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Abstract

Climate	 change	 is	 leading	 to	 an	 increase	 in	 severity,	 frequency,	 and	distribution	of	
harmful	algal	blooms	across	the	globe.	For	many	harmful	algae	species	in	eutrophic	
lakes,	the	formation	of	such	blooms	is	controlled	by	three	factors:	the	lake	hydrody-
namics,	the	vertical	motility	of	the	algae	organisms,	and	the	ability	of	the	organisms	
to	form	colonies.	Here,	using	the	common	cyanobacterium	Microcystis aeruginosa	as	
an	example,	we	develop	a	model	that	accounts	for	both	vertical	transport	and	colony	
dynamics.	At	the	core	of	this	treatment	is	a	model	for	aggregation.	For	this,	we	used	
Smoluchowski	dynamics	containing	parameters	related	to	Brownian	motion,	turbulent	
shear,	differential	setting,	and	cell-	to-	cell	adhesion.	To	arrive	at	a	complete	descrip-

tion	of	bloom	formation,	we	place	the	Smoluchowski	treatment	as	a	reaction	term	in	a	
set	of	one-	dimensional	advection-	diffusion	equations,	which	account	for	the	vertical	
motion	of	the	algal	cells	through	molecular	and	turbulent	diffusion	and	self-	regulating	
buoyant	 motion.	 Results	 indicate	 that	 Smoluchowski	 aggregation	 qualitatively	 de-

scribes	the	colony	dynamics	of	M. aeruginosa.	Further,	the	model	demonstrates	wind-	
induced	mixing	 is	the	dominant	aggregation	process,	and	the	rate	of	aggregation	 is	
inversely	proportional	to	algal	concentration.	Because	blooms	of	Microcystis	typically	
consist	of	large	colonies,	both	of	these	findings	have	direct	consequences	to	harmful	
algal	bloom	formation.	While	the	theoretical	framework	outlined	in	this	manuscript	
was	derived	for	M. aeruginosa,	both	motility	and	colony	formation	are	common	among	
bloom-	forming	algae.	As	such,	this	coupling	of	vertical	transport	and	colony	dynamics	
is	a	useful	step	for	improving	forecasts	of	surface	harmful	algal	blooms.
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1  |  INTRODUC TION

Microcystis aeruginosa	 is	 a	 common	 toxin-	producing	 cyanobacte-

rium	capable	of	forming	harmful	algal	blooms	(HABs).	HABs	threaten	
both	ecological	and	public	health,	and	they	are	expected	to	increase	
in	distribution,	frequency,	and	severity	as	a	result	of	climate	change	
(O'neil	 et	 al.,	 2012).	 Predicting	 the	 timing	 of	 bloom	 formation	 has	
been	challenging,	but	researchers	in	the	field	have	reached	consen-

sus	on	general	 trends	 leading	up	 to	a	HAB.	A	 study	of	 the	 record-	
breaking	Lake	Erie	algae	bloom	of	2011	determined	that—	in	addition	
to	 excessive	 nutrient	 loading—	quiescent	 meteorological	 conditions	
allowed	the	bloom	to	form	and	proliferate	to	such	a	massive	extent	
(Michalak	et	al.,	2013),	a	finding	that	has	been	corroborated	in	many	
subsequent	studies	of	cyanobacteria	HABs	(Wells	et	al.,	2015).	Using	
a	 Bayesian	 biophysical	 model	 with	 a	 high-	frequency	 dataset,	 Del	
Giudice	et	al.	(2021)	were	able	to	quantitatively	show	that	quiescent	
conditions	are	not	enough:	High	surface	water	temperatures	and	high	
irradiation	 are	 also	necessary	 for	 bloom	 formation.	Recently,	 it	 has	
been	suggested	that	vertical	heterogeneity	(i.e.,	subsurface	peaks)	of	
M. aeruginosa	concentration	is	an	important	precursor	to	Microcystis 

surface	 bloom	 formation	 (Seegers	 et	 al.,	 2015;	 Xiao	 et	 al.,	 2018; 

Wilkinson	et	al.,	2019;	Taylor	et	al.,	2021).	Therefore,	it	is	reasonable	
to	assume	improving	models	for	the	drivers	of	M. aeruginosa	vertical	
distributions	will	likely	lead	to	improved	predictions	of	HAB	timing.

There	are	two	key	traits	related	to	the	ubiquity	of	M. aeruginosa: 

vertical	 motility	 and	 colony	 formation.	 Vertical	 motility	 is	 achieved	
through	 algal	 cell	 buoyancy	 regulation	 via	 intracellular	 gas	 vesicles.	
Under	low	levels	of	mixing,	M. aeruginosa	sinks	to	lower	light	intensities	
during	the	day	and	floats	towards	the	water	surface	at	night,	although	
a	critical	water	 temperature	 threshold	must	be	 reached	 in	order	 for	
cells	to	regain	buoyancy	(Ibelings	et	al.,	1991;	Thomas	&	Walsby,	1985,	
1986).	Once	that	threshold	is	reached,	increasing	temperature	increases	
buoyant	velocity	(You	et	al.,	2018).	Vertical	motility	gives	M. aeruginosa 

a	particular	advantage	in	stratified	lake	environments.	Stratified	lakes	
are	characterized	by	 three	distinct	 layers:	The	epilimnion	or	 surface	
mixed	layer	is	the	hot,	well-	mixed	surface	layer;	the	hypolimnion	is	the	
cold,	well-	mixed	bottom	layer;	and	the	metalimnion	is	the	intermediate	
layer	of	steep	temperature	gradient	connecting	the	epilimnion	to	the	
hypolimnion.	 Using	 the	 three-	dimensional	 ecological-	hydrodynamic	
modeling	software	ELCOM-	CAEDYM,	Chung	et	al.	 (2014)	were	able	
to	demonstrate	a	shallow	mixed	layer	depth	(close	to	the	photic	depth)	
favored	 buoyant	 cyanobacteria	 dominance,	 indicating	 lake	 thermal	
structure	controls	algal	population	dynamics.

Colony	 dynamics	 remain	 rather	 illusive,	 but	 colonies	 have	 been	
demonstrated	to	form	in	the	presence	of	grazers,	low	to	medium	tur-
bulence,	and	low	nutrient	conditions.	Colonies	formed	by	reproduc-
tion	and	growth	tend	to	be	compact,	whereas	colonies	that	form	by	
collisions	tend	to	be	fractal.	There	is	also	a	well-	documented	progres-
sion	from	a	unicellular	morphology	in	the	spring	to	a	fractal	colonial	
morphology	 in	 the	 summer	 (Xiao	et	 al.,	2018).	 In	 a	 field	 study,	Cao	
and	Yang	(2010)	found	that	 large	colonies	(greater	than	20	cells	per	
colony)	did	not	appear	until	May	but	composed	90%	of	cells	in	a	June	
surface	bloom.	They	also	calculated	the	mean	number	of	cells	in	the	

surface	bloom	to	be	about	120	cells/colony.	Between	field	work	and	
experiments,	Qin	et	al.	(2018)	found	that	wind	promotes	aggregation,	
creating	heterogeneous	size	distributions	in	Microcystis	populations.

There	 are	 two	 threads	 of	 previous	models	 to	 follow.	 There	 are	
models	 that	 describe	 aggregation	 processes	 of	 phytoplankton,	 and	
there	 are	 models	 that	 describe	 the	 vertical	 motility	 of	 M. aerugi-

nosa.	To	describe	the	aggregation	processes	of	phytoplankton,	mod-

els	 use	 Smoluchowski	 aggregation	 terms	 (Ackleh	 &	 Miller,	 2018; 

Jackson,	1990;	Smoluchowski,	1917).	Because	these	models	typically	
have	applications	 in	wastewater	treatment	or	marine	snow,	the	only	
transport	considered	is	the	loss	of	aggregates	via	sinking	out	of	the	sur-
face	mixed	layer	(Engel	et	al.,	2004;	Lee	et	al.,	2000;	Teh	et	al.,	2016).

Early	models	of	Microcystis	motility	use	light	intensity	as	a	driver	
of	changes	in	individual	cell	density—	high	light	intensities	lead	to	an	
increase	 in	cell	density,	whereas	 low	 light	 intensities	 lead	 to	a	de-

crease	 in	 cell	 density.	 The	 buoyant	 velocity	 of	 cells	 is	 then	 calcu-

lated	 through	a	modified	Stokes	 settling	 velocity	 that	 is	 governed	
by	 the	 difference	 between	 algal	 cell	 density	 and	 the	 surrounding	
water	density	 (Wallace	et	al.,	2000).	Turbulent	transport	has	since	
been	 incorporated	 into	 these	 models	 (Medrano	 et	 al.,	 2013;	 Zhu	
et	 al.,	2018).	 By	 combining	 their	model	with	 principal	 component	
analysis,	 Feng	et	 al.	 (2018)	 demonstrated	 that	 turbulence-	induced	
mixing	explained	over	half	of	the	variability	of	early	surface	bloom	
formation,	 and	 that	 buoyancy	 regulation	 was	more	 important	 for	
bloom	maintenance	and	formation	of	late-	season	blooms.	Although	
the	transport	of	different	 (fixed)	colony	sizes	 is	 investigated	in	the	
aforementioned	Microcystis	motility	models,	they	do	not	incorporate	
aggregation	 dynamics,	 despite	 the	 well-	documented	 progression	
from	unicellular	to	colonial	morphologies.

In	a	previous	field	study,	statistical	methods	were	used	to	elu-

cidate	the	reliance	of	Microcystis-	dominated	algal	vertical	distribu-

tions	 on	 lake	 thermal	 stratification	 variables	 (Taylor	 et	 al.,	 2021).	
Following	the	protocol	discussed	in	Vinatier	et	al.	(2011),	which	sug-
gests	using	statistical	and	mechanistic	models	in	an	iterative	manner	
to	uncover	forcings	of	spatial	heterogeneity,	we	propose	a	mecha-
nistic	model	to	analyze	the	effects	of	hydrodynamic	and	biological	
processes	underlying	the	spatial	patterns	observed	in	the	previous	
field	study.	The	primary	objective	of	 this	model	 is	not	 to	replicate	
exact	field	observations	but	to	instead	generate	hypotheses	for	the	
biophysical	drivers	of	general	field	trends	and	observations.	To	this	
end,	we	couple	algal	cell	aggregation	dynamics	with	algal	motility	in	
a	system	of	one-	dimensional	partial	differential	equations	that	cap-

ture	 lake	hydrodynamics	 to	 investigate	 the	 role	of	 the	colony	and	
motility	dynamics	on	M. aeruginosa	surface	bloom	formation.

2  |  METHODS

2.1  |  Aggregation preliminaries

In	the	absence	of	any	advective	or	diffusive	transport,	discrete	ag-
gregation	dynamics	can	be	described	by	the	Smoluchowski	coagula-
tion	model	(Smoluchowski,	1917):
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where n
k
(z,t)	 is	 the	 concentration	 of	 an	 aggregate	 of	 size	 k,	 α(i,j)	 is	

the	sticking	probability	and	β(i,j)	 is	referred	to	as	the	aggregation,	or	
coagulation,	kernel	of	particles	of	size	 i	and	 j	 (Figure 1).	Occasionally	
the	product	of	α(i,j)	and	β(i,j)	is	referred	to	as	the	aggregation	kernel,	
instead	of	 just	β(i,j).	We	leave	the	two	parameters	decoupled	mainly	
for	the	sake	of	visualizing	the	process	 (Figure 1)	but	also	to	concep-

tually	differentiate	the	hydrodynamic	drivers	of	β(i,j)	 (Equations 2–	5)	
from	 the	biological	drivers	of	α(i,j)	 (Section	2.2.2).	The	 first	 term	on	
the	right-	hand	side	describes	the	formation	of	a	k-	sized	aggregation,	
whereas	the	second	term	on	the	right-	hand	side	describes	the	loss	of	
a	k-	sized	aggregation	through	the	formation	of	a	k + i-	sized	aggregate.	
An	infinitely-	sized	particle	represents	a	 loss	of	mass	due	to	gelation.	
Equation 1	has	had	far-	reaching	applications	in	addition	to	phytoplank-
ton	modeling,	from	aerosols	to	random	graph	theory	and	polymeriza-
tion	to	planet	formation	(Aldous,	1999).

While	analytical	solutions	exist	for	some	simple	aggregation	ker-
nels	 (�(i, j)∼ 1, �(i, j)∼ i + j,	 and	�(i, j)∼ ij),	 realistic	 aggregation	kernels	
are	rarely	analytically	tractable.	In	the	present	context,	β(i,j)	is	calcu-

lated	as	the	sum	of	aggregation	kernels	for	Brownian	motion,	βBr(i,j,z),	
turbulent	shear,	βTS(i,j,z),	and	differential	settling,	βDS(i,j,z),	each,	respec-
tively,	defined	as	(Ackleh	&	Miller,	2018;	Thomas	et	al.,	1999)

and

such	that

where T(z)	 is	 the	water	 temperature	 (K),	 kB	 is	 Boltzmann's	 constant	
(1.38 × 10−23 m2	kg s−2	K−1),	μ(z)	is	the	dynamic	viscosity	of	water	(kg/
m/s),	G(z) =

(

�

�

)
1

2	 is	 the	 turbulent	 shear	 rate	 (1/s),	ϵ(z)	 is	 the	 rate	of	
turbulent	kinetic	energy	dissipation	(m2/s3),	and	�(z)	 is	the	kinematic	
viscosity	of	water	(m2/s).	The	equivalent	spherical	diameter	of	a	colony	
of	size	i,	d

i
	(m),	is	given	by

where D
f
 =	 2.5	 is	 the	 fractal	 dimension	 (Nakamura	 et	 al.,	 1993),	

d0 =	 5	 μm	 is	 the	 diameter	 of	 a	 single	 cell	 of	M. aeruginosa	 (Xiao	
et	al.,	2018),	and	ϕ	is	the	colony	porosity	that	linearly	decreases	from	
ϕ =	1	for	single	cells	and	ϕ =	0.2	for	colonies	of	size	kmax	 (Medrano	
et	al.,	2013).	Equation	(2)	is	derived	from	thermodynamic	principles	of	

Brownian	motion,	Equation	 (3)	defines	the	rate	of	collisions	for	sub-	
Kolmogorov	 particles	 in	 turbulent	 flow	 (i.e.,	 the	 largest	 aggregate	
diameter	 is	 smaller	 than	 the	 length	 scale	 of	 the	 smallest	 turbulent	
eddies),	and	Equation	 (4)	describes	collisions	as	a	result	of	different-	
sized	 aggregates	moving	 at	 different	 velocities.	 Aggregation	 due	 to	
Brownian	motion	is	typically	much	slower	than	aggregation	due	to	tur-
bulent	shear,	and	aggregation	due	to	differential	settling	will	be	large	
for	aggregates	of	drastically	different	sizes	but	will	be	small	for	aggre-

gates	of	close	to	the	same	size.
There	are	several	assumptions	of	this	formulation	that	should	be	

addressed	before	continuing.

1.	 We	 assume	 diffusion-	limited	 aggregation	 rather	 than	 reaction-	
limited	 aggregation,	 meaning	 the	 aggregation	 process	 will	 be	
limited	 by	 diffusion	 due	 to	 Brownian	 motion	 and	 not	 by	 the	
sticking	 probability	 of	 collisions.	 This	 is	 reasonable	 for	 colony-	
forming	 species	 of	 algae	 in	 a	 system	 where	 the	 domain	 size	
is	 much	 larger	 than	 the	 aggregate	 sizes.

2.	 We	assume	a	maximum	colony	size,	below	which	there	will	be	no	
disaggregation—	colonies	cannot	split	up	once	formed.	Effectively,	
we	assume	any	colonies	above	the	maximum	colony	size	instanta-
neously	disaggregate	into	their	constituent	parts.	These	assump-

tions	are	validated	by	the	lab	experiments	of	O'Brien	et	al.	(2004),	
which	demonstrated	disaggregation	of	M. aeruginosa	is	negligible	
for	the	size	range	of	aggregates	being	modeled	subjected	to	ex-
pected	field	turbulence	conditions.

3.	 We	 assume	 aggregates	 grow	 in	 size	 through	 particle	 collisions	
only.	 When	 aggregates	 consist	 of	 living	 organisms,	 it	 is	 pos-
sible	 for	aggregates	 to	 increase	 in	 size	 through	cell	 growth	and	
reproduction	in	addition	to	particle	collisions.	However,	 it	 is	hy-
pothesized	that	the	fractal	colonies	of	M. aeruginosa	are	formed	
primarily	through	collisions,	so	we	neglect	aggregation	due	to	cell	
growth	(Xiao	et	al.,	2018).

(1)dnk

dt
=

1

2

∑

i+ j= k
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∞
∑
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2T(z)kB

(
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)2
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didj
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(
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)3

3
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(
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)2|||
wi(z) − wj(z)

|||

(5)�(i, j, z) = �Br(i, j, z) + �TS(i, j, z) + �DS(i, j, z)

(6)di =
i

1

Df d0

�

F I G U R E  1 Schematic	of	aggregation.	Circles	indicate	the	
equivalent	spherical	diameter,	d

i
,	of	the	fractal	aggregate	of	size	

i.	(a)	Two	aggregates	of	size	i	and	j	collide.	This	collision	can	either	
result	in	(b)	aggregation	and	the	formation	of	a	i + j	sized	aggregate,	
or	(c)	collision	without	aggregation.	Rate	of	collisions	is	controlled	
by	β(i,j,z),	but	the	number	of	collisions	that	result	in	aggregation	is	
controlled	by	α(i,j)

(a) (b)

(c)
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4.	 We	 assume	 aggregation	 is	 uniform	 over	 any	 given	 horizontal	
cross-	section	 in	 order	 to	 facilitate	 the	 construction	 of	 a	 one-	
dimensional	model.

2.2  |  The mathematical model

To	provide	 a	 biophysical	mechanistic	 understanding	of	 field	 verti-
cal	 distributions	 of	 colonial	 and	motile	 harmful	 algae,	we	 develop	
the	 following	model	 to	 couple	 colony	 formation	with	 the	 vertical	
transport	of	M. aeruginosa. Let n

k
(z,t)	be	the	number	of	colonies	con-

taining	k	 cells	of	M. aeruginosa	per	unit	volume	 (colonies/m3),	 t be 

time	(s),	z	be	depth	(m),	D
Z
(z)	be	the	sum	of	molecular	diffusion	and	

turbulent	dispersion	coefficients	 (m2/s),	w
k
(z,t)	 be	 the	buoyant	ve-

locity	of	a	colony	containing	k	cells	of	M. aeruginosa	(m/s),	β(i,j,z)	be	
the	Smoluchowski	aggregation	kernel	for	colonies	of	size	 i	and	 j	at	
a	depth	z	defined	by	Equation	(5)	(m3/s),	and	kmax	be	the	maximum	
number	of	 cells	 in	 a	 single	 colony.	 If	we	assume	nutrients	 are	not	
limiting,	then	we	suggest	that	the	combined	vertical	transport	and	
aggregation	of	a	colony	of	size	k	can	be	described	by	the	following	
advection-	dispersion-	reaction	equation:

with	boundary	conditions

and	piecewise	uniform	initial	conditions	given	by

where z =	0	at	the	air-	water	interface,	z = hmax	at	the	lakebed,	and	
hML	is	the	width	of	the	surface	mixed	layer.	The	no-	flux	boundary	
conditions	ensure	cells	cannot	leave	the	water	column	through	at-
mospheric	or	soil	exchange.	Due	to	the	seasonal	progression	of	M. 

aeruginosa	from	unicellular	to	colonial	morphology,	we	begin	simu-

lations	with	only	single	cells.	Since	we	are	typically	more	interested	
in	overall	M. aeruginosa	concentration	profiles	rather	than	the	con-

centration	profiles	of	any	given	colony	size,	we	convert	concentra-
tions	of	colonies	of	size	k	to	total	M. aeruginosa	concentration	by

where C(z,t)	is	the	total	concentration	of	M. aeruginosa	(cells/m3).	Note	
that	we	have	a	discrete	number	of	total	cells	in	the	system,	but	both	
concentration	 and	 time	 are	 continuous.	 Using	 the	 aforementioned	
relationships	 for	 the	 aggregation	 kernel,	 appropriate	 forms	 for	 the	

sticking	probability	and	diffusion	coefficient,	and	the	specification	of	
an	expression	for	the	settling	velocity,	w

k
(z,t),	we	can	readily	develop	a	

numerical	simulation	of	Equation	(7).

2.2.1  |  System	details

For	M. aeruginosa,	 the	 largest	 stable	 colony	 size	 varies	 between	
220–	420 μm,	 depending	 on	 the	 rate	 of	 turbulent	 kinetic	 energy	
dissipation	 in	 the	 water	 column	 (O'Brien	 et	 al.,	 2004).	 Meaning	
for	 colonies	 of	 diameters	 smaller	 than	 220 μm,	we	 assume	 frag-

mentation	 is	 negligible	 for	 all	 reasonable	 environmental	 condi-
tions.	 Using	 the	 aggregation	 parameters	 listed	 in	 Section	 2.1,	
this	 diameter	 roughly	 corresponds	 to	 a	 colony	 of	 size	 k =	 580	
cells/colony.	 To	 explore	 the	 features	 of	 the	 model	 in	 a	 numeri-
cally	efficient	manner,	we	have	cut	off	the	colony	size	domain	at	
kmax =	101	cells/colony,	which	corresponds	to	a	maximum	colony	
diameter	of	d101 =	160 μm.	This	is	approximately	half	the	average	
maximum	 colony	 diameter	 determined	 by	 (O'Brien	 et	 al.,	2004),	
and	the	mean	colony	size	that	Cao	and	Yang	(2010)	measured	in	a	
Microcystis	HAB.	Further,	diameters	 larger	than	this	size	may	ex-

ceed	the	Kolmogorov	length	scale,	thereby	compromising	the	va-
lidity	of	Stokes'	law	and	leading	to	the	overestimation	of	buoyant	
velocities	(Medrano	et	al.,	2013).

Recall	 M. aeruginosa	 typically	 thrives	 in	 stratified	 lake	
environments.	 As	 such,	 the	 model	 must	 incorporate	 depth-	
dependent	 water	 temperature,	 water	 density,	 and	 turbulence	
profiles.	To	get	a	sense	of	how	the	model	behaves	in	field	condi-
tions,	we	used	data	collected	by	a	Self-	Contained	Autonomous	
MicroProfiler	 (SCAMP)	 from	 Ramsey	 Lake.	 Ramsey	 Lake	
(45.2073°N,	 93.9969°W)	 is	 a	 stratified	 and	 eutrophic	 lake	 in	
Minnesota,	USA	with	a	maximum	depth	of	approximately	24 m,	a	
surface	area	of	approximately	1.3	km2,	and	a	history	of	M. aeru-

ginosa	blooms	 (Rao	&	Hsu,	2008).	SCAMP	records	temperature	
fluctuations	 throughout	 the	 water	 column.	 Following	 the	 pro-

tocol	 in	 Chen	 et	 al.	 (2001),	 estimated	 spectra	 were	 calculated	
using	 Batchelor	 curve	 fitting,	 which	 were	 then	 used	 to	 calcu-

late	 turbulent	 kinetic	 energy	 dissipation	 rates.	 From	 this	 data-

set,	profiles	for	water	temperature,	D
Z
,	and	ϵ	were	constructed	

from	 field	 data	 under	 low	wind	 conditions	 and	 high	wind	 con-

ditions	 (Figure 2).	The	 low	wind	data	were	obtained	on	August	
2nd,	2018	11:22:20—	the	maximum	value	of	ϵ	was	measured	 to	
be	3 × 10−7 m2/s3	 during	 surface	wind	 speeds	of	 approximately	
2.3	m/s.	The	high	wind	data	were	obtained	on	August	30th,	2018	
11:34:26—	the	maximum	value	of	ϵ	measured	was	4 × 10−4 m2/s3 

and	corresponded	to	wind	speeds	of	approximately	8	m/s.	To	put	
these	choices	in	context,	typical	values	of	ϵ(z)	in	the	field	range	
from	10−11 to 10−6 m2/s3,	and	typical	values	of	D

Z
(z)	range	from	

10−6 to 10−2 m2/s	(Wüest	&	Lorke,	2003).

(7)
�nk

�t
=

�

�z

(

DZ

�nk

�z

)

−
�

�z

(

wknk
)

+
1

2

∑

i+ j= k

�(i, j)�(i, j, z)ninj −

kmax−k
∑

i=1

�(i, k)�(i, k, z)nink

(8)
�nk

�z
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�nk

�z
|z=hmax

=0
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0

k
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⎧
⎪
⎪
⎨
⎪
⎪
⎩
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k=1

0 k>1

0 z>hML ∀k

(10)C(z, t) =
∑

k

knk(z, t)



    |  5 of 15TAYLOR eT AL.

Since	M. aeruginosa	buoyancy	is	largely	mediated	by	light	inten-

sity,	we	must	also	construct	diurnal	light	profiles.	We	generated	sur-
face	light	intensities,	I0(t),	by

where Imax	is	the	maximum	surface	light	intensity	and	DL is the photo-

period.	To	best	replicate	previous	models,	values	of	Imax =	800 W/m
2 

and	DL =	16 h	were	chosen	(Medrano	et	al.,	2013).	Depth-	dependent	
light	intensities,	I(z,t),	can	then	be	calculated	by

where kI	 is	 the	 light	 attenuation	 coefficient	 (kI = 1.3 m−1	 (Medrano	
et	al.,	2013)).

2.2.2  |  Biological	parameters

Let	 us	 address	 the	 sticking	 probability,	 α(i,j).	 Previous	 models	 of	
Smoluchowski	aggregation	have	 related	α(i,j)	 to	 the	 fractal	dimen-

sion	of	aggregates	or	to	the	estimated	number	of	particles	near	the	
aggregate	 (Schmitt	 et	 al.,	2000;	 Zidar	 et	 al.,	2018).	 This	particular	
situation	warrants	 a	more	 biological	 approach.	M. aeruginosa	 uses	
extracellular	polysaccharides	(EPS)	as	adhesive	during	the	aggrega-
tion	 process;	 therefore,	 it	 is	 reasonable	 to	 assume	 sticking	 prob-

ability	will	increase	with	EPS	content.	Zhu	et	al.	(2014)	determined	

that,	in	field	samples	of	M. aeruginosa,	EPS	content	peaks	at	colony	
diameters	between	100	and	150 μm.	Interestingly,	these	diameters	
are	 similar	 to	 the	 average	 colony	 size	 found	 in	Microcystis	 HABs	
(Cao	&	Yang,	2010).	Using	this,	we	define	a	function	that	gives	the	

(11)I0(t) = Imaxsin
�t

DL

(12)I(z, t) = I0(t)e
−kIz

F I G U R E  2 Smoothed	field	data.	Low	wind	profiles	for	(a)	temperature,	(b)	turbulent	dispersion	coefficient,	D
Z
,	and	(c)	rate	of	turbulent	

kinetic	energy	dissipation,	ϵ.	high	wind	profiles	for	(d)	temperature,	(e)	turbulent	dispersion	coefficient,	D
Z
,	and	(f)	rate	of	turbulent	kinetic	

energy	dissipation,	ϵ.	Note	the	differences	in	orders	of	magnitude	for	D
Z
	and	ϵ	under	low	wind	and	high	wind	conditions.	Low	wind	

conditions	roughly	correspond	to	wind	speeds	of	2	m/s,	whereas	high	wind	conditions	roughly	correspond	to	wind	speeds	of	8	m/s

(a) (b) (c)

(d) (e) (f)

F I G U R E  3 New	figure	to	elaborate	on	the	sticking	probability	
function.	Sticking	probability,	α

k
,	vs	colony	diameter,	d

k
 

(μm),	and	colony	size,	k	(cells/colony),	where	α
k
	is	defined	by	

�k

(

dk

)

= 0.994e
−

(

(dk−0.000116)
0.000134

)2

.	Single	cells	will	aggregate	upon	
colliding	50%	of	the	time,	whereas	colonies	of	size	k =	95	
cells/colony	will	always	aggregate	after	collisions.	Note	that	
�(i, j) = max

{

�i ,�j
}
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sticking	probability	of	a	colony	of	size	k,	α
k
 = f(d

k
),	which	achieves	

a	minimum	value	 of	α
k
 =	 0.5	 at	d1 =	 5	μm	and	 a	maximum	value	

of	α
k
 =	1	at	d95 =	125 μm	(Figure 3).	To	calculate	the	sticking	prob-

ability	for	a	collision	between	a	colony	of	size	i	and	size	j,	we	define	
�(i, j) = max

{

�i ,�j
}

 .	 Larger	 colonies	will	 therefore	 be	 ‘stickier’	 than	
small	colonies,	so	more	of	their	collisions	will	result	in	aggregation.

The	 buoyant	 velocity,	 w
k
,	 is	 calculated	 using	 subroutines	 de-

scribed	in	previous	models,	which	(i)	relate	light	intensity	to	individ-

ual	cell	density,	then	(ii)	relate	individual	cell	density	to	colony	density	
using	the	fractal	dimension	of	M. aeruginosa	aggregates,	then	(iii)	use	
the	colony	density	to	calculate	a	modified	Stoke's	velocity	(Medrano	
et	al.,	2013;	Nakamura	et	al.,	1993;	Wallace	et	al.,	2000)	by

where ρ
k
	is	the	density	of	a	colony	of	size	k.	Subroutine	details	to	cal-

culate	ρ
k
	can	be	found	in	Appendix A.	We	use	the	same	equations	and	

parameter	values	used	 in	 the	work	of	Medrano	et	al.	 (2013),	with	a	
modification	 for	 the	 ratio	 of	 cell	 volume	 to	 colony	 volume	 that	 ac-
counts	 for	 the	 fractal	 geometry	 of	 aggregates	 and	 the	 relationship	
between	EPS	content	and	colony	size.	We	expect	sinking	during	the	
day	(positive	w

k
)	and	floating	at	night	(negative	w

k
),	although	velocity	

magnitudes	 and	 general	 transport	 dynamics	will	 vary	 across	 colony	
size.	In	experiments,	You	et	al.	(2018)	recorded	buoyant	velocities	of	
10−6	m/s	at	17.5°C	and	10−5	m/s	at	28°C	for	small	colonies.	For	large	
colonies,	buoyant	velocities	have	been	recorded	as	large	as	10−3 m/s 

(Wallace	et	al.,	2000).

2.2.3  |  Numerical	considerations

We	are	 using	 an	 explicit	 forward-	in-	time	 upwind	 numerical	 scheme	
with	fluxes	defined	at	grid	cell	interfaces	and	concentrations	defined	at	
grid	cell	node	points	(Figure 4).	For	a	given	grid	cell	i	at	time	step	m,	the	
new	concentration	of	colonies	of	size	k	in	that	grid	cell	is	calculated	as

where	 the	 subscripts	 i ± 1

2
	 denote	parameters	defined	at	 the	 top	or	

bottom	 interface	of	grid	cell	 i,	 the	aggregation	terms	are	defined	by	
Equations	(2–	5),	and

by	upwinding.
Table 1	 shows	 numerical	 parameter	 values	 used	 for	 all	 simula-

tions.	The	time	step,	Δt,	was	chosen	to	be	small	enough	to	ensure	the	

stability	of	the	numerical	scheme,	and	the	grid	cell	width,	Δz,	was	cho-

sen	to	be	small	enough	to	minimize	numerical	dispersion	of	the	upwind	
scheme	while	also	maintaining	stability.	To	address	numerical	disper-
sion,	we	tested	the	time	to	large	colony	appearance	for	the	parameters	
described	in	Table 1	against	a	finer	grid	size.	In	the	base	case	simula-
tion,	large	colonies	appear	in	13.4 days;	if	we	instead	use	Δz = 0.1 m 

(and	a	correspondingly	smaller	time	step	of	Δt =	5	s),	large	colonies	ap-

pear	in	16.1 days.	This	three-	day	slowdown	indicates	that	our	scheme	
is	not	completely	devoid	of	numerical	dispersion.	However,	the	goal	
of	this	manuscript	is	first	and	foremost	to	investigate	the	applicabil-
ity	 of	 Smoluchowski	 aggregation	 to	 describe	M. aeruginosa	 colony	
dynamics—	not	to	solve	the	inverse	problem	of	parameter	estimation	
or	make	predictions	with	a	real	dataset.	In	this	sense,	we	feel	that	our	
choices	of	space	and	time	steps	efficiently	capture	the	correct	physi-
cal	behaviors	and	provide	an	appropriate	order	of	magnitude	predic-
tion	for	the	timing	and	appearance	of	large	colony	sizes.

3  |  RESULTS

3.1  |  Appearance and distribution of colonies

We	will	 start	with	 the	 simplest	 simulation	 that	 still	 allows	 for	 the	
investigation	of	important	model	features:	six	weeks	of	a	repeating	
photoperiod	and	constant	 lake	 thermal	and	hydrodynamic	profiles	
(Table 2).	The	repeating	photoperiod	is	generated	by	Equations	(11)	

(13)
wk =

gd2
k

(

�k

�W

− 1

)

18�

(14)
n
m+1
k,i

=n
m

k,i
+
Δt

Δz

(

D
i−

1

2

Δz

(

n
m

k,i−1
−n

m

k,i

)

+w
m

k,i−
1

2

n
∗m

k,i

)

…

… −
Δt

Δz

(

D
i+

1

2

Δz

(

n
m

k,i
−n

m

k,i+1

)

+w
m

k,i+
1

2

n
∗m

k,i+1

)

+Δt(aggregation terms)

(15)n
∗m

k,i
=

⎧
⎪
⎨
⎪
⎩

n
m

k,i−1
w

m

k,i
≥0

n
m

k,i
w

m

k,i
<0

F I G U R E  4 Schematic	of	numerical	scheme.	Fluxes,	qtop,i 

and	qbot,i,	are	calculated	as	the	sum	of	diffusive	and	advective	
fluxes	at	grid	cell	interfaces,	but	concentrations	are	calculated	
at	grid	cell	node	points.	n∗

k,i
	depends	on	the	sign	of	w

k,i	and	
is	defined	in	Equation	(15).	Since	we	can	calculate	the	new	
concentration	of	a	colony	of	size	k	in	grid	cell	i	at	time	step	m	by	
nm+1
k,i

=
Δt

Δz

(

qtop,i−qbot,i
)

+Δt(aggregation terms) ,	conservation	of	
mass	is	ensured	by	setting	qtop,i + 1 = qbot,i.	To	satisfy	boundary	
conditions,	fluxes	at	the	top	of	the	first	grid	cell	and	at	the	bottom	
of	the	last	grid	cell	are	defined	to	be	zero	for	all	time
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and	 (12);	 the	constant	 lake	 thermal	and	hydrodynamic	profiles	are	
shown	 in	Figure 2d–	f.	For	 the	base	case	 simulation,	 the	 lake	 ther-
mal	and	hydrodynamic	profiles	represent	high	wind	conditions.	Field	
data	 indicate	Microcystis	 can	 transition	 from	a	 predominantly	 uni-
cellular	morphology	to	a	predominantly	colonial	morphology	over	a	
monthly	period	(Cao	&	Yang,	2010;	Xiao	et	al.,	2018),	so	a	six-	week	
simulation	time	was	chosen	to	ensure	aggregation	would	be	evident.	
Using	 the	 conditions	 outlined	 in	 Table 2,	 Equation	 (13)	 predicted	
buoyant	 velocities	 ranging	 from	−10−4	 (floating)	 to	10−3	m/s	 (sink-
ing)	and	Equations	(2)–	(5)	predicted	aggregation	kernels	in	the	range	
β(i,j,z)	∈ [10−13,	10−9] m3/s.

The	model	demonstrates	 small	 colonies	will	diffuse	 throughout	
the	mixed	 layer	 (Figure 5a–	c),	but	 large	colonies	exhibit	diurnal	mi-
grations	 to	a	depth	with	preferred	 low	 light	 intensity	 (Figure 5d,e).	
In	general,	small	colonies	will	lose	mass	as	they	aggregate	into	larger	
colonies,	which	gain	mass.	Medium-	sized	colonies	never	achieve	high	
mass	(Figure 5c,d),	and	colonies	of	size	k =	101	appear	before	colonies	
of	size	k =	67.	This	indicates	large	colonies	aggregate	with	each	other	
faster	than	they	aggregate	with	small	colonies,	a	finding	consistent	
with	coagulation	kinetic	 theory	 (Smit	et	al.,	1994).	The	overall	con-

centration	profile,	C(z,t)	 (Equation 10),	 is	mostly	 influenced	by	large	
colonies	by	approximately	the	fifth	week	of	simulation	(Figure 5f).

3.2  |  Factors affecting vertical distribution

While	advection	is	negligible	for	single	cells	and	small	colonies,	motil-
ity	plays	a	key	role	in	the	vertical	distribution	of	large-	sized	colonies	
(Figure 6).	The	time	it	takes	for	large	colonies	to	appear	is	approxi-
mately	equivalent	to	whether	advection	is	on	or	off,	but	the	inclusion	
of	motility	allows	the	large	colonies	to	migrate	to	a	preferred	depth	
of	low	light	intensity	(Figure 6a).

We	also	 see	changes	 in	vertical	distributions	when	we	change	
wind	conditions	 (Figure 7).	During	high	wind	conditions,	small	col-
onies	 become	 uniformly	 distributed	 throughout	 the	 mixed	 layer.	
If	 we	 instead	 run	 the	 simulation	 under	 constant	 low	wind	 condi-
tions	shown	 in	Figure 2a–	c,	smaller	colonies	 (e.g.,	k =	34)	are	able	

to	advect	to	a	preferred	depth	of	low	light	intensity,	although	their	
diurnal	 migrations	 are	 not	 as	 pronounced	 (compare	 Figure 7b to 

Figure 6a or Figure 5e).	In	addition,	wind	also	seems	to	significantly	
control	the	time	it	takes	for	colonies	to	appear.	Synthesizing	these	
results,	high	wind	conditions	 lead	 to	more	medium-	sized	colonies,	
but	they	will	be	well-	mixed	throughout	the	surface	mixed	layer.	On	
the	other	hand,	low	wind	conditions	lead	to	far	fewer	medium-	sized	
colonies,	but	the	colonies	will	be	able	to	concentrate	around	a	depth	
of	preferred	low	light	intensity.

3.3  |  Factors affecting aggregation

There	 are	 few	 situations	 less	 likely	 to	 occur	 than	 6 weeks	 of	 the	
exact	same	meteorological	conditions	on	repeat,	so	we	must	explore	
how	the	model	behaves	under	different	conditions.	To	this	end,	let	
us	define

to	be	the	total	number	of	cells	in	a	colony	of	size	k.	Since	n
k
	is	a	contin-

uous	variable	and	n
k
Δz	is	not	necessarily	greater	than	one,	it	is	possible	

for	N
k
 < k.	We	are	more	concerned	when	colonies	of	various	sizes	appear	

at	some	comparative	concentration	value	rather	than	the	actual	concen-

tration,	so	N
k
(t)	acts	as	a	suitable	marker	for	the	appearance	of	colonies.	

We	can	now	rerun	the	simulation	described	in	the	previous	Section	3.1 

while	changing	one	condition	at	a	time	to	see	how	each	individual	change	
affects	N

k
(t)	for	various	colony	sizes	(Figures 8	and	9).	Using	low	wind	

conditions	 (Figure 2)	 dramatically	 reduces	 aggregation—	in	 the	 entire	
six-	week	simulation,	the	largest	colony	size	achieved	is	k = 3 cells/col-

ony	 (Figure 8b).	 If	we	 introduce	 transient	 hydrodynamic	 profiles	 that	
represent	 stepwise	 intermittent	 wind	 conditions	 between	 high	 wind	
50%	of	the	time	and	low	wind	the	other	50%	of	the	time,	either	on	a	
daily	or	hourly	time	scale,	aggregation	is	slowed	down	by	a	factor	of	ap-

proximately	 two	 (Figure 8c,d).	Setting	the	sticking	probability,	α(i,j),	 to	
be	unity	for	all	colony	sizes	allows	the	large-	sized	colonies	to	show	up	
approximately	5 days	before	their	appearance	in	the	base	case	simula-
tion,	eventually	becoming	more	abundant	than	the	single	cell	population	
(Figure 9b).

Along	with	wind	conditions,	 the	speed	of	aggregation	 is	highly	
sensitive	to	initial	algal	concentrations	(Figure 10).	Let	us	define	τ

k
 to 

be	the	time	such	that	N
k
(τ

k
)	=	1.	As	long	as	initial	algal	concentrations	

are	greater	than	1 × 107 cells/m3,	 then	τ
k
	 is	approximately	 inversely	

proportional	to	initial	concentrations	within	the	mixed	layer,	n0
1
 .

Nk(t) =
∑

z

knk(z, t)Δz

TA B L E  1 Numerical	parameters

Variable Description Value

Δz Grid cell width 0.2 m

Δt Time step 10 s

zmax Maximum	depth	of	domain 10 m

Condition Description

Further 

details

Motility Regulated	by	light-	dependent	buoyancy Equation	(13)

Meteorological	forcings Constant	high	wind	and	lake	thermal	profile Figure 2d–	f

Sticking	probability α(i,j)	∈	[0.5,1]	with	peak	at	d95 =	125 μm Section	2.2.2

Initial	algal	concentration Only	single	cells	in	mixed	layer Equation	(9)

TA B L E  2 Base	case	simulation	
conditions
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3.4  |  Summary of main results

1.	 For	 constant	 high	 wind	 conditions	 and	 initial	 uniform	 sin-

gle	 cell	 concentrations	 of	 107 cells/m3	 within	 the	 surface	
mixed	 layer,	 the	 largest	 colonies	 of	 size	 k =	 101	 appear	
in	 approximately	 2 weeks	 and	 dominate	 in	 approximately	
5 weeks.

2.	 Large	 colonies	 exhibit	 diurnal	 migrations,	 with	 concentration	
peaks	 located	 around	 a	 depth	 of	 preferred	 low	 light	 intensity;	
small	colonies	are	dispersed	throughout	the	surface	mixed	layer.	

The	minimum	colony	size	capable	of	diurnal	migrations	increases	
with	increasing	wind	speed.

3.	 Aggregation	is	negligible	during	low	wind	conditions.
4.	 Intermittent	wind	 conditions,	which	oscillate	between	high	and	
low	winds	at	 some	given	 frequency	 such	 that	high	wind	condi-
tions	are	achieved	50%	of	the	time,	slow	the	appearance	of	large	
colony	sizes	by	a	factor	of	two.

5.	 Above	 an	 initial	 algal	 concentration	 of	 107 cells/m3,	 there	 is	 a	
power-	law	dependence	between	the	time	to	appearance	of	large	
colonies	and	initial	algal	concentration.

F I G U R E  5 Concentration	profiles	over	six	weeks	of	simulation	during	high	wind	conditions	(shown	in	Figure 2d–	f)	for	(a)	n1(z,t),	(b)	n5(z,t),	
(c)	n34(z,t),	(d)	n67(z,t),	(e)	n101(z,t),	and	(f)	C(z,t).	Color	bar	changes	scale	for	each	subfigure.	The	wiggles	visible	in	(d)–	(e)	show	the	diurnal	
migration	of	large-	sized	colonies

(a) (b) (c)

(d) (e) (f)

F I G U R E  6 Differences	in	vertical	
distributions	of	large-	sized	colonies	
between	(a)	the	base	case	simulation	in	
Figure 5	and	(b)	turning	off	advection	by	
setting	w

k
(z,t) ≡ 0

(a) (b)
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4  |  DISCUSSION AND CONCLUSION

4.1  |  Discussion of model results

Our	 results	 generally	 coincide	 with	 those	 of	 existing	 literature,	
with	 a	 few	 important	 caveats.	Ackleh	and	Miller	 (2018)	 found	ag-
gregation	rates	on	the	order	of	10−12 m3/s	using	Smoluchowski	ag-
gregation	 to	model	 phytoplankton	dynamics,	which	 is	 in	 line	with	
those	 calculated	 in	 our	 simulations	 (β(i,j,z)	 ∈ [10−13,10−9] m3/s).	
Medrano	et	al.	(2013)	found	maximum	buoyant	velocity	magnitudes	
on	the	order	of	10−3	m/s	for	 large	colonies,	which	is	an	equivalent	
order	of	magnitude	of	our	maximum	calculated	buoyant	velocities	
(wk(z, t) ∈

[

− 10
−4
, 10

−3
]

	m/s).	Our	model	also	predicts	aggregation	
at	a	time	scale	that	roughly	corresponds	with	the	field	study	by	Cao	
and	Yang	(2010),	wherein	the	dominant	morphology	of	Microcystis 

transitioned	from	single	cells	to	large	colonies	in	about	a	month.	The	
model	 of	Medrano	 et	 al.	 (2013)	 showed	 that	 small	 colonies	 of	M. 

aeruginosa	are	not	able	to	overcome	turbulent	mixing,	whereas	large	

colonies	 exhibit	 notable	 daily	migrations	 controlled	 by	 the	 photic	
depth.	This	 is	 directly	 compatible	with	our	model	 results,	 keeping	
in	mind	that	the	intensity	of	wind	controls	the	minimum	colony	size	
capable	of	diurnal	migrations	(Figures 5–	7).	If	we	define	the	sticking	
probability	to	be	unity	for	all	colony	sizes,	the	 large-	sized	colonies	
appear	within	a	couple	of	days,	much	faster	than	they	appear	in	field	
conditions	(Figure 9).	Relating	the	sticking	probability	to	the	extra-
cellular	 polysaccharide	 content,	which	 is	 in	 turn	 related	 to	 colony	
size,	slows	down	aggregation	to	a	rate	consistent	with	field	observa-
tions.	These	findings	support	the	claim	that	Smoluchowski	coagula-
tion	kinetics	qualitatively	describe	the	aggregation	processes	of	M. 

aeruginosa.

The	model	unveils	two	important	dependencies	of	aggregation	
on	 wind	 speed	 and	 algal	 concentration.	 Colony	 size	 distributions	
are	 highly	 sensitive	 to	wind-	induced	mixing	 (Figure 8),	 a	 phenom-

enon	 that	was	 previously	 revealed	 in	 experiments	 and	 field	work	
(Qin	 et	 al.,	2018).	 Colonies	 of	 size	 k =	 101	 cells/colony	 appeared	
within	15 days	during	high	wind	conditions,	but	 the	 largest	colony	

F I G U R E  7 Differences	in	vertical	
distributions	of	colonies	of	size	k = 34 

between	(a)	the	base	case	simulation	
in	Figure 5	and	(b)	low	wind	conditions	
(Figure 2)

(a) (b)

F I G U R E  8 Cell	count,	N
k
(t),	of	

various	colony	sizes	for	(a)	the	base	
case	simulation	(Table 2),	(b)	low	wind	
conditions	(Figure 2),	(c)	switching	
between	high	wind	and	low	wind	
conditions	every	day,	and	(d)	switching	
between	high	wind	and	low	wind	
conditions	every	hour.	Total	number	
of	cells	is	conserved	for	all	simulations.	
Cell	counts,	N

k
,	were	calculated	by	

Nk =
∑

z
knkΔz

(a) (b)

(c) (d)
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size	 to	 appear	 during	 low	wind	 conditions	was	 k =	 3	 cells/colony	
(Figure 8a,b).	Cutting	the	 large	wind	events	 in	half—	either	daily	or	
hourly—	slowed	the	appearance	of	the	large-	sized	colonies	by	a	fac-
tor	of	two	(Figure 8c,d).	This	implies	that	the	speed	of	aggregation	
is	directly	proportional	to	the	duration	of	large	wind	events,	causing	
relatively	short-	lived	wind	events	to	lead	to	rapid	aggregation	(recall	
the	dependence	of	β(i,j,z)	on	the	turbulent	shear	rate	in	Equation	(3)).

When	 our	 model	 indicates	 aggregation	 is	 negligible	 for	 low	
wind	 conditions,	 it	 does	 not	 mean	 aggregation	 is	 not	 occurring.	
Instead,	 this	 indicates	 that	 processes	 like	 light-	driven	motility	 are	
considerably	 more	 significant	 than	 aggregation	 during	 low	 wind	
conditions.	While	 this	may	 seem	 to	disagree	with	 the	 conclusions	
of	Qin	et	al.	(2018),	which	stated	that	low	to	medium	turbulence	is	
necessary	to	promote	colony	formation,	this	finding	is	actually	just	
placing	their	experimental	results	in	the	context	of	a	deep,	dimictic	
lake.	Small	to	moderate	amounts	of	turbulence	will	in	fact	promote	
aggregation,	but	 it	 does	not	do	 so	at	 a	 rate	 that	will	 lead	 to	 large	
colonies	appearing	 in	a	six-	week	time	frame.	Furthermore,	even	in	
shallow	Lake	Taihu,	Qin	et	al.	(2018)	measured	a	significant	increase	
in	average	colony	size	over	a	short	period	of	several	days	during	a	

typhoon	event	with	consistently	high	wind	speeds,	a	result	consis-
tent	with	our	findings.

This	observation	has	profound	consequences	on	the	subsequent	
formation	 of	 surface	 blooms.	 Shortly	 after	 large	wind	 events,	 the	
newly	large	colonies	will	be	able	to	overcome	turbulent	mixing	that	
the	previously	small	colonies	could	not,	leading	to	drastically	differ-
ent	vertical	transport	results.	Since	blooms	typically	consist	of	large	
colonies	(Cao	&	Yang,	2010;	Wu	et	al.,	2020;	Zhu	et	al.,	2014),	this	
also	means	short	periods	of	mixing	via	large	wind	events	could	act	as	
a	necessary	precursor	to	surface	harmful	algal	bloom	formation	as	
long	as	algal	concentrations	are	high	enough	(see	discussion	below	
and	Section	4.3	for	more	details).	In	a	laboratory	mesocosm	exper-
iment,	Wu	et	al.	 (2019)	 found	that	 increasing	wind	 (up	to	3.6	m/s)	
increased	the	volumetric	median	colony	diameter	at	the	water	sur-
face.	Field	experiments	by	Yang	et	al.	(2020)	found	that	intermittent	
wind-	induced	disturbance	favored	 (i)	 larger	colony	sizes,	 (ii)	higher	
biomass,	 and	 (iii)	 stronger	 dominance	of	Microcystis	 over	 constant	
quiescent	or	constant	wind	conditions.	We	believe	this	result	agrees	
nicely	with	our	conclusion	that	wind	is	necessary	to	promote	aggre-

gation,	quiescent	conditions	are	necessary	for	algal	growth,	and	the	
combination	of	the	two	in	subsequent	order	is	a	recipe	for	a	harmful	
algal	bloom.

In	 regards	 to	 the	 sensitivity	 of	 aggregation	 to	 the	 initial	 algal	
concentration,	the	inversely	proportional	relationship	between	algal	
concentration	and	time	to	 large	colony	appearance,	τ101,	has	been	
documented	 in	 previous	 studies	 of	 marine	 snow.	 Jackson	 (1990)	
found	their	large-	sized	colonies	appeared	within	half	a	day	of	algal	
concentrations	reaching	108 cells/m3,	a	rate	in	line	with	the	results	
described	in	this	manuscript	(Figure 10).	We	relate	τ101	to	initial	con-

centrations	 only,	 but	 that	 is	 simply	 because	we	 have	 a	 conserved	
number	of	total	cells	in	our	system.	If	instead	we	had	growth	and/
or	decay	terms,	we	could	track	τ101	as	a	function	of	 instantaneous	
algal	concentration.	By	maintaining	conservation	of	mass,	however,	
we	can	clearly	see	that	any	location	in	the	water	column	with	algal	
concentrations	on	the	order	of	107 cells/m3	will	take	over	10 days	to	
form	 large	colonies,	whereas	 locations	with	concentrations	on	the	
order	of	108 cells/m3	will	have	large	colonies	within	a	day.

Since	 higher	 densities	 would	 lead	 to	 increased	 collisions,	 this	
finding	is	unsurprising	from	a	physical	standpoint;	however,	it	does	
provide	 some	 important	 biological	 modeling	 insight.	 Regardless	
of	 wind	 conditions,	 aggregation	 will	 be	 negligible	 until	 algal	

F I G U R E  9 Cell	count,	N
k
(t),	of	

various	colony	sizes	for	(a)	the	base	case	
simulation	from	Figure 5	and	(b)	enforcing	
all	collisions	result	in	aggregation	by	
setting	α(i,j) ≡ 1.	Total	number	of	cells	is	
conserved	for	all	simulations

(a) (b)

F I G U R E  1 0 Initial	concentration	of	singles	cells	within	the	
mixed	layer	vs	time	to	appearance	of	colonies	of	size	k = 101. 

Both	x-		and	y-	axes	are	log	scales.	Solid	line	shows	the	best	fit,	
with	a	slope	of	−1.2	(�101 = 1.1 × 10

10
(

n
0

1

)

−1.2).	Dashed	lines	
show	an	exactly	inversely	proportional	relationship	between	τ 

and	n0
1
	(�101 = 2.7 × 10

8
(

n
0

1

)

−1).	With	a	starting	concentration	of	
1 × 107 cells/m3,	colonies	of	size	k =	101	never	appear	within	the	
42-	day	simulation	period
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concentration	exceeds	107 cells/m3.	After	this	threshold	is	reached,	
the	rate	of	aggregation	will	 increase	as	concentration	 increases.	A	
large	wind	event	later	in	the	season—	when	algal	concentrations	are	
high—	will	 therefore	 have	 dramatically	 different	 aggregation	 con-

sequences	than	a	 large	wind	event	 in	the	beginning	of	the	season,	
when	algal	 concentrations	are	 low.	Further,	nonuniform	algal	 con-

centration	profiles	will	 lead	to	nonuniform	aggregation.	Any	depth	
where	 there	 is	 a	peak	 in	 algal	 concentration	will	 also	 act	 as	 a	hot	
spot	for	aggregation,	leading	to	nonuniform	colony	size	distributions	
within	the	water	column.

4.2  |  An evaluation of model assumptions

Before	addressing	the	implications	of	these	findings	on	harmful	algal	
blooms,	we	must	 discuss	 how	model	 assumptions	may	 impact	 re-

sults.	Let	us	start	with	our	neglect	of	disaggregation	and	our	 limi-
tation	on	maximum	colony	size.	Large	colonies	 (d

k
 > 420 μm)	would	

almost	surely	fragment	under	our	high	wind/strong	turbulence	con-

ditions	(O'Brien	et	al.,	2004).	The	fact	that	turbulence	also	promotes	
aggregation	 through	 enhanced	 mixing	 represents	 a	 colony	 size	
trade-	off.	 Turbulence	 causes	 the	 colony	 size	 distribution	 to	 skew	
towards	the	largest	stable	colony	size,	but	the	largest	stable	colony	
size	decreases	with	increasing	turbulence.	If	we	were	to	allow	larger	
colony	sizes	in	the	model,	we	would	have	to	include	fragmentation,	
a	conclusion	arrived	at	by	Ackleh	and	Miller	 (2018)	 as	well.	Byrne	
et	al.	(2011)	derived	postfragmentation	density	functions	for	fractal	
bacterial	 flocs	of	Klebsiella pneumoniae	 in	 laminar	flow,	which	 indi-
cated	the	number	of	postfragmentation	flocs	increases	with	increas-
ing	 shear.	A	 similar	 analysis	 could	 be	 conducted	 for	M. aeruginosa 

and	other	colonial	and	motile	harmful	algae.	Based	on	the	results	of	
Byrne	et	 al.	 (2011),	we	would	expect	 fragmentation	 to	 seed	more	
small	 colonies	 in	 the	 surface	mixed	 layer	 than	 in	 the	metalimnion,	
which	may	balance	out	some	of	the	heightened	aggregation	in	the	
surface	mixed	layer.

Another	 constraint	 of	 this	 model	 is	 the	 restriction	 of	 algal	
growth,	which	 is	 negligible	 over	 short	 timescales	 but	 significant	
over	seasonal	timescales.	Recall	 this	decision	was	made	because	
M. aeruginosa	colonies	tend	to	be	fractal	in	shape,	and	fractal	ag-

gregates	are	often	 the	 result	of	aggregation	due	 to	collisions	 in-

stead	of	cell	growth	(Xiao	et	al.,	2018).	However,	in	experiments,	
Duan	et	al.	(2018)	found	that	Microcystis	colony	size	significantly	
increased	with	increasing	temperature.	Although	the	aggregation	
kernel	 related	 to	Brownian	motion	 scales	 linearly	with	 tempera-
ture	(Equation	(2)),	this	thermodynamic	dependency	alone	cannot	
explain	this	variability.	For	the	strains	of	Microcystis	being	 inves-
tigated	 in	 the	experiments,	 it	 seems	 increased	algal	growth	with	
increasing	 temperature	 is	 responsible	 for	 the	 increase	 in	 colony	
size.	In	deriving	our	model,	we	have	previously	assumed	aggrega-
tion	due	to	cell	growth	is	negligible,	but	this	may	not	be	true	during	
peak	surface	water	temperature	conditions,	 leading	to	an	under-
estimation	 of	 average	 colony	 diameter	 during	 high-	temperature	
conditions.	To	account	for	cell	growth	in	future	 iterations	of	this	

model,	the	method	of	Ackleh	and	Miller	(2018)	for	calculating	cell	
growth	within	a	colony–	where	only	a	certain	proportion	of	cells	
along	 the	 edge	 of	 the	 colony	 are	 able	 to	 reproduce	 new	 cells–	
should	be	incorporated	into	Equation	(7).

If	we	consider	that	quiescent	conditions	are	hypothesized	to	be	
an	immediate	precursor	to	surface	HABs	(Michalak	et	al.,	2013),	then	
incorporating	a	growth	term	would	likely	change	our	results	for	in-

termittent	high	wind	events	(Figure 8c,d).	We	would	expect	slower	
frequencies	 of	 wind	 mixing	 to	 result	 in	 more	 opportunities	 for	
growth	at	the	water	surface	during	low	wind	conditions,	leading	to	
faster	aggregation,	which	would	cause	a	discrepancy	between	slow	
frequency	 and	 high-	frequency	 wind	 mixing	 not	 currently	 demon-

strated	in	this	model.	Recall	that	Yang	et	al.	(2020)	determined	that	
intermittent	disturbance	not	only	promoted	aggregation	in	M. aeru-

ginosa	but	total	biomass	as	well.

4.3  |  Implications for harmful algal blooms

So	far	we	have	only	discussed	the	mechanistic	 insight	provided	by	
the	model	 into	 the	vertical	distributions	of	M. aeruginosa,	 but	 it	 is	
important	to	remember	the	ecological	consequences	of	this	insight.	
Surface	HABs	are	mostly	comprised	of	large	colonies.	Because	wind-	
induced	mixing	 increases	 the	 rate	of	 aggregation,	we	can	 think	of	
large	wind	events	as	a	necessary	precursor	to	Microcystis	bloom	for-
mation.	Mainstream	consensus	on	cyanobacteria	HABs	states	that	
quiescent	conditions	are	necessary	 for	bloom	formation	 (Michalak	
et	al.,	2013).	While	this	may	be	true	 immediately	preceding	bloom	
formation,	it	is	also	true	that	there	must	be	enough	large	wind	events	
before	the	quiescent	period	to	encourage	aggregation	in	order	for	a	
surface	bloom	to	form.	But,	the	occurrence	of	large	wind	events	is	
still	not	enough:	These	wind	events	must	occur	when	algal	concen-

trations	exceed	108 cells/m3	in	order	for	large	colonies	to	form	within	
a	day.	In	addition	to	modeling	concerns,	this	finding	has	implications	
for	water	quality	management.	If	water	samples	are	taken	from	well	
above	the	photic	depth	in	a	 lake	dominated	by	motile	and	colonial	
cyanobacteria,	algal	concentrations	will	 likely	be	low	and	the	aver-
age	colony	size	will	likely	be	quite	small,	which	may	give	the	appear-
ance	that	HAB	formation	is	unlikely.	Meanwhile,	large	colonies	could	
be	rapidly	forming	at	subsurface	algal	concentration	peaks	near	the	
photic	depth,	indicating	a	surface	bloom	is	imminent.

4.4  |  Future work

A	major	objective	of	a	mechanistic	model	is	to	generate	hypotheses	
that	drive	 further	 research.	The	results	of	 this	model	suggest	 the	
need	for	a	subsequent	field	study	where	meteorological	conditions,	
lake	thermal	profiles,	and	both	Microcystis	concentration	and	colony	
size	are	tracked	over	depth	and	time	at	a	relatively	high	frequency.	
Once	model	results	can	be	validated	with	field	data,	there	are	many	
further	 avenues	of	 the	 study	 suggested	by	 the	model,	 both	 from	
an	 ecological	 and	 numerical	 perspective.	 One	 major	 ecological	
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concern	of	M. aeruginosa	 is	 the	ability	to	produce	and	release	mi-
crocystins,	a	cyanotoxin.	Microcystins	are	known	to	increase	in	ex-
tracellular	concentration	when	Microcystis	is	stressed,	and	they	also	
seem	to	have	a	relationship	with	extracellular	polysaccharide	con-

tent	and	colony	size	(Hu	&	Rzymski,	2019;	Li	et	al.,	2020;	Rzymski	
et	al.,	2020;	You,	2020).	In	fact,	it	is	even	hypothesized	that	micro-

cystins	can	trigger	colony	formation	via	quorum-	sensing	processes	
(Rzymski	 et	 al.,	 2020).	 This	 raises	 an	 important	 question:	 How	
might	 the	 coupling	of	microcystin-	triggered	quorum	 sensing	with	
colony	dynamics	improve	model	predictions	of	both	the	spatial	het-
erogeneity	of	M. aeruginosa	biomass	and	extracellular	microcystin	
concentrations?	After	all,	M. aeruginosa	is	a	threat	to	public	health	
because	they	release	microcystins.	In	this	regard,	the	fundamental	
question	is	not	necessarily	where	the	Microcystis	is,	but	where	the	
microcystins	are.

Keeping	 in	mind	 that	 the	goal	 is	 to	 improve	predictions	over	a	
seasonal	 time	scale,	 then	 it	will	be	necessary	 to	use	our	model	as	
a	 subroutine—	in	 addition	 to	 a	 subroutine	 for	 disaggregation—	in	
larger	 modeling	 software	 that	 can	 handle	 hydrodynamics,	 bio-

geochemical	 cycling,	 and	 algal	 life	 cycles	 (e.g.,	AEM3D	 (Hodges	&	
Dallimore,	2016)	or	Delft3D-	WAQ	(Q.	Chen	&	Mynett,	2006)).	Since	
this	 model	 demonstrates	 aggregation	 is	 negligible	 except	 during	
high	wind	events	at	high	algal	concentrations,	future	models	could	
also	include	a	term	that	switches	aggregation	off	when	those	condi-
tions	are	not	met.	It	would	also	be	worthwhile	to	use	these	results	
to	 instead	explore	 the	evolution	of	 the	average	 colony	 size,	dk,	 as	
a	function	of	algal	cell	concentration	and	turbulence	intensity.	The	
model	 proposed	 in	 this	manuscript	 is	 necessary	 to	 gain	 biological	
and	physical	insight	into	algal	aggregation	processes,	but	it	may	be	
possible	to	reduce	some	complexity	once	the	system	is	understood.	
Aggregation	 processes	 mostly	 affect	 buoyant	 transport,	 which	 is	
governed	 by	 the	 colony	 diameter-	dependent	 settling	 velocity	 de-

scribed	in	Equation	(13).	By	restructuring	the	modeling	in	this	way,	
the	system	of	k	equations	can	be	avoided	and	bulk	parameters	re-

main	the	focus,	removing	most	of	the	numerical	expense	that	would	
be	added	by	incorporating	Equation	(7)	as	a	subroutine	in	software	
like	AEM3D.

While	the	model	described	here	has	been	derived	for	M. aeru-

ginosa	specifically	due	to	their	ubiquity	and	ecological	importance,	
the	modeling	 framework	 can	 easily	 be	 applied	 to	 any	motile	 and	
colonial	 phytoplankton	 species.	 Different	 species	 have	 different	
motility	and	sticking	mechanisms,	so	calculations	of	the	advective	
velocity,	w

k
(z,t),	 and	sticking	probability,	α(i,j),	will	need	 to	be	 tai-

lored	to	each	individual	species.	M. aeruginosa	uses	intracellular	gas	
vesicles	 and	 buoyancy	 regulation	mechanisms	 to	 achieve	 vertical	
motility,	but	many	species	of	green	algae	use	flagella	to	move	about	
the	water	column,	as	an	example.	Despite	these	differences	in	sub-

routine	calculations,	the	theoretical	framework	will	remain	largely	
unchanged	 from	 species	 to	 species	 and	 lake	 to	 lake.	 To	 promote	
the	use	of	 this	model	 for	different	algal	 species,	editable	and	an-

notated	Matlab	 code	 used	 to	 simulate	 the	 base	 case	 scenario	 in	
Section	3.1	can	be	found	at	the	Data	Repository	for	the	University	
of	Minnesota	(DRUM).

5  |  CONCLUSION

We	 have	 developed	 a	 theoretical	 model	 that	 tracks	 the	
meteorological-	driven	movement	and	aggregation	of	M. aeruginosa 

in	 lake	water	 columns.	There	 are	 limitations	 in	 this	model—	in	par-
ticular,	disaggregation	is	not	accounted	for	and	no	explicit	validation	
with	field	data	has	been	made.	However,	the	process	of	construct-
ing	the	model	and	the	predictions	generated	by	the	model	provide	
important	insights	into	the	possible	drivers	of	harmful	algal	blooms.	
First,	we	have	demonstrated	that	Smoluchowski	aggregation	quali-
tatively	 represents	 the	 colony	dynamics	of	M. aeruginosa,	 and	 the	
coupling	of	transport	and	colony	dynamics	is	an	important	mecha-
nism	of	M. aeruginosa	population	models	in	stratified	lakes.	Further,	
the	model	is	capable	of	generating	the	diurnal	migrations	exhibited	
by	large	colonies	of	M. aeruginosa	to	a	depth	of	preferred	light	inten-

sity,	but	small	colonies	are	susceptible	to	turbulent	entrainment	and	
generally	 become	well-	mixed	 throughout	 the	 surface	mixed	 layer.	
Model	 results	 also	 clearly	 demonstrate	 that	 wind-	induced	 mix-
ing	and	algal	 concentrations	exceeding	107 cells/m3	 are	necessary	
to	promote	the	aggregation	of	an	initial	single	cell	population	to	an	
algal	population	dominated	by	large	colonies	(d101 =	160 μm)	within	
6 weeks,	a	time	scale	in	accordance	with	field	measurements	(Cao	&	
Yang,	2010;	Xiao	et	al.,	2018).	This	finding	suggests	quiescent	condi-
tions	alone	are	not	sufficient	for	surface	bloom	formation	of	colonial	
and	motile	harmful	algae—	large	wind	events	prior	to	quiescent	con-

ditions	are	an	important	necessary	precursor.	In	addition,	the	model	
provides	guidance	for	future	field	data	collection	and	model	studies	
(e.g.,	quantifying	the	roles	of	extracellular	polysaccharide	and	micro-

cystin	 content	as	 they	 relate	 to	aggregate	 sticking	probability).	To	
practically	implement	the	results	of	this	theoretical	model,	we	have	
identified	ways	to	(i)	incorporate	this	model	into	larger	software	in	
computationally	efficient	ways,	and	 (ii)	extrapolate	this	theoretical	
framework	to	different	algal	species.
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APPENDIX A

Calculation of the buoyant velocity
Following	the	work	of	Medrano	et	al.	 (2013),	we	can	calculate	the	
change	in	individual	cell	density,	ρcell,	in	light	conditions	by

and	in	dark	conditions	by

where I(z,t)	 is	the	irradiance,	 I0	 is	the	irradiance	such	that	ρcell(I0)	 is	
maximum,	d	is	the	background	rate	of	density	change	when	I =	0,	ρref 
is	the	minimum	cell	density	below	which	cells	will	not	reduce	their	
carbohydrate	content,	a	is	a	normative	factor,	b	is	the	slope	of	den-

sity	change	in	the	dark,	and	H(x)	 is	the	Heaviside	function	defined	
to	be	unity	when	the	argument	x	is	positive	and	zero	otherwise.	We	
used	a	value	of	Icrit =	5.75 W/m

2	to	differentiate	between	light	and	

dark	conditions	and	an	initial	single	cell	density	of	ρ0 =	1060 kg/m3. 

For	all	parameter	values,	see	Table A1.

We	assume	that	the	cell	density	of	each	individual	cell,	whether	
it	belongs	 to	a	 colony	or	not,	will	 react	 to	 the	 instantaneous	 light	
intensity	 in	 every	 grid	 cell	 at	 every	 time	 step	by	 these	 equations.	
To	calculate	colony	density,	ρ

k
,	from	single	cell	density,	we	use	the	

relationship

where ncell(k)	 is	 the	ratio	of	cell	volume	to	colony	volume,	ngas is the 

ratio	of	gas	vesicle	volume	to	colony	volume,	and	ρmuc	 is	the	density	
of	cell	mucilage	(Medrano	et	al.,	2013).	Like	Medrano	et	al.	(2013),	we	
have	kept	ngas	 and	ρmuc	 constant	 for	 all	 simulations;	 unlike	Medrano	
et	al.	(2013),	ncell	is	not	constant	but	will	vary	with	colony	size	because	
we	assume	all	M. aeruginosa	colonies	have	a	fractal	geometry	and	the	
relative	content	of	mucilage	to	cells	will	 increase	with	 increasing	cell	
size	(Zhu	et	al.,	2014).	For	parameter	values,	please	see	Table A1.	Once	
ρ

k
	has	been	calculated	for	all	values	of	k	at	every	time	step	in	every	grid	
cell,	we	can	then	calculate	the	buoyant	velocity,	w

k
(z,t),	by	Equation	(13).

(A1)d�cell

dt
=

a

60
Ie

−I∕I0 + d

(A2)
d�cell

dt
= − b

(

�cell − �ref

)

H
(

�cell − �ref

)

(A3)�k = �cellncell(k)
(

1 − ngas

)

+ �muc

(

1 − ncell(k)
)

TA B L E  A 1 Parameters	used	to	calculate	the	buoyant	velocity

Variable Description Value

a Normative	factor	in	Equation	(A1) 4.96 × 10−5 s2/m3

I0 Irradiance	such	that	ρcell(I0)	achieves	a	maximum 146.43 W/m2

d Background	rate	of	density	change	when	I = 0 −2.75 × 10−4	kg/m3/s

b Slope	of	density	change	in	dark	conditions	given	by	Equation	(A2) 1.58 × 10−5 1/s

ρref Critical	density	where	cells	will	no	longer	reduce	their	carbohydrate	content 1037 kg/m3

Icrit Critical	light	intensity	differentiating	between	light	and	dark	conditions 5.75 W/m2

ρ0 Initial	density	of	single	cells 1060 kg/m3

ngas Ratio	of	gas	vesicle	volume	to	colony	volume 7%

ncell Ratio	of	cell	volume	to	colony	volume ncell(k)	=	−0.0073 k + 0.9373	(%)


