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MODELS OF GENERALIZED PAIRS

JIHAO LIU AND LINGYAO XIE

ABSTRACT. We prove some basic properties of the relative Nakayama-Zariski decomposition.
We apply them to the study of lc generalized pairs. We prove the existence of log minimal
models or Mori fiber spaces for (relative) lc generalized pairs polarized by an ample divisor.
This extends a result of Hashizume-Hu to generalized pairs. We also show that, for any lc
generalized pair (X, B + A,M)/Z such that Kx + B4+ A+ Mx ~gz 0 and B > 0,4 > 0,
(X,B,M)/Z has either a log minimal model or a Mori fiber space. This is an analogue of
a result of Birkar/Hacon-Xu and Hashizume in the category of generalized pairs, and is later
shown to be crucial to the proof of the existence of lc generalized flips in full generality.
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1. INTRODUCTION

We work over the field of complex numbers C.

The theory of generalized pairs (g-pairs for short) was introduced by Birkar and Zhang in
[BZ16] to tackle the effective Iitaka fibration conjecture. The structure of g-pairs naturally
appears in the canonical bundle formula and sub-adjunction formulas [Kaw98, FMO00]. This
theory has been used in an essential way in the proof of the Borisov-Alexeev-Borisov conjecture
[Bir19, Bir21a]. We refer the reader to [Bir21b] for a more detailed introduction to the theory
of g-pairs.

Recently, there is significant progress towards the minimal model program theory for
generalized pairs. In particular, in [HL21a], Hacon and the first author proved the cone theorem,
contraction theorem, and the existence of flips for Q-factorial lc g-pairs. However, some related
results on the termination of flips and the existence of log minimal models and good minimal
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models for generalized pairs remain unknown. For example, we have the following results in the
setting of usual pairs:

Theorem 1.1 ([HH20, Theorem 1.5]). Let (X, B)/Z be a pair and A > 0 an ample/Z R-divisor
such that (X,A := B+ A) is lc and Z is normal quasi-projective. Then (X,A)/Z has a good
minimal model or a Mori fiber space.

Theorem 1.2 ([Has19, Theorem 1.1]; see [Bir12, HX13] for the Q-coefficient case). Let (X, B)/Z
be a pair and A > 0 an R-divisor such that (X, B + A) is lc, Z is normal quasi-projective, and
Kx+B+ A ~R,Z 0. Then:
(1) (X,B)/Z has either a Mori fiber space or a log minimal model (Y, By)/Z.
(2) If Ky + By is nef/Z, then Ky + By is semi-ample/Z.
(3) If (X, B) is Q-factorial dit, then any (Kx + B)-MMP/Z with scaling of an ample/Z
R-divisor terminates.

In this paper, we further investigate the minimal model program for generalized pairs. We
prove the following results, which can be considered as analogues of Theorems 1.1 and 1.2
respectively:

Theorem 1.3. Let (X,B,M)/U be an NQC lc g-pair and A > 0 an ample/U R-divisor such
that (X,A := B+ A,M) is le. Then

(1) (X,A,M)/U has a log minimal model or a Mori fiber space, and

(2) if Mx is R-Cartier, then (X,A,M)/U has a good minimal model or a Mori fiber space.

Theorem 1.4. Let (X, B,M)/U be an NQC lc g-pair such that X — U is a projective morphism
between normal quasi-projective varieties, and A > 0 an R-divisor such that (X, B+ A, M) is lc
and Kx + B+ A+ My ~R,U 0. Then
(1) (X,B,M)/U has a log minimal model or a Mori fiber space, and
(2) if (X,B,M) is Q-factorial dit, then any (Kx + B + Mx)-MMP/U with scaling of an
ample/U R-divisor terminates.

Theorems 1.3 and 1.4 have played important roles in the minimal model program theory for
lc generalized pairs, especially the existence of generalized lc flips. See the Postscript for details.

Note that when M = 0, Theorem 1.3 is exactly Theorem 1.1 and Theorem 1.4 is exactly
Theorem 1.2(1)(3). For technical reasons, at the moment, we cannot remove the “Mx is R-
Cartier” assumption in Theorem 1.3(2).

We still expect the analogue of Theorem 1.2(2) to be true. That is, we expect that any log
minimal model of (X, B,M)/Z is a good minimal model (of) a generalized pair (X, B,M)/Z as
in Theorem 1.4 is in fact good; see the first paragraph of the Postscript. This is because such
Kx + B+ My is log abundant /U with respect to (X, B, M) by Theorem 7.3 below. However,
the following example shows that the question is very subtle as “log abundance” does not imply
semi-ampleness in general for lc g-pairs:

Example 1.5. Let Cy be a nodal cubic in P? and [ the hyperplane class on P2. Let Py, Py, ..., Pio
be twelve distinct points on Cy which are different from the nodal point. Let

p:X =Blp poy —P°

be the blow-up of P? at the chosen points with the exceptional divisor E = Zil FE;, where E; is
the prime exceptional divisor over P; for each i. Let H := p*l and C := u;'Cy. Then C = Cy,
C € |3H — E|, and Kx + C = p*(Kp2 + Cy) = 0. Moreover, we have C3 = 9 and C? = —3.

We consider the big divisor M = 4H — E ~ H + C. Since H is semi-ample and M - C' = 0,
M is nef. Notice that Oc(M) = O¢, (4l — leil P;) and Pic’(C) = G,,, where G,, is the
multiplication group of C*.

(1) Suppose that Pi,..., Pj2 are in general position so that Oc(M) is a non-torsion line
bundle in Pic’(C). Then M can never be semi-ample since M| is not. However, the
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normalization C™ of C'is P!, so M|cn is semi-ample. This gives an lc g-pair (X,C, M :=
M) such that both M and Kx + C + M ~ M are nef and log abundant with respect to
(X,C,M), but Kx + C + M is not semi-ample. One can further take the blow-up of the
nodal point and take the crepant pullback to make each lc center normal.

(2) Suppose that Pi, ..., Pjo are the intersection points of Cy with a general quartic curve
Qo € |4l|. Let @ be the birational transform of Qg on X. Then M ~ Q ~ H + C' is semi-
ample and defines a projective birational contraction f : X — Y which contracts exactly
the nodal curve C. Let M = H —3E;. Then M'-C =0 and Oc(M') = O¢, (I —3P;) is
a non-torsion line bundle since Q) is general. Therefore M’ is not Q-linearly equivalent
to 0 over Y (which also implies that f(M’) is not Q-Cartier). This gives an lc g-pair
(X,C,M’ := M")/Y such that both M’ and Kx + C + M’ ~ M’ are log abundant and
numerically trivial over Y but Kx + C' + M’ is not semi-ample over Y.

We refer the reader to [BH22] for some other interesting examples on the failure of positivity
results for generalized pairs.

To prove our main theorems, the central idea is to combine the methods in [Has22a] (some
originated in [Has20, Has22b, HH20]) and [HL21a]. In particular, we need to generalize many
results in [Has22a] for projective varieties X to normal quasi-projective varieties X equipped with
projective morphisms 7 : X — U. Despite their similarities, a major difficulty is the use of the
Nakayama-Zariski decomposition [Nak04, III. §1], which is usually applied to projective varieties
only. It is important to remark that the relative Nakayama-Zariski decomposition [Nak04, III.
§4] does not always behave as good as the global Nakayama-Zariski decomposition (see [Les16]),
and we lack references for even the most basic properties of them. In this note, we will study
the behavior and basic properties of the relative Nakayama-Zariski decomposition. We refer the
reader to [LT22b] for further applications of the relative Nakayama-Zariski decomposition on
the minimal model theory for generalized pairs.

Idea of the proof. It is important to notice that Theorems 1.3 and 1.4 both have some “b-log
abundant” conditions:
(1) In Theorem 1.3, possibly replacing (X, B,M) with (X, B,M + %fl) and A with %A, we
may assume that M is b-log abundant with respect to (X, B, M).
(2) In Theorem 1.4, Kx + B+ A+ Mx is automatically b-log abundant/Z as it is R-linearly
trivial over Z.

Therefore, one important goal of this paper is to study the minimal model program for g-pairs
(X, B,M) with b-log abundant nef part M or with log abundant Kx + B + Mx. Despite the
technicality, the condition “b-log abundant” is actually a very natural condition as it is preserved
under adjunction. The key idea to study the minimal model program for such g-pairs is the
following:

e By applying the litaka fibration and the generalized canonical bundle formula, we reduce
the questions to the cases when either k,(X/U, Kx + B+ Myx) = 0 or x,(X/U,Kx +
B+ Mx)=dimX —dimU (see Section 4).

e When the invariant litaka dimension is 0, by abundance, the minimal model program
behaves well (cf. Lemma 4.1). So we can reduce the question to the case when Kx +
B + My is big/U.

e If (X, B, M) is kit then we can apply [BZ16, Lemma 4.4(2)]. Otherwise, by induction
on dimension, we can apply special termination results near Nklt(X, B, M).

Structure of the paper. In Section 2, we introduce some preliminary results. In particular, we will
recall some results on the minimal model program for generalized pairs that are already included
in [HL21a, Version 2, Version 3] (but may not appear in the published version). In Section 3,
we study the basic behavior of the relative Nakayama-Zariski decomposition. In Section 4, we
use the litaka fibration and the generalized canonical bundle formula to simplify the question.
In Section 5,6 and 7, we use the relative Nakayama-Zariski decomposition to prove analogues of
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most results in [Has22a, Section 3] (Section 5), [Has22a, Theorem 3.14] (Section 6), and [Has22b,
Theorem 4.1] (Section 7) respectively. In Section 8, we prove Theorems 1.3 and 1.4.
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Postscript. After the first version of the paper appeared on the arXiv, the authors proved
a stronger version of Theorem 1.4 in [LX22, Theorem 1.1], which shows that the log minimal
model (Y, By,M)/Z is essentially a good minimal model of (X, B,M)/Z. This is crucial for the
complete solution of the existence of flips for lc generalized pairs [LX22, Theorem 1.2], which
removes the R-Cartier assumption of My as in [HL2la, Theorem 1.2]. Although the proof
of [LX22] heavily relies on this paper, we decided to write and submit them as two separate
papers, as this paper contains most technical results that we need while [LX22] mainly focuses
on establishing a Kollar-type gluing theory.

We also remark that the second author and N. Tsakanikas proved a stronger version of
Theorem 1.3, removing the R-Cartierness assumption of My in Theorem 1.3(2), see [TX23,
Theorem F|. The proof of [TX23, Theorem F] relies on [LX22, Xie22] which in turn rely on this
paper. Therefore, we will avoid citing results from [[.X22, Xie22, TX23] in this paper.

2. PRELIMINARIES

We adopt the same notation as in [KM98, BCHM10]. For g-pairs, we adopt the same notation
as in [HL21a], which is the same as [F'S20, Has22a] except that we use “a(F, X, B,M) instead
of “a(E, X, B+ Mx)” to represent log discrepancies. This is because (X, B+ Mx) is a sub-pair
and the log discrepancies of this sub-pair may be different from the log discrepancies of the
generalized pair (X, B,M).

2.1. Equidimensional reduction.

Theorem 2.1. Let (X, B) be a dlt pair and 7 : X — U a projective surjective morphism over
a normal variety U. Then there exists a commutative diagram of projective morphisms

vy 1o x

Al
V—2>U
such that
(1) f,¢ are birational morphisms, @' is an equidimensional contraction, Y only has Q-
factorial toroidal singularities, and V' is smooth, and

(2) there exist two R-divisors By and E on'Y, such that
(a) Ky + By = f[*(Kx + B) + E,
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(b) By >0, E>0, and By AE =0,
(c) (Y,By) is lc quasi-smooth, and any lc center of (Y,By) on X is an lc center of

(X, B).
Proof. This result follows from [AKO00], see also [Hu20, Theorem B.6], [Kaw15, Theorem 2] and
[Has19, Step 2 of the proof of Lemma 3.1]. O

2.2. Iitaka dimensions. We refer the readers to [HH20, Section 2] for the formal definitions
and basic properties of k,(X/U, D) and k,(X/U, D).

Lemma 2.2 (cf. [Nak04, V. 2.6(5) Remark]). Let X be a normal projective variety and D an
R-Cartier R-divisor on X such that k;(D) > 0. Then D is pseudo-effective.

Proof. By definition, there exists a Cartier divisor A on X such that o(D; A) > 0. In particular,
there exists a sequence of strictly increasing positive integers m;, such that dim H(X, |m;D| +
A) > 0, hence |m;D] + A is effective for any i. Thus m;D + A is effective for any ¢, hence
D+ mLiA is effective for any 7. Thus D is the limit of the effective R-divisors D + mLiA, hence
D is pseudo-effective. O]

Lemma 2.3. Let m: X — U be a projective morphism from a normal variety to a variety, and
D an R-Cartier R-divisor on X. Then:

(1) D is big/U if and only if ke (X/U,D) =dim X —dimU.

(2) Let Dy,Dy be two R-Cartier R-divisors on X. Suppose that D; ~ry Ei > 0 and
Dy ~ry Eo > 0 for some R-divisors Fy,Ey such that Supp By = Supp Ez. Then
ke (X/U, D1) = ko (X/U, D2) and k,(X/U,Dy) = k,(X/U, D3).

(8) Let f:Y — X be a surjective birational morphism and Dy an R-Cartier R-divisor on' Y’
such that Dy = f*D+ E for some f-exceptional R-divisor E > 0. Then k,(Y/U, Dy) =
ke(X/U, D) and k,(Y/U, Dy) = k,(X/U, D).

(4) Let g : Z — X be a surjective morphism from a normal variety such that Z is projective
over U. Then ks(Z/U,g*D) = ke(X/U, D) and ,(Z/U, g*D) = k,(X/U, D).

(5) Let D be an R-Cartier R-divisor on X such that D =y D. Then r,(X/U,D) =
ke (X/U, D).

(6) Let ¢ : X --» X' be a partial D-MMP/U and let D' := ¢.D. Then k,(X/U,D) =
ko (X' /U, D) and k,(X/U, D) = k,(X'/U, D")

Proof. For (1)-(5), let F' be a very general fiber of the Stein factorization of 7. Possibly replacing
X with F, U with {pt}, and D, D1, Do, D with D|r, D1|r, D2|r, D|F respectively, we may assume
that X is projective and U = {pt}. (2) follows from [HH20, Remark 2.8(1)] and (3)(4) follow
from [HH20, Remark 2.8(2)].

To prove (1)(5), let h : X — X be a resolution of X. By (4), we may replace X with X, D
with h*D, and D with h*D, and assume that X is smooth.

If D is big, then k(D) = dim X by definition. If k,(D) = dim X, then D is pseudo-effective
by Lemma 2.2, hence D is big by [Nak04, V. 2.7(3) Proposition|. This gives (1).

To prove (5), notice that D is pseudo-effective if and only if D is pseudo-effective. If D is not
pseudo-effective, then k,(D) = k, (D) = —oo by Lemma 2.2. If D is pseudo-effective, then (5)
follows from [Nak04, V. 2.7(1) Proposition].

To prove (6), let p: W — X and ¢ : W — X’ be a common resolution such that ¢ = ¢ o p.
Then p*D = ¢*D' + F for some F' > 0 that is g-exceptional. By (3), we have

ko (X/U,D) = ke (W/U,p*D) = ke(W/U,q* D' + F) = ko (X' /U, D’)
and

k,(X/U,D) = k,(W/U,p*D) = x,(W/U,¢*D' + F) = s, (X' /U, D). O

Lemma 2.4. Let f : X — Y andg: Y — Z be two contractions between normal quasi-projective
varieties such that general fibers of Y — Z are smooth and Y is Q-Gorenstein. Let (X, B) be a
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pair that is lc over a non-empty open subset of Y. Let D be an R-Cartier R-divisor on X such
that D — (Kx/y + B) is nef/Z. Then for any R-Cartier R-divisor Q on'Y, we have

ko(X/Z, D + Q) 2 ke(X/Y, D) + k(Y/Z,Q).

Proof. Let z € Z be a very general point and let X, := (go f)~!(2),Y, := g~ !(z) be the fibers
of X and Y over z respectively. We have an induced contraction f, : X, — Y,. Let F be a very
general fiber of f,. Then F' is also a very general fiber of f.

First assume that dimY > dim Z. By our assumption, Y, is smooth, (X, B|x.) is lc over a
non-empty open subset of Y, and

Dlx. — (Kx.)v. + Blx.) = (D — (Kx/y + B))|x.
is nef. By [Fuj20, (3.3)],
ko (X/Z,D + Q) = ko (Xz, D|x, + fQy.) = ko(X2/Y:, Dlx,) + (Y2, Qv.)
= ko (F,D|p)+rk(Y/Z,Q) = k. (X/Y,D)+ (Y/Z,Q).

Now assume that dimY = dim Z so that x(Y/Z,Q) = 0. If dim X = dimY then there is
nothing left to prove, so we may assume that dim X > dimY. In this case f*Q|x. = 0, so we
have

ko (X/Z, D+ f*Q) = ke(X:, D|x. + [*Q|x.) = ko (X, D|x.) = ko (X/Z, D)
= K/O'(X/Y?D) = ’{U(X/Y’D) + K(Y/Za Q),
and we are done. O

Lemma 2.5. Let (X, B,M)/U be an lc g-pair such that Kx +B+Mx =y G for some R-divisor
G > 0, such that U is quasi-projective and G is abundant over U. Let X --» V be the litaka
fibration over U associated to G, and (W, By ,M) a log smooth model of (X, B,M) such that
the induced map ¥ : W — V is a morphism over U. Then

(1) ke(W/U, Kw + Bw +Mypy) =dimV —dimU, and
(2) ke(W/V,Kw + Bw + My) = 0.

Proof. Let hy : V — V be a resolution of V. By Lemmas 2.3(3) and [HL21a, Lemma 3.6]
possibly replacing (W, By, M)/U with a higher model, we may assume that the induced map
¥ : W — V is a morphism. Since (W, By, M) a log smooth model of (X, B,M), we have

where h : W — X is the induced morphism, M descends to W, and E > 0.

NV

Since G > 0 is abundant over U, by [Cho08, Proposition 2.2.2(1)],
dimV —dimU = k(X/U,G) = k,(X/U,G) = k. (X/U,G) > 0.

X

|
|
¥

V

Since X --» V is the litaka fibration associated to G over U, there exists an effective ample/U
R-divisor A on V and an R-divisor F' > 0 on W such that h*G = 9* A+ F for some h-exceptional
R-divisor F' > 0 on W. Then for any real number k, we have

Kw + Bw + My + kYv*A=y (1+k)Y*A+ E + F.
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By Lemma 2.3(2)(3)(5), for any k£ > 0 we have

ke (W/U, Kw + By + My + kY*A) = k, W/U,(1+ k)Yp*A+ E+ F) = k,(W/U,*A+ E+ F)
= ko (W/U, Kw + Bw + Mw) = £0(X/U, Kx + B + Mx)
= ko (X/U,G) = k(X/U,G) =dimV — dim U.

In particular, we get (1). Since A is ample/U, hj, A is big/U, and we may pick a sufficiently

large positive integer k such that Ky + khij, A is big/U.

Since (W, By, M) is a log smooth model of (X, B,M), (W, By) is lc. Since V' is smooth, any
very general fiber of the induced morphism V' — U is smooth. Let D := Ky +Bw +Myy —¢* Ky
and Q := Ky + khj;A. Then D — (Kyy + Bw) = My is nef/U. By Lemma 2.4 and noticing
that the restriction of ¢* Ky to a general fiber of v is zero, we have
dimV —dimU = k,(W/U, Ky + By + My + ky*A) = k,(W/U, Ky + Bw + My + kp*hi, A)
K/O'(W/U’ D+ T;E*Q) > KJ(W/V’ D) + K(V/Ua Q)

= K/O'(W/V?KW + Bw + My — &*Kf/) + ’{(V/U’ KV + kh#{/A)
= ko (W/V, Kw + By + My) + (dim V — dim U).
Thus k. (W/V, Ky + By +My) < 0, hence s, (W/V, Ky + By +My) < 0. Since Ky + By +

My =y *G+ E >0, HO(W/M Kw + By +Mw) > 0. Thus HO(W/V, Kw + Bw —|—Mw) =0,
and we get (2). O

2.3. Preliminaries on the MMP for generalized pairs.

Lemma 2.6 ([HL2la, Lemma 2.20], cf. [HL22, Proposition 3.9]). Let (X,B,M)/U be a Q-
factorial lc g-pair such that X is klt and Kx + B+ Mx =y Dy — Dy (resp. ~ry D1 — D)
where D1 > 0, Dy > 0 have no common components. Suppose that Dy is very exceptional over
U (see [Birl2, Definition 3.1]). Then any (Kx + B+ Mx)-MMP/U with scaling of an ample/U
R-divisor either terminates with a Mori fiber space or contracts Dy after finitely many steps.
Moreover, if Do = 0, then this MMP terminates with a model Y such that Ky + By + My =y 0
(resp. ~r 0), where By is the strict transform of B on'Y'.

Lemma 2.7 ([HL2la, Lemma 2.25]). Let X — U be a projective morphism such that X is
normal quasi-projective. Let D, A be two R-Cartier R-divisors on X and let ¢ : X --» X' be a
partial D-MMP/U. Then there exists a positive real number ty, such that for any t € (0,tg], ¢
is also a partial (D +tA)-MMP/U. Note that A is not necessarily effective.

Proof. We let
X::XO —-——> Xl ——> e == Xn:XI

be this partial MMP, and D;, A; the strict transforms of D and A on X; respectively. Let
X; = Z; be the D;-negative extremal contraction of a D;-negative extremal ray R; in this MMP
for each 7. Then D; - R; < 0 for each i. Thus there exists a positive real number ¢y such that
(D; + toA;) - R; < 0 for each 4. In particular, (D; +tA;) - R; < 0 for any ¢ and any ¢ € (0, t].
Thus ¢ is a partial (D + tA)-MMP/U for any ¢ € (0, to]. O

Lemma 2.8 (cf. [LT22a, Lemma 2.17]). Let (X, B,M)/U be a Q-factorial NQC' lc g-pair such
that X is kit and Kx + B + Mx is pseudo-effective/U. Let A > 0 be an ample/U R-divisor on
X such that (X,B + A,M) is lc and Kx + B+ A+ Mcx is nef/U. Let

(X7B7M) = (X07B07M) -2 (X17B17M) i A 4 (XZ7327M) - ...
be a (Kx + B + Mx)-MMP/U with scaling of A, and A; the strict transform of A on X;
for each i. Then there exists a positive integer n and a positive real number ey, such that
Kx,;+Bj+eA;j+My; is movable/U for any e € (0,¢0) and j > n. In particular, Kx,+Bj+Mx;
is a movable/U (cf. Definition 3.1) R-divisor for any j > n.
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Proof. Let \; be the i-th scaling number of this MMP for each ¢, i.e.
Ai:=inf{t > 0| Kx, + B; + tA; + Mx;, is nef/U}.

We may assume that this MMP does not terminate. By [HL2la, Theorem 2.24], we have

Let n be the minimal positive integer such that X; --+» X;,; is a flip for any ¢ > n. If
Ai < Ai—1, then X --» X, is a (Kx + B+ tA+ Mx)-MMP /U with scaling of (1 —t)A for any
t € [Ai, Ai—1). Since X is Q-factorial klt, there exists Ay ~g ¢y B +tA + My such that (X, A)
is klt and A is big for any ¢ € (0,1]. By [BCHM10, Corollary 3.9.2], Kx, + B; + tA; + My,
is semi-ample/U for any i and any ¢ € [A;, \;_1). Let ¢y := A,. Then for any € € (0,¢), there
exists ¢ > n such that \; < \j_1 and € € [A\;, A\i_1), and Kx, + B; + €A; + My, is semi-ample/U.
Since X; --+ Xj is small for any i,j > n, Kx; + Bj + €A; + My, is movable/U for any j > n
and € € (0,¢), and Kx, + B;j + My, is a /U R-divisor. O

Lemma 2.9. Let X — U be a projective morphism such that X is quasi-projective. Assume
that D is an R-Cartier R-divisor on X such that D is a movable/U R-divisor on X, and let
¢: X --» X' be a partial D-MMP/U. Then ¢ only contains flips.

Proof. Since D is a movable/U R-divisor, D is pseudo-effective/U, so ¢ only contains flips and
divisorial contractions.

If ¢ contains a divisorial contraction, let ¢ : X7 — X be the first divisorial contraction in ¢.
Let D1 be the strict transform of D on X;7. Then X --» X only contains flips, hence it is an
isomorphism in codimension one, so D is also a movable/U R-divisor on X;. Let D} := ¢, D;.
Then

Dy =v¢*D{+F
for some F' > 0 that is exceptional over X].

Since Dy is a movable/U divisor, D] is a movable/ X divisor. Thus for any very general -
exceptional curve C, D1 -C > 0. By the general negativity lemma [Birl2, Lemma 3.3], —F > 0.
Thus F' = 0, and ¥ cannot be a Di-negative extremal contraction, a contradiction. Thus ¢ only
contains flips. O

Lemma 2.10. Let (X, B,M)/U be a Q-factorial NQC' lc g-pair. Let H > 0 be an R-divisor on
X such that (X, B+H,M) is lc and Kx+B+H+Mx is nef/U. Assume that (X, B+uH,M)/U
has a log minimal model for any p € (0,1]. Then we can construct a (Kx + B+ Mx)-MMP/U
with scaling of H :

(X,B,M) = (Xo,BQ, M) -=2 (Xl, Bl, M) i At 4 (XZ, BZ‘, M) - ...
Let H; be the strict transform of H on X; for each i, and let

A = inf{t >0 ‘ KXi + B; +tH; —i—MXi 18 nef/U}

be the i-th scaling number of this MMP for each i. Then this MMP

(1) either terminates after finitely many steps, or
(2) does not terminate and lim;_, 1 oo A; = 0.

Proof. If Ao = 0 then there is nothing left to prove. So we may assume that \g > 0. By [HL22,
Lemma 3.21], we may pick Aj € (0, \g) such that any sequence of the (Kx + B + A\(H + Mx)-
MMP/U is (Kx + B + Ao H + Mx)-trivial.

By [HL21a, Theorem 2.24], we may run a (Kx + B+ A\jH + Mx)-MMP /U with scaling of a
general ample/U divisor, which terminates with a log minimal model. We let

(X7 B, M) = (XOa B07M) -2 (X17Bla M) T m? (Xk17Bkl7M)
be this sequence of the MMP /U. Then this sequence consists of finitely many steps of a (Kx +
B+ Mx)-MMP /U with scaling of H, with scaling numbers A\g = Ay = -+ = A, 1. Since

KXkl + Bk1 + )\llHkl + 1VIXk1
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is nef/U, we have A\, < \| < Aq.

We may replace (X, B,M)/U with (X,, Bx,, M)/U and continue this process. If this MMP
does not terminate, then we may let A := lim;_, 1 A;. By our construction, A # \; for any 4,
and the lemma follows from [LLT22b, Theorem 4.1]. O

Lemma 2.11 (cf. [HL22, 3.5 Lifting flips, Page 727-728], [LT22b, 2.5 Lifting a sequence of flips
with scaling, Lemma 2.13]). Let (X, B,M)/U be an NQC'lc g-pair, S an lc center of (X, B,M),
(Y, By,M) a dit model of (X, B,M) with induced birational morphism f :Y — X, and Sy a
component of | By | such that f(Sy)=S. Let

¢ : (XaBaM) -2 (XlaB/7M)

be a partial (Kx +B+Mx)-MMP/U and S an lc center of (X', B', M) such that ¢|s : S --» S’
is a birational map. Then there exists a partial (Ky + By + My )-MMP/U

¢ : (Y, BY’M) -2 (Y/’BQ/?M)’
such that

(1) (Y',B{,,M) is a dit model of (X', B',M), and
(2) the strict transform of Sy on Y’ is a component of | By, |.

Proof. We only need to prove the lemma when ¢ is a divisorial contraction or a flip. If ¢ is a flip,
then we let X — Z be the flipping contraction and let X’ — Z be the flipped contraction. The
rest of the proof of (1) is similar to the [LT22b, First paragraph of the proof of Lemma 2.13]:
If ¢ is a divisorial contraction, then we let Z = X’. Thus (X', B’,M)/Z is a log minimal model
of (X,B,M)/Z such that Ky + B’ + My is ample/Z. By [HL2la, Lemmas 3.9, 3.15] and
[HL21a, Theorem 3.14], we may run a (Ky + By + My )-MMP/Z with scaling of an ample/Z
divisor which terminates with a good minimal model (Y’, B{,,M)/Z. By [HL2la, Lemma 3.9],
(Y, Bj,,M) is a dlt model of (X', B, M), and we get (1).

Welet p: W — Y and ¢ : W — Y’ be a resolution of indeterminacies of the induced birational
map ¢y : Y --»Y'. By [HL2la, Lemma 3.8], p*(Ky + By + My) = ¢*(Ky’ + By + My+) + F
where F' > 0 is exceptional/Y”’, and Suppp.F contains all ¢y-exceptional divisors. By (1),
a(Sy,Y, By/,M) = 0, hence Sy is not a component of Suppp.F, and we get (2). O

2.4. Proper log smooth models.

Definition 2.12 (Log smooth model, [HL.21a, Definition 3.1]). Let (X, B, M)/U be an lc g-pair
and h: W — X a log resolution of (X, Supp B) such that M descends to W. Let By > 0 and
E > 0 be two R-divisors on W such that

(1) Kw+Bw+MW = h*(KX +B+Mx)+E,

(2) (W, By) is log smooth dlt,

(3) E is h-exceptional, and

(4) for any h-exceptional prime divisor D such that a(D, X, B,M) > 0, D is a component

of E.

Then (W, By, M) is called a log smooth model of (X, B,M). If we additionally assume that

(5) for any h-exceptional prime divisor D such that a(D, X, B,M) > 0, D is a component
of {Bw},
then (W, By, M) is called a proper log smooth model of (X, B,M).
Lemma 2.13. Let (X,B,M)/U be an lc g-pair. Then there exists a proper log smooth model
(W, By = B{}V + BY,,M) of (X, B,M), such that

(1) B, >0 and BY, is reduced,
(2) By, is vertical over U, and
(3) for any real number t € (0,1], all lc centers of (W, By — tBy,, M) dominate U.
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Proof. By [HL21a, Lemma 3.6], possibly replacing (X, B, M) with a proper log smooth model,
we may assume that (X, Supp B) is log smooth and M descends to X. By [Has18, Lemma 2.10],
there exists a proper log smooth model (W, By = B{}V + Byy) of (X, B), such that

° BI}}V > 0 and By, is reduced,
e By, is vertical over U, and
e for any real number ¢ € (0,1], all lc centers of (W, By — tBy;,) dominate U.

Since M descends to X, (W, By, M) is a proper log smooth model of (X, B,M), and for any
real number ¢t € (0, 1], any lc center of (W, By —tBy;,, M) is an lc center of (W, By —tBy},) and
dominates U. Thus (W, By = BI’}V + B}, M) satisfies our requirements. O

2.5. Canonical bundle formula.

Theorem 2.14. Let (X, B,M)/U be an NQC' lc g-pair such that U is quasi-projective, and let
m: X — V be a surjective morphism over U. Assume that Kx + B +Mx ~ry 0. Then there
exists an NQC lc g-pair (V, By,M")/U, such that

(1) Kx + B+ My ~g 7*(Ky + By + My)),
(2) any lc center of (V, Byy,MV) is the image of an lc center of (X, B,M) in V, and
(3) if all lc centers of (X, B,M) dominate V, then (V, By, MV) is kit.

Proof. By the theory of Shokurov-type rational polytopes (cf. [HL22, Proposition 3.20]) and the
theory of uniform rational polytopes (see [HLS19, Lemma 5.3], [Che20, Therem 1.4]), we may
assume that (X, B,M)/U is a Q-g-pair.

Step 1. In this step we prove the case when X — V is a generically finite morphism.
By [HL20, Theorem 4.5, (4.3),(4.4)], there exists an lc Q-g-pair (V, By, M")/U, such that
Kx + B+ My ~q 7" (Ky + By + M“f), and By and MY are defined in the following way:
Let V0 be the smooth locus of V, X0 := X xy VO, and 7|x0 : X® — V? the restriction of 7.
Then we have the Hurwitz formula

KXo = (W‘XO)*K‘/O + RO

where RO is the effective ramification divisor of f|yo. Let R be the closure of R® in X, and let
By = degﬂw* (R + B). For any proper birational morphism g : V! — V let X' be the main
component of X xy V/ with induced birational map 7’ : X’ — V'. We let MY, = i My,

(1) follows immediately.

Since (V,B MV) JU is a g-pair, for any prime divisor E over V, there exists a birational
morphism hy : V. — V such that MY descends to V and Eison V. We let h : X — X
be a birational morphism such that M descends to X and the induced map 7@ : X — V is a
morphism.

deg T

There are two cases:

Case 1. E is exceptional over V. In this case we let F C #~1(F) be a prime divisor, and let
r < deg f be the ramification index of 7 along F'. Near the generic point of F', we have

K¢ = h*(Kx + B+My)+ (a(F, X, B,M) — 1)F
~Q h*T('*(KV + By +Mv) + (a(F,X,B,M) - 1)F
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and
KX = ~*K‘~/ + (7" — 1)F

= @*hiy(Kv + By + My) +r(a(E,V, By, M") = )F + (r = )F

= h*n*(Kv + By + My) + (ra(E,V, By,M") — 1)F.
Let X 5 X >V be the Stein factorization of w0 h = hy o 7. Since E is exceptional over V, F
is exceptional over X. Therefore aF' ~q ¢ 0 iff a = 0 (applying negativity lemma to both aF
and —aF'). By comparing the two expressions of K ; above, we have

a(F,X,B,M) —1=ra(E,V,By,M") — 1,

hence a(F, X, B,M) > 0 if and only if a(E,V, By,M") > 0 and a(F, X, B,M) > 0 if and only
if a(E,V,By,M") > 0. Moreover, since F C #~}(E), if E is an lc place of (V, By, M"), then
F is an lc place of (X, B,M) and centery FE is contained in the image of centerx F' in V.

Case 2. F is not exceptional over V. In this case, if E is not a component of By, then
a(E,V,By,M") =1 > 0. If E is a component of By, then we may let By,...,B,, C 7~ '(E)
be the prime divisors on X lying over V and let d; be the degree of the induced morphism
7|p, : Bi = E. By our construction of By,

o, dimultp, B
deg '

a(E,V,By,M") =1 —multg By =1 —

Since >, d; < degm, a(E,V, By,M") > 0if multg, B < 1 for each i, and a(E, V, By, M") > 0
if multg, B < 1 for each i. Moreover, since B; C 7 }(E) for each i, if E is an lc place of
(V, By,MV"), then B; is an Ic place of (X, B,M) for some i and E is contained in the image of
BZ' in V.

By our discussions above, we finish the proof in the case when X — V is a generically finite
morphism.

Step 2. In this step we prove the case when X — V is a contraction.

By [FS20, Theorem 2.20], there exists an lc Q-g-pair (V, By, M")/U, such that Kx + B +
Mx ~q m*(Ky + By + M“f) Moreover, for any birational morphism hy : V — V, we have an
R-divisor By, satisfying K, + By, + M“; = hi,(Kv + By + Mg) and defined in the following way:
let X be the main component of X xV, and h : X — X and 7 : X — V the induced morphisms.
Let K¢ + B+ Mjy = h*(Kx + B + My). For any prime divisor £ on V., multg By =1—tg,
where

tg :=sup{s | (X, B + s7*E, M) is lc over the generic point of E}.
Note that F may not be Q-Cartier but 7*FE is always defined over the generic point of F.

(1) follows immediately.

If £ is an Ic place of (V, By, M") on V, then tz = 0, hence #*E contains an lc center F' of
(X, B, M) over the generic point of E. We have F' C Supp7*F and #(F) C E, hence 7#(F) = E.
Thus F is the image of an lc center of (X' 7B,M) on V, hence centery F is the image of an lc
center of (X,B,M) in V.

By our discussions above, we finish the proof in the case when X — V is a contraction.

Step 3. In this step we prove the general case.

We let X i) Y % V be the Stein factorization of 7. Then Kx+B+Mx ~qy 0, f: X =Y
is a contraction and g : Y — V is a finite morphism. By Step 2, Kx + B+ Mx ~q f*(Ky +
By + MY) for some lec Q-g-pair (Y, By, MY)/U such that any lc center of (Y, By,MY) is the
image of an lc center of (X, B,M) in Y. Moreover, Ky + By + MY ~gy 0. By Step 1,
Ky + By + MY ~q ¢*(Ky + By + MY,) for some lc g-pair (V, By,M")/U such that any lc
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center of (V, By, M") is the image of an lc center of (Y, By, MY) in V, hence the image of an
lc center of (X, B,M) in V. We immediately get (1)(2) and (3) follows from (2). O

2.6. Special termination.

Definition 2.15. Let Z C [0,1] and Z’ C [0, +00) be two sets. We define

1 T"b‘ Si i
S(Z,T') := {1—E+Zﬁ+2ﬁ |m e Nt ry, s € Nbj €L, €T’} (0,1].
7 7

Proposition 2.16 ([HL22, Proposition 2.10]). Let Z C [0,1] and Z' C [0,400) be two sets. Let
(X,B,M)/U be a Q-factorial NQC dlt g-pair such that B € T and M =" ;M;, where p; € 7'
for each i and each M; is nef/U b-Cartier. Then for any lc center S of (X, B,M), the g-pair
(S, Bg,M®)/U given by the adjunction
Ks+ Bs + M3 = (Kx + B+ Mxy)|s

is dlt, and Bs € S(Z,T').

Definition 2.17 (Difficulty, [HL22, Definition 4.5]). Let Z and Z’ be two finite sets of non-
negative real numbers. Let (X, B,M)/U be a Q-factorial NQC dlt g-pair such that B € Z and

M = > pu;M;, where u; € I’ for each i and each M; is nef/U b-Cartier. For any lc center S of
(X, B,M) of dimension > 1, let (S, Bg, M®) be the g-pair given by the generalized adjunction

Ks+ Bs + M2 := (Kx 4+ B + My)|s,
then we define
(S, Bs,M®) := > #{E|a(E,Bs,M®) < 1—a,centers E ¢ | Bs|}
€eS(Z,T")
+ Z #{F | a(F,Bs,M®) <1 —a,centers E ¢ | Bs|}.
a€S(Z,1")

The following special termination result is similar to [Fuj07, LMT20, HL22]. The proofs are
also similar. For the reader’s convenience, we provide a full proof here.

Lemma 2.18. Let (X,B,M)/U be a Q-factorial NQC' dlt g-pair and let
(X,B,M) = (Xo,Bo,M) i d (Xl,Bl,M) it At 4 (X“BZ,M) -——> ...

be a (Kx + B+ Mx)-MMP/U. Let ¢;j: X; --» X; be the induced birational maps for each i.
For any i > 0 and any lc center S; of (X;, Bi, M) of dimension > 1, we let (S;, Bs,, M) /U be
the generalized pair given by adjunction
Kg, + Bs, + Mg == (Kx, + B; + Mx,)s,-
Then we have the following.
(1) For any i >0, j > i, and any lc center S; of (X;, B;, M), ¢; ; induces an isomorphism
near the generic point of S;. In particular, for any i,5 > 0 and any lc center S; of
(X, Bi;, M), we may let S; ; be the strict transform of S; on Xj.
(2) Fizi> 0 and an lc center S; of (X;, B;, M) such that ¢; ; induces an isomorphism for
every lc center of (S;, Bs,, M%) /U for any j >i. Then
(a) ¢jkls.; = Sij - Sik is an isomorphism in codimension 1 for any j,k > i, and
(b) Bs, is the strict transform of Bg,, for any j, k> i.
(8) Suppose that this (Kx +B+Mx)-MMP/U is a MMP with scaling of an R-divisor A >0
on X. Let

Aj=inf{t [t >0, Kx, + B; +tA; + My, is nef/U}

be the scaling numbers, where A; is the strict transform of A on X; for each j. Fizi> 0
and an lc center S; of (X, B;, M) such that ¢j,k\si’j : S;; —=» Sik s an isomorphism
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in codimension 1 and Bg, ; is the strict transform of Bg,, for any k,j > i. Let T' be
the normalization of the image of S; on U, (S, Bgy, M%) a dlt model of (S;, Bs,, M%),
and Ag the pullback of A; on Si. Then this (Kx + B + Mx )-MMP/U with scaling of
A induces the following commutative diagram/T

(Sév BSZ{?MSi) - (Sz{,i-f—l? BSZ{’i+17MSi) .= (Sz(7j7BS£’j7MSi) ...

| | |

(Si, Bg,, MSi) —> (S@Hl, BSi,Hl,MSi) — .. (Si,j, BSL].,MSZ') — ...
such that
(a)
(S;’BS;aMSi) -* (Sz{,i—l—laBSg’iJrl’MSi) T o2 (Sz{,j’BS;yj’MSi) e

is a (Kg/ + Bg + Msﬁ)—MMP/T with scaling of Ag. Note that it is possible

that (S ;, :
composition of several steps of the (KSZ{’J, + BSQJ + MSZJ)—MMP/T for some j,

(b) for any j > 1, (SZ{J,BSQJ,MSZ') is a dlt model of (S; ;, Bs, ., M%), and

(c) let

BSZ(J,MSZ') R— (Sg,jH,BS;’HI,Msi) is the identity morphism or a

i3

pji=inf{t | t > O’KS,‘,J- + BS{,J‘ + tAS,‘,j + Mgzj is nef/T'}

for each j > i, where ASZ{j is the pullback of A; on S£7j. Then pj < A; for each
j > ’
Proof. Let T C [0,1] be a finite set such that B € Z, and let Z' C [0, +00) be a finite set such
that M = 3 p;M;, where each M; is nef/U b-Cartier and each p; € Z'. Let ¢; := ¢; ;41 for
each i.

We may assume that the MMP does not terminate, otherwise there is nothing left to prove.
Possibly replacing X with X; for ¢ > 0, we may assume that each ¢; is a flip. Since the number
of lc centers of (X, B, M) is finite, possibly replacing X with X; for i > 0, we may assume that
the flipping locus of ¢; does not contain any lc centers. This proves (1).

We prove (2). We let S := S;. By (1), we may let S; := S;; for any j > i. Possibly
replacing X we X;, we may assume that ¢ = 0. By [HL22, Proposition 2.10], for any j, the
g-pair (Sj, BSJ.,MS ) given by the adjunction

is dlt, and Bg, € S(Z,Z'). By assumption, ¢;; induces an isomorphism on |Bg;| for any
Jk. Thus for any j and any prime divisor E over S;, centers;, E C |Bg,| if and only if
centerg, , £ C |Bs,,,]. By the negativity lemma, a(F, Sj,BSj,MS) < a(F, SjH,BS].H,MS)
for each j and any prime divisor £ over S;. Thus

dI,I’(Sj7 BSj ) MS) 2 dI,I’(Sj-f—h BSj+1 ) MS)
for each j. Moreover, for any j such that S; and S;y; are not isomorphic in codimension 1, if
there exists a prime divisor E on Sj41 that is exceptional over S;, then

1—a=a(E, Sj41,Bs,,,,M®) > a(E, S}, Bs,,M°)

10
for some a € S(Z,Z’), and hence

dz,7(S;, Bs;,M®) > dz 7/(Sj41, Bs,.,, M).
By [HL22, Remark 4.6], dz 7(S;, ng,MS ) < +00. Thus possibly replacing X with X; for some
j > 0, we may assume that dLI/(Sj,BSj,MS) = dLI/(Sk,BSk,MS) for any j,k. Thus §; --»
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Sj+1 does not extract any divisor for any j. In particular, p(S;y1) < p(S;), and p(Sj+1) < p(S;)
if §j --» S;41 contracts a divisor. Thus possibly replacing X with X; for some ¢ > 0, we may
assume that S; and S;41 are isomorphic in codimension 1 for each j, Which implies (2.a). Since
dLI/(Sj,BS].,MS) = dr.7/(Sk, Bs,, M®) for any 7, k, (2.b) follows from (2.a).

We prove (3). Since i > 0, possibly replacing X with X;, we may assume that i = 0 and ¢,
is a flip for every j. We let S := Sp, 8" := 5, 5; := Spj, and S} := Sp ; for every j. We let
X; = Z; + X1 be each flip and let T; be the normalization of the 1mage of Sj on Z; for each
J- Then we have an induced birational map S; --» Sj41 for each j.

Since ¢p is a (Kx, + Bo + Mx,)-flip/U, X1 — Zy is (Kx, + B1 + My, )-positive and Kg, +
Bg, + M§1 is ample/Tp. In particular, (S, Bs,,M®)/Tp is a weak lc model of (Sg, Bg,, M*).
By [HL21a, Lemmas 3.9, 3.15] and [HL21a, Theorem 3.14], we may run a (Kg; + Bg; + Mg(,))_
MMP /Ty with scaling of an ample/Tj divisor, which terminates with a good minimal model of
(S0: Bsys M?)/Ty. By [HL21a, Lemma 3.9], (S), B, M*) is a dlt model of (Sy, Bg,, M®). Since

Kg + Bgr + MoAg; + Mgé =7, 0,

this MMP is also a (Kg; + Bgy + M2, )-MMP /T with scaling of AoAg;. We may replace
0

(So, Bs,, M®)/T with (Si, Bs,, M®)/T and continue this process. This gives us the desired
(K sy + Bsy + M2, )-MMP /T with scaling of As('), which gives the commutative diagram, and
0

proves (3.a) and (3.b). For each j, since ng —|—B53 +)\jAS§_ —i—Mg,’ =7, 0, ng —|—B53 +)\jAS§_ —i—Mg,’
J J
is nef, hence p; < A, and we get (3.c). O

3. RELATIVE NAKAYAMA-ZARISKI DECOMPOSITION

Definition 3.1. Let m : X — U be a projective morphism from a normal variety to a variety, A
an ample/U R-divisor on X, D a pseudo-effective/U R-Cartier R-divisor on X, and P a prime
divisor on X. For any big/U R-Cartier R-divisor B, we define

op(X/U, B) := inf{multp B' | 0 < B’ ~g 7 B}.

We define
op(X/U,D) := lim+ op(X/U,D + €A),
e—0

where we allow 400 as a limit as well. As in [Nak04, ITI §1.], we can easily check that op(X/U, D)
is well-defined and does not depend on the choice of A (we left the proof for the readers). We
let

N,(X/U,D) := > oc(X/U,D)-C
C' is a prime divisor on X

be a formal sum of divisors with coefficients in R>o U {+00}. We say that D is movable/U if
N,(X/U,D) = 0, and this coincides with the original definition when D is big/U.

For any divisor D’ on X, we say D' < N,(X/U, D) if multc(D’) < o¢(X/U, D) for any prime
divisor C' on X. We can naturally define the addition of D’ and N,(X/U, D) as

N,(X/U,D)+ D' := > (0c(X/U, D) + multe(D")) - C,
C' is a prime divisor on X

by noticing that +0co+a = 400 for any a € R. If f : X — Y is a projective birational morphism
over U, then we can define the pushforward

No(X/U,D) := > oc(X/U,D) - f.C
C' is a prime divisor on X

as a formal sum of divisors with coefficients in R>¢ U {+o00}.
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We define the support of N,(X/U, D) as
Supp N,(X/U, D) := U C.
Uc(X/U,D)>0
If there are only finitely many prime divisors C' on X such that oc(X/U,D) > 0 and
oc(X/U,D) < 400 (e.g D > 0), then (we say) N,(X/U, D) is well-defined as a divisor and

we let

P,(X/U,D) := D — N,(X/U, D).

Definition 3.1 is the same as the one adopted in [HX13, HMX18]. The following lemma shows
that the relative Nakayama-Zariski decomposition defined in Definition 3.1 is the same as the
o-decomposition defined in [Nak04, III. §4.al:

Lemma 3.2. Notation as in Definition 3.1. If X is smooth, then op(X/U,D) is the same
as op(D,X/U), where the latter is the value defined as in Nakayama’s original relative o-
decomposition [Nak04, III. §4.a].

Proof. By definition, we only need to deal with the case when D is big. We may pick an
affine open subset U° of U such that P intersects X0 := X xy UY. Let P? := P xy UY and
DY := D xy U°. Then
op(X/U,D) = opo(X°/U°, D).
Possibly replacing (X/U, D) and P with (X°/U°, D°) and P° respectively, we may assume that
U is affine. Thus for any Cartier divisor () on U, there exists a principal divisor Q' on U such
that @ = @ in a neighborhood of the generic point of 7(P). In particular, we have
op(X/U,D) = inf{multpo B’ | 0 < B’ ~g B’}.
For any Cartier divisor F' on X, let
mp = inf{4+oo,multp ' | 0 < F' ~ F}.
If mp < 400, then by definition,
mp = max{m € N| H*(X,F — mP) — H°(X, F) is an isomorphism}.
Moreover, since U is affine and H%(X,Ox(F)) = H*(U, 7.Ox (F)), if mp < 400, then
mp = max{m € N | 1,0x(F — mP) < 7,Ox(F) is an isomorphism}.
Now the lemma follows from the construction in [Nak04, III. §4.a]. g
Lemma 3.3. Let 7 : X — U be a projective morphism from a normal variety to a variety,
D, D' two pseudo-effective/U R-Cartier R-divisors on X, and P a prime divisor on X.
(1) If D is nef/U, then op(X/U,D) = 0.
(2) op(X/U,D+ D") <op(X/U,D)+ocp(X/U,D’).
(8) If op(X/U,D’") < 400, then lim,_,g+ op(X/U,D +eD'") = op(X/U, D).
Proof. Let A be an ample/U divisor on X.
(1) is straightforward from the definition.
(2) follows from the fact that op(X/U, D+ D'+€A) < op(X/U,D+5A)+0op(X/U, D'+ 5A).
There exists a > 0 such that A — aD’ is ample/U. Thus, by (1) and (2), we have
op(X/U,D) +op(X/U,aeD") > op(X/U,D + aeD') > op(X/U, D + €A),
and (3) follows after taking ¢ — 0. O
Lemma 3.4. Let w: X — U be a projective morphism from a normal variety to a variety and

D a pseudo-effective/U R-Cartier R-divisor on X. Let f :' Y — X be a projective birational
morphism. Then:

(1) For any prime divisor P on X, we have

op(X/U,D) = 0,1 ,(Y/U, f*D).
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(2) For any exceptional/X R-Cartier R-divisor E > 0 and any prime divisor P on'Y, we
have
op(Y/U, f*D+ E) = op(Y/U, f*D) 4+ multp E.
(8) For any exceptional/ X R-Cartier R-divisor E >0 on'Y we have
Ny (X/U,D) = f«N,(Y/U, f*D + E)

as a formal sum of divisors with coefficients in R>o U {+o0}. In particular, if
N, (Y/U, f*D + E) is well-defined, then N,(X/U, D) is well-defined.

(4) If D' > 0 is an R-Cartier R-divisor on X such that D' < N,(X/U,D), then f*D’ <
Ny (Y/U, f*D) and D — D' is pseudo-effective/U.

Proof. Set ¢ = mo f and let A (resp. A’) be an ample/U divisor on X (resp. Y). Fix a
real number a > 0 such that aA’ + f*A is ample/U. Notice that f_'P is a prime divisor on
Y. Since f*A is semi-ample/U, by Lemma 3.3 we have lim,_,q+ O'f*—IP(Y/U, f*D +ef*A) =
Jf*_1P(Y/U, f*D).

Since m.Ox(F) = ¢.Oy(f*F) for any Cartier divisor F' on X, by definition we have
op(X/U,D + €A) = 0,-1p(Y/U, f*D + €f*A) for any € > 0. Thus we have

op(X/U,D) = lim o, 1p(Y/U, D+ ef*A) = 0,1 ,(Y/U, f*D)
e—0t J* *

which is (1).

Since lim,_,g+ op(Y/U, f*D+ef*A) = op(Y/U, f*D), we may assume that D is a big/U. (2)
follows from the fact that g.Oy (f*F + E) = m.Ox(F) for any Cartier divisor F' on X and any
exceptional /X divisor E > 0.

We have

N,(Y/U,f*D+ E)=N,(Y/U,f*D)+ E
by (2) and
[«No(Y/U, f*D) = No(X/U, D)
by (1), which imply (3).

For (4), since there are only finitely many prime divisors P on X such that multp D' > 0,
by assumption and by the definition of op(X/U, D) we know that D" < D! for any element
D! ~py D+ €A and any 1 > ¢ > 0. Then [D — D'| = lim,_,g+[D” — D'] is indeed pseudo-
effective/U. Moreover, f*D’ < f*D! for any 1 > ¢ > 0 and Lemma 3.3(3) implies that
multp f*D’ < op(Y/U, f*D) for any prime divisor P on Y by the same argument as in the
proof of (2) above. O

Lemma 3.5. Let m: X — U be a projective morphism from a normal variety to a variety and
D a pseudo-effective/U R-Cartier R-divisor on X. Then there are only finitely many prime
divisors P on X such that op(X/U,D) > 0. In particular, Supp N,(X/U, D) can be regarded
as a reduced divisor. If furthermore op(X/U,D) < 400 for any prime divisor P on X, then
N,(X/U,D) and P,(X/U, D) are well-defined as divisors.

Proof. Let f : Y — X be a resolution of X. By Lemma 3.4(1), for any prime divisor P on X
such that op(X/U, D) # 0, 0,-1p(Y/U, f*D) # 0. Therefore, we only need to show that there
are finitely many prime divisors Py on Y such that op, (Y/U, f*D) # 0. Possibly replacing X
with Y and D with f*D, we may assume that X is smooth. In the following, we will show that
there are at most p(X/U) = dim N*(X/U)r prime divisors P on X such that op(X/U, D) # 0.

Let Py, Py, ..., P, be distinct prime divisors of X such that op (X/U, D) > 0 for each 4. If
I < dim N'(X/U)r then we are done. Otherwise, Pi, Py, ..., P; are not linearly independent in
N(X/U)g and possibly reordering indices, we have

s l
lepl =u Z ,IijENl(X/U)
=1

Jj=s+1
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for some z1,x2,...,21 € R>p and 1 < s < [, we may also assume that z; # 0. By Lemma 3.2
and [Nak04, III, Lemma 4.2(2)], we have

l
op(X/U,Y a;P)) = x;
j=1

for any x1,x9,...,2; € R>¢. Since op(X/U, D) depends only on the numerical equivalence class
of D over U, by Lemma 3.2 and [Nak04, III, Lemma 4.2(2)] again, we obtain

s l
21 =0op (X/U,Y x:P) =op(X/U, > a;P) =0,
=1 Jj=s+1

a contradiction. O

Definition 3.6. Let 7 : X — U be a projective morphism from a normal variety to a variety, D
a pseudo-effective/U R-Cartier R-divisor on X, and P a prime divisor over X. Let f: YV — X
be a projective birational morphism such that P descends to Y. We define

op(X/U,D) :=0op(Y/U, f*D).

By Lemma 3.4, op(X/U, D) is independent of the choice of Y. Also notice that f*D is pseudo-
effective/U iff D is.

Lemma 3.7. Let m : X — U be a projective morphism from a mormal variety to a variety,
D, D' two pseudo-effective/U R-Cartier R-divisors on X, and P a prime divisor over X. Then

(1) op(X/U,D+ D") <op(X/U,D)+ocp(X/U,D’).

(2) If op(X/U,D’") < 400, then lim,_,g+ op(X/U,D + eD') = op(X/U, D).

(3) If D is a movable/U R-Cartier R-divisor, then N,(X/U,D) =0 and P,(X/U,D) = D

is mowvable.

(4) Supp No(X/U, D) coincides with the divisorial part of B_(D/U).

(5) If 0 < D' < N,(X/U, D), then N,(X/U,D — D"+ D' = N,(X/U, D).

(6) If D' > 0 and Supp D’ C Supp N,(X/U, D), then N,(X/U,D+D") = N,(X/U,D)+D’.

Proof. Let A be an ample/U R-divisor on X.

(1) and (2) follow directly from Lemma 3.3(2)(3).

For (3), if this is not true, then we have op(X/U, D) > 0 for some P. By definition, there
exist an € > 0 such that op(X/U,D + €A) > 0. Assume [D] = lim;_,[D;], where D; is a
movable divisor for each ¢ > 1. Then €A — (D; — D) is ample for any i > 0, and we have

0 < op(X/U,D + ¢A) = o0p(X/U, D; + €A — (D; — D)) < op(X/U, D;) = 0,

which is a contradiction.

For (4), from the definition of B_(D/U) we know that Supp N,(X/U,D) Cc B_(D/U). For
any divisorial component P of B_(D/U), there exist ¢ > 0 such that P C B(D + €¢A/U), so
op(X/U,D) > op(X/U,D + €A) > 0.

By Lemma 3.4, possibly replacing X with a resolution, we may assume that X is smooth and
P is a prime divisor on X. Then (5) and (6) follow from Lemma 3.2 and [Nak04, ITI, Lemma
4.2]. Notice that N,(X/U, D — D’) makes sense by Lemma 3.4(4). O

Lemma 3.8 (cf. [Has20, Lemma 2.4]). Let w: X — U be a projective morphism from a normal
variety to a variety, D (resp. D') a pseudo-effective/U R-Cartier R-divisor on X such that
No(X/U,D) (resp. No(X/U,D")) is well-defined as a divisor. Then there exists to > 0 such
that Supp N, (X /U, D + tD') is independent of t for any t € (0,t].

Proof. The proof is exactly the same as that of [Has20, Lemma 2.4]. O

Lemma 3.9. Let (X, B,M)/U be a Q-factorial NQC dlt g-pair. Then for any partial (Kx +
B+My)-MMP/U ¢: X —» X,
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(1) the divisors contracted by ¢ are contained in Supp N,(X/U, Kx + B +Mx), and
(2) let B be the strict transform of B on X. If K¢ + B + Mg is movable/U, then
Supp Ny (X/U, Kx + B + Mx) is the set of all ¢p-exceptional divisors.

Proof. Let p: W — X and q: W — X be a resolution of indeterminacies of ¢. Then
p(Kx +B+Mx)=¢(Kx+B+My)+ E

for some E > 0 that is exceptional/X and Supp E contains the strict transforms on W of all
¢-exceptional divisors. By Lemma 3.4(2) we have

Supp E C Supp No(W/U,q"(Kx + B + My) + E) = Supp No(W/U,p"(Kx + B + My)),

and by Lemma 3.4(3) we know that Supp p.F C Supp N,(X/U, Kx + B+ Mx). Therefore, any
¢-exceptional divisor is contained in Supp N,(X/U, Kx + B + Mx).

If K ¢ +B+My is movable/U, then by Lemma 3.4(3) we have ¢.N,(W/U, ¢*(K ¢ +B+Mg)+
E) = 0so Supp N,(W/U,q* (K5 +B+Mgx)+ E) (viewed as a reduced divisor) is g-exceptional.
By Lemma 3.4(3) again we have Supp N,(X/U, Kx + B + Mx) = Suppp.No(W/U,¢*(Kx +
B+ Mgy) + E), whose components are all ¢-exceptional. O

Lemma 3.10. Let (X,B,M)/U be an NQC lc g-pair such that Kx + B + Mx is pseudo-
effective/U. Let ¢ : X --» X' be a birational map/U which does not extract any divisor and B’
the strict transform of B on X', such that

(1) Kx' + B'+ My is nef/U, and
(2) ¢ only contracts divisors contained in Supp N,(X/U, Kx + B + Mx).

Then (X', B',M)/U is a log minimal model (not necessarily Q-factorial) of (X, B,M)/U.
Proof. Let p: W — X and q: W — X’ be a resolution of indeterminacies of ¢ such that

where £ > 0,F > 0, and EA F = 0. Then E and F are g-exceptional. By Lemma 3.7(3) and
3.4(2)(3), F = No(W/U,q*(Kx' + B'+ Mx/) + F).

We may write £ = F; + E5 such that F; is p-exceptional and every component of Fj is
not p-exceptional. Then p,Fs is ¢-exceptional and therefore by assumption (2), we obtain
Supp p«E2 C Supp N, (X /U, Kx + B+ Mx). By Lemma 3.4(3), we know

Supp Fy C Supp N, (W/U,p*(Kx + B + Mx)).
By Lemma 3.4(2), we have
No(W/U,p*(Kx + B+ Mx) + E1) = N,(W/U,p*(Kx + B+ Mx)) + Ej.
Therefore,
Supp(Ey + E3) C Supp No (W/U,p"(Kx + B + Mx) + E1),

and then by Lemma 3.7(6), we have

No(W/U,p*(Kx + B+ Mx) + E1 + E3) = No(W/U,p*(Kx + B+ Mx) + Ey) + E»

= N,(W/U,p*(Kx + B +Mx)) + E| + Es,

which immediately implies that

Supp E = Supp(FE; + E3) C Supp N,(W/U,p"(Kx + B+ Mx ) + FE1 + E2) = Supp F,

and hence F must be zero. Now by Lemma 3.4(3) again Supp p«F' = Supp N, (X/U,Kx + B +
My ), which contains all ¢-exceptional divisors and we are done. O
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4. REDUCTION VIA IITAKA FIBRATION

Lemma 4.1. Let (X,B,M)/U be a Q-factorial NQC' lc g-pair with X kit and 7 : X — U the
induced morphism, such that

(1) 7 is an equidimensional contraction,

(2) U is quasi-projective and Q-factorial, and

(3) KU(X/U,KX + B +Mx) = HL(X/U,KX —|—B—|—Mx) =0.
Let A >0 be an ample/U R-divisor on X such that (X, B+ A,M) is lc and Kx + B+ A+ Mx
is nef/U, and run a (Kx + B + Mx)-MMP/U with scaling of A. Then this MMP terminates
with a good minimal model (X', B',M)/U of (X,B,M)/U. Moreover, Kx+ B'+Mzx: ~g ¢ 0.

Proof. If dim X = dim U, then 7 is the identity map since 7 is an equidimensional contraction
and there is nothing left to prove. In the following, we assume that dim X > dim U.

Since k,(X/U,Kx + B+Mx) =0, Kx + B+ Mx ~gy E > 0 for some R-divisor E on X.
We may write £ = E" + EY, such that E* > 0, EY > 0, each component of E” is horizontal over
U, and E" is vertical over U. Since 7 is equidimensional, the image of any component of £¥ on
U is a divisor. Since U is Q-factorial, for any prime divisor P on U, we may define

vp:=sup{r > 0| EY —vr*P > 0}.

Then vp > 0 for only finitely many prime divisors P on U. Possibly replacing EV with £V —
(> pvpP), we may assume that EV is very exceptional over U.
Let F' be a very general fiber of w. Let

(X,B,M) = (Xo,Bo,M) -——> (Xl,Bl,M) ——> e == (XZ,BZ,M) —-——> ...

be a (Kx + B +My)-MMP /U with scaling of A, and let A;, E E?, F; be the strict transforms
of A, E" E?,F on X; respectively. Then we have

I-{J(XZ'/U, KX'L + Bi + MX'L) = IiL(XZ'/U, KX'L + Bz’ + MX'L) =0
by Lemma 2.3(6) and hence
’{U(EmFi) = K/U((KX'L + BX¢ + MXZ)|F1) = K/L((Kxi + BX¢ + MX1)|F1) = ’{L(Esz) =0,

since EM|p, = (B! + EY)|p, ~r (Kx, + Bi + My,)|r,. As in the proof of [Birl12, Theorem 3.4],
there exists a positive integer n such that Kx, + By, +My,, is a movable/U R-Cartier R-divisor.
Therefore the restriction (K, + B, + My, )|r, ~r E"|r, is also a movable R-Cartier R-divisor
since F' is a very general fiber. In particular, N, (E"|r,) = 0 by Lemma 3.7(3). Notice that
now F), is a normal projective variety and let g : F), — F,, be a resolution of singularities. Then
ko (g*(EME,)) = k(9" (E!|F,)) = 0. By [Nak04, V, 1.12 Corollary] we have

No(g"(Ep|F.) = 9" (Eplr,).

Since ¢*(E"r,) > 0, we have N, (¢*(E"£,)) < g*(E"|r,) by the definition. Hence we must
have

No(9"(Ep|r.) = 9" (Enlr,).
Therefore by Lemma 3.4(3) we get

This immediately implies that E? = 0 since E? > 0 is horizontal over U. Notice that our
(Kx + B+ Mx)-MMP/U is also a (E" + EV)-MMP/U and E" is very exceptional over U. By
Lemma 2.6, this MMP terminates with a log minimal model (X', B', M) /U = (X, B, M) /U
of (X,B,M)/U for some positive integer m, such that Kx/ + B’ + My ~ry 0. In particular,
(X', B';M)/U is a good minimal model of (X, B,M)/U. O
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Theorem 4.2. Let (X, B,M)/U be an NQC'lc g-pair and w : X — V a contraction over U such
that V' is quasi-projective. Assume that k,(X/V,Kx +B+Mx) =k, (X/V,Kx +B+Mjx) = 0.
Then there exists a Q-factorial NQC' dlt g-pair (X', B',M)/U, a contraction ©" : X' — V' over
U, and a birational projective morphism ¢ : V' — V over U satisfying the following:

X ----=-- =X
1% L 1%
U

(1) X' is birational to X and V' is smooth,

(2) Kx/ + B'+Mx: ~gy 0.

(3) (X,B,M)/U has a good minimal model if and only if (X', B',M)/U has a good minimal
model.

(4) Any weak lc model of (X, B,M)/U is a weak lc model of (X', B’ M)/U, and any weak
lec model of (X', B’ M) /U is a weak lc model of (X,B,M)/U.

(5) If all lc centers of (X, B,M) dominate V, then all lc centers of (X', B, M) dominate
V.

(6) kg (XU, Kx + B+My) = k(X' /U, Kx: + B' + My/) and r,(X/U, Kx + B+ My) =
HL(X//U, Kx/ =+ B/ + MX’)

Proof. Let h : W — X be a log resolution of (X, Supp B) such that M descends to W. By
[HL21a, Lemma 3.6], (X, B,M) has a proper log smooth model (W, By, M) for some R-divisor
By on W. By Lemmas 2.3(3) and [HL21a, Lemma 3.7], [HL21a, Theorem 3.14], and [HL21a,
Lemmas 3.10, 3.17], we may replace (X, B, M) with (W, By, M), and assume that (X, B) is log
smooth and M descends to X.

By Theorem 2.1, there exists a commutative diagram of projective morphisms

y .o x

o

| v
such that
e . are birational morphisms, my is an equidimensional contraction, Y only has Q-
factorial toroidal singularities, and V' is smooth, and
e there exist two R-divisors By and F on Y, such that
— Ky + By + My = f*(Kx + B+ Mx) + E,
— By >0,E>0,and By ANE =0,
— (Y, By) is lc quasi-smooth, and any lc center of (Y, By, M) on X is an lc center of
(X, B,M).
In particular, (Y, By, M) is Q-factorial NQC lc and Y is klt. Since ¢ is birational, by Lemma
2.3(3) we obtain

koe(Y/V' Ky + By + My) = £,(Y/V,Ky + By + My) = £,(X/V,Kx + B+Mx) =0
and
HL(Y/V/,KY + By + My) = HJL(Y/V,KY + By + My) = KJL(X/V,KX + B +Mx) =0.

By Lemma 4.1, we may run a (Ky + By + My )-MMP/V’ with scaling of a general ample/V’
divisor A on Y, which terminates with a good minimal model (X', B’,M)/V' of (Y, By,M)/V"’
such that Kx/ + B+ Mxs ~gy 0. Let 7’ : X’ — V’ be the induced contraction.
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We show that (X', B, M) /U, 7, ¢ satisfy our requirements. (1)(2) follow from our construc-
tion.

Let p: W — Y and ¢ : W — X’ be a resolution of indeterminacies of the induced map
Y --» X’ such that p is a log resolution of (Y, By).

Then we have
p*(Ky —|—By =+ My) = q*(KX/ —|—B, +MX’) + F

for some F > 0 that is exceptional over X'. Let By := p, !By + Exc(p), then (W', By, M) is
a log smooth model of (Y, By,M) and (X', B', M).

Since Ky + By + My = f*(Kx + B+ Mx) + E, by [HL21a, Theorem 3.14], (X, B,M)/U
has a good minimal model if and only if (Y, By, M)/U has a good minimal model, if and only
if (W', By, M) /U has a good minimal model, if and only if (X', B', M) /U has a good minimal
model, hence (3).

By [HL21a, Lemmas 3.10, 3.17], a g-pair (X", B”,M)/U is a weak lc model of (X, B,M)/U if
and only if (X", B”, M) /U is a weak lc model of (W', By, M) /U, if and only if (X", B”,M)/U
is a weak lc model of (X', B', M)/U, hence (4).

Let D be an lc place of (X', B',M). Since Y --» X' is a (Ky + By + My )-MMP/V’, D is
an lc place of (Y, By,M), hence an lc place of (X, B,M). Thus if all lc centers of (X, B,M)
dominate V, then all lc centers of (X', B, M) dominate V, hence all lc centers of (X', B', M)
dominate V' as ¢ is birational, and we have (5).

Finally, by Lemma 2.3(3) we obtain

HO(X/U, Kx + B+ Mx) = HO(Y/U, Ky + By + My) = HO(W//U,])*(KY + By + My))
= ke(W' /U, ¢*(Kx' + B'+My/) + F)
ko (X' /U Kxr + B+ Myx)

and
k(X/U,Kx + B+ Mx) = k,(Y/U,Ky + By + My) = 5,(W'/U,p*(Ky + By + My))
= r(W'/U,q"(Kx' 4+ B'+ Mx/) + F)
=k, (X' /U, Kx + B'+ My/),
and we get (6). O
Proposition 4.3 (cf. [Has22a, Lemma 3.10]). Let (X,B,M)/U be an NQC lc g-pair and

m: X — V a contraction over U, such that

e V is normal quasi-projective,
] I{J(X/V,Kx—FB—FMx) = KL(X/V,KX +B+Mx) =0 and KU(X/U,K)(—FB—{—M)() =
dimV —dimU, and
o all lc centers of (X, B,M) dominate V.
Then:

(1) (X,B,M)/U has a good minimal model, and o
(2) Let (X, B,M)/U be a good minimal model of (X, B,M)/U and X — V is the contraction
over U induced by K¢ + B+ Mx. Then all lc centers of (X, B,M) dominate V.
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Proof. By Theorem 4.2, there exists a Q-factorial NQC dlt g-pair (X', B',M)/U, a contraction
7'+ X' — V' over U, and a birational projective morphism ¢ : V' — V over U such that

e X' is birational to X and V' is smooth,

e Kxi+ B'+ My ~gys 0. In particular, k,(X'/V',Kx/ + B'+ Mys) = 0 by Lemma
2.3(5),

e (X,B,M)/U has a good minimal model if and only if (X', B, M)/U has a good minimal
model,

e any weak lc model of (X, B,M)/U is a weak lc model of (X', B', M)/U, and any weak
le model of (X', B', M) /U is a weak lc model of (X, B,M)/U,

e all lc centers of (X', B', M) dominate V', and

o k(X' JU, Kx+B'+My) = ko (X/U, Kx +B+My) = dim V—dim U = dim V' —dim U.

X ----=-- =X
1% L 1%
U

Claim 4.4. Assume that (X', B',M)/U has a good minimal model (X', B',M)/U, X' — V' is
the contraction over U induced by K5, + B' + My, and all lc centers of (X', B',M) dominate
V'. Then Proposition 4.3(2) holds for (X, B,M)/U.

Proof. Let (X, B,M)/U be a good minimal model of (X, B,M)/U. Then (X, B,M)/U is a weak
lc model of (X', B’,M)/U. Since (X', B’,M)/U is also a weak lc model of (X', B',M)/U, by
[HL21a, Lemma 3.9(1)], we may take a resolution of indeterminacies p: W — X and ¢ : W — X’
of the induced birational map X --» X’ such that

p*(KX + B+ Mx) = q*(KX/ + B+ MX/)'
Then:

e K+ B+Mgy is semi-ample/U, and if we let X — V be the contraction over U induced
by K¢ + B + Mg, then V = V' since they are defined by the same linear series.

e Any lc center of (X, B,M) is an lc center of (X', B', M), and any lc center of (X', B', M)
is an lc center of (X, B,M). In particular, since all lc centers of (X', B’, M) dominate

V' =V, all lc centers of (X, B, M) dominate V.
The claim is proved. O
Proof of Proposition 4.3 continued. By Claim 4.4, we may replace (X, B,M),V and 7 with
(X', B’ M), V'’ and 7’ respectively, and assume that V is smooth and Kx + B + My ~gy 0.
By Theorem 2.14, there exists an NQC klt g-pair (V, By, M) /U such that
Kx 4+ B+ Myx ~g 7*(Ky + By + MY)).
By Lemma 2.3(4)(5), we have
ke (V/U, Ky + By + MY,) = ko(X/U,Kx + B+ Myx) = dimV — dim U.

By Lemma 2.3(1), Ky + By + MY, is big/U. By [BZ16, Lemma 4.4(2)], we may run a (Ky +
By + M\K)—MMP /U with scaling of some general ample/U divisor A, which terminates with
a good minimal model (V, By, MY)/U of (V,By,M")/U. Let ¢ : V --» V be the induced

~

morphism, and let g : V — V and §: V — V be a common resolution such that § = ¢og. Then
9" (Kyv + By + My,) = §* (K + By + MY) + F.

for some G-exceptional R-divisor F > 0on V. Let h: W — X be a log resolution of (X, Supp B)
such that M descends to W and the induced map my : W — V is a morphism.
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By [HL2la, Lemma 3.6], there exists a proper log smooth model (W, By, M) of (X, B,M).
In particular,

Kw+ Bw+My =h"(Kx + B+Mx)+ FE
for some h-exceptional R-divisor £ > 0. Then
Kw +Bw + My = h*(Kx + B+Mx) + E~g (toh)*(Ky + By + My,) + E
= miyg"(Kv + By + My) + E = myg*(Kp + By + MY) + 7y F + E.
Since F is exceptional over X, E is very exceptional over V (see [Birl2, Paragraph after

Definition 3.1}). Slnce ¢ is a birational contraction, E is very exceptional over V. Since F
is exceptional over V my I is very exceptional over V. Therefore

Kw+Bw+MW NR,‘A/ 7TWF+E

is very exceptional over V. By Lemma 2.6, we may run a (Ky + By +MW)—MMP/T7 with scaling
of a general ample/V divisor which terminates with a good minimal model (W By, M)/V such
that Ky + By + My ~p 5
Supp(myy F' + E). In particular, let T W — V be the induced morphism, then

0 and the induced birational map W --» 1% exactly contracts

K + By + My ~r 75(Kp + By +MY).

Since (‘7,B‘7,Mv)/U is a good minimal model of (V, By,M")/U, Ky + By + M“A; is semi-
ample/U, hence Ky + By + My is semi-ample/U. Thus (W,BW, M)/U is a good minimal
model of (W, Byy,,M)/U. By [HL2la, Lemma 3.10], (W,BW,M)/U is a good minimal model
of (X, B,M)/U, which implies (1).

Let (X B,M)/U be a good minimal model of (X,B,M)/U. By [HL2la, Lemma 3.9(1)],
there exists al resolution f: Z — X and f Z — W of indeterminacies of the induced birational
map X --» W such that

ff(Ky +B+Mg) = f*(KW\ + By + MW\)

In particular, any lc place of (X, B,M) is an lc place of (/W, By, M), hence an lc place of
(W, By, M), and thus an lc place of (X, B,M) by [HL21a, Lemma 3.7]. Therefore, any Ic place
of (X, B,M) dominates V. Moreover, since

f*(Kx + B+Mg) ~r f*ors(Kp + By + M),
the contraction Z — V induced by f*(Kg + B + Myg) factors through ‘7, and the induced
morphism V — V is actually given by the big/U semi-ample/U R-divisor Ky + By + Mg In

particular, the induced map V --» V is birational. Thus all lc places of (X, B,M) dominate V,
hence all lc centers of (X, B, M) dominate V', which implies (2). O
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5. APPLICATIONS OF THE NAKAYAMA-ZARISKI DECOMPOSITION
This section is similar to [Has22a, Section 3, before Theorem 3.14].

Lemma 5.1 (cf. [Has22a, Lemma 3.5]). Let (X,B,M)/U and (X', B',M)/U be NQC dlt g-
pairs with a birational map ¢ : X --» X' over U such that .M = M. Let S and S’ be lc centers
of (X,B,M) and (X', B', M) respectively, such that ¢ is an isomorphism near the generic point
of S, and P|g : S --» S’ defines a birational map/U. Suppose that
(1) Kx + B + My is pseudo-effective/U,
(2) for any prime divisor D' on X', a(D', X', B’ M) < a
(3) for every prime divisor P over X such that a( X,B
then O'P(X/U Kx —|—B—|—Mx) =0.
Let (S, Bg,M®)/U and (S', Bs/,M®)/U be the dit g-pairs induced by adjunction

K5+Bs+MS (KX+B+MX)‘S s KS/ —|—BS/ —|—MS/ = (KX/ —|—B +MX’)’S’
Then

,X,B,M), and

(D’
,M) < 1 and centerx (P)NS # 0,

a(Q, ', Bs, M) < a(Q, S, Bs,M”)
for all prime divisors Q on S’.

Proof. The proof follows exactly the same lines as [Has22a, Proof of Lemma 3.5] except the
following two places:

e [Has22a, Page 13, Line 30] cites [Has20, Remark 2.3(1)]. We shall replace [Has20, Remark
2.3(1)] with Lemma 3.7(1).

e [Has22a, Page 13, Line 32] cites [Has20, Remark 2.3(3)]. We shall replace [Has20, Remark
2.3(3)] with Lemma 3.4(2).

Therefore, we shall omit the details of the proof to avoid redundance. O

Lemma 5.2 (cf. [HMXI18, Lemma 5.3]). Let (X, B1,M)/U and (X, By, M)/U be Q-factorial
NQC dlt g-pairs such that Kx + B + Mx is pseudo-effective/U and

0 < By — By < N,(X/U,Kx + By + My).

Then (X,B1,M)/U has a log minimal model (resp. good minimal model) if and only if
(X, B2,M)/U has a log minimal model (resp. good minimal model).

Proof. First we assume that (X, B;,M)/U has a log minimal model (resp. good minimal
model). By [HL21a, Theorem 2.24], we may run a (Kx + By +Mx)-MMP /U which terminates
with a log minimal model (resp. good minimal model) (X', B, M)/U with induced birational
map ¢ : X --» X' over U. By Lemmas 3.3(1) and 3.9(2), ¢ contracts every component of
Supp Ny (X/U, Kx + B1 + Mx). Thus B’ is also the strict transform of By on X’.

Let p: W — X and ¢ : W — X’ be a resolution of indeterminacies of ¢, and write

p (Kx + Bi+Mx) =¢"(Kx'+ B'+Mx/) + E
for some effective g-exceptional R-divisor £ on W. Then by Lemmas 3.3(1) and 3.4(2)(3),
N,(X/U,Kx + By + Mx) = p.E is well-defined as a divisor. Let F':= E — p*(B; — Bg). Then
F>E—p*Ny(X/UKx + By +My) = E — p'p,E

and
Since E—p*p, E is p-exceptional, p,F' > 0. By the negativity lemma, F' > 0. Thus (X', B',M)/U
is a weak lc model of (X, B, M)/U. By [HL21a, Lemmas 3.9(2), 3.15], (X, B2, M)/U has a log
minimal model (resp. good minimal model).

Now we assume that (X, By, M)/U has a log minimal model (resp. good minimal model).

By [HL2la, Theorem 2.24], we may run a (Kx + B2 + Mx)-MMP/U which terminates with
a log minimal model (resp. good minimal model) (X', B',M)/U with induced birational map
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¢:X --» X' over U. Let C := By — By. Then ¢ is also a (Kx + By + ¢C + Mx)-MMP/U for
any 0 < € < 1 by Lemma 2.7. Let C’ be the strict transform of C' on X’. By Lemma 3.7(5), we
obtain

NO(X/U,KX +B2 —|—€C—|—Mx) + (1 — G)C = NO(X/U,KX +Bl —i—Mx),

and
NO(X/U,KX —i—Bg —i—Mx) +C = NU(X/U,KX +B1 +Mx)
for any € € [0,1]. Therefore, we have
NO(X/U,KX + B —|—€C—|—Mx) = NO(X/U,KX + By +Mx) + eC

for any € € [0,1]. Hence, if € € (0,1], then

Supp Ny (X/U,Kx + By + eC + My ) = Supp N, (X/U, Kx + B1 + Mx),
since they are both equal to Supp N,(X/U, Kx + By + Mx) U Supp C. Moreover, by [HL22,
Lemma 3.21], we may pick 0 < € < 1 such that any partial (Kx/ + B} 4+ eC’' + My, )-MMP /U
is (Kx/ + B+ My)-trivial/U. We run a (Kx: + B’ 4+ eC’' + Mx/)-MMP /U with scaling of an
ample/U R-divisor. By Lemma 2.8, after finitely many steps we get a birational map v : X’ --»
X" such that Kx»+ B" +eC” +Mx is a movable/U R-divisor, where B” and C” are the strict
transforms of B’ and C’ on X" respectively. By Lemma 3.9(2), the set of (¢) o ¢)-exceptional
divisors is exactly Supp N, (X /U, Kx + Ba+eC+Mx) = Supp N,(X/U, Kx + B1+Mx). Thus,
by assumption, Supp C' = Supp(Bj — Bs) is also (¢ o ¢)-exceptional. Then C” = 0 since it is the
pushforward of C' to X”, hence B” is also the strict transform of B; on X” and K x»+B"+Mx is

nef/U (resp. semi-ample/U) by construction. By Lemma 3.10, (X", B”,M)/U is a log minimal
model of (X, B;,M)/U. The lemma follows from [HL21a, Lemma 3.9(2)]. O

Lemma 5.3 (cf. [Has22a, Lemma 3.6]). Let (X, B,M)/U and (Y, By,M)/U be NQC' lc g-pairs
and f:Y — X a projective birational morphism such that

(1) Kx + B + Mx is pseudo-effective/U, and
(2) for any prime divisor D on'Y,

0 <a(D,Y,By,M) —a(D,X,B,M) < op(X/U,Kx + B + My).

Then Ky + By + My is pseudo-effective/U. Moreover, (X, B,M)/U has a log minimal model
(resp. good minimal model) if and only if (Y, By,M)/U has a log minimal model (resp. good
minimal model).

Proof. The assumptions imply that
0< f*(Kx +B+Myx) — (Ky + By + My) < N,(Y/U, f*(Kx + B+ Mx))

and then Ky + By + My is pseudo-effective/U by Lemma 3.4(4).

Let g : W — Y be a log resolution of (Y, Supp By) such that M descends to W and h := fog
is a log resolution of (X,SuppB). Let By := h;'B + SuppExc(h) and Bj, := g;'By +
Supp Exc(g). Then we have

Kw+Bw +My =h"(Kx+B+Mx)+E
for some Ey > 0 that is exceptional/X. By Lemma 3.4(1)(2),
op(W/U,Kw + By + My) = op(X/U,Kx + B+ Mx) + multp E
for any prime divisor P on W.
Claim 5.4. For any prime divisor P on W, we have

0 < a(P,W, Bly, M) — a(P,W, By,M) < op(W/U, Ky + Bw + My).
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Grant Claim 5.4 for the time being. By Claim 5.4 and [HL2la, Theorem 3.14], possibly
replacing (X, B,M)/U and (Y, By,M)/U with (W, By,M)/U and (W, By;,;, M)/U respectively,
we may assume that (X, B,M) and (Y, By,M) are Q-factorial dlt and X = Y. The lemma
follows from Lemma 5.2. U

Proof of Claim 5.4. For any prime divisor P on W, one of the following cases holds:
Case 1. P is not exceptional over X. In this case
a(P,W, By, M) — a(P,W, Byy,M) = a(P,Y, By,M) — a(P, X, B,M)
and the claim follows.
Case 2. P is exceptional over X but not exceptional over Y. In this case a(P, W, By, M) = 0,
a(P,W, By,,M) = a(P,Y, By,M), and (P, X, B,M) = multp E, so
0 <a(P,Y,By,M) = a(P,W, By, M) — a(P,W, By, M),
and
a(P,Y,By,M) < op(X/U,Kx + B+ Mx) + a(P, X, B,M)
=op(X/U,Kx + B+ Mx)+multp E = op(W/U, Kw + By + My)
and the claim follows.

Case 3. P is exceptional over Y. In this case a(P, W, By,M) = a(P, W, By;,, M) = 0, and the
claim follows. 0

Lemma 5.5 (cf. [Has22a, Lemma 3.8]). Let (X,B,M)/U be an NQC lc g-pair with induced
morphism m: X — U such that U is quasi-projective. Let S be a subvariety of X, and
(X,B,M) := (Xo,B9,M) --» (X1,B1,M) --» -+ -5 (X,,, B, M) --» ...
a (Kx + B+ Mx)-MMP/U with scaling of an R-divisor A > 0. Let
Xi:==inf{t > 0| Kx, + B; + Mx, +tA; is nef/U}
be the scaling numbers, where A; is the strict transform of A on X;. Suppose that

e cach step of this MMP is an isomorphism on a neighborhood of S, and
® limi*)+oo )\Z =0.
Then

(1) for any m-ample R-divisor H on X and any closed point x € S, there exists an R-divisor
E such that 0 < E ~py Kx + B4+ Mx + H and ¢ Supp E, and
(2) for any prime divisor P over X such that centerx PNS # 0, op(X/U, Kx+B+Mx) = 0.

Proof. (1) follows from [Has22a, Lemma 3.8] and (2) follows from (1) and Lemma 3.7(4). O
Lemma 5.6 (cf. [Has22a, Lemma 3.9]). Let (X,B,M)/U and (X', B',M)/U be two NQC Ic
g-pairs and ¢ : X --+ X' a birational map such that ¢, M = M. Suppose that

e a(P,X,B,M) < a(P, X', B',M) for any prime diisor P on X, and

e a(P,X',B' M) <a(P',X,B,M) for any prime divisor P' on X'.
Then

(1) Kx + B + My is abundant/U if and only if Kx + B+ My is abundant/U, and
(2) (X,B,M)/U has a log minimal model (resp. good minimal model) if and only if
(X', B';M)/U has a log minimal model (resp. good minimal model).

Proof. Let p: W — X and q : W — X’ be a resolution of indeterminacies such that M descends
to W, p is a log resolution of (X, Supp B), and ¢ is a log resolution of (X', Supp B’). Let

By = > max{1l — a(D, X, B,M),1 — a(D, X', B',M),0}D.

D is a prime divisor on W
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Then (W, By, M) is Ic and (W, Byy) is log smooth. By construction, there exists a p-exceptional
R-divisor £ > 0 and a g-exceptional R-divisor F' > 0 such that

E+p*(Kx + B+ My)=Kw + By + My =q¢*(Kx + B'+ Mx/) + F.
(1) follows from Lemma 2.3(3) and (2) follows from [HL21a, Theorem 3.14]. O

6. A SPECIAL LOG MINIMAL MODEL

The purpose of this section is to prove Theorem 6.1 and Theorem 6.6, which are analogues of
[Has22a, Theorem 3.14 and Theorem 3.15] in the relative setting.

Theorem 6.1 (cf. [Has22a, Theorem 3.14]). Let (X, B,M)/U be an NQC dit g-pair such that

o Kx + B+ My is pseudo-effective/U and abundant/U,
e for any lc center S of (X,B,M), (Kx + B+ Mx)|s is nef/U, and
e for any prime divisor P over X such that a(P,X,B,M) < 1 and centerx P N
NKIt(X, B, M) # 0, op(X/U, Kx + B + My) = 0.
Then (X, B,M)/U has a log minimal model.

Proof. We divide the proof in six steps.

Step 1. In this step we show that we may replace (X, B, M) with a Q-factorial dlt model and
find two R-divisors G > 0, H > 0, and a real number 1 > t3 > 0 such that

(I) Kx + B+ My ~ryu G+ H,

(IT) Supp G C Supp| B|, and

(ITI) for any ¢ € (0,to], the following hold:

(IIL.1) (X,B+tH,M)/U is dlt, N,(X/U, Kx + B+tH + Mx) is well-defined as a divisor
and Supp N, (X/U,Kx + B+ tH + My) does not depend on ¢, and
(II1.2) (X,B —tG,M)/U has a good minimal model.

Since Kx + B + My is pseudo-effective/U and abundant/U, Kx + B+ Mx ~rpy D > 0
for some R-divisor D on X. Let X --» V be the litaka fibration/U associated to D. Then
dimV —dimU = k,(X/U,Kx + B+ Mx). Let h: W — X be a log resolution of (X, Supp B)
such that M descends to W and the induced map ¢ : W --» V is a morphism. Then we may
write

Kw+Bw+MW :h*(Kx+B+Mx)+E
such that By > 0, E > 0, and By A E = 0. Notice that (W, By, M) is a log smooth model of
(X, B,M). By Lemma 2.5,

(i) ke(W/U,Kw + By + M) =dimV — dimU and k,(W/V, Ky + By + My) = 0.
Thus by construction Ky + By + My is R-linearly equivalent/U to the sum of an effective
R-divisor and the pullback of an ample/U R-divisor on V. In particular, we may find 0 <
Dw ~ru Kw + Bw + My such that Supp Dy contains all lc centers of (W, By, M) that are
vertical over V.

Let (X, B,M) be a proper log smooth model of (W, By, M) with induced morphism g : X —
W such that g is a log resolution of (W, By + Dy ), and

K)*(—i-B—i-MX :g*(Kw+Bw+Mw)+E
for some E > 0. By Lemma 2.13, possibly replacing (X, B, M) with a higher model, we may
assume that there is a decomposition B = B" + B such that

(ii) B" > 0 and BY is reduced,

(iii) BY is vertical over V, and

(iv) for any t € (0,1], all lc centers of (X, B —tB?, M) dominate V.

Let D := ¢g* Dy +E. Then (X, B+ D) is log smooth and D ~gy K+ B+Mg. Since Supp Dy
contains any vertical lc center of (W, By, M), by [HL2la, Lemma 3.7] we have Supp BY C
Supp D. Thus we may find G, H > 0 and write D = G + H such that
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(v) Kx +B+Mg ~pu G+ H,
(vi) Supp B C SuppG C Supp|B], and -
(vii) no component of H is contained in |B] and (X, B + H) is log smooth.
We fix a real number ¢ € (0,1) such that B — ;G > 0. For any t € (0,t1], by (ii)(iii) (iv)(vi),
any lc center of (X, B — tG,M) dominates V. By (i)(v) and Lemma 2.3(2), we have
ko(X/U Kg + B —tG+Mg)=dimV —dimU
and
ko(X/V,Kg +B—tG+Mg) =k(X/V,Kg +B—tG+Mg)=0.
Then by Proposition 4.3 we obtain

(viii) (X, B —tG,M)/U has a good minimal model for any t € (0,t].

Since (X, B, M) is a log smooth model of (X, B, M), we may run a (K ¢ + B+ Mg )-MMP/X
which terminates with a dlt model (Y, By, M) of (X, B, M) with induced morphism f: Y — X
and birational map ¢ : X --» Y. Let Gy and Hy be the strict transforms of G and H on
Y respectively. Then [_(y_—i— By + My ~ry Gy + Hy. By (V1_1) an(_i Lemma 2.7, there exists
0 < tp <ty such that (Y, B +tH, M) isdlt and ¢ is a (Kg + B +tH +Mg)-MMP/X as well
as a (Kg + B —tG+ Myg)-MMP/X for any t € (0,t3]. Then (Y, By + toHy,M) is dlt, and
by (viii) and [HL21a, Theorem 2.24, Lemma 3.9(2)], (Y, By — tG,M))/U has a good minimal
model for any ¢t € (0,t2]. N,(Y/U,Ky + By + tHy + My) is well-defined as a divisor since
Ky + By +tHy + My ~ry Gy + (1 +t)Hy is effective for any ¢ > 0. By Lemma 3.8, we may
pick 0 < ¢y < tg such that Supp N, (Y /U, Ky + By + tHy + My) does not depend on ¢ for any
t e (O, to].

Y<?—X—9>W

\ / lw
X--=V
We may replace (X, B, M) with (Y, By,M) and let G := Gy and H := Hy, and assume that

(X,B,M), G, H and t( satisfy (I)(II)(III). In what follows, we forget all other auxiliary varieties
and divisors constructed in this step.

Step 2. For any t € (0,%¢], by (IIL.2), (X,B — ILHG, M) /U has a good minimal model. Since

t
Kx+B+tH+ Mx ~R,U (1+7§)(Kx+B—1—+tG+Mx),

by (IIL.1) and [HL21a, Theorem 2.24, Lemma 3.9(2), 4.2], we may run a (Kx + B +tH + Mx)-
MMP/U ¢; : X --» X; which terminates with a good minimal model (Xy, B; + tHy;, M)/U of
(X,B+tH,M)/U. By Lemma 3.9(2), the divisors contracted by ¢; are precisely the components
of Supp N, (X/U, Kx+B+tH+Mx). Since Supp N, (X /U, Kx+B+tH+Mx) does not depend
ont € (0,tp] by (IIL.1), each MMP ¢ contracts precisely the components of Supp N, (X /U, Kx +
B+toH +Mx). We let Xg := Xy, By := By,, and Hy := Hy,. Then X, and X; are isomorphic
in codimension 1, and Kx, + By + Mx, is a movable/U R-divisor. By the negativity lemma,
(X¢, By +tH;,M)/U is a good minimal model of (Xg, By + tHy, M)/U for any t € (0, tp].

Claim 6.2. We may run a (Kx, + By + Mx,)-MMP/U with scaling of Hy
(X0, Bo, M) --» (X1,B1,M) --» -+ —=» (X;, B;{; M) --» ...
with scaling numbers
Ni:=inf{t > 0| Kx, + B; + tH; + M, is nef/U},

where H; is the strict transform of H on X;, which consists only of flips such that
(1) either the MMP/U terminates with a minimal model, or lim;_, o \; =0,
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(2) for any i > 1 and X € [Ny, \i—1], (X4, Bi + AH;, M) /U is a good minimal model of both
(X,B+ AH,M) and (Xo, Bo + AHyo,M)/U, and
(8) the MMP only contracts sub-varieties of Supp|By].

Proof. Since K x, + Bop+Mx, is a movable/U R-divisor, by Lemma 2.9, any (Kx, + B+ My, )-
MMP/U only contains flips. (1) follows from Lemma 2.10. For any ¢ > 1 and A € [\, Ai—1],
(Xi, Bi + \H;, M) is dlt and Kx, + B; + AH; + M, is nef/U. Since the induced birational maps
Xp --» X and X; — X, are both small, by Lemma 3.10 and [HL21a, Lemma 3.9(2)], we get
(2).

Let X; — Z; < X;t1 be the i-th step of the MMP where X; — Z; the flipping contraction.
Then for any flipping curve C; of X; — Z;, we have (Kx, + B; + My,)-C; < 0 and H; - C; > 0.
Let G; be the strict transform of G on X;. Then 0 > (Kx, + B; + Mx, — H;) - C; = G, - C;.
Thus C; C Supp G;. Since Supp G C Supp| B|, Supp G; C Supp|B;|, and we get (3). O

Claim 6.3. Let
(Xo,BQ,M) -——> (Xl,Bl,M) ——> s == (XZ,BZ,M) = ...,

i, and H; be the MMP/U, the scaling numbers, and the strict transform of H on X; for each
i as in Claim 6.2 respectively. If the MMP/U terminates, then Theorem 6.1 holds.

Proof. Let A_q := to. If the MMP/U terminates, then \;_; > )\, = 0 for some [ € N. By
Claim 6.2(2), for any t € (0, \j—1], Kx, + B + tH; + My, is nef/U, and a(P, X, B +tH,M) <
a(P, X}, By + tH;,M) for any prime divisor P on X that is exceptional/X;. Letting ¢ — 0, we
have that Kx, + B; + My, is nef/U and a(P, X, B,M) < a(P, X;, B;, M) for any prime divisor
P on X that is exceptional/X;. Thus (X;, B;,M)/U is a weak lc model of (X, B,M)/U. The
Claim follows from [HL21a, Lemma 3.15]. O

Proof of Theorem 6.1 continued. In the following, we let
(Xo,BQ, M) -—2 (Xl, Bl, M) ——> s ——> (XZ, Bi, M) = ...,

Ai, and H; be the MMP /U, the scaling numbers, and the strict transform of H on X; for each
i as in Claim 6.2 respectively.

Step 3. For every i and lc center S; of (X;, B;, M), we let (S;, Bs,, M) be the g-pair induced
by adjunction
KS¢ + BSz’ + Mgz = (KXi + B; + MX¢)|S¢’

and let Hg, := H;|s,. For every lc center S of (X, B, M) we let (S, Bs, M®) be the g-pair induced
by adjunction
Ks+ Bs+M§ := (Kx + B+ Mx)|s

and let Hg := H‘S Since Xy --» X; is a (KXO + By + MXO)—MMP/U, Xo --» X, is an
isomorphism near the generic point of S;, the strict transform Sy of S; on Xy is an lc center of
(Xo, Bo, M), hence also an lc center of (Xo, By + toHop, M). By the same argument, ¢, : X --»
Xp is an isomorphism near the generic point of Sy and the strict transform S of Sy on X is an lc
center of (X, B+toH,M). Since (X, B,M) and (X, B+tH, M) are both dlt and have the same
lc centers, S is also an lc center of (X, B,M). In particular, the induced maps gbf S - 5
and ¢}sz : §j --» §; are birational for any j < i.

By Lemma 2.18(1), we may find m > 0 such that X,, --» X; is an isomorphism near the
generic point of any lc center Sy, of (X,,, By, M) and any ¢ > m. By Lemma 2.18(2.a), possibly
replacing m, we may assume that the induced QSEM : Sm — S; is small for any lc center S5, of
(Xm, Bm, M) and any i > m.

Then we only need to show that for any lc center S, of (X, By, M) of dimension > 1,
(S, Bs,,,M®)/U has a log minimal model. Indeed, if this is the case, then by Lemma
2.18, [HL22, Remark 3.25, Theorem 4.1], Claim 6.2(1), and induction on the dimension of
lc centers, the (Kx, + Bo+ Mx,)-MMP /U above will induce isomorphisms on any lc center Sy,
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of (X, Bm, M) for m > 0. But by Claim 6.2(3) the (Kx, + Bo+Mx,)-MMP /U only contracts
sub-varieties of Supp|Bp], so it must terminate.

Step 4. We prove the following claim.

Claim 6.4. There ezists a Q-factorial lc g-pair (T, BT,MS)/U and a birational morphism
VT — Sy, satisfying the following:
(1) For any prime divisor D on S such that a(D, S, Bs, ,M?%) < a(D, S, Bs,M?®), D is
on T and is a Y-exceptional.
(2)
Br = > (1 —a(D, S, Bs, M®))D.
D is a prime divisor on T

(8) For any i > m and any prime divisor Q over S, we have
a(Q, S, Bs + \iHg,M?®) < a(Q, S, Bs, + N\iHg,, M¥).
(4) For any prime divisor Q' over Sy, we have
a(Q', S, Bs,,,M?®) < a(Q', T, Br,M?).

Proof. By Claim 6.2(2), (X;, B; + A\iH;,M)/U is a good minimal model of (X, B + \;H,M),
hence (3) holds.

Since ¢; does not extract any divisor, a(P, X;, B;, M) < a(P, X, B,M) for any prime divisor
P on X;. Since op(X/U,Kx + B+ Mx) = 0 for any prime divisor P over X such that
a(P,X,B,M) < 1 and centerx P N Nklt(X, B,M) # (), by Lemma 5.1 and since ¢y, ; is small
for any i > m, a(D, S;, Bs,,M®) < a(D, S, Bs, M?) for any prime divisor D on S, and i > m.
Thus a(D, S;, Bs, + A\iHg,, M?%) < a(D, S, Bs, M®) for any prime divisor D on S, and i > m.
By (3), for any i > m we have

a(D, S, Bs + \iHsg,M®) < a(D, S;, Bs, + \iHs,,M?)
a(D, Sy, Bs, + A\iHs, ,M®) < a(D, S, Bg, M?).

Letting i — +o00, we have
a(D, S, Bs,M®) = a(D, S,,, Bs,, , M?)
for any prime divisor D on S,,. We define
C:={D | D is a prime divisor on S, a(D, Sy, Bs,,, M®) < a(D, S, Bg, M®)}.
Then any element of C is exceptional over S,,. Thus for any D € C, by (3), we have
a(D, S, Bs + AnHs,M?) < a(D, S, Bs,, + A\mHs,,, M)
< a(D,Spm,Bs,, ,M?) < a(D, S, Bs,M?%) < 1.

Since any element of C is a prime divisor on S, any element of C is a component of Hg. Thus C
is a finite set, and for every D € C, since A\, < tg, we have

0 <a(D, S, Bg + toHg, M®) < a(D, S, Bs + A Hg, M?)
<a(D, S, Bs,, + AnHs,,, M%) < a(D, Sy, Bs,,, M%) < a(D, 5, Bs,M?) < 1.
Thus 0 < a(D, Sm, Bs,,, M) < 1 for any D € C. By [Has22a, Lemma 3.4], there exists a
birational morphism v : T — S, from a Q-factorial variety T" which extracts exactly divisors
contained in C. (1) follows immediately from the construction of C. Since (S, Bs, M?) is Ic,
there are only finitely many divisors D on T such that a(D, S, Bg,M®) # 1, hence By > 0 is

well-defined, and we get (2).
For any prime divisor D on T, if D is 1-exceptional, then

a(D, Sy, Bs, ,M®) < a(D, S, Bs,M®) < 1
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as D € C, and if D is not t-exceptional, then centerg, D is a divisor, hence a(D, S, Bg, M®) =
a(D, Sy, Bs,,,M®) < 1. In either case,

a(D, Sm, Bs,,, M?) < a(D, S, Bs,M®) < 1.
Since T' is Q-factorial, K7 + Bp + M:b; is R-Cartier, and
Kr + Br + M7 < ¢*(Ks,, + Bs,, + M§, ).

Thus
0 < a(Q', Sm, Bs,,,M?) < a(Q', T, By, M?)

for any prime divisor Q' over S,,, and we get (4). In particular, (T, By, M®) is lc, and the proof
is concluded. O

Step 5. In this step we show that (T, By, M?®)/U has a log minimal model. We first prove the
following claim:

Claim 6.5. For any prime divisor D over S,
(1) if D is on S, then a(D, S, Bs,M®) < a(D, T, By, M%), and
(2) if D is on T, then a(D, T, By, M?) = a(D, S, Bg, M®).

Proof. By Claim 6.4(2), we only need to show that for any prime divisor D on S that is
exceptional over T, a(D, S, Bs, M®) < a(D, T, By, M?). By Claim 6.4(1)(4),

a(D, S, Bs,M®) < a(D, S, By, M®) < a(D, T, By, M?),
and we get (1). O

By our assumption, (S, Bs,M®)/U is a log minimal model of itself, then by Lemma 5.6
(T, Br,M?®)/U also has a log minimal model.

Step 6. We conclude the proof in this step. Recall that we only need to show that
(S, Bs,,, M®) /U has a log minimal model.

For any i > m, since Kx, + B; + \iH; + My, is nef/U, Kg, + Bg, + A\Hs, + Mg, =
(Kx, + Bi + \iH; + My, )|s, is nef/U. Since ¢S . is small, (Si, Bs, + A\iHg,, M®) /U is a weak

m,i
lc model of (S,,, Bs,, + \iHs, ,M®)/U. Let h,, : W — S,, and h; : W — S; be a resolution
of indeterminacies of (b;f” By Lemmas 3.3(1), 3.4(2), 3.7(3) and the negativity lemma, for any
prime divisor D on T' we have

0 <a(D,S;, Bs, + \iHs,,M®) — a(D, S,,, Bs,, + \iHs,, , M?)
= 0p(Sm/U, Ks,, + Bs,, + \iHs,, + M2 ).
By Claim 6.4(3), we have
op(Sm/U, Ks,, +Bs,, +\iHs,, +MZ2 ) > a(D, S, Bs+\iHg, M%) ~a(D, Sy, Bs,, +\iHs,,, M?).

By Claim 6.4(2), a(D, S, Bs,M®) = a(D, T, By, M?). By Lemma 3.7(2) and Claims 6.2(1) and
6.4(4), for any prime divisor D on T,

op(Sm/U, Ks,, + Bs,, + M2 )
= lim_op(Sn/U. Ks,, + Bs, +XiHs, +M§,)
> lim (a(D, S, Bs 4+ A\iHg,M®) — a(D, Sy, Bs,, + A\iHg,,, M*))
—a(D, S, Bs,M?) — a(D, S,,, Bs,,, M*)
—a(D, T, Br,M") — a(D, S, Bs,., M%) > 0.

Since (T, By, M?)/U has a log minimal model by Step 5, by Lemma 5.3, (S,,,, Bs,,, M®)/U has
a log minimal model, and we are done. O
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Theorem 6.6 (cf. [Has22a, Theorem 3.15]). Let (X, B,M)/U be a Q-factorial NQC dit g-pair
and A > 0 an R-diwvisor on X such that (X, B+ A,M)/U islc and Kx + B+ Mx + A is nef/U.
Then for any (Kx + B + My )-MMP/U with scaling of A

(X,B,M) = (Xo,BQ,M) g (Xl,Bl,M) I At 4 (XZ,BZ,M) = ...,
with scaling numbers
A= inf{t >0 ’ KXi + B; + tA; —i—MXi 18 nef/U},

where A; is the strict transform of A on X;, if A; > 0 for each i and lim;_, 1o A; = 0, then there
are only finitely many i such that Kx,+ B;+Mx, is log abundant/U with respect to (X;, B;, M).

Proof. We apply induction on the dimension. Suppose that the theorem holds in dimension
< dim X — 1 but the theorem does not hold. Then there exists a (Kx + B+ Mx)-MMP /U with
scaling of A as in the statement of the theorem such that Kx, + B; + My, is log abundant/U
with respect to (X;, B;, M) for infinitely many i. Let ¢; ; : X; --» X; be the induced birational
map. Possibly replacing (X, B,M) with (X,,, By, M) for some m > 0, we may assume that
the maps ¢; ; are small for any ¢, j.

We prove the following claim.

Claim 6.7. If there exists m > 0 such that ¢ i|s is an isomorphism for any lc center S of
(Xm, B, M) and i > m, then Theorem 6.6 holds.

Proof. Possibly replacing (X, B,M) with (X, By, M) we may assume that ¢; j|nuie(x;,B,,M)
is an isomorphism for any 4,j and Kx + B + Mx is abundant/U. Since lim; , - A; = 0 and
¢i; are small for any i,j, Kx + B + Mx is a movable/U R-divisor, hence Kx + B + My is
pseudo-effective/U. Notice that (X;, B;, M) are all dlt and Q-factorial. Let D be a component
of | Bi]. Then ¢; ;11|p being an isomorphism implies that the flip ¢; ;41 is an isomorphism near
D. Therefore ¢; ;11 is an isomorphism on a neighborhood of |B;|. By Lemma 5.5, B_(Kx +
B+Myx /U) does not intersect Supp| B/, and op(X/U, Kx + B+Mx) = 0 for any prime divisor
P over X such that centerx P N Supp|B| # 0. In particular, (Kx + B + Mx)|g is nef/U for
any lc center S of (X, B,M). By Theorem 6.1, (X, B,M)/U has a log minimal model, but this
contradicts [HL.22, Theorem 4.1] so we are done. O

Proof of Theorem 6.6 continued. We let ¢; := ¢; ;41 for every i and X; — Z; < X,y the flip
defined by ¢;. By Claim 6.7, we only need to show that for any lc center S of (X, B,M), the
MMP terminates along S after finitely many steps. By induction on the dimension of lc centers,
we may assume that ¢; induces an isomorphism for every k-dimensional lc centers and i > 0,
where k < d = dim S. Let S; be the strict transform of S on X; and (.5;, Bsi,MS) the g-pair
given by adjunction

KS¢ + BSz’ + Mgl = (KXi + B; + MX¢)|S¢'
Let (S!, Bg;,M®) be a dlt model of (S;, Bs,, M®). By Lemma 2.18, for i > 0, the (Kx +
B + Mx)-MMP/U with scaling of A induces a (Kg + Bg; + Mgé)—MMP/T with scaling of
A s; such that the limit of the scaling numbers is 0, where A s is the pullback of A; on S; and
T is the normalization of the image of S; in U. Since K x; + B; + M X; is log abundant/U
with respect to (Xj, Bj,M) for infinitely many j, Ks;_ + Bs;_ + Mg( is log abundant/T" with
J
respect to (S},BS/Y,MS ) for infinitely many j. By Theorem 6.6 in dimension < dim X, the
J
(K53 + BS;_ + MZ2,)-MMP/T terminates, i.e the top horizontal maps in Lemma 2.18(3) are
J

isomorphisms for ¢ > 0. Therefore the bottom horizontal maps in Lemma 2.18(3) must also be
isomorphisms for 7 > 0 by the contructions in the proof. Thus there exists m > 0 such that
®m,ils is an isomorphism for any lc center Sy, of (X, By, M) and ¢ > m and we are done. [
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7. LOG ABUNDANCE UNDER THE MMP
This section is similar to [Has22b, Section 3 and Theorem 4.1].

Theorem 7.1 (cf. [Has22b, Theorem 3.5]). Let (X, B,M)/U be an NQC lc g-pair and 7 : X —
Z a projective morphism/U such that Z is normal quasi-projective. Let C' > 0 be an R-divisor
on X, Az an ample/U R-divisor on Z, and 0 < A ~g y 7* Az an R-divisor on X, such that
(1) C does not contain any lc center of (X, B, M),
(2) Kx+B+C+ Mgy ~R,Z 0, and
(3) (X,B+AM) is lc.
Then Kx + B+ A+ Mx is abundant/U.

Proof. Possibly replacing 7 with the contraction in the Stein factorization of 7w, we may assume
that 7 is a contraction. Possibly replacing Z — U with the Stein factorization of Z — U, we may
assume that Z — U is a contraction. Let F' be a very general fiber of X — U and Fy := 7(F).
Then Fy is a very general fiber of Z — U. Possibly replacing (X, B,M), A,C, Z, Az, n,U with
(F,B|p,M|r),Alp,C|F,Fz,Az|F,, 7|F, {pt}, we may assume that U = {pt}. The theorem
follows from [Has22b, Theorem 3.5]. Note that we remove the R-Cartier assumption of C' as it
is immediate from (2). O

Lemma 7.2 (cf. [Has22b, Lemma 3.6]). Let (X, B,M)/U be an NQC lc g-pair and 7w : X — Z
a projective morphism/U such that Z is normal quasi-projective. Let C > 0 be an R-divisor on
X, Az an ample/U R-divisor on Z, and 0 < A ~gp y 7*Ayz an R-divisor on X, such that

(1) C does not contain any lc center of (X, B, M),

(2) Kx+B+C+Mgy ~R,Z 0, and

(3) (X,B+AM) is lc.
Let h: W — X be a log resolution of (X, Supp B) such that M descends to W, and By >0 an
R-divisor on W such that (W, By + h*A) is lc and (Kw + By + My — h*(Kx + B+ My ))=°
is h-exceptional. Then Ky + Bw + h*A + My is abundant/U.

Proof. Possibly replacing w with the contraction in the Stein factorization of w, we may
assume that 7 is a contraction. Possibly replacing Z — U with the Stein factorization of
Z — U, we may assume that Z — U is a contraction. Let F,, be a very general fiber
of W — U, F = h(Fw), and Fz := n(F). Then F and Fz are very general fibers of
X — U and Z — U respectively. Possibly replacing (X, B,M), A,C,Z, Az, n,U, W, h, By with
(F,B|p,M|r),Alr,C|F, Fz,Az|r,, 7|F, {pt}, Fw, h| R, , Bw|F, , we may assume that U = {pt}.
The theorem follows from [Has22b, Theorem 3.5, Lemma 3.6]. Note that we remove the R-
Cartier assumption of C' as it is immediate from (2). O

Theorem 7.3 (cf. [Has22b, Theorem 4.1]). Let (X, B,M)/U be an NQC lc g-pair and 7 : X —
Z a projective morphism/U such that Z is normal quasi-projective. Let C' > 0 be an R-divisor
on X, Az an ample/U R-divisor on Z, and 0 < A ~g y 7* Az an R-divisor on X, such that

(1) C does not contain any lc center of (X, B, M),

(2) Kx+B+C+ Mgy ~R,Z 0, and

(3) (X,A:=B+ A,M) is lc and Nklt(X, B, M) = Nklt(X, A, M).
Then for any (Kx + A+ Mx)-MMP/U

(X, A,M) = (X(], Ao,M) -=> (Xl, Al,M) i A 4 (Xz, AZ,M) =y,

Kx, + A; + My, is log abundant/U with respect to (X;, Ai, M) for every i.

Proof. For each 7, we let ¢; : X --+ X; be the induced birational map.

By Theorem 7.1, Kx + B+ A+ Mx is abundant/U. By Lemma 2.3(6), Kx, + A; + My, is
abundant/U for any i. Thus we only need to prove that (Kx, + A; + My, )|s, is abundant/U
for any lc center S; of (X;, A;, M).
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Fix ¢ and an lc center S; of (X;, A;, M). Then there exists an lc center S of (X, A, M) such that
bils : S --+ S; is a birational map. Let (X', B’,M) be a dlt model of (X, B, M) with induced
birational morphism f : X’ — X such that there exists a component S’ of | A’| which dominates
S. Let C":= f*C, A" := f*A, and A’ := B’ + A’. Since Nklt(X, B,M) = f(Nklt(X', A’, M)),
(X', A’ M) is a dlt model of (X,A,M). By Lemma 2.11, we may run a (Kx + A’ + Mx/)-
MMP/U and get a dlt model (X, A}, M) of (X;,A;,;M) such that the strict transform S, of
S" on X] is a component of |Al]. Then (Kx, + A; + My,)|s, is abundant/U if and only if
(Kx; + A + Mx/)[g is abundant /U. Moreover, we have

C’ does not contain any lc center of (X', B', M),
KX/ —i—B/—i-C/—i-MX/ ~R,Z 0,
(X', A", M) is lc, and
NKt(X’, B', M) = Nklt(X’, A’, M).
Thus possibly replacing (X,A,M) --» (X;,A;;M) with (X', A", M) --» (X/,A’,M) and
A,B,C with A’, B',C’, we may assume that (X, A, M) is Q-factorial dlt, S is a component
of |A] = | B/, and S; is a component of |A;| = | B;].
Let (S, Bs,M®)/U and (S;, Bs,, M®)/U be the dlt g-pairs induced by the adjunction formulas

Kg+ Bs+M° := (Kx + B+ My)|s

and
Ks, + Bs, + Mg, := (KXi + B; + MXi)’Si'

Let p: W — S and ¢ : W — S; be a resolution of indeterminacies of the induced birational
map S --» S; such that M® descends to W, p is a log resolution of (S,Supp Bg), and ¢ is a
log resolution of (.S;, Supp Bg;). Since A is semi-ample/U, possibly replacing A with a general
member of [A/U|r* and setting Ag := A|s and Ag, := ((¢;)+A)|s,, we may assume that

o As > OaASZ' >0,

o (S,Ag:=Bg+ As,M) and (S;,As, := Bg, + Ag,, M) are dlt, and

e p is a log resolution of (S,Supp Ag) and ¢ is a log resolution of (S;, Supp Ag, ).
Moreover, since A is general in |A/U|g, p*Ags = p; ! Ag, hence Ay := p*A < ¢*Ag,. We may
write

and let Ay := By + Aw, such that By > 0, E > 0, and Ay A E = 0. Then (W, Ay ) is log
smooth. We may write

Kw + Bw + My, = p*(Ks + As + M2) + G4 — G_,

where G4 > 0,G_ >0, and Gy AG_ =0.
For any component D of G,

a(D, S, Ag, M%) > a(D, W, Ay, M?) = min{a(D, S;, As,, M%), 1}.
Since ¢; is (Kx + A + My )-non-positive, by [Fuj07, Lemma 4.2.10],
a(D, S;, Ag,, M%) < a(D, S, Ag, M®).
Thus a(D, S, Ag,M?) > 1, hence D is p-exceptional (since any divisor on S has log discrepancy

< 1.). We conclude that G is p-exceptional.

*The “general member” of the R-linear system |A/U|r is constructed in the following way: we write A =
> riA; where r; € (0,1) are real numbers and A; are base-point-free/U Cartier divisors. We replace A with
> r:H; where H; € |A;/U| are general members.
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(N

S—-=5

dils
ﬂsl

Z——U

Let mg := m|g and Cg := Clg. Since C' does not contain any lc center of (X, B,M), S is
not a component of C, hence Cis > 0. Then (S, Bg,M®)/U is an NQC lc g-pair, 75 : S — Z
is a projective morphism/U, Z is normal quasi-projective, C's > 0 is an R divisor on X, 0 <
Ag ~ryu mAz, such that

e Cs does not contain any lc center of (S, Bg, M?),

° Ks—FBS—i-Cs—FMg ~r,z 0,

e (S,Ag = Bg + Ag,M?) is Ic and Nklt(S, Bg, M®) = Nklt(S, Ag, M?),

e p: W — S is a log resolution of (S, Supp Bg) such that M® descends to W, By > 0 is
an R-divisor on W such that (W, By + p*Ag) is lc and

(Kw + Bw + M5, — p*(Ks + Bs + M2))2° = G,
is p-exceptional.

By Lemma 7.2, Ky + Aw + Ma, is abundant/U. By Lemma 2.3(3), Kg, + Ag, + Mgl =
(Kx, + Ai + Mx;,)|s, is abundant/U and we are done.

Theorem 7.4 (cf. [Has22b, Theroem 1.3]). Let (X, B,M)/U be an NQC' lc g-pair and A > 0 an
ample/U R-divisor such that (X, A := B+ A,M) is lc and Nklt(X, B, M) = Nklt(X, B4+ A,M).
Let (Y, Ay, M) be a dit model of (X,A,M). Then for any partial (Ky + Ay + My )-MMP/U

¢ (Y7 AY7M) -2 (Yla /Y7M)7
Ky + Al + My is log abundant/U with respect to (Y', A}, M).
Proof. 1t follows from Theorem 7.3. O

O

8. PROOF OF THE MAIN THEOREMS

Proof of Theorem 1.5. By [HL21la, Lemma 4.2], possibly replacing A by a sufficiently general
member, we may assume that Nklt(X, B, M) = Nklt(X, A, M).

First we prove (1). Let (Y, Ay, M) be a dlt model of (X, A, M). By [HL21a, Theorem 3.14],
we only need to show that (Y, Ay, M)/U has a log minimal model. We run a (Ky + Ay + My )-
MMP /U

(K AY,M) = (YbaAOaM) - (YI,AI,M) A (}/ZaAlaM) -
with scaling of a general ample/U divisor H > 0, and let
A= inf{t ‘ t> O,Kyi + A+ NH; + Myi is nef/U}

be the scaling numbers. If A\; = 0 for some 4 then (Y;, A;;,M)/U is a log minimal model of
(Y, A,M) and we are done. Thus we may assume that A\; > 0 for each i. By [HL21a, Theorem
2.24], lim;_, 4o A\; = 0. By Theorem 7.4, Ky, + A; + My; is log abundant/U for each i, which
contradicts Theorem 6.6.

Now we prove (2). We may pick 0 < € < 1 such that %A—l—eMX is ample/U. Possibly replacing
(X, B,M) with (X, B, (1 —¢)M) and A with a general member in |A 4+ eMx |g, we may assume
that Nklt(X, B) = Nklt(X, B,M) = Nklt(X,A,M). By [HL2la, Lemma 5.18], there exists a
birational morphism A : W — X such that M descends to W and Supp(h*Mx —My ) = Exc(h).
Let F':= h*Mx — My, then F' > 0 and F' is exceptional over X. In particular, Supp F' does
not contain any lc place of (X, B). Thus we may pick £ > 0 on W such that —FE is ample/X.
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Let Ky + By = h*(Kx + B). Since NKIt(X, B) = Nklt(X, B, M), there exists 0 < § < 1
such that (W, Bw + 0E) is sub-lc and $h*A — 0F is ample/U. Thus My + $h*A — 0E is
ample/U, and we may pick 0 < Hy ~ru My + %h*A — 0F such that (W, By + Hw + 0F) is
sub-lc. Let A’ := h(Bw + Hw + 6E). Then (X, A’) is lc and A’ ~g y B+Mx + 3 A. Possibly
replacing A we may assume that (X, A’ +1A) is le. By [HH20, Theorem 1.5, (X, A’ + A4) has
a good minimal model. By [HL21a, Lemma 4.2], we get (2). O

Proof of Theorem 1.4. If Kx + B + Mx is not pseudo-effective/U, then the theorem follows
from [BZ16, Lemma 4.4(1)] after passing to a dlt model of (X, B,M). So we may assume that
Kx + B + My is pseudo-effective/Z. By [HL21a, Theorem 3.14], we only need to prove (2),
so we may assume that (X, B, M) is Q-factorial dlt. We run a (Kx + B + Mx)-MMP /U with
scaling of an ample/U R-divisor H > 0:

(X,B,M) = (Xo,BQ,M) il (Xl,Bl,M) i At 4 (XZ,BZ,M) - ...

By Theorem 7.3 (U and Z in Theorem 7.3 both correspond to our U, Az and A of Theorem 7.3
correspond to 0, and C' corresponds to our A), Kx, + B; + My, is log abundant/U with respect
to (Xj, Bi,M) for every i. By [HL2la, Theorem 2.24] and Theorem 6.6, this MMP terminates
with a log minimal model of (X, B,M)/U. O
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