
ar
X

iv
:2

20
1.

08
20

8v
1 

 [m
at

h.
A

G
]  

23
 N

ov
 2

02
1

ON THE EXISTENCE OF FLIPS FOR THREEFOLDS IN

MIXED CHARACTERISTIC (0, 5)

LINGYAO XIE AND QINGYUAN XUE

Abstract. We provide a detailed proof of the validity of the Minimal
Model Program for threefolds over excellent Dedekind separated schemes
whose residue fields do not have characteristic 2 or 3.
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1. Introduction

One of the fundamental goals of algebraic geometry is to classify all al-
gebraic varieties (up to birational equivalence), which, conjecturally, can be
achieved by means of the Minimal Model Program (MMP). In characteris-
tic zero, the program holds for varieties with dimension ≤ 3, and a major
part of MMP is known for varieties of general type in higher dimensions
by [BCHM10], where they also established the existence of klt flips (see
[Bir12, HX13, HL21] for results in a more general setting). In positive char-
acteristic, this theory is now known to hold for threefolds over perfect fields
of characteristic p > 3 (see [HX15, CTX15, Bir16, BW17, GNT19, HW19b])
and in some special cases for fourfolds ([HW20, XX21]). In mixed char-
acteristic, the MMP is known to hold for excellent surfaces ([Tan18]) and
semi-stable schemes over excellent Dedekind schemes of relative dimension
2 whose residual characteristics p ̸= 2, 3 ([Kaw94]). Recently substantial
progress has been achieved for threefolds. It has been shown that the pro-
gram is valid for threefolds whose residue fields do not have characteristic 2,
3 or 5 ([BMP+20]). It has also been shown that the MMP holds for strictly
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2 LINGYAO XIE AND QINGYUAN XUE

semi-stable schemes over excellent Dedekind schemes of relative dimension
2 and for birational morphisms f with Exc(f) ⊆ ⌊∆⌋ ([TY20]).

The goal of this article is to extend the Minimal Model Program for three-
folds in mixed characteristic whose residue fields could have characteristic
5. This is expected to hold as an immediate generalization of [HW19b]
(cf. [BMP+20, Remark 9.3]), but no proof has been written down in detail.
Thus we think it may be worthwhile to give the precise statement and its
complete proof for future references.

We essentially follow the same strategy of [HW19b], where they proved
the existence of flips for threefolds over an algebraically closed field with
characteristic 5. We generalize their proof to mixed characteristic by using
the new techniques developed by [BMP+20] and [TY20].

Setting 1.1. In this article, V is an excellent Dedekind scheme whose
residue fields do not have characteristic 2 or 3.

Theorem 1.2. Let (X,∆) be a three-dimensional Q-factorial klt pair over
V . If f : X → Z is a flipping contraction over V such that ρ(X/Z) = 1,
then the flip f+ : X+ → Z exists.

Note that this result is known when the residue fields of V do not have
characteristic 2,3 or 5 by [BMP+20]. As corollaries of Theorem 1.2, we have
the following results on the MMP in mixed characteristic.

Theorem 1.3 (Minimal Model Program with scaling). Let (X,∆) be a
three-dimensional Q-factorial dlt pair over V and let f : X → Z be a pro-
jective contraction over V such that dim f(X) > 0. Then we can run a
(KX +∆)-MMP with scaling of an ample divisor over Z. If KX +∆ is rela-
tively pseudo-effective, then the MMP terminates with a log minimal model
over Z. Otherwise, the MMP terminates with a Mori fibre space.

Theorem 1.4 (Base point free theorem). Let (X,∆) be a three-dimensional
Q-factorial klt pair over V and let f : X → Z be a projective contraction over
V such that dim f(X) > 0. Let D be a relatively nef Q-Cartier Q-divisor
such that D− (KX +∆) is nef and big over Z. Then D is semi-ample over
Z.

Theorem 1.5 (Cone theorem). Let (X,∆) be a three-dimensional Q-factorial
dlt pair over V and let f : X → Z be a projective surjective contraction over
V such that dim f(X) > 0. Then there exists a countable number of rational
curves Γi such that

(1) NE(X/Z) = NE(X/Z)KX+∆≥0 +
∑

i R[Γi],
(2) the rays R[Γi] do not accumulate inside NE(X/Z)KX+∆<0, and
(3) for each Γi,

−4dΓi
< (KX +∆) · Γi < 0

where dΓi
is such that for any Cartier divisor L on X, we have L ·Γi

divisible by dΓi
.
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The above results were proven in [BMP+20, Section 9] contingent upon
the existence of flips with standard coefficients. Hence they follow immedi-
ately from Theorem 1.2.

Note that the above results do not require V to be mixed-characteristic.
If in addition V is of mixed characteristic, then we actually know the ter-
mination of flips.

Theorem 1.6 (Termination of flips). Let (X,∆) be a three-dimensional Q-
factorial dlt pair over V and let f : X → Z be a projective contraction over
V . Assume that XQ ̸= ∅. Then any sequence of (KX+∆)-MMP terminates.

Acknowledgement. The authors would like to thank their advisor Christo-
pher D. Hacon for introducing this question, and giving useful advice and
encouragements. The authors also want to thank Jihao Liu and Jingjun
Han for useful discussions. The authors were partially supported by NSF
research grants no: DMS-1801851, DMS-1952522 and by a grant from the
Simons Foundation; Award Number: 256202.

2. Preliminaries

A scheme X is called a variety over a field k (resp. a Dedekind scheme
V ) if it is integral, separated, and of finite type over k (resp. V ). We refer
the reader to [KM98] for the standard definitions and results of the Minimal
Model Program and to [BMP+20] for those in mixed characteristic. We also
refer the readers to [HW19a] for a brief introduction to F-regularity and
[BMP+20] for +-regularity (which is also called T-regularity in [TY20]).

We remark that in this paper, unless otherwise stated, if (X,B) is a
pair, then B is a Q-divisor. We say that (X,∆c) is an m-complement of
(X,∆) if (X,∆c) is log canonical, m(KX +∆c) ∼ 0, and ∆c ≥ ∆∗, where
∆∗ = 1

m⌊(m + 1)∆⌋. If ∆ has standard coefficients, then ∆∗ = 1
m⌈m∆⌉,

and so the last condition is equivalent to ∆c ≥ ∆. We say that a morphism
f : X → Y is a projective contraction if it is a projective morphism of
quasi-projective varieties and f∗OX = OY .

Setting 2.1. In this article, R is an excellent local domain with a dualizing
complex and positive-characteristic residue field.

Definition 2.2. Let (X,∆) be a log canonical pair. We say that (X,∆)
is qdlt if for every log canonical centre x ∈ X of codimension k > 0, there
exist distinct irreducible divisors D1, ...,Dk ⊆ ∆=1 such that x ∈ W :=
D1 ∩ ... ∩Dk.

Remark 2.3 ([HW19b, Remark 2.4]). Note that if (X,∆) is log canonical
and x is a generic point of a stratum W := D1 ∩ ... ∩ Dk of ∆=1, then
codim x = k.

Lemma 2.4 (cf. [HW19b, Lemma 2.5]). Let (X,∆) be a Q-factorial qdlt
pair of dimension n ≤ 3 over an excellent Dedekind separated scheme. Then
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(1) (Dn,∆Dn) is qdlt, where g : Dn → D is the normalization of a divisor
D ⊆ ∆=1 and KDn +∆Dn = (KX +∆)|Dn ,
(2) the strata of ∆=1 are normal up to a universal homeomorphism, and
(3) the log canonical centres of (X,∆) coincide with the generic points of
strata of ∆=1.

Proof. We work in a sufficiently small neighborhood of a point of X.
First, note that irreducible divisors in ∆=1 are normal up to a universal

homeomorphism. Indeed, if D ⊆ ∆=1 is an irreducible divisor, then(X,∆−
⌊∆⌋+D) is plt and hence dlt. Then we can apply [BMP+20, Lemma 2.28].

Let x ∈ Dn be a log canonical centre of (Dn,∆Dn). Then g(x) is a log
canonical centre of (X,∆). Indeed, otherwise there exist a non-zero divisor
H passing through g(x) and ϵ > 0 such that (X,∆+ϵH) is lc at g(x). Thus,
by adjuntion, (Dn,∆Dn + ϵH|Dn) is lc at x, which is impossible.

Let k be the codimension of g(x) in X. By definition of qdlt pairs, there
exist divisors D1, ...,Dk ⊆ ∆=1 with D1 = D, such that

g(x) ∈ D1 ∩ ... ∩Dk.

Then x ∈ D2|Dn ∩ ... ∩Dk|Dn , where Di|Dn ⊆ ∆=1
Dn and Di|Dn and Dj |Dn

have no common components for i, j ≥ 2. Since x is of codimension k − 1
in Dn, this shows that (Dn,∆Dn) is qdlt at x. Hence (1) holds.

As for (2) and (3), they can be proven by induction on the dimension n
and the fact that D is normal up to a universal homeomorphism. !

Lemma 2.5 (Inversion of adjunction). Consider a three-dimensional Q-
factorial log pair (X,S+E+B) over an excellent Dedekind separated scheme,
where S,E are irreducible divisors and ⌊B⌋ = 0. Write KSn +CSn +BSn =
(KX +S+E+B)|Sn, where Sn is the normalisation of S, CSn = (E∩S)|Sn

is an irreducible divisor, and ⌊BSn⌋ = 0. Assume that (Sn, CSn + BSn) is
plt. Then (X,S +E +B) is qdlt in a neighborhood of S.

Proof. Assume by contradiction that (X,S +E+B) admits a log canonical
centre Z of codimension at least two, which is different from C = E ∩S and
intersects S. Let H be a general Cartier divisor containing Z. Then for any
0 < δ ≪ 1 we can find 0 < ϵ ≪ 1 such that (X,S + (1 − ϵ)E + B + δH) is
not lc at Z. On the other hand, (Sn, (1 − ϵ′)CSn + BSn + δH|Sn) is klt for
any 0 < ϵ′ ≪ 1. This contradicts [TY20, Corollary 4.10]. !

Lemma 2.6 ([HW19b, Lemma 2.7]). Let (X,S1 + S2 + B) be a three-
dimensional Q-factorial qdlt pair where S1, S2 are irreducible divisors and
⌊B⌋ = 0. Let

f : (X,S1 + S2 +B) ""# (X ′, S′
1 + S′

2 +B′)

be a (KX + S1 + S2 + B)-flop of a curve Σ for a relative-Picard-rank-one
flopping contraction g : X → Z. Suppose that S1 · Σ < 0. Then either
(X ′, S′

1 + S′
2 + B′) is qdlt or S′

1 ∩ S′
2 = ∅ in a neighbourhood of Exc(g′),

where g′ : X ′ → Z is the flopped contraction.
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Lemma 2.7 ([BMP+20, Lemma 7.13]). Let (X,B) be a two-dimensional
klt pair admitting a projective birational map f : X → Z = SpecR such
that −(KX +B) is relatively nef, assuming that R is as in Setting 2.1 and
additionally has infinite residue field. Then there exist an f -exceptional
irreducible curve C on a blow-up of X and projective birational maps g :
Y → X and h : Y → W over Z such that:

(1) g extracts C or is the identity if C ⊆ X,
(2) (Y,C +BY ) is plt,
(3) (W,CW +BW ) is plt and −(KW + CW +BW ) is ample over Z,
(4) h∗(KW + CW +BW )− (KY + C +BY ) ≥ 0,

where KY + bC + BY = g∗(KX + B) for C ! SuppBY , CW := h∗C ̸= 0,
and BW := h∗BY .

Lemma 2.8 ([BMP+20, Theorem 7.14]). Let (X,B) be a two-dimensional
klt pair admitting a projective birational map f : X → Z = SpecR such that
−(KX +B) is relatively ample. Suppose that R is as in Setting 2.1 and has
residual characteristic p > 5, and that B has standard coefficients. Then
(X,B + ϵD) is globally +-regular over Z for every effective divisor D and
0 ≤ ϵ≪ 1.

Remark 2.9. If p = 5, then the above proposition remains true unless
BC = 1

2P1 +
2
3P2 +

4
5P3 for three distinct points P1, P2 and P3.

In what follows we need an analogue of [HW19b, Lemma 2.11] in mixed
characteristic. The proof is similar except that we need extra consideration
in the last of the proof.

Lemma 2.10 (cf. [HW19b, Lemma 2.11]). With notation as in Lemma 2.7,
suppose that p > 3 and (X,B) admits a 6-complement (X,E+Bc), where E
is a non-exceptional irreducible curve intersecting the exceptional locus over
Z. Then for any effective divisor D, (X,B + ϵD) is globally +-regular over
Z for any 0 ≤ ϵ≪ 1.

Proof. As in the proof of [BMP+20, Theorem 7.14], it is enough to show
that (Ck̄, BCk̄

) is globally F-regular, where C is the exceptional curve in
Lemma 2.7, KC +BC = (KW + CW +BW )|C and k = H0(C,OC).

By pulling back the complement to Y and pushing down on W , we obtain
a sub-lc pair (W,aCW +EW +Bc

W ) for a (possibly negative) number a ∈ Q
such that 6(KW + aCW + EW + Bc

W ) ∼Z 0, a non-exceptional irreducible
curve EW intersecting the exceptional locus over Z, and an effective Q-
divisor Bc

W such that EW +Bc
W ≥ BW . Let TW be an effective exceptional

anti-ample Q-divisor on W and let λ ≥ 0 be such that the coefficient of CW

in aCW + λTW is one. By the Kollár-Shokurov connectedness theorem (see
e.g. [Tan18, Theorem 5.2]), the pair (W,aCW +λTW +EW +Bc

W ) is not plt
along CW . In particular, Bc

C contains a point with coefficient at least one,
where

(KW + aCW + λTW + EW +Bc
W )|C = KC +Bc

C .
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Since TW is anti-ample over Z, we have that KC + Bc
C is anti-nef. In

particular, there exists a Q-divisor BC ≤ B′
C ≤ Bc

C such that (C,B′
C) is plt

(but not klt) and −(KC +B′
C) is nef.

Now we claim that (Ck̄, B
′
Ck̄

) is plt (but not klt), where B′
Ck̄

:= (B′
C)k̄.

Indeed, since Ck̄
∼= P1

k̄
and KCk̄

+ B′
Ck̄

is anti-nef, we have degk̄ B
′
Ck̄

≤

2. Noting that any coefficient of B′
Ck̄

is either equal to the corresponding

coefficient of B′
C or at least p times that coefficient with p > 3, we can

then easily deduce that ⌊B′
Ck̄

⌋ = (⌊B′
C⌋)k̄ ̸= 0 has coefficient one for each

irreducible component and that ⌊({B′
C})k̄⌋ = 0, which implies our claim.

If −(KCk̄
+B′

Ck̄
) is ample, then (Ck̄, B

′
Ck̄

) is purly F-regular by [CTW17,

Lemma 2.9] (applied to perturbations of (Ck̄, B
′
Ck̄

)), and so (Ck̄, BCk̄
) is

globally F-regular. If −(KCk̄
+ B′

Ck̄
) is trivial, then a = 1,λ = 0, 6(KCk̄

+

Bc
Ck̄

) ∼ 0, and (Ck̄, B
c
Ck̄

) is plt (but not klt). Since gcd(p, 6) = 1, [CTW17,

Lemma 2.9] implies that (Ck̄, B
c
Ck̄

) is globally F-split, and so (Ck̄, BCk̄
) is

globally F-regular by [SS10, Corollary 3.10]. !

Definition 2.11. Let (X,∆) be a three-dimensional dlt pair. We define
its dual complex D(∆=1) to be a simplex with nodes corresponding to irre-
ducible divisors of ∆=1 and k-simplices between k + 1 nodes corresponding
to k + 1 divisors containing a common codimension k + 1 locus. We say
that an irreducible divisor D in ∆=1 is an articulation point of D(∆=1) if
∆=1 −D is disconnected.

Lemma 2.12. Let (X,∆) be a Q-factorial dlt threefold over an excellent
Dedekind sparated scheme and let π : Y → X be a projective birational
morphism such that (Y,π−1

∗ ∆ + E) is dlt, where E is the exceptional locus
of π. Write KY + ∆Y = π∗(KX + ∆). Let S be an irreducible divisor in
∆=1, and let SY be its strict transform. If SY is an articulation point of
D(∆=1

Y ), then S is an articulation point of D(∆=1).

Proof. This follows exactly by the same proof of [HW19b, Lemma 2.12],
except that in the beginning we use [TY20, Theorem 1.2] to run a (KY +
π−1
∗ ∆+ E)-MMP over X. !

Lemma 2.13 (cf. [Wit21]). Let f : Y → X be a finite universal homeomor-
phism of schemes which are proper over a Noetherian base scheme S. Let L
be a nef line bundle on X such that f∗L and L|XQ

is semiample, where XQ
is the generic fiber of X → SpecZ. Then L is semiample.

Proof. By [Wit21, Theorem 1.2], it is enough to verify that L|Xs is semiample
for any s ∈ S whose residue field has positive characteristic.

Note that f∗L|Ys is semiample and the base change fs : Ys → Xs is a finite
universal homeomorphism proper over a field with positive characteristic, we
can deduce that L|Xs is semiample by [CT20, Lemma 2.11(3)]. !
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3. Complements on surfaces

Proposition 3.1. Let (X,B) be a two-dimensional klt pair admitting a
projective birational map f : X → Z = SpecR such that −(KX + B) is
relatively nef but not numerically trivial, where R is as in Setting 2.1 and
additionally has infinite residue field with characteristic p > 3. Assume
that there exists an effective divisor D such that (X,B + ϵD) is not globally
+-regular over Z for any ϵ > 0.

Then every 6-complement of (X,B) is non-klt and has a unique non-klt
valuation which is exceptional over Z.

Proof. By Lemma 2.7, there exist an irreducible, exceptional over Z, curve C
on a blow-up ofX and projective birational maps g : Y → X and h : Y → W
over Z such that

(1) g extracts C or is the identity if C ⊆ X,
(2) (Y,C +BY ) is plt,
(3) (W,CW +BW ) is plt and −(KW + CW +BW ) is ample over Z,

where CW := h∗C ̸= 0, BW := h∗BY , and KY + bC+BY = g∗(KX +B) for
C ! SuppBY .

By Remark 2.9, (KW + CW + BW )|CW
= KCW

+ 1
2P1 +

2
3P2 +

4
5P3 for

some three distinct points P1, P2 and P3.

Now, let (X,Bc) be any 6-complement of (X,B). By the negativity lemma
Supp(Bc − B) contains a non-exceptional curve. Let KY + aC + Bc

Y =
g∗(KX + Bc), where C ! SuppBc

Y , and let Bc
W := h∗Bc

Y . Since 6(KX +
Bc) ∼Z 0 is lc, we get that

(W,aCW +Bc
W )

is a sub-lc and 6(KW + aCW +Bc
W ) ∼Z 0. In particular 6Bc

W is an integral
divisor. Moreover, Bc

W ≥ BW as Bc ≥ B.

To prove the proposition it is now enough to show that a = 1. Indeed, in
this case −(KW + CW + Bc

W ) ∼Q,Z 0 and by the Kollár-Shokurov connect-
edness lemma, the non-klt locus of (W,CW + Bc

W ) is connected. The only
6-complement of

(CW ,
1

2
P1 +

2

3
P2 +

4

5
P3)

is (CW , 12P1+
2
3P2+

5
6P3), so (W,CW +Bc

W ) is plt along CW by adjunction,
and the connectedness of non-klt locus implies that (W,CW +Bc

W ) is in fact
plt everywhere. In particular, (X,Bc) admits a unique exceptional non-klt
valuation over Z.

In order to prove the propositon, we assume that a < 1 and derive a
contradiction. We will not need to refer to (X,B) or (Y, aC + BY ) any
more, so, for ease of notation, we replace CW , BW and Bc

W by C,B and Bc

respectively.
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If (Bc −B) ·C ̸= 0, then Lemma 3.2 applied to (W,C +Bc) implies that
(KW + C +Bc) · C = 0. This is impossible, because

(KW + C +Bc) · C < (KW + aC +Bc) · C = 0

Hence, we can assume that (Bc −B) · C = 0. Since Supp(Bc −B) contains
a non-exceptional curve, the exceptional locus over Z cannot be irreducible,
and so there exists an irreducible exceptional curve E ̸= C such that E∩C ̸=
∅. Since KW + C + B is anti-ample over Z and E is an extremal ray
of NE(X/Z), we may contract E over Z by [Tan18, Theorem 4.4]. Let
f : W → W1 be the contraction of E, and let C1, Bc

1 be the strict transforms
of C and Bc. We have that

(KW + C +Bc) ·E > (KW + aC +Bc) · E = 0,

and hence for some t > 0 and with the natural identification C ∼= C1:

(KW1
+ C1 +Bc

1)|C1
= f∗(KW1

+ C1 +Bc
1)|C

= (KW + C +Bc + tE)|C

≤ KC +
1

2
P1 +

2

3
P2 +

4

5
P3 + tE|C

As before, (KW1
+C1 +Bc

1) ·C1 < (KW1
+ aC1 +Bc

1) ·C1 = 0. By applying
Lemma 3.2 to (W1, C1 +Bc

1), we get a contradiction again. !

In the following result, it is key that ∆ is non-zero.

Lemma 3.2. Let (S,C + B) be a two-dimensional log pair where S is a
normal excellent surface. Let f : S → T be a projective birational morphism
such that the irreducible normal divisor C is exceptional and (KS +C+B) ·
C ≤ 0. Assume that 6B is an integral divisor and

BC =
1

2
P1 +

2

3
P2 +

4

5
P3 +∆

for distinct points P1, P2, P3 ∈ C and a non-zero effective Q-divisor ∆, where
(KS + C +B)|C = KC +BC . Then (KS + C +B) · C = 0.

Proof. This follows by exactly the same proof of [HW19b, Lemma 3.2]. No-
tice that it only uses the classification of plt singularities for excellent sur-
faces (see e.g. [Kol13, Corollary 3.45, 3.33, 3.35 and 3.36]). !

4. Lifting complements

The main theorem we want to show in this section is:

Proposition 4.1. Let (X,S+B) be a 3-dimensional Q-factorial plt pair with
standard coefficients, and let f : X → Z = SpecR be a flipping contraction
such that −(KX +S+B) and −S are f -ample. Here the ring R has residual
characteristic p > 2.

Then there exists an m-complement (X,S+Bc) of (X,S+B) in a neigh-
borhood of Exc f for some m ∈ {1, 2, 3, 4, 6}.
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Since standard coefficients are not stable under log pull-backs, we need
to work in a more general setting.

Setting 4.2. Fix a natural number m ∈ N. Let (X,S+B) be a sub-log pair
projective over Z = SpecR where R is as in the Setting 2.1, such that S is
a (possibly empty) reduced Weil divisor, ⌊B⌋ ≤ 0, and A := −(KX +S+B)
is semi-ample and big.

We are ready to define:

Φ := S + {(m+ 1)B},

D := ⌈mB⌉ − ⌊(m+ 1)B⌋, and

L := ⌊mA⌋+D.

Notice that L− (KX + Φ) = (m+ 1)A is semi-ample and big and D = 0
if B + S has standard coefficients.

Lemma 4.3. With notation as in Setting 4.2, suppose that (X,S + B) is
plt and D = 0. Let π : Y → X be a projective birational map and set
KY + SY +BY = π∗(KX + S +B) with SY = π−1

∗ S. Then,

B0
SY

(Y,ΦY ;LY ) = B0
S(X,Φ;L),

where LY and ΦY is defined for (Y, SY +BY ) as in Setting 4.2.

Proof. For any alteration g : W → Y such that W is normal, let SW be a
strict transform of SY . We have the following commutative diagram:

H0(W,KW + SW + ⌈g∗(LY −KY − ΦY )⌉) H0(Y,LY )

H0(W,KW + SW + ⌈h∗(L−KX − Φ)⌉) H0(X,L)

φ ψ

where h = π ◦ g and the horizontal maps are trace maps. Since g∗(LY −
KY −ΦY ) = h∗(L−KX −Φ) = h∗((m+1)A), we see that φ is actually the
identity. Since π∗LY = L and LY ≥ π∗L+DY , ψ is an isomorphism. !

The following lemma allows for lifting sections.

Lemma 4.4. With notation as in Setting 4.2, suppose that (X,S + B) is
plt with standard coefficients, S is an irreducible divisor, and A := −(KX +
S+B) is ample. Write ASn := −(KSn +BSn) = −(KX +S+B)|Sn for the
normalisation Sn of S. Then by restricting sections we get a surjection

B0
S(X,Φ; ⌊mA⌋) → B0(Sn,ΦSn ; ⌊mASn⌋).

Proof. Let π : Y → X be a log resolution of (S +B). We can write

KY + SY +BY = π∗(KX + S +B), and

KSY
+BSY

= (KY + SY +BY )|SY

for SY = π−1
∗ S. Define LY , LSY

,ΦY ,ΦSY
as in Setting 4.2. Then we have

(KY + ΦY )|SY
= KSY

+ ΦSY
and LY |SY

= LSY
.
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Since LY − (KY +ΦY ) = −(m+1)π∗(KX +S+B) is big and semi-ample,
restricting sections induces a surjective map

B0
SY

(Y,ΦY ;LY ) → B0(SY ,ΦSY
;LSY

)

by [BMP+20, Theorem 7.2]. Thus the claim follows from Lemma 4.3 applied
to both sides. !

Finally, we show that B0
S gets smaller when the boundary getts bigger.

Lemma 4.5. Let (X,S+B) and (X,S′+B′) be two sub-log pairs satisfying
the assumptions of Setting 4.2. Suppose that S′ + B′ ≥ S + B and define
Φ, L and Φ′, L′ for (X,S + B) and (X,S′ + B′), respectively, as in Setting
4.2.

Then L − L′ ≥ 0 and the inclusion H0(X,L′) ⊆ H0(X,L) induces an
inclusion

B0
S′(X,Φ′;L′) ⊆ B0

S(X,Φ;L),

Proof. First we have

L− L′ = Φ− Φ′ + (m+ 1)(S′ +B′ − S −B)

= S − S′ + ⌊(m+ 1)(S′ +B′)⌋ − ⌊(m+ 1)(S +B)⌋,

and so L− L′ ≥ 0.
Note that S′ +B′ ≥ S +B implies S′ ≥ S and S′ − S ⊆ Supp(S′ +B′ −

S − B). Thus for a sufficiently large finite cover f : W → X, denoting by
SW and S′

W the strict transforms of S and S′ such that SW ≤ S′
W , we have

SW + f∗(−(m + 1)(KX + S + B)) ≥ S′
W + f∗(−(m + 1)(KX + S′ + B′)),

which is equivalent to S′
W − SW ≥ f∗((m + 1)(S′ + B′ − S − B)). Then

the statement follows by the definition of B0
S (see [BMP+20, Lemma 4.24])

since f∗(L−KX − Φ) = f∗(−(m+ 1)(KX + S +B)). !

We need the following lemma for the proof of Proposition 4.1.

Lemma 4.6. Let (X,B) be a two-dimensional klt pair with standard coef-
ficients admitting a projective birational map f : X → Z = SpecR such
that −(KX + B) is relatively ample, assuming R is as in Setting 2.1 and
additionally has infinite residue field. Then there exists m ∈ {1, 2, 3, 4, 6}
and

s ∈ B0(X,Φ;L) ⊆ H0(X,L)

such that (X, 1
m⌈mB⌉+ 1

mΓ) is an m-complement of (X,B) in a neighborhood
of Exc f where Γ is the divisor corresponding to s, and L and Φ are defined
as in Setting 4.2.

Proof. By Lemma 2.7, there exist an irreducible, exceptional over Z, curve C
on a blow-up of X and projective birational map g : Y → X and h : Y → W
over Z such that

(1) g extracts C or is the identity if C ⊆ X,
(2) (Y,C +BY ) is plt,
(3) (W,CW +BW ) is plt and −(KW + CW +BW ) is ample over Z,
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(4) B+
Y −BY ≥ 0,

where KY + bC + BY = g∗(KX + B) for C ! SuppBY , CW := h∗C ̸= 0,
BW := h∗BY , and KY +C +B+

Y = h∗(KW + CW +BW ).
We have

B0(X,Φ;L) = B0(Y,ΦY ;LY )

⊇ B0
C(Y,Φ

+
Y ;L

+
Y )

= B0
CW

(W,ΦW ;LW ),

where ΦY ,Φ
+
Y ,ΦW and LY , L

+
Y , LW are defined as in Setting 4.2. Indeed,

the first and third equality hold by Lemma 4.3 since B and CW +BW have
standard coefficients, and the middle inclusion holds by Lemma 4.5 since
C +B+

Y ≥ bC +BY .
Note that L = −m(KX+ 1

m⌈mB⌉) and LW = −m(KW+CW+ 1
m⌈mBW ⌉).

Thus by Lemma 4.4, restricting sections gives a surjective map

B0
CW

(W,ΦW ;LW ) → B0(C,ΦC ;LC),

where C is identified with CW , KC+BC = (KW +CW +BW )|C , and ΦC , LC

are defined as in Setting 4.2.
Let m ∈ {1, 2, 3, 4, 6} be the minimal number such that (C,BC) admits

an m-complement.
Since −(KC + BC) is ample and BC has standard coefficients, we must

have that Ck̄ = P1
k̄
, and the coefficients of (BC)k̄ = BCk̄

must exactly be
the same as the coefficients of BC . This is because any coefficient of BCk̄

is
either equal to the corresponding coefficient of BC or at least p times such
a coefficient (hence it is at least p

2 ), and the existence of the latter type of
coefficients would contradict the ampleness of −(KCk̄

+BCk̄
). Therefore we

have

(ΦC)k̄ = ({(m+ 1)BC})k̄ = {(m+ 1)BCk̄
}.

By [HW19b, Lemma 4.9], (Ck̄, (ΦC)k̄) is globally F-regular, and hence (C,ΦC)
is globally +-regular by [BMP+20, Corollary 6.17]. Therefore

B0(C,ΦC ;LC) = H0(C,LC).

In particular, there exists an lc m-complement (C,Bc
C ) of (C,BC) for some

m ∈ {1, 2, 3, 4, 6} which can be lifted to W . More precisely, there exists a
non-zero section

s ∈ B0
CW

(W,ΦW ;LW )

with associated divisor Γ such that m(KW + CW +Bc
W ) ∼ 0 and

(KW + CW +Bc
W )|C = KC +Bc

C ,

where Bc
W := 1

m⌈mBW ⌉ + 1
mΓ. By inversion of adjunction, (W,CW + Bc

W )
is log canonical along CW . Note that

KW + CW + ϵBW + (1− ϵ)Bc
W
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is thus plt along CW and Q-equivalent over Z to ϵ(KW + CW + BW ), and
hence by Kollár-Shokurov connectedness principle (cf. [Tan18, Theorem
5.2]), it is plt for any 0 < ϵ < 1. Hence (W,CW + Bc

W ) is lc, and thus an
m-complement of (W,CW +BW ).

Let KY + C +Bc
Y = h∗(KW + CW +Bc

W ) and Bc := g∗(C +Bc
Y ). Then

(X,Bc) is an m-complement of (X,B) which by the above inclusions of B0

corresponds to a section in B0(X,Φ;L). !

Proof of Proposition 4.1. Let Sn be the normalisation of S. By Lemma 4.4,
restricting sections gives a surjective map

B0
S(X,Φ; ⌊mA⌋) → B0(Sn,ΦSn ; ⌊mASn⌋),

notice that ⌊mA⌋ = −m(KX + S + 1
m⌈mB⌉) and ⌊mASn⌋ = −m(KSn +

1
m⌈mBSn⌉).
By Lemma 4.6, there exists ΓSn ∈ | − m(KSn + 1

m⌈mBSn⌉)| such that
(Sn, Bc

Sn) is an m-complement of (Sn, BSn) for Bc
Sn = 1

m⌈mBSn⌉ + 1
mΓSn ,

and which moreover lifts to

Γ ∈ |−m(KX + S +
1

m
⌈mB⌉)|.

Set Bc = 1
m⌈mB⌉+ 1

mΓ. Then m(KX+S+Bc) ∼ 0 and (KX+S+Bc)|Sn =
KSn + Bc

Sn . By inversion of adjunction ([TY20, Corollary 4.10]) applied
to (X,S + (1 − ϵ)Bc) for 0 < ϵ ≪ 1, we get that (X,S + Bc) is lc in a
neighborhood of Exc f , and hence it is an m-complement of (X,S +B). !

Remark 4.7. With notation as in Proposition 4.1, if the residue field
has characteristic p = 5 and there exists an effective divisor D such that
(Sn, BSn + ϵD) is not globally +-regular over Z for any ϵ > 0, where Sn is
the normalisation of S and KSn +BSn = (KX + S +B)|Sn , then m = 6.

Proof. Under these assumptions, we see that in the proof of Lemma 4.6
BC = 1

2P1 +
2
3P2 +

4
5P3 for three distinct points P1, P2 and P3 by Remark

2.9. The smallest m such that this (C,BC ) admits an m-complement is
m = 6. !

5. Flips admitting a qdlt complement

The goal of this section is to show that the existence of flips for flipping
contractions admitting a qdlt k-complement, where k ∈ {1, 2, 3, 4, 6}.

Proposition 5.1. Let (X,∆) be a Q-factorial qdlt 3-dimensional pair with
standard coefficients over V . Let f : X → Z be a (KX + ∆)-flipping con-
traction over V such that ρ(X/Z) = 1 and let Σ be a flipping curve. Assume
that there exists a qdlt 6-complement (X,∆c) of (X,∆) such that Σ · S < 0
for some irreducible divisor S ⊆ ⌊∆c⌋. Then the flip f+ : X+ → Z exists.

Proof. Write ∆ = aS +D + B, where 1 ≥ a ≥ 0, the divisor D is integral,
S ! Supp(D + B), and ⌊B⌋ = 0. By replacing ∆ by S + (1 − 1

kD + B) for
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k ≫ 0, we can assume that (X,∆) is plt. Then we can split the proof into
three cases:

(1) (X,∆c) is plt along the flipping locus, or
(2) Σ · E < 0 for a divisor E ⊆ ⌊∆c⌋ different from S, or
(3) Σ · E ≥ 0 for a divisor E ⊆ ⌊∆c⌋ intersecting the flipping locus.

Case (1) and Case (3) follow from Proposition 5.2 and Proposition 5.4 re-
spectively, applied to (X,∆). Case (2) follow from Propostion 5.3 applied
to (X,∆ + bE) where b ≥ 0 is such that multE(∆+ bE) = 1. !

Proposition 5.2. Let (X,S+B) be a 3-dimensional Q-factorial plt pair over
V with S is irreducible and B having standard coefficients. Let f : X → Z
be a pl-flipping contraction over V such that ρ(X/Z) = 1. Assume that there
exists a plt 6-complement (X,S + Bc) of (X,S + B) over Z. Then the flip
exists.

Proof. Write KSn + BSn = (KX + S + B)|Sn and KSn + Bc
Sn = (KX +

S + Bc)|Sn for the normalisation Sn of S. The pair (Sn, Bc
Sn) is a klt

6-complement, so for any effective divisor D, (Sn, BSn + ϵD) is globally +-
regular for 0 ≤ ϵ ≪ 1. In particular, the flip exists by [BMP+20, Corollary
7.9, Theorem 8.25]. !

The following proposition addresses Case (2).

Proposition 5.3. Let (X,∆) be a 3-dimensional Q-factorial qdlt pair over
V , f : X → Z be a (KX+∆)-flipping contraction over V such that ρ(X/Z) =
1, and Σ be a flipping curve. Assume that there exist distinct divisors S,E ⊆
⌊∆⌋ such that S · Σ < 0 and E · Σ < 0. Then the flip exists.

Proof. This follows by exactly the same proof of [HW19b, Proposition 5.3].
!

Now, we deal with Case (3). Note that we will apply this proposition
later in the case when B does not have standard coefficients.

Proposition 5.4. Let (X,S + B) be a 3-dimensional Q-factorial plt pair
over V with S irreducible. Let f : X → Z be a pl-flipping contraction over V
such that ρ(X/Z) = 1 and −S is relatively ample, and Σ be a flipping curve.
Assume that there exists a 6-complement (X,S+E+Bc) of (X,S+B) such
that E is irreducible, E · Σ ≥ 0, and E ∩ Σ ̸= ∅. Then the flip exists.

Proof. Let Sn be the normalisation of S. By perturbing the coefficients of
⌊B⌋, we may assume that (X,S + B) is plt. The pair (Sn, BSn) admits a
6-complement (Sn, E|Sn +Bc

Sn), where KSn +BSn = (KX + S +B)|Sn and
KSn + E|Sn +Bc

Sn = (KX + S + E +Bc)|Sn .
We claim that E|Sn is not exceptional over Z. Indeed, otherwise

0 > (E|Sn)2 = E · (E ∩ S) = E ·
∑

λiΣi ≥ 0

for some flipping curves Σi and some λi > 0, which is a contradiction.
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By Lemma 2.10, for any effective divisor D, the pair (Sn, BSn + ϵD) is
globally +-regular over Z for any 0 ≤ ϵ ≪ 1, and so the flip exists by
[BMP+20, Corollary 7.9, Theorem 8.25]. !

6. Divisorial extractions

In this section we prove that we could extract a single divisorial place for
6-complements.

Proposition 6.1. Let (X,∆) be a three-dimensional Q-factorial lc pair over
V . Assume X is klt and 6(KX +∆) ∼ 0. Let E be a non-klt valuation of
(X,∆) over X. Then there exists a projective birational morphism g : Y →
X such that E is its exceptional locus.

Proof. Let π : Y → X be a dlt modification of (X,∆) such that E is a divisor
on Y (see [TY20, Corollary 4.9]). Let Exc(π) = E + E1 + · · · + Em. Write
KY +∆Y = π∗(KX +∆) and KY +(1−ϵ)π−1

∗ ∆+aE+a1E1+ · · ·+amEm =
π∗(KX + (1− ϵ)∆), where a, a1, ..., am < 1 as X is klt, and set

∆′ = (1− ϵ)π−1
∗ ∆+ aE + E1 + · · ·+ Em.

By taking 0 < ϵ≪ 1, we can assume that a > 0. Note that

KY +∆′ ∼Q,X (1− a1)E1 + · · ·+ (1− am)Em,(6.1)

so that the (KY +∆′)-MMP over X will not contract E and the contracted
loci are always contained in the support of the strict transform of (1 −
a1)E1 + · · · + (1 − am)Em. The negativity lemma implies that the output
of a (KY +∆′)-MMP over X is the sought-for extraction of E. Hence, it is
enough to show that we can run such an MMP.

By induction, we can assume that we have constructed the n-th step of
this MMP h : Y ""# Yn and we need to show that we can construct the
(n + 1)-st step. Let πn : Yn → X be the induced morphism, ∆′

n := h∗∆′,
and ∆n = h∗∆Y . By abuse of notation, we denote the strict transforms of
E,E1, ..., Em by the same symbols.

The cone theorem is valid by [BMP+20, Theorem 9.8] (and also by [TY20,
Proposition 4.2]). Let R be a (KYn +∆′

n)-negative extremal ray. By (6.1),
we have R · Ei < 0 for some i ≥ 1. Then the contraction f : Yn → Y ′

n of R
exists by [BMP+20, Theorem 9.10] (and also by [TY20, Propostion 4.1]).

If f is divisorial, then we set Yn+1 := Y ′
n. If f is a flipping contraction,

then the proof of [HW19a, Lemma 3.1] applied to (Yn,∆n) over X implies
the existence of a divisor E′ ⊆ Exc(πn) such that R ·E′ > 0. Since (Yn,∆′

n)
is dlt, (Yn,∆n) is lc, 6(KYn + ∆n) ∼πn 0, and E′ ≤ ∆n, we can apply
Proposition 5.4 to infer the existence of the flip of f .

The termination of this MMP follows by the usual special termination
argument (see [TY20, Proposition 4.5] and [BMP+20, Theorem 9.7]). !

Corollary 6.2. Let (X,S + B) be a three-dimensional Q-factorial plt pair
defined over V . Assume that X is klt, S is a prime divisor and (X,S + B)
admits a 6-complement (X,S+Bc) such that (Sn, Bc

Sn) has a unique non-klt
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place, where KSn + Bc
Sn = (KX + S + Bc)|Sn and Sn is the normalisation

of S.
Then (X,S + Bc) is qdlt in a neighborhood of S, or ⌊Bc⌋ is disjoint

from S and there exists a projective birational map π : Y → X such that
(Y, SY + Bc

Y ) is qdlt over a neighborhood of S, the exceptional divisor E is
irreducible and E ⊆ ⌊Bc

Y ⌋, where KY + SY +Bc
Y = π∗(KX + S +Bc).

Proof. We work in a sufficiently small open neighbourhood of S. First,
suppose that ⌊Bc⌋ is non-empty and intersects S. Under this assumption
the unique log canonical centre of (Sn, Bc

Sn) must be an irreducible curve
given as ⌊Bc⌋|Sn . In particular, ⌊Bc⌋ must be irreducible (cf. Remark 2.3),
the pair (Sn, Bc

Sn) is plt, and (X,S +Bc) is qdlt by Lemma 2.5.
Thus, we can assume that ⌊Bc⌋ = 0, and so the dlt modification π : Y →

X is nontrivial. Set KY +∆c
Y = π∗(KX + S + Bc) and pick an irreducible

exceptional divisor E1 which is not an articulation point of D(∆c,=1
Y ) (for

example pick any divisor with the farthest distance edgewise in D(∆c,=1
Y )

from the node corresponding to S). Let g : X1 → X be the extraction of E1

(see Proposition 6.1) and write

KX1
+ S1 + E1 +Bc

1 = g∗(KX + S +Bc)

where S1, Bc
1 are the strict transforms of S,Bc, respectively. Note that S1

intersects E1.
We claim that (X1, S1, E1+Bc

1) is qdlt in a neighbourhood of S1. To this
end we note that

KSn
1
+Bc

Sn
1
:= (KX1

+ S1 + E1 +Bc
1)|Sn

1
= g∗(KSn +Bc

Sn),

where Sn
1 is the normalisation of S1. Since (Sn, Bc

Sn) admits a unique non-
klt place, we get that (Sn

1 , B
c
Sn
1
) is plt. In particular, Lemma 2.5 implies our

claim.
Therefore, it is enough to show that (X1, S1 + E1 + Bc

1) does not ad-
mit a log canonical centre which is disjoint from S1 and intersects E1. By
contradiction, assume that it does admit such a log canonical centre. Let
h : W → X1 be a projective birational morphism which factors through Y

g ◦ h : W Y X,
hY π

and such that g ◦ h is a log resolution of (X,S + B). Write KW + ∆c
W =

h∗(KX1
+ S1 + E1 + Bc

1). Since S1 ∩ E1 is disjoint from the other log
canonical centres, the strict transform EW,1 of E1 is an articulation point of

D(∆c,=1
W ). Since KW +∆c

W = h∗Y (KY +∆c
Y ), Lemma 2.12 implies that E1

is an articulation point of D(∆c,=1
Y ) which is a contradiction. In particular,

S1, E1, and the irreducible curve S1 ∩ E1 are the only log canonical centres
of (X1, S1 + E1 +Bc

1). !
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7. Existence of flips

In this section we prove the main theorem. We start by showing the
following result.

Theorem 7.1. Let (X,∆) be a three-dimensional Q-factorial klt pair with
standard coefficients over V . Assume that V is as in Setting 1.1 and addi-
tionally is a local ring with infinite residue field. If f : X → Z is a flipping
contraction over V , then the flip f+ : X+ → Z exists.

Proof. We will assume throughout that Z is a sufficiently small affine neigh-
borhood of Q := f(Exc(f)). We say that a Q-Cartier divisor D is ample if
it is relatively ample over Z.

By Shokurov’s reduction to pl-flips, it suffices to show the existence of pl-
flips. Let (X,S+B) be a plt pair with standard coefficients and f : X → Z
a pl-flipping contraction. In particular −S and −(KX +S+B) are f -ample,
and so Exc(f) ⊆ S. By [BMP+20, Corollary 7.9, Theorem 8.25], the flip
exists unless there exists an effective divisor D such that (Sn, BSn + ϵD)
is not globally +-regular over T = f(S) for any ϵ > 0, where Sn is the
normalisation of S and KSn +BSn = (KX +S+B)|Sn . Thus we can assume
that this is the case.

Proposition 4.1 shows the existence of an m-complement (X,S + Bc) of
(X,S + B) and Remark 4.7 implies that m = 6. Let (Sn, Bc

Sn) be the
induced 6-complement of (Sn, BBn). By Propositon 3.1, the pair (Sn, Bc

Sn)
has a unique place C of log discrepancy zero which is exceptional over T .

If (X,S + Bc) is qdlt, then the flip exists by Proposition 5.1. Thus,
by Corollary 6.2, we may assume that ⌊Bc⌋ = 0 and there exists a qdlt
modification g : X1 → X of (X,S + Bc) with an irreducible exceptional
divisor E1. Let f1 : X1 → Z be the induced map to Z, and write KX1

+
S1+B1+aE1 = g∗(KX+S+B), and KX1

+S1+Bc
1+E1 = g∗(KX+S+Bc).

In particular, S1 ∩E1 is the unique log canonical place of (Sn, Bc
Sn), and so

there are two possibilities: either g(E1) ⊆ S and f1(E1) = Q, or g(E1) ! S
is a curve intersecting S.

We would like to run a (KX1
+ S1 + B1 + aE1)-MMP. It could possibly

happen that a < 0 so we take 0 < λ≪ 1 and set

∆1 := λ(S1 +B1 + aE1) + (1− λ)(S1 +Bc
1 + E1),

so that KX1
+∆1 ∼Q,Z λ(KX1

+ S1 +B1 + aE1), and (X1,∆1) is plt.
Since ρ(X/Z) = 1 and both −(KX + S + B) and −S are ample over Z,

it follows that KX + S +B ∼Q,Z µS for some µ > 0 and so

KX1
+∆1 ∼Q,Z λ(KX1

+ S1 +B1 + aE1) ∼Q,Z λµS1 + λ′E1,(7.1)

where λ′ ≥ 0. Note λ′ > 0 if g(E1) ⊆ S and λ′ = 0 if g(E1) ! S.

Claim 7.2. S1|X1,Q
is semiample over ZQ.
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Proof. Since g∗(S) = S1 + a1E1 for some a1 ≥ 0 and −E1 is f -ample over
X, we see that S1 is semi-ample over X. Notice that XQ = ZQ, thus the
statement follows. !

Claim 7.3. There exists a sequence of (KX1
+∆1)-flips X1 ""# ... ""# Xn

over Z such that either Xn admits a (KXn +∆n)-negative contraction of En

of relative Picard rank one, or KXn +∆n is semiample with the associated
fibration contracting En. Here ∆n and En are strict transforms of ∆1 and
E1 respectively.

In the course of the proof we will show that the qdlt-ness of (X1, S1 +
E1 +Bc

1) is preserved (see Lemma 2.6) except possibly at the very last step
before the contraction takes place. Therefore, all the flips in this MMP exist
by Proposition 5.1.

Proof. Let fi : Xi → Z be the induced map to Z. We can assume that all
the flipped curves are contracted to Q ∈ Z under fi, and so X1 ""# Xn

is an isomorphism over Z\{Q}. Let (Xi,∆i) and (Xi, Si + Ei + Bc
i ) be

the appropriate strict transforms. The latter pair is a 6-complement of
(Xi, Si + Ei + Bi), where the strict transforms Bi of B1 have standard
coefficients. Note that E1 is not contracted as X1 ""# ... ""# Xn is a
sequence of flips, thus inducing an isomorphism on the generic point of E1.

Suppose that KXn +∆n is nef. There are two cases: either g(E1) ⊆ S and
f1(E1) = Q, or g(E1) ! S. We claim that the former cannot happen. In-
deed, assume that f1(E1) = Q and let π1 : W → X1 and πn : W → Xn be a
common resolution of X1 and Xn such that π1 and πn are isomorphisms over
Z\Q. Since KXn +∆n is nef and KX1

+∆1 is anti-nef (but not numerically
trivial) over Z,

π∗n(KXn +∆n)− π∗1(KX1
+∆1)

is exceptional, nef, and anti-effective over Z by the negativity lemma. More-
over, its support must be equal to the whole exceptional locus over Z as it
is non-empty and contracted to Q under the map to Z (cf. [KM98, Lemma
3.39(2)]). This is impossible, because E1 is not contained in its support
while f1(E1) = Q.

Now, assuming that g(E1) ! S is a curve intersecting S, we will show that
KXn +∆n ∼Q,Z λµSn is semiample. Let G := f−1

n (P ) for a (non-necessarily
closed) point P ∈ Z. By [Wit21, Theorem 1.2] it is enough to show that
Sn|G is semiample and Sn|Xn,Q

is semiample over ZQ. The latter follows
from Claim 7.2. For the former, since X1 ""# Xn is an isomorphism over
Z\{Q}, S1 = g∗S, and S is semiample over Z\{Q}, we get that Sn|G is
semiample when P ̸= Q. Thus we may assume that P = Q. Since G is a
projective variety over a positive characteristic field, by [Kee99] it is enough
to verify that Sn|E(Sn|G) is semiample. Since G is one-dimensional, every
connected component of E(Sn|G) ⊆ G is either entirely contained in Sn or
is disjoint from it. In particular, it is enough to show that (KXn +∆n)|Sn

is semiample. Recall that Sn ⊆ ⌊∆n⌋, and so KSn
n
+∆Sn

n
= (KXn +∆n)|Sn

n
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is semiample by [Tan18, Theorem 4.2], where Sn
n is the normalisation of Sn.

Since Sn
n → Sn is a universal homeomorphism (see [BMP+20, Lemma 2.28]),

then by Lemma 2.13 (KXn +∆n)|Sn is semiample and so is KXn +∆n.
Since (KXn +∆n)|En is relatively numerically trivial over Z\{Q} (as so

is (KX1
+∆1)|E1

), we get that the associated semiample fibration contracts
En.

From now on, KXn +∆n is not nef. In order to run the MMP, we assume
that (Xn, Sn + En + Bc

n) is qdlt by induction. The cone theorem is valid
by [BMP+20, Theorem 9.8] (also by [TY20, Proposition 4.2]). Pick Σn a
(KXn + ∆n)-negative extremal curve. By (7.1), we have KXn + ∆n ∼Q,Z

λµSn + λ′En, and thus either Σn · Sn < 0 or Σn · En < 0. The contraction
of Σn exists by [BMP+20, Theorem 9.10] (also by [TY20, Proposition 4.1])
applied to (Xn,∆n) in the former case and to (Xn + (1 − ϵ)Sn + En + Bn)
in the latter for 0 < ϵ≪ 1.

If the corresponding contraction is divisorial, then we are done as it must
contract En. Hence, we can assume that Σn is a flipping curve. If En ·
Σn ≤ 0, then −(KXn + Sn +Bn +En) has standard coefficients, is qdlt and
ample over the contraction of Σn, so the flip exists by Proposition 5.1 as
(Xn, Sn + En + Bc

n) is a 6-complement. If En · Σn > 0, then the flip exists
by Proposition 5.4 applied to (Xn,∆n).

To conclude the proof we shall show that (Xn+1, Sn+1 + En+1 + Bc
n+1)

is qdlt unless Xn+1 admits a contraction of En+1. By Lemma 2.6, we can
suppose that Sn+1 ∩ En+1 = ∅ and aim for showing that the sought-for
contraction exists.

Let Σ′ be a curve which is exceptional over Q ∈ Z, contained neither
in Sn+1 nor En+1, but instersecting Sn+1 (it exists by connectedness of the
exceptional locus overQ ∈ Z, and the fact that both Sn+1 and En+1 intersect
this exceptional locus), and let C ⊆ En+1 be any exceptional curve such that
C ·En+1 < 0 (it exists by the negativity lemma as En+1 is exceptional over
Z). We claim that C ′ · Sn+1 > 0 for every exceptional C ′ ! En=1. To
this end, assume by contradiction that there exists C ′ ! En+1 satisfying
C ′ · Sn+1 ≤ 0. Since ρ(Xn+1/Z) = 2, we get that

C ′ ≡ aC + bΣ′

for a, b ∈ R. Given C · Sn+1 = 0 and Σ′ · Sn+1 ≥ 0, we have b ≤ 0. As
C ′ · En+1 ≥ 0, C · En+1 < 0, and Σ′ · En+1 ≥ 0, we have a ≤ 0. Therefore,
for an ample divisor A we have

0 < C ′ · A = (aC + bΣ′) ·A ≤ 0

which is a contradiction.
Since Sn+1∩En+1 is empty, Sn+1 is thus nef and E(Sn+1) ⊆ En+1. Hence

Sn+1 is semiample by Claim 7.2 and [Wit20, Theorem 6.1] and induces a
contraction of En+1. It does not contract Σ′, and so is of relative Picard
rank one. Moreover, by (7.1) we have either λ′ = 0 and KXn+1

+∆n+1 ∼Q,Z
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λµSn+1 is semiample with the associated fibration contracting En+1, or λ′ >
0, (KXn+1

+∆n+1)·C < 0, and so the above contraction is a (KXn+1
+∆n+1)-

negative Mori contraction of relative Picard rank one. !

Let φ : Xn → X+ be the contraction of En as in the previous claim, let
∆+ := φ∗∆n, let S+ := φ∗Sn, and let B+ := φ∗Bn. Then the induced map
π+ : X+ → Z is a small contraction with ρ(X+/Z) ≤ 1. Recall that

KXn +∆n ∼Q,Z λ(KXn + Sn + aEn +Bn).

Since φ is either (KXn + Sn + aEn + Bn)-negative of Picard rank one or
(KXn +Sn+aEn+Bn)-trivial , the discrepancies of (X+, S++B+) are not
smaller than those of (Xn, Sn + aEn + Bn). Moreover, since (KX1

+ S1 +
aE1 + B1) is anti-nef over Z and not numerically trivial, at least one step
of the (KX1

+ S1 + aE1 +B1)-MMP has been performed in X1 ""# X+. In
particular, there exists a divisorial valuation for which the discrepancy of
(X+, S+ +B+) is higher than the discrepancy of (X,S +B).

Therefore, KX+ +∆+ cannot be relatively anti-ample, because then
(X+, S++B+) would be isomorphic to (X,S+B), which is impossible as the
MMP has increased the discrepancies. If KX++∆+ is relatively numerically
trivial, then we claim that KX+ +∆+ ∼Q,Z 0. Indeed

KX+ +∆+ ∼Q,Z λµS
+,

for λ, µ > 0, and since S+ intersects the exceptional locus, we must in fact
have that SuppExc(π+). By [Wit20, Theorem 1.2], it is thus enough to
show KS+,n + ∆S+,n is semiample, where S+,n → S+ is the normalisation
of S+, which in turn follows from [Tan18, Theorem 4.2]. Here we used the
fact that S+,n → S+ is a universal homeomorphism (see [BMP+20, Lemma
2.28]). As a consequence, S+ descends to Z. This is impossible as its image
in Z is not Q-Cartier.

Thus KX+ +∆+ is relatively ample, and so X+ → Z is the flip of X → Z
by [KM98, Corollary 6.4]. !

Given Theorem 7.1, we can follow the same strategy as in [Bir16, Theorem
6.3] to move the “standard coefficients” condition (cf. [BMP+20, Theorem
9.12]).

Proposition 7.4. Theorem 1.2 holds when in addition V is a local ring
whose residue field is infinite.

Proof. First, we can assume that every component S of Supp∆ is relatively
anti-ample. Further, let ζ(∆) be the number of components of ∆ with
coefficients not in the set Γ := {1} ∪ {1 − 1

n | n > 0}. If ζ(∆) = 0 then the
flip exists by Theorem 7.1. By induction, we can assume that the flip exists
for all flipping contractions of log pairs (X ′,∆′) such that ζ(∆′) < ζ(∆).

By replacing ∆ with ∆ − 1
l ⌊∆⌋ for l ≫ 0, we can assume (X,∆) is klt

without changing ζ(∆). Write ∆ = aS +B, where S ! SuppB and a /∈ Γ.
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Let π : W → X be a log resolution of (X,S+B) with exceptional divisor E
and set BW := π−1

∗ B + E. Since KX +∆ ≡Z µS for some µ > 0, we have

KW + SW +BW = π∗(KX +∆) + (1− a)SW + F

≡Z (1− a+ µ)SW + F ′,

where SW := π−1
∗ S, and F,F ′ are effective Q-divisors exceptional over X.

Run a (KW + SW + BW )-MMP over Z. By induction all flips exist in
this MMP as ζ(SW +BW ) < ζ(∆). Moreover, by the above equation, every
extremal ray is negative on (1− a+µ)SW +F ′ and hence on an irreducible
component of ⌊SW +BW ⌋. In particular, all contractions exist by [BMP+20,
Theorem 9.10] (also by [TY20, Proposition 4.1]). The cone theorem is valid
by [BMP+20, Theorem 9.8] (also by [TY20, Proposition 4.2]) and this MMP
will terminate by the special termination (cf. [TY20, Proposition 4.5] and
[BMP+20, Theorem 9.7]). Let h : W ""# Y be an output of this MMP and
let SY , BY and FY be the strict transforms of SW , BW and F respectively.

Now, run a (KY +aSY +BY )-MMP with scaling of (1−a)SY . In particular,
if R is a (KY + aSY +BY )-negative extremal ray, then R · SY > 0 and this
MMP is also a (KY +BY )-MMP. As ζ(BY ) < ζ(∆), all the flips in this MMP
exist by induction. By the same argument as in the above paragraph, the
cone theorem is valid, all contractions exist and this MMP will terminate.
Let (X+, aS+ + B+) be an output of this MMP. We claim that this is the
flip of (X, aS +B).

To this end, we notice that the negativity lemma applied to a common
resolution π1 : W ′ → X and π2 : W ′ → X+ implies that

π∗1(KX + aS +B)− π∗2(KX+ + S+ +B+) ≥ 0

Since (X, aS +B) is klt, this shows that ⌊B+⌋ = 0 and all the divisor in E
were contracted. In particular, X ""# X+ is an isomorphism in codimension
one. We claim KX++aS++B+ is relatively ample over Z and so (X+, aS++
B+) is the flip of X → Z.

To this end, we note that ρ(X+/Z) = 1 (cf. [AHK07, Lemma 1.6]).
Indeed,

ρ(W ′/X+) + ρ(X+/Z) = ρ(W ′/X) + ρ(X/Z)

and ρ(W ′/X) = ρ(W ′/X+) is equal to the number of exceptional divisors.
Thus ρ(X+/Z) = ρ(X/Z) = 1. In particular, to conclude the proof of the
theorem it is enough to show that KX+ + aS+ + B+ cannot be relatively
numerically trivial over Z. Assume by contradiction that it is relatively
numerically trivial. Then

π∗1(KX + aS +B)− π∗2(KX+ + S+ +B+) ≥ 0

is exceptional and relatively numerically trivial over X. Thus it is empty by
the negativity lemma. Then π∗1(KX + aS +B) ≡Z 0, which contradicts the
fact that KX + aS +B is anti-ample over Z. !
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Now Theorem 1.3, Theorem 1.4 and Theorem 1.5 hold if we additionally
assume that V is a local ring with infinite residue field, by exactly the same
proof of [BMP+20, Theorem 9.34 and 9.36], [BMP+20, Theorem 9.26] and
[BMP+20, Theorem 9.27] respectively.

Proof of Theorem 1.2. We can work over a small neighborhood of f(Exc(f)),
and the existence of the flip is equivalent to the finite generation of the
graded algebra

⊕
m≥0 f∗OX(m(KX +∆)) over OZ . This property is stable

under localization by Lemma 7.5. Hence we can assume that V = SpecR,
where R is an excellent DVR.

Let R′ be the completion of strict Henselization of R. Consider the base
change f ′ : X ′ → Z ′ of f : X → Z. Since the residue field of R′ is now
infinite, and the Minimal Model Program holds in this case, we get that⊕

m≥0 f
′
∗OX′(m(KX′ +∆′)) is finitely generated over OZ′ , where KX′ +∆′

is the pullback of KX + ∆ on X ′. Since Z ′ → Z is faithfully flat, then⊕
m≥0 f∗OX(m(KX +∆)) is also finitely generated over OZ . !

Lemma 7.5. Let s ∈ Z be a closed point, and Zs := OZ,s. Suppose D ⊆ Z
is a divisor such that

⊕
m≥0OZs(mDs) is finitely generated OZs-algebra,

where Ds is the pullback of D to Zs. Then
⊕

m≥0 OZ(mD) is a finitely
generated OZ-algebra in a neighborhood of Zs.

Proof. By [KM98, Lemma 6.2], there exists a small projective birational
morphism gs : Ys → Zs such that Ys is normal and g∗sDs is gs-ample. Taking
the closure of gs, we get a projective morphism g : Y → Z. Then there is an
open subset U contains Zs such that gU is small, YU is normal and g∗UDs,U

is gU -ample, where Ds,U is the restriction of the closure of Ds to U . Possibly
shrinking U we may assume that Ds,U is exactly DU , the restriction of D
to U . Hence by [KM98, Lemma 6.2],

⊕
m≥0 OZ(mD) is a finitely generated

OZ -algebra over U . !

Now Theorem 1.3, Theorem 1.4 and Theorem 1.5 follow again from [BMP+20,
Theorem 9.34 and 9.36], [BMP+20, Theorem 9.26] and [BMP+20, Theorem
9.27] respectively.

Finally, Theorem 1.6 follows by the same proof of [BMP+20, Proposition
9.18] when KX + ∆ is pseudo-effective, and [Sti21, Corollary 3.5] when
KX +∆ is not pseudo-effective.
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