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1 | INTRODUCTION

Microcystis aeruginosa is a common toxin-producing cyanobacte-
rium capable of forming harmful algal blooms (HABs). HABs threaten
both ecological and public health, and they are expected to increase
in distribution, frequency, and severity as a result of climate change
(O'neil et al., 2012). Predicting the timing of bloom formation has
been challenging, but researchers in the field have reached consen-
sus on general trends leading up to a HAB. A study of the record-
breaking Lake Erie algae bloom of 2011 determined that—in addition
to excessive nutrient loading—quiescent meteorological conditions
allowed the bloom to form and proliferate to such a massive extent
(Michalak et al., 2013), a finding that has been corroborated in many
subsequent studies of cyanobacteria HABs (Wells et al., 2015). Using
a Bayesian biophysical model with a high-frequency dataset, Del
Giudice et al. (2021) were able to quantitatively show that quiescent
conditions are not enough: High surface water temperatures and high
irradiation are also necessary for bloom formation. Recently, it has
been suggested that vertical heterogeneity (i.e., subsurface peaks) of
M. aeruginosa concentration is an important precursor to Microcystis
surface bloom formation (Seegers et al., 2015; Xiao et al., 2018;
Wilkinson et al., 2019; Taylor et al., 2021). Therefore, it is reasonable
to assume improving models for the drivers of M. aeruginosa vertical
distributions will likely lead to improved predictions of HAB timing.

There are two key traits related to the ubiquity of M. aeruginosa:
vertical motility and colony formation. Vertical motility is achieved
through algal cell buoyancy regulation via intracellular gas vesicles.
Under low levels of mixing, M. aeruginosa sinks to lower light intensities
during the day and floats towards the water surface at night, although
a critical water temperature threshold must be reached in order for
cells to regain buoyancy (lbelings et al., 1991; Thomas & Walsby, 1985,
1986). Oncethatthresholdis reached, increasing temperature increases
buoyant velocity (You et al., 2018). Vertical motility gives M. aeruginosa
a particular advantage in stratified lake environments. Stratified lakes
are characterized by three distinct layers: The epilimnion or surface
mixed layer is the hot, well-mixed surface layer; the hypolimnion is the
cold, well-mixed bottom layer; and the metalimnion is the intermediate
layer of steep temperature gradient connecting the epilimnion to the
hypolimnion. Using the three-dimensional ecological-hydrodynamic
modeling software ELCOM-CAEDYM, Chung et al. (2014) were able
to demonstrate a shallow mixed layer depth (close to the photic depth)
favored buoyant cyanobacteria dominance, indicating lake thermal
structure controls algal population dynamics.

Colony dynamics remain rather illusive, but colonies have been
demonstrated to form in the presence of grazers, low to medium tur-
bulence, and low nutrient conditions. Colonies formed by reproduc-
tion and growth tend to be compact, whereas colonies that form by
collisions tend to be fractal. There is also a well-documented progres-
sion from a unicellular morphology in the spring to a fractal colonial
morphology in the summer (Xiao et al., 2018). In a field study, Cao
and Yang (2010) found that large colonies (greater than 20 cells per
colony) did not appear until May but composed 90% of cells in a June
surface bloom. They also calculated the mean number of cells in the

surface bloom to be about 120 cells/colony. Between field work and
experiments, Qin et al. (2018) found that wind promotes aggregation,
creating heterogeneous size distributions in Microcystis populations.

There are two threads of previous models to follow. There are
models that describe aggregation processes of phytoplankton, and
there are models that describe the vertical motility of M. aerugi-
nosa. To describe the aggregation processes of phytoplankton, mod-
els use Smoluchowski aggregation terms (Ackleh & Miller, 2018;
Jackson, 1990; Smoluchowski, 1917). Because these models typically
have applications in wastewater treatment or marine snow, the only
transport considered is the loss of aggregates via sinking out of the sur-
face mixed layer (Engel et al., 2004; Lee et al., 2000; Teh et al., 2016).

Early models of Microcystis motility use light intensity as a driver
of changes in individual cell density—high light intensities lead to an
increase in cell density, whereas low light intensities lead to a de-
crease in cell density. The buoyant velocity of cells is then calcu-
lated through a modified Stokes settling velocity that is governed
by the difference between algal cell density and the surrounding
water density (Wallace et al., 2000). Turbulent transport has since
been incorporated into these models (Medrano et al., 2013; Zhu
et al.,, 2018). By combining their model with principal component
analysis, Feng et al. (2018) demonstrated that turbulence-induced
mixing explained over half of the variability of early surface bloom
formation, and that buoyancy regulation was more important for
bloom maintenance and formation of late-season blooms. Although
the transport of different (fixed) colony sizes is investigated in the
aforementioned Microcystis motility models, they do not incorporate
aggregation dynamics, despite the well-documented progression
from unicellular to colonial morphologies.

In a previous field study, statistical methods were used to elu-
cidate the reliance of Microcystis-dominated algal vertical distribu-
tions on lake thermal stratification variables (Taylor et al., 2021).
Following the protocol discussed in Vinatier et al. (2011), which sug-
gests using statistical and mechanistic models in an iterative manner
to uncover forcings of spatial heterogeneity, we propose a mecha-
nistic model to analyze the effects of hydrodynamic and biological
processes underlying the spatial patterns observed in the previous
field study. The primary objective of this model is not to replicate
exact field observations but to instead generate hypotheses for the
biophysical drivers of general field trends and observations. To this
end, we couple algal cell aggregation dynamics with algal motility in
a system of one-dimensional partial differential equations that cap-
ture lake hydrodynamics to investigate the role of the colony and

motility dynamics on M. aeruginosa surface bloom formation.

2 | METHODS

2.1 | Aggregation preliminaries

In the absence of any advective or diffusive transport, discrete ag-
gregation dynamics can be described by the Smoluchowski coagula-
tion model (Smoluchowski, 1917):
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where n,(zt) is the concentration of an aggregate of size k, afij) is @ a(i,j)

the sticking probability and f(i,j) is referred to as the aggregation, or

coagulation, kernel of particles of size i and j (Figure 1). Occasionally B(i.j,z)

the product of «(i,j) and f(i,j) is referred to as the aggregation kernel, d.

instead of just f(i,j). We leave the two parameters decoupled mainly I

d

for the sake of visualizing the process (Figure 1) but also to concep-
tually differentiate the hydrodynamic drivers of f(i,j) (Equations 2-5)
from the biological drivers of afi,j) (Section 2.2.2). The first term on
the right-hand side describes the formation of a k-sized aggregation,
whereas the second term on the right-hand side describes the loss of
a k-sized aggregation through the formation of a k+i-sized aggregate.
An infinitely-sized particle represents a loss of mass due to gelation.
Equation 1 has had far-reaching applications in addition to phytoplank-
ton modeling, from aerosols to random graph theory and polymeriza-
tion to planet formation (Aldous, 1999).

While analytical solutions exist for some simple aggregation ker-
nels (8(,))~ 1, B, ~i+j, and B(i,j)~ij), realistic aggregation kernels
are rarely analytically tractable. In the present context, j(i,j) is calcu-
lated as the sum of aggregation kernels for Brownian motion, f; (i,j,2),
turbulent shear, 44(i,j,2), and differential settling, /3,4(i.j,2), each, respec-
tively, defined as (Ackleh & Miller, 2018; Thomas et al., 1999)

2T(@)kg (di+d;)’

Por(i,j,2) = (2)
B 3u(@)(did)
. 4G@)(d+d)®
Brsij,2) = % 1)
and
Pos(ij,2) = n'(d,-+d,»)2‘wi(z) - w2 )
such that
ﬂ(i!j! Z) = ﬂBr(ivij) + ﬂTS(iyjYZ) + ﬁDS(i:jy Z) (5)

where T(z) is the water temperature (K), kg is Boltzmann's constant
(1.38x 1072 m? lggs’2 KY), u(z) is the dynamic viscosity of water (kg/
m/s), G(z) = (5)E is the turbulent shear rate (1/s), () is the rate of
turbulent kinetic energy dissipation (m?/s%), and v(z) is the kinematic
viscosity of water (m?/s). The equivalent spherical diameter of a colony

of size i, d; (m), is given by

1
i dg (6)

where Df = 2.5 is the fractal dimension (Nakamura et al., 1993),
dy = 5 pm is the diameter of a single cell of M. aeruginosa (Xiao
et al., 2018), and ¢ is the colony porosity that linearly decreases from

¢ = 1 for single cells and ¢ = 0.2 for colonies of size k__ (Medrano

max
et al., 2013). Equation (2) is derived from thermodynamic principles of

@ 1-a(i,j)
d

FIGURE 1 Schematic of aggregation. Circles indicate the
equivalent spherical diameter, d,, of the fractal aggregate of size

i. (a) Two aggregates of size i and j collide. This collision can either
result in (b) aggregation and the formation of a i+j sized aggregate,
or (c) collision without aggregation. Rate of collisions is controlled
by f(i,j,z), but the number of collisions that result in aggregation is
controlled by afi,j)

(¢

Brownian motion, Equation (3) defines the rate of collisions for sub-
Kolmogorov particles in turbulent flow (i.e., the largest aggregate
diameter is smaller than the length scale of the smallest turbulent
eddies), and Equation (4) describes collisions as a result of different-
sized aggregates moving at different velocities. Aggregation due to
Brownian motion is typically much slower than aggregation due to tur-
bulent shear, and aggregation due to differential settling will be large
for aggregates of drastically different sizes but will be small for aggre-
gates of close to the same size.

There are several assumptions of this formulation that should be

addressed before continuing.

1. We assume diffusion-limited aggregation rather than reaction-
limited aggregation, meaning the aggregation process will be
limited by diffusion due to Brownian motion and not by the
sticking probability of collisions. This is reasonable for colony-
forming species of algae in a system where the domain size
is much larger than the aggregate sizes.

2. We assume a maximum colony size, below which there will be no
disaggregation—colonies cannot split up once formed. Effectively,
we assume any colonies above the maximum colony size instanta-
neously disaggregate into their constituent parts. These assump-
tions are validated by the lab experiments of O'Brien et al. (2004),
which demonstrated disaggregation of M. aeruginosa is negligible
for the size range of aggregates being modeled subjected to ex-
pected field turbulence conditions.

3. We assume aggregates grow in size through particle collisions
only. When aggregates consist of living organisms, it is pos-
sible for aggregates to increase in size through cell growth and
reproduction in addition to particle collisions. However, it is hy-
pothesized that the fractal colonies of M. aeruginosa are formed
primarily through collisions, so we neglect aggregation due to cell
growth (Xiao et al., 2018).
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4. We assume aggregation is uniform over any given horizontal
cross-section in order to facilitate the construction of a one-

dimensional model.

2.2 | The mathematical model

To provide a biophysical mechanistic understanding of field verti-
cal distributions of colonial and motile harmful algae, we develop
the following model to couple colony formation with the vertical
transport of M. aeruginosa. Let n,(z,t) be the number of colonies con-
taining k cells of M. aeruginosa per unit volume (colonies/m3), t be
time (s), z be depth (m), D,(z) be the sum of molecular diffusion and
turbulent dispersion coefficients (m?/s), w,(zt) be the buoyant ve-
locity of a colony containing k cells of M. aeruginosa (m/s), pli,j,z) be
the Smoluchowski aggregation kernel for colonies of size i and j at
a depth z defined by Equation (5) (m®/s), and kax b€ the maximum
number of cells in a single colony. If we assume nutrients are not
limiting, then we suggest that the combined vertical transport and
aggregation of a colony of size k can be described by the following

advection-dispersion-reaction equation:

Kmax—k

‘max

ony 9 ony 0 1 C e

—*_2(p,—=X)- <% = : j,2)nin; —
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with boundary conditions

ony ony

52 lz=0= >z |z=h,,,, = (8)

and piecewise uniform initial conditions given by

2.3% 107 colonies/m3 k=1
n(2,0) = n(2) = 0 k>1 ©)
0 z>hy Vk

where z = 0 at the air-water interface, z = h_ at the lakebed, and
hy is the width of the surface mixed layer. The no-flux boundary
conditions ensure cells cannot leave the water column through at-
mospheric or soil exchange. Due to the seasonal progression of M.
aeruginosa from unicellular to colonial morphology, we begin simu-
lations with only single cells. Since we are typically more interested
in overall M. aeruginosa concentration profiles rather than the con-
centration profiles of any given colony size, we convert concentra-

tions of colonies of size k to total M. aeruginosa concentration by

Czty= Y kn(zt) (10)
k

where C(z,t) is the total concentration of M. aeruginosa (cells/m°). Note
that we have a discrete number of total cells in the system, but both
concentration and time are continuous. Using the aforementioned

relationships for the aggregation kernel, appropriate forms for the

sticking probability and diffusion coefficient, and the specification of
an expression for the settling velocity, w,(z,t), we can readily develop a

numerical simulation of Equation (7).

2.21 | System details

For M. aeruginosa, the largest stable colony size varies between
220-420pum, depending on the rate of turbulent kinetic energy
dissipation in the water column (O'Brien et al., 2004). Meaning
for colonies of diameters smaller than 220 um, we assume frag-
mentation is negligible for all reasonable environmental condi-
tions. Using the aggregation parameters listed in Section 2.1,
this diameter roughly corresponds to a colony of size k = 580
cells/colony. To explore the features of the model in a numeri-
cally efficient manner, we have cut off the colony size domain at
kax = 101 cells/colony, which corresponds to a maximum colony
diameter of d,;; = 160pum. This is approximately half the average
maximum colony diameter determined by (O'Brien et al., 2004),
and the mean colony size that Cao and Yang (2010) measured in a

Microcystis HAB. Further, diameters larger than this size may ex-

2 a(i, k)G, k, 2)nny 7

ceed the Kolmogorov length scale, thereby compromising the va-
lidity of Stokes' law and leading to the overestimation of buoyant
velocities (Medrano et al., 2013).

Recall M. aeruginosa typically thrives in stratified lake
environments. As such, the model must incorporate depth-
dependent water temperature, water density, and turbulence
profiles. To get a sense of how the model behaves in field condi-
tions, we used data collected by a Self-Contained Autonomous
MicroProfiler (SCAMP) from Ramsey Lake. Ramsey Lake
(45.2073°N, 93.9969°W) is a stratified and eutrophic lake in
Minnesota, USA with a maximum depth of approximately 24 m, a
surface area of approximately 1.3 km?, and a history of M. aeru-
ginosa blooms (Rao & Hsu, 2008). SCAMP records temperature
fluctuations throughout the water column. Following the pro-
tocol in Chen et al. (2001), estimated spectra were calculated
using Batchelor curve fitting, which were then used to calcu-
late turbulent kinetic energy dissipation rates. From this data-
set, profiles for water temperature, D,, and e were constructed
from field data under low wind conditions and high wind con-
ditions (Figure 2). The low wind data were obtained on August
2nd, 2018 11:22:20—the maximum value of ¢ was measured to
be 3x 1077 m?/s® during surface wind speeds of approximately
2.3 m/s. The high wind data were obtained on August 30th, 2018
11:34:26—the maximum value of ¢ measured was 4 x 107 m?/s3
and corresponded to wind speeds of approximately 8 m/s. To put
these choices in context, typical values of ¢(z) in the field range
from 107 to 107 m?/s®, and typical values of D,(z) range from
107 to 1072 m?/s (Wiiest & Lorke, 2003).
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FIGURE 2 Smoothed field data. Low wind profiles for (a) temperature, (b) turbulent dispersion coefficient, D, and (c) rate of turbulent
kinetic energy dissipation, e. high wind profiles for (d) temperature, (e) turbulent dispersion coefficient, D, and (f) rate of turbulent kinetic
energy dissipation, e. Note the differences in orders of magnitude for D, and ¢ under low wind and high wind conditions. Low wind
conditions roughly correspond to wind speeds of 2 m/s, whereas high wind conditions roughly correspond to wind speeds of 8 m/s

Since M. aeruginosa buoyancy is largely mediated by light inten-
sity, we must also construct diurnal light profiles. We generated sur-

face light intensities, I,(t), by

at

D, (11)

IO(t) = ImaxSin

where [ is the maximum surface light intensity and D, is the photo-
period. To best replicate previous models, values of [ = 800W/m?
and D, = 16h were chosen (Medrano et al., 2013). Depth-dependent
light intensities, I(z,t), can then be calculated by

Iz, t) = lo(t)e ™7 (12)
where k, is the light attenuation coefficient (k, = 1.3 m™* (Medrano
etal., 2013)).

2.2.2 | Biological parameters

Let us address the sticking probability, af(i,j). Previous models of
Smoluchowski aggregation have related afi,j) to the fractal dimen-
sion of aggregates or to the estimated number of particles near the
aggregate (Schmitt et al., 2000; Zidar et al., 2018). This particular
situation warrants a more biological approach. M. aeruginosa uses
extracellular polysaccharides (EPS) as adhesive during the aggrega-
tion process; therefore, it is reasonable to assume sticking prob-
ability will increase with EPS content. Zhu et al. (2014) determined

colony size, k (cells/colony)

0 40 80
1 : : : .

120

o o o
~ o ©

o
o)

sticking probability, oy

60 100
colony diameter, d, (um)

o
o

20 140

FIGURE 3 New figure to elaborate on the sticking probability
function. Sticking probability, a,, vs colony diameter, d,

(um), and colony size,()oﬁzo(ﬁg”?/colony), where a, is defined by

dj -0
a (dy) = 0.994e_(( oo ) . Single cells will aggregate upon
colliding 50% of the time, whereas colonies of size k = 95
cells/colony will always aggregate after collisions. Note that
a(i,j) = max{a,-,a,-}

that, in field samples of M. aeruginosa, EPS content peaks at colony
diameters between 100 and 150pum. Interestingly, these diameters
are similar to the average colony size found in Microcystis HABs
(Cao & Yang, 2010). Using this, we define a function that gives the
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sticking probability of a colony of size k, ) = f(dk), which achieves
a minimum value of @, = 0.5 at d; = 5 pm and a maximum value
of @, = 1 at dys = 125pm (Figure 3). To calculate the sticking prob-
ability for a collision between a colony of size i and size j, we define
a(i,j) = max{a,-,aj}. Larger colonies will therefore be ‘stickier’ than
small colonies, so more of their collisions will result in aggregation.

The buoyant velocity, w,, is calculated using subroutines de-
scribed in previous models, which (i) relate light intensity to individ-
ual cell density, then (ii) relate individual cell density to colony density
using the fractal dimension of M. aeruginosa aggregates, then (iii) use
the colony density to calculate a modified Stoke's velocity (Medrano
et al., 2013; Nakamura et al., 1993; Wallace et al., 2000) by

2( o _
. =gdk(ﬂw 1 (13)
k 18v

where p, is the density of a colony of size k. Subroutine details to cal-
culate p, can be found in Appendix A. We use the same equations and
parameter values used in the work of Medrano et al. (2013), with a
modification for the ratio of cell volume to colony volume that ac-
counts for the fractal geometry of aggregates and the relationship
between EPS content and colony size. We expect sinking during the
day (positive w,) and floating at night (negative w,), although velocity
magnitudes and general transport dynamics will vary across colony
size. In experiments, You et al. (2018) recorded buoyant velocities of
107 m/s at 17.5°C and 10> m/s at 28°C for small colonies. For large
colonies, buoyant velocities have been recorded as large as 107% m/s
(Wallace et al., 2000).

2.2.3 | Numerical considerations

We are using an explicit forward-in-time upwind numerical scheme
with fluxes defined at grid cell interfaces and concentrations defined at
grid cell node points (Figure 4). For a given grid cell i at time step m, the
new concentration of colonies of size k in that grid cell is calculated as

at Dz
m+l _ m , 2t 2 m _.m m *Mm
i _n""'+Az< A7 (nk,i_1 nk,i)+wk’,~§nk,i>“'
(14)

at(Pis
Y Azz (nzi —nzi+1) + wl’:H% nZT+1 + At(aggregation terms)

where the subscripts i + % denote parameters defined at the top or
bottom interface of grid cell i, the aggregation terms are defined by
Equations (2-5), and

nk"”H w;’}zo (15)

nkt = m m 0
Mei Wki <

by upwinding.
Table 1 shows numerical parameter values used for all simula-
tions. The time step, At, was chosen to be small enough to ensure the

Qtop1 = 0

Dz
dbot1 = A

/2 *
p (nk,l = nk,z) + W,3/2M 1
Wi3/2, Dz,3/2

qtop,2 = qbot,1

: w Az
]
.
Wi imax—1/27
Qtopimar = Tbot,imax—1 Dz imax-1/2
nkvimax
[ ]
i= imax

Gbot,imax = 0

FIGURE 4 Schematic of numerical scheme. Fluxes, Qiop,i

and g, ;, are calculated as the sum of diffusive and advective
fluxes at grid cell interfaces, but concentrations are calculated
at grid cell node points. n;y'. depends on the sign of Wy, and

is defined in Equation (15). Since we can calculate the new
concentration of a colony of size k in grid cell i at time step m by

n'k”fi =37 (Gtop; —dvot,) + At(aggregation terms), conservation of

mass is ensured by setting Aiopit1 = dbotr To satisfy boundary
conditions, fluxes at the top of the first grid cell and at the bottom
of the last grid cell are defined to be zero for all time

stability of the numerical scheme, and the grid cell width, Az, was cho-
sen to be small enough to minimize numerical dispersion of the upwind
scheme while also maintaining stability. To address numerical disper-
sion, we tested the time to large colony appearance for the parameters
described in Table 1 against a finer grid size. In the base case simula-
tion, large colonies appear in 13.4days; if we instead use Az =0.1 m
(and a correspondingly smaller time step of At =5 s), large colonies ap-
pear in 16.1days. This three-day slowdown indicates that our scheme
is not completely devoid of numerical dispersion. However, the goal
of this manuscript is first and foremost to investigate the applicabil-
ity of Smoluchowski aggregation to describe M. aeruginosa colony
dynamics—not to solve the inverse problem of parameter estimation
or make predictions with a real dataset. In this sense, we feel that our
choices of space and time steps efficiently capture the correct physi-
cal behaviors and provide an appropriate order of magnitude predic-

tion for the timing and appearance of large colony sizes.

3 | RESULTS

3.1 | Appearance and distribution of colonies

We will start with the simplest simulation that still allows for the
investigation of important model features: six weeks of a repeating
photoperiod and constant lake thermal and hydrodynamic profiles
(Table 2). The repeating photoperiod is generated by Equations (11)
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and (12); the constant lake thermal and hydrodynamic profiles are
shown in Figure 2d-f. For the base case simulation, the lake ther-
mal and hydrodynamic profiles represent high wind conditions. Field
data indicate Microcystis can transition from a predominantly uni-
cellular morphology to a predominantly colonial morphology over a
monthly period (Cao & Yang, 2010; Xiao et al., 2018), so a six-week
simulation time was chosen to ensure aggregation would be evident.
Using the conditions outlined in Table 2, Equation (13) predicted
buoyant velocities ranging from -107* (floating) to 107 m/s (sink-
ing) and Equations (2)-(5) predicted aggregation kernels in the range
Bli,j,2) € [107%%,1077 m%/s.

The model demonstrates small colonies will diffuse throughout
the mixed layer (Figure 5a-c), but large colonies exhibit diurnal mi-
grations to a depth with preferred low light intensity (Figure 5d,e).
In general, small colonies will lose mass as they aggregate into larger
colonies, which gain mass. Medium-sized colonies never achieve high
mass (Figure 5c,d), and colonies of size k = 101 appear before colonies
of size k = 67. This indicates large colonies aggregate with each other
faster than they aggregate with small colonies, a finding consistent
with coagulation kinetic theory (Smit et al., 1994). The overall con-
centration profile, C(z,t) (Equation 10), is mostly influenced by large

colonies by approximately the fifth week of simulation (Figure 5f).

3.2 | Factors affecting vertical distribution

While advection is negligible for single cells and small colonies, motil-
ity plays a key role in the vertical distribution of large-sized colonies
(Figure 6). The time it takes for large colonies to appear is approxi-
mately equivalent to whether advection is on or off, but the inclusion
of motility allows the large colonies to migrate to a preferred depth
of low light intensity (Figure 6a).

We also see changes in vertical distributions when we change
wind conditions (Figure 7). During high wind conditions, small col-
onies become uniformly distributed throughout the mixed layer.
If we instead run the simulation under constant low wind condi-

tions shown in Figure 2a-c, smaller colonies (e.g., k = 34) are able

TABLE 1 Numerical parameters

Variable Description Value
Az Grid cell width 0.2m
At Time step 10s
z Maximum depth of domain 10 m

TABLE 2 Base case simulation

diti
conditions Condition

Motility

Meteorological forcings

Sticking probability

Initial algal concentration
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to advect to a preferred depth of low light intensity, although their
diurnal migrations are not as pronounced (compare Figure 7b to
Figure 6a or Figure 5e). In addition, wind also seems to significantly
control the time it takes for colonies to appear. Synthesizing these
results, high wind conditions lead to more medium-sized colonies,
but they will be well-mixed throughout the surface mixed layer. On
the other hand, low wind conditions lead to far fewer medium-sized
colonies, but the colonies will be able to concentrate around a depth

of preferred low light intensity.

3.3 | Factors affecting aggregation

There are few situations less likely to occur than é6weeks of the
exact same meteorological conditions on repeat, so we must explore
how the model behaves under different conditions. To this end, let
us define

N (t) = ank(z, t)Az

to be the total number of cells in a colony of size k. Since n, is a contin-
uous variable and n, Az is not necessarily greater than one, it is possible
for N, <k. We are more concerned when colonies of various sizes appear
at some comparative concentration value rather than the actual concen-
tration, so Nk(t) acts as a suitable marker for the appearance of colonies.
We can now rerun the simulation described in the previous Section 3.1
while changing one condition at a time to see how each individual change
affects N,(t) for various colony sizes (Figures 8 and 9). Using low wind
conditions (Figure 2) dramatically reduces aggregation—in the entire
six-week simulation, the largest colony size achieved is k = 3 cells/col-
ony (Figure 8b). If we introduce transient hydrodynamic profiles that
represent stepwise intermittent wind conditions between high wind
50% of the time and low wind the other 50% of the time, either on a
daily or hourly time scale, aggregation is slowed down by a factor of ap-
proximately two (Figure 8c,d). Setting the sticking probability, «afi,j), to
be unity for all colony sizes allows the large-sized colonies to show up
approximately 5days before their appearance in the base case simula-
tion, eventually becoming more abundant than the single cell population
(Figure 9b).

Along with wind conditions, the speed of aggregation is highly
sensitive to initial algal concentrations (Figure 10). Let us define 7, to
be the time such that N,(z,) = 1. As long as initial algal concentrations
are greater than 1x 107 cells/m®, then 7, is approximately inversely

proportional to initial concentrations within the mixed layer, ng.

Further

Description details

Equation (13)
Figure 2d-f
Section 2.2.2

Regulated by light-dependent buoyancy
Constant high wind and lake thermal profile
a(i.j) € [0.5,1] with peak at dys = 125pm

Only single cells in mixed layer Equation (9)
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FIGURE 5 Concentration profiles over six weeks of simulation during high wind conditions (shown in Figure 2d-f) for (a) n,(z,t), (b) ns(z,t),
(c) ng,(z,t), (d) n(z,t), (€) n,y,(z,t), and (f) C(z,t). Color bar changes scale for each subfigure. The wiggles visible in (d)-(e) show the diurnal
migration of large-sized colonies
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FIGURE 6 Differences in vertical
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between (a) the base case simulation in
Figure 5 and (b) turning off advection by
setting w,(z,t)=0
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3.4 | Summary of main results

1. For constant high wind conditions and initial uniform sin-
gle cell concentrations of 107 cells/m® within the surface
mixed layer, the largest colonies of size k = 101 appear
in approximately 2weeks and dominate in approximately
5weeks.

2. Large colonies exhibit diurnal migrations, with concentration
peaks located around a depth of preferred low light intensity;

small colonies are dispersed throughout the surface mixed layer.

39 41
time (days)

The minimum colony size capable of diurnal migrations increases
with increasing wind speed.

. Aggregation is negligible during low wind conditions.

. Intermittent wind conditions, which oscillate between high and

low winds at some given frequency such that high wind condi-
tions are achieved 50% of the time, slow the appearance of large
colony sizes by a factor of two.

. Above an initial algal concentration of 107 cells/m®, there is a

power-law dependence between the time to appearance of large
colonies and initial algal concentration.



TAYLOR ET AL.

Ecology and Evolution 9of 15
=t e W LEY- 2o

FIGURE 7 Differences in vertical
distributions of colonies of size k = 34

between (a) the base case simulation 0 4
in Figure 5 and (b) low wind conditions
(Figure 2)
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FIGURE 8 Cell count, N,(t), of "
various colony sizes for (a) the base 8 (@ (b)
case simulation (Table 2), (b) low wind 10 1 i
conditions (Figure 2), (c) switching
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conditions every day, and (d) switching f 4 —N
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4 | DISCUSSION AND CONCLUSION colonies exhibit notable daily migrations controlled by the photic

4.1 | Discussion of model results

Our results generally coincide with those of existing literature,
with a few important caveats. Ackleh and Miller (2018) found ag-
gregation rates on the order of 1072 m®/s using Smoluchowski ag-
gregation to model phytoplankton dynamics, which is in line with
those calculated in our simulations (A(i,j,z2) € 107221077 m%/s).
Medrano et al. (2013) found maximum buoyant velocity magnitudes
on the order of 107 m/s for large colonies, which is an equivalent
order of magnitude of our maximum calculated buoyant velocities
W, (zt) € [— 1074, 10’3] m/s). Our model also predicts aggregation
at a time scale that roughly corresponds with the field study by Cao
and Yang (2010), wherein the dominant morphology of Microcystis
transitioned from single cells to large colonies in about a month. The
model of Medrano et al. (2013) showed that small colonies of M.
aeruginosa are not able to overcome turbulent mixing, whereas large

depth. This is directly compatible with our model results, keeping
in mind that the intensity of wind controls the minimum colony size
capable of diurnal migrations (Figures 5-7). If we define the sticking
probability to be unity for all colony sizes, the large-sized colonies
appear within a couple of days, much faster than they appear in field
conditions (Figure 9). Relating the sticking probability to the extra-
cellular polysaccharide content, which is in turn related to colony
size, slows down aggregation to a rate consistent with field observa-
tions. These findings support the claim that Smoluchowski coagula-
tion kinetics qualitatively describe the aggregation processes of M.
aeruginosa.

The model unveils two important dependencies of aggregation
on wind speed and algal concentration. Colony size distributions
are highly sensitive to wind-induced mixing (Figure 8), a phenom-
enon that was previously revealed in experiments and field work
(Qin et al., 2018). Colonies of size k = 101 cells/colony appeared
within 15days during high wind conditions, but the largest colony
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@) ®) FIGURE 9 Cellcount, N,(t), of
8 various colony sizes for (a) the base case
10 ! ! simulation from Figure 5 and (b) enforcing
= ——— all collisions result in aggregation by
€ F, - ; ; setting a(i,j) = 1. Total number of cells is
f 4 / R conserved for all simulations
10 I o ] ]
4 1 v/ weee Ny, | 1
! i Nioy
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FIGURE 10 Initial concentration of singles cells within the
mixed layer vs time to appearance of colonies of size k = 101.
Both x- and y-axes are log scales. Solid line shows the best fit,
with a slope of -1.2 (49, = 1.1 x 1010(n2)_1'2). Dashed lines
show an exactly inversely proportional relationship between ¢
and nd (rq9; = 2.7 x 108(n(1’)71). With a starting concentration of
1% 10 cells/m?, colonies of size k = 101 never appear within the
42-day simulation period

size to appear during low wind conditions was k = 3 cells/colony
(Figure 8a,b). Cutting the large wind events in half—either daily or
hourly—slowed the appearance of the large-sized colonies by a fac-
tor of two (Figure 8c,d). This implies that the speed of aggregation
is directly proportional to the duration of large wind events, causing
relatively short-lived wind events to lead to rapid aggregation (recall
the dependence of f(i,j,z) on the turbulent shear rate in Equation (3)).

When our model indicates aggregation is negligible for low
wind conditions, it does not mean aggregation is not occurring.
Instead, this indicates that processes like light-driven motility are
considerably more significant than aggregation during low wind
conditions. While this may seem to disagree with the conclusions
of Qin et al. (2018), which stated that low to medium turbulence is
necessary to promote colony formation, this finding is actually just
placing their experimental results in the context of a deep, dimictic
lake. Small to moderate amounts of turbulence will in fact promote
aggregation, but it does not do so at a rate that will lead to large
colonies appearing in a six-week time frame. Furthermore, even in
shallow Lake Taihu, Qin et al. (2018) measured a significant increase
in average colony size over a short period of several days during a

time (days)

typhoon event with consistently high wind speeds, a result consis-
tent with our findings.

This observation has profound consequences on the subsequent
formation of surface blooms. Shortly after large wind events, the
newly large colonies will be able to overcome turbulent mixing that
the previously small colonies could not, leading to drastically differ-
ent vertical transport results. Since blooms typically consist of large
colonies (Cao & Yang, 2010; Wu et al., 2020; Zhu et al., 2014), this
also means short periods of mixing via large wind events could act as
a necessary precursor to surface harmful algal bloom formation as
long as algal concentrations are high enough (see discussion below
and Section 4.3 for more details). In a laboratory mesocosm exper-
iment, Wu et al. (2019) found that increasing wind (up to 3.6 m/s)
increased the volumetric median colony diameter at the water sur-
face. Field experiments by Yang et al. (2020) found that intermittent
wind-induced disturbance favored (i) larger colony sizes, (ii) higher
biomass, and (iii) stronger dominance of Microcystis over constant
quiescent or constant wind conditions. We believe this result agrees
nicely with our conclusion that wind is necessary to promote aggre-
gation, quiescent conditions are necessary for algal growth, and the
combination of the two in subsequent order is a recipe for a harmful
algal bloom.

In regards to the sensitivity of aggregation to the initial algal
concentration, the inversely proportional relationship between algal
concentration and time to large colony appearance, 7,,,, has been
documented in previous studies of marine snow. Jackson (1990)
found their large-sized colonies appeared within half a day of algal
concentrations reaching 108 cells/m®, a rate in line with the results
described in this manuscript (Figure 10). We relate z,, to initial con-
centrations only, but that is simply because we have a conserved
number of total cells in our system. If instead we had growth and/
or decay terms, we could track z,,, as a function of instantaneous
algal concentration. By maintaining conservation of mass, however,
we can clearly see that any location in the water column with algal
concentrations on the order of 107 cells/m® will take over 10days to
form large colonies, whereas locations with concentrations on the
order of 108 cells/m? will have large colonies within a day.

Since higher densities would lead to increased collisions, this
finding is unsurprising from a physical standpoint; however, it does
provide some important biological modeling insight. Regardless
of wind conditions, aggregation will be negligible until algal
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concentration exceeds 107 cells/m®. After this threshold is reached,
the rate of aggregation will increase as concentration increases. A
large wind event later in the season—when algal concentrations are
high—will therefore have dramatically different aggregation con-
sequences than a large wind event in the beginning of the season,
when algal concentrations are low. Further, nonuniform algal con-
centration profiles will lead to nonuniform aggregation. Any depth
where there is a peak in algal concentration will also act as a hot
spot for aggregation, leading to nonuniform colony size distributions

within the water column.

4.2 | An evaluation of model assumptions

Before addressing the implications of these findings on harmful algal
blooms, we must discuss how model assumptions may impact re-
sults. Let us start with our neglect of disaggregation and our limi-
tation on maximum colony size. Large colonies (d, >420um) would
almost surely fragment under our high wind/strong turbulence con-
ditions (O'Brien et al., 2004). The fact that turbulence also promotes
aggregation through enhanced mixing represents a colony size
trade-off. Turbulence causes the colony size distribution to skew
towards the largest stable colony size, but the largest stable colony
size decreases with increasing turbulence. If we were to allow larger
colony sizes in the model, we would have to include fragmentation,
a conclusion arrived at by Ackleh and Miller (2018) as well. Byrne
et al. (2011) derived postfragmentation density functions for fractal
bacterial flocs of Klebsiella pneumoniae in laminar flow, which indi-
cated the number of postfragmentation flocs increases with increas-
ing shear. A similar analysis could be conducted for M. aeruginosa
and other colonial and motile harmful algae. Based on the results of
Byrne et al. (2011), we would expect fragmentation to seed more
small colonies in the surface mixed layer than in the metalimnion,
which may balance out some of the heightened aggregation in the
surface mixed layer.

Another constraint of this model is the restriction of algal
growth, which is negligible over short timescales but significant
over seasonal timescales. Recall this decision was made because
M. aeruginosa colonies tend to be fractal in shape, and fractal ag-
gregates are often the result of aggregation due to collisions in-
stead of cell growth (Xiao et al., 2018). However, in experiments,
Duan et al. (2018) found that Microcystis colony size significantly
increased with increasing temperature. Although the aggregation
kernel related to Brownian motion scales linearly with tempera-
ture (Equation (2)), this thermodynamic dependency alone cannot
explain this variability. For the strains of Microcystis being inves-
tigated in the experiments, it seems increased algal growth with
increasing temperature is responsible for the increase in colony
size. In deriving our model, we have previously assumed aggrega-
tion due to cell growth is negligible, but this may not be true during
peak surface water temperature conditions, leading to an under-
estimation of average colony diameter during high-temperature
conditions. To account for cell growth in future iterations of this
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model, the method of Ackleh and Miller (2018) for calculating cell
growth within a colony-where only a certain proportion of cells
along the edge of the colony are able to reproduce new cells-
should be incorporated into Equation (7).

If we consider that quiescent conditions are hypothesized to be
an immediate precursor to surface HABs (Michalak et al., 2013), then
incorporating a growth term would likely change our results for in-
termittent high wind events (Figure 8c,d). We would expect slower
frequencies of wind mixing to result in more opportunities for
growth at the water surface during low wind conditions, leading to
faster aggregation, which would cause a discrepancy between slow
frequency and high-frequency wind mixing not currently demon-
strated in this model. Recall that Yang et al. (2020) determined that
intermittent disturbance not only promoted aggregation in M. aeru-

ginosa but total biomass as well.

4.3 | Implications for harmful algal blooms

So far we have only discussed the mechanistic insight provided by
the model into the vertical distributions of M. aeruginosa, but it is
important to remember the ecological consequences of this insight.
Surface HABs are mostly comprised of large colonies. Because wind-
induced mixing increases the rate of aggregation, we can think of
large wind events as a necessary precursor to Microcystis bloom for-
mation. Mainstream consensus on cyanobacteria HABs states that
quiescent conditions are necessary for bloom formation (Michalak
et al., 2013). While this may be true immediately preceding bloom
formation, it is also true that there must be enough large wind events
before the quiescent period to encourage aggregation in order for a
surface bloom to form. But, the occurrence of large wind events is
still not enough: These wind events must occur when algal concen-
trations exceed 108 cells/m® in order for large colonies to form within
a day. In addition to modeling concerns, this finding has implications
for water quality management. If water samples are taken from well
above the photic depth in a lake dominated by motile and colonial
cyanobacteria, algal concentrations will likely be low and the aver-
age colony size will likely be quite small, which may give the appear-
ance that HAB formation is unlikely. Meanwhile, large colonies could
be rapidly forming at subsurface algal concentration peaks near the
photic depth, indicating a surface bloom is imminent.

4.4 | Future work

A major objective of a mechanistic model is to generate hypotheses
that drive further research. The results of this model suggest the
need for a subsequent field study where meteorological conditions,
lake thermal profiles, and both Microcystis concentration and colony
size are tracked over depth and time at a relatively high frequency.
Once model results can be validated with field data, there are many
further avenues of the study suggested by the model, both from
an ecological and numerical perspective. One major ecological
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concern of M. aeruginosa is the ability to produce and release mi-
crocystins, a cyanotoxin. Microcystins are known to increase in ex-
tracellular concentration when Microcystis is stressed, and they also
seem to have a relationship with extracellular polysaccharide con-
tent and colony size (Hu & Rzymski, 2019; Li et al., 2020; Rzymski
et al., 2020; You, 2020). In fact, it is even hypothesized that micro-
cystins can trigger colony formation via quorum-sensing processes
(Rzymski et al., 2020). This raises an important question: How
might the coupling of microcystin-triggered quorum sensing with
colony dynamics improve model predictions of both the spatial het-
erogeneity of M. aeruginosa biomass and extracellular microcystin
concentrations? After all, M. ageruginosa is a threat to public health
because they release microcystins. In this regard, the fundamental
question is not necessarily where the Microcystis is, but where the
microcystins are.

Keeping in mind that the goal is to improve predictions over a
seasonal time scale, then it will be necessary to use our model as
a subroutine—in addition to a subroutine for disaggregation—in
larger modeling software that can handle hydrodynamics, bio-
geochemical cycling, and algal life cycles (e.g., AEM3D (Hodges &
Dallimore, 2016) or Delft3D-WAQ (Q. Chen & Mynett, 2006)). Since
this model demonstrates aggregation is negligible except during
high wind events at high algal concentrations, future models could
also include a term that switches aggregation off when those condi-
tions are not met. It would also be worthwhile to use these results
to instead explore the evolution of the average colony size, Ek, as
a function of algal cell concentration and turbulence intensity. The
model proposed in this manuscript is necessary to gain biological
and physical insight into algal aggregation processes, but it may be
possible to reduce some complexity once the system is understood.
Aggregation processes mostly affect buoyant transport, which is
governed by the colony diameter-dependent settling velocity de-
scribed in Equation (13). By restructuring the modeling in this way,
the system of k equations can be avoided and bulk parameters re-
main the focus, removing most of the numerical expense that would
be added by incorporating Equation (7) as a subroutine in software
like AEM3D.

While the model described here has been derived for M. aeru-
ginosa specifically due to their ubiquity and ecological importance,
the modeling framework can easily be applied to any motile and
colonial phytoplankton species. Different species have different
motility and sticking mechanisms, so calculations of the advective
velocity, w,(zt), and sticking probability, a(i,j), will need to be tai-
lored to each individual species. M. aeruginosa uses intracellular gas
vesicles and buoyancy regulation mechanisms to achieve vertical
motility, but many species of green algae use flagella to move about
the water column, as an example. Despite these differences in sub-
routine calculations, the theoretical framework will remain largely
unchanged from species to species and lake to lake. To promote
the use of this model for different algal species, editable and an-
notated Matlab code used to simulate the base case scenario in
Section 3.1 can be found at the Data Repository for the University
of Minnesota (DRUM).

5 | CONCLUSION

We have developed a theoretical model that tracks the
meteorological-driven movement and aggregation of M. aeruginosa
in lake water columns. There are limitations in this model—in par-
ticular, disaggregation is not accounted for and no explicit validation
with field data has been made. However, the process of construct-
ing the model and the predictions generated by the model provide
important insights into the possible drivers of harmful algal blooms.
First, we have demonstrated that Smoluchowski aggregation quali-
tatively represents the colony dynamics of M. aeruginosa, and the
coupling of transport and colony dynamics is an important mecha-
nism of M. aeruginosa population models in stratified lakes. Further,
the model is capable of generating the diurnal migrations exhibited
by large colonies of M. aeruginosa to a depth of preferred light inten-
sity, but small colonies are susceptible to turbulent entrainment and
generally become well-mixed throughout the surface mixed layer.
Model results also clearly demonstrate that wind-induced mix-
ing and algal concentrations exceeding 107 cells/m® are necessary
to promote the aggregation of an initial single cell population to an
algal population dominated by large colonies (d,,, = 160 um) within
6 weeks, a time scale in accordance with field measurements (Cao &
Yang, 2010; Xiao et al., 2018). This finding suggests quiescent condi-
tions alone are not sufficient for surface bloom formation of colonial
and motile harmful algae—large wind events prior to quiescent con-
ditions are an important necessary precursor. In addition, the model
provides guidance for future field data collection and model studies
(e.g., quantifying the roles of extracellular polysaccharide and micro-
cystin content as they relate to aggregate sticking probability). To
practically implement the results of this theoretical model, we have
identified ways to (i) incorporate this model into larger software in
computationally efficient ways, and (ii) extrapolate this theoretical

framework to different algal species.
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APPENDIX A

Calculation of the buoyant velocity
Following the work of Medrano et al. (2013), we can calculate the
change in individual cell density, p, in light conditions by

docen _ a | iy, (A1)
dt = E’e +d

and in dark conditions by

dp,
dcte” =" b(/)cell - pref)H(pCe" - /’ref) (Az)

where I(zt) is the irradiance, | is the irradiance such that p_,(l,) is
maximum, d is the background rate of density change when =0, p
is the minimum cell density below which cells will not reduce their
carbohydrate content, a is a normative factor, b is the slope of den-
sity change in the dark, and H(x) is the Heaviside function defined
to be unity when the argument x is positive and zero otherwise. We

used a value of |_.. = 5.75W/m? to differentiate between light and

crit

TABLE A1 Parameters used to calculate the buoyant velocity
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dark conditions and an initial single cell density of p, = 1060 kg/m°.
For all parameter values, see Table A1l.

We assume that the cell density of each individual cell, whether
it belongs to a colony or not, will react to the instantaneous light
intensity in every grid cell at every time step by these equations.
To calculate colony density, p,, from single cell density, we use the

relationship

Pk = pcellncell(k)(l - ngas) + pmuc(l - ncell(k)) (A3)
where n_ gas is the
ratio of gas vesicle volume to colony volume, and p, . is the density

of cell mucilage (Medrano et al., 2013). Like Medrano et al. (2013), we

have kept Ngas and p,,,. constant for all simulations; unlike Medrano

(k) is the ratio of cell volume to colony volume, n

et al. (2013), n_,, is not constant but will vary with colony size because
we assume all M. aeruginosa colonies have a fractal geometry and the
relative content of mucilage to cells will increase with increasing cell
size (Zhu et al., 2014). For parameter values, please see Table Al. Once
p, has been calculated for all values of k at every time step in every grid

cell, we can then calculate the buoyant velocity, w,(z,t), by Equation (13).

Variable Description Value

a Normative factor in Equation (A1) 4.96%107° s%/m°

sy Irradiance such that p_(l,) achieves a maximum 146.43W/m?

d Background rate of density change when [ =0 -2.75% 10 kg/mq/s

b Slope of density change in dark conditions given by Equation (A2) 1.58x107°1/s

Pret Critical density where cells will no longer reduce their carbohydrate content 1037 kg/m®

lerie Critical light intensity differentiating between light and dark conditions 5.75W/m?

Po Initial density of single cells 1060kg/m?®

s Ratio of gas vesicle volume to colony volume 7%

Nean Ratio of cell volume to colony volume Neo (k) = =0.0073k+0.9373 (%)



