∞ ci = c and
relatively compact open subsets Ui ⊂ X such that ci = glct(Ui, Bi + Mi;Di + Pi)
where Bi +Mi +Di +Pi = (B+M +D+P )|Ui

. Therefore by Lemma 3.1 we know
that ci ∈ Nd(I,N,N), which is defined in [Liu18, Definition 2.18]. Notice that since
the generalized pair (S,∆ + N) constructed in Lemma 3.1 is projective, we are in
the algebraic setting and so the proof follows from [Liu18]. !
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varieties, arXiv e-prints , arXiv:2205.12205 (May 2022),
[DHP10] J.-P. Demailly, C. Hacon, M. Paun, Extension theorems, Non-vanishing and the existence

of good minimal models, 2010, arXiv:1012.0493v2
[Fuj22a] O. Fujino, Minimal model program for projective morphisms between complex analytic

spaces, (2022)
[Fuj22b] O. Fujino, ACC for log canonical thresholds for complex analytic spaces,

https://arxiv.org/abs/2208.11872
[Liu18] J. Liu, Accumulation point theorem for generalized log canonical thresholds,

arXiv:1810.12381v1.
[HMX14] C. D. Hacon, J. McKernan, C. Xu, ACC for log canonical thresholds, Ann. of Math. (2)

180 (2014), no. 2, 523–571.
[HMX18] C. D. Hacon, J. McKernan, C. Xu, Boundedness of moduli of varieties of general type. J.

Eur. Math. Soc. (JEMS) 20 (2018), no. 4, 865–901.

http://arxiv.org/abs/2202.11346
http://arxiv.org/abs/2205.12205
http://arxiv.org/abs/1012.0493
http://arxiv.org/abs/1810.12381


8 CHRISTOPHER HACON AND LINGYAO XIE

[Sato21] Sato, Kenta Ascending chain condition for F-pure thresholds with fixed embedding
dimension. Int. Math. Res. Not. IMRN 2021, no. 10, 7205–7223.

[XZ21] Xu, Chenyang; Zhuang, Ziquan, Uniqueness of the minimizer of the normalized volume

function. Camb. J. Math. 9 (2021), no. 1, 149–176.

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, Utah

84112

Email address: hacon@math.utah.edu

Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, Utah

84112

Email address: lingyao@math.utah.edu


	1. Introduction
	2. Preliminaries
	3. Proof of the main theorems
	References

