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Abstract
We propose a minimalist phenomenological model for the ‘interfacial water’ phenomenon that
occurs near hydrophilic polymeric surfaces. We achieve this by combining a Ginzburg–Landau
approach with Maxwell’s equations which leads us to a well-posed model providing a
macroscopic interpretation of experimental observations. From the derived governing equations,
we estimate the unknown parameters using experimental measurements from the literature. The
resulting pro昀椀les of the polarization and electric potential show exponential decay near the
surface, in qualitative agreement with experiments. Furthermore, the model’s quantitative
prediction of the electric potential at the hydrophilic surface is in excellent agreement with
experiments. The proposed model is a 昀椀rst step towards a more complete parsimonious
macroscopic model that will, for example, help to elucidate the effects of interfacial water on
cells (e.g. neuronal excitability), the effects of infrared neural stimulation or the effects of drugs
mediated by interfacial water.

Keywords: interfacial water, exclusion zone, hydrophilic polymers

1. Introduction

Water is an ubiquitous material and intrinsically associated
with life. Its anomalous behavior is recognized as the origin of
various phenomena in chemistry and biology. One such anom-
alous behavior occurs when liquid water interacts with hydro-
philic polymeric surfaces (e.g. cellular membranes). These
are interfaces of polymeric materials which have high af昀椀n-
ity with water. At a microscopic scale it has been seen that the
hydrophilic surface affects the electric polarization of water
layers. However the mechanism for generating this polariza-
tion, based on the deformation of water molecules, is not well
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understood. The current paper only aims to provide a phe-
nomenological description of this phenomenon.

Near the hydrophilic surfaces a speci昀椀c phase of water
was observed. This is called ‘interfacial water’ and has emer-
gent physical-chemical properties (different from usual liquid
state of water), such as, non-zero electrical potential, reacts
to light [1] and repels materials (e.g. solutes [2]). The width
of the interfacial layer varies, but can range from hundreds of
microns to several millimeters [3, 4]. The interfacial layer is
typically negatively charged (but there are exceptions [5]), and
the electric potential at the hydrophilic surface is negative. The
layer causes charge separation in the 昀氀uid, creating a ‘nano-
battery’, and therefore it may have an important role in bio-
logy [6, 7]. However, despite the accumulation of a vast body
of experimental evidence and theoretical approaches, the exact
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mechanisms that causes the emergence of interfacial layer is
still being debated. As yet there is no macroscopic, well-posed
mathematical model able to describe and predict properties
of the interfacial layer. A 昀椀rst step is proposed in the present
work.

The proposed explanations for the formation of the interfa-
cial layer include diffusiophoresis and ion exchange [3, 8, 9],
repulsive van der Waals forces [10], or a new phase of water
which is fundamentally different than the bulk one [11].

In this paper, we aim to produce a minimalistic mathem-
atical model that predicts the interfacial water phenomenon
but does not assume any particular physical mechanism is
responsible for the interfacial layer formation. In section 2, we
present the derivation of the model. As a 昀椀rst approach, we
neglect ionic charges and take the unknowns of the problem
to be the polarization p and the electric potential Φ. For sim-
plicity, we will consider a one-dimensional region of water,
0< z<M, with a hydrophilic surface located at z= 0.

To obtain the governing equations for the system, we focus
on the long-time regime in which the system is stationary, pos-
tulate an energy density E(p,p ′,Φ ′) and apply a variational
method. Several parameters in the energy density E are phe-
nomenological and must be estimated. In section 3, we 昀椀rst
study a simpli昀椀ed system with an in昀椀nite domain (M=+∞)
and constant relative permittivity throughout the interfacial
region. In this scenario the Euler–Lagrange (EL) equations
admit an exact solution, and we use experimental measure-
ments from the literature to reverse engineer and estimate the
necessary quantities.

With these parameter estimates in hand, in section 4 we
then study the problem on a 昀椀nite domain, M<∞. We also
allow the relative permittivity to vary throughout the interfa-
cial region by writing it as a function of z, the distance from the
hydrophilic surface. In each scenario, we 昀椀nd that the polariz-
ation and potential pro昀椀les have qualitatively the same shape.
Also, both approaches give excellent estimates of the electric
potential at the surface.

2. Modeling framework

In this section, we de昀椀ne the energy and pose the EL equations
on both domain types.

Far away from the hydrophilic surface, the water should be
in its usual nonpolar phase:

p(z=M) = 0 Cm−2, Φ ′(z=M) = 0 Vm−1. (1)

At the surface, the water should be polarized:

p(z= 0) = p0. (2)

We will also assume:

Φ(M) = 0 V. (3)

The electric displacement is de昀椀ned asD= ε0ε(z)E+ p, so
the electric energy density is expressed as:

Eelec =−
ˆ

D dE=−1
2
ε0ε(z)(Φ

′)2 + pΦ ′. (4)

We also de昀椀ne a double-well Ginzburg–Landau potential
for the polarization, with potential wells of depth quanti昀椀ed
by the constant δ:

EGL(p) =
p2

2δ2
(p− ap0)

2. (5)

The energy density EGL encodes the fact that the 昀氀uid has
two preferred states: nonpolar (p= 0), or polarized (p= ap0).
The constant a is one of the phenomenological parameters to
be determined. The states p= 0 and p= ap0 represent the bulk
water phase and the interfacial phase, respectively. The solu-
tion we seek will exhibit a transition between these two states.

We then model the solution (p,Φ) as a critical point of the
following energy functional:

E[p,Φ] =
ˆ M

0
E(p,p ′,Φ ′) dz, (6)

E(p,p ′,Φ ′) =
1
2
κ(p ′)2 + EGL(p)+ Eelec(p,Φ ′). (7)

The three terms of the energy density E model the spa-
tial variations of p, the phase transition, and the interaction
between p and Φ, respectively. We seek a critical point (p,Φ)
of (7) that satis昀椀es the boundary conditions (1) and (3).

Hence, applying the principle of least action to the energy
(7) yields the EL equations:

(

∂E
∂p ′

) ′

− ∂E
∂p

= 0, (8)

(

∂E
∂Φ ′

) ′

− ∂E
∂Φ

= 0. (9)

Equation (9) is Poisson’s equation, which reduces to:

(ε0ε(z)Φ
′)

′
= p ′, (10)

and can be integrated to give:

Φ ′ =
p

ε0ε(z)
. (11)

Equation (8) can then be written:

κp ′ ′ = p

[

1
δ2

(p− ap0)(2p− ap0)+
1

ε0ε(z)

]

. (12)

Note that p= 0 is an equilibrium point of (12), corresponding
to the nonpolar water state. In the next two sections, we will
solve (11) and (12), subject to the boundary conditions (1)–(3).

3. Parameter estimation

We 昀椀rst study the problem with some simpli昀椀cations in order
to estimate the unknown parameters a, p0, κ, and δ2. First, we
assume that the sample size ismuch larger than thewidth of the
interfacial layer and set M=+∞ so that the domain is in昀椀n-
ite. Next, assume that the dielectric permittivity is constant
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throughout the interfacial layer: ε(z) = εW, where εW = 80 is
the bulk value. Recent experiments show that within a few
nanometers of the hydrophilic surface, the permittivity drops
to about εint = 2 [12]. On the other hand, we expect the inter-
facial layer to be several hundred microns wide. Because of
this difference in length scales, it is reasonable to assume in
this initial approach that ε(z) = const.

The exact solution in this case is (see the appendix for the
calculation):

p(z) =
p0
√
λ(β2 + 1)

β+ sinh ω
, (13)

Φ(z) =
2
√
κδ2

ε0εW

[

tanh−1

(

β tanh(ω/2)− 1
√

β2 + 1

)

−tanh−1

(

β− 1
√

β2 + 1

)]

, (14)

with

ω(z;a,λ) =

√

β2 + 1
ε0εWκ

z+ c, (15)

λ=
δ2

ε0εWp20
, (16)

β(a,λ) =
a√
λ
, (17)

c(a,λ) = tanh−1

(

a2 − a+λ√
a2 +λ

√

(a− 1)2 +λ

)

. (18)

The goal of this section is to estimate the unknown quantities
p0, a, δ2, and κ which determine the solution (14)–(18).

Equation (11) implies p0 =−E0/(ε0εW), where E0 is the
electric 昀椀eld at the hydrophilic surface. We can therefore
estimate p0 using the value E0 =−40 m2N−1 [9, 昀椀gure 4(c)].

To estimate the remaining parameters, we make several
assumptions. First, we suppose that the boundary condition
p= p0 is a stationary solution to (12). In this case p′ is approx-
imately constant near the hydrophilic surface at z= 0. This
assumption gives λ= λ(a).

Next, observe that both p(z) and Φ(z) depend on z only
through the functionω(z;a,λ) de昀椀ned in (18). The length scale
of the solution is determined by β, and we select a so that
β (a,λ(a)) gives the largest possible length scale. This will
give the largest interfacial layer in the solution.

Finally, it remains to estimate the parameter κ. Observe that
p ′ ′ = 0 at z= 0 (from the 昀椀rst assumption) and at z=+∞,
where p= 0. Between these two endpoints, p′′ has amaximum,
say at z0. Roughly speaking, for z< z0 (near the hydrophilic
surface), the polarization pro昀椀le p(z) resembles an exponen-
tially decaying function, and for z> z0, p(z) begins to level
out. The point z= z0 can then be understood as the boundary
between the interfacial layer and the rest of the cell. In order to

estimate κ, we will now 昀椀rst approximate z0 = LIF, where LIF
is an experimental measurement of the interfacial layer thick-
ness, and then work backwards.

There are manymeasurements of the interfacial layer thick-
ness in the literature [3, 4, 9, 13–15]. Florea et al [3] 昀椀nd that
the layer width grows with time, up to a fewmillimeters. Since
our model is stationary, the solution (p,Φ) in (14) represents
the eventual, long-time state, and we expect the layer width to
be large. We therefore approximate LIF =2 mm.

With the above assumptions, we obtain the following para-
meter estimates:

p0 = 2.8× 10−8 Cm−2 (19)

δ2 = 10−25 m2N−1, (20)

a=
4
3
, (21)

κ= 1.5× 104 Nm4C−2. (22)

We also 昀椀nd that at the edge of the interfacial layer, the
polarization is at one-third of its maximum value. That is,
p(z= LIF) = p0/3. Figure 1 shows the solution (14)–(18) for
the parameters (19).

Though we have made several simpli昀椀cations, this exact
solution also provides an excellent prediction of the electric
potential at the surface. Experiments show [4, 昀椀gure 3(a)]
that the electric potential at the surface is on the order of
−60 mV, and with parameters as above the model predicts
Φ(0) =−68 mV.

4. With correction to permittivity

We consider again the problem (10)–(12), subject to (1)–(3),
without the simplifying assumptions of the previous section.
We use the parameter values (19)–(22) and choose the domain
size to be M= 1 cm. Additionally, we allow the permittivity
to depend on the distance z from the surface, with:

ε(z) = εint +
εW − εint

1+ exp(−α(z− ẑ))
. (23)

In (23), εint = 2 is the value of the permittivity in the interface,
and the distance ẑ is on the order of a few molecular lengths
[16]. The pro昀椀le of ε(z) is shown in 昀椀gure 2(a), with ẑ= 10 nm
and α= 107 m−1.

Comparing 昀椀gures 1 and 2, we 昀椀nd that the polarization
and potential pro昀椀les are nearly identical. Therefore, we can
conclude a posteriori that the approximation ε(z)≈ εW made
in the previous section was reasonable. This is not surprising,
since in (23), the region where ε≈ εint is only about 10 nm
wide, orders of magnitude smaller than the width of the inter-
facial layer.
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Figure 1. The solution (14)–(18) for the polarization p (a) and the electric potential Φ (b). The polarization and electric potential pro昀椀les
have the qualitatively the shape that appears in experiments, and the value of the potential at the surface is Φ(0) =−68 mV.

Figure 2. (a). Dielectric permittivity pro昀椀le de昀椀ned in (23). (b), (c) Numerical solution for p and Φ, respectively, with M= 1 cm, ε= ε(z)
as in (23), and parameters as in (19). The value of the potential at the surface is Φ(0) =−61 mV.

5. Conclusion

We have developed a simple model for the electric polariz-
ation and potential within the interfacial layer of water near
a hydrophilic surface. We postulated an energy law with a
double-well potential describing the two preferred states of
the polarization, derived the governing equations, and stud-
ied the solutions in two regimes. First, we studied the prob-
lem on an in昀椀nite domain, with constant dielectric permittiv-
ity, employing experimental measurements of the electric 昀椀eld
and the layer thickness in order to estimate the phenomenolo-
gical parameters which appear in the energy. We then used the

found parameter values to study the same problem on a 昀椀nite
domain, with varying permittivity. The polarization and poten-
tial pro昀椀les in both regimes are exponentially decaying and
show good agreement with experiment. Crucially, our model
predicts that the electric potential at the hydrophilic surface
is −68 mV for the in昀椀nite domain, or −61 mV for the 昀椀nite
domain. Experiment shows [4] that the electric potential at the
surface is about−60 mV, matching our model prediction very
well.

The proposed model is one-dimensional and neglects ionic
effects. This work therefore does not rule out any of the pro-
posed explanations for the formation of the interfacial layer.

4
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In an upcoming work, we will expand the current model to
include the possible physical mechanisms responsible for the
interfacial water phenomenon.

The present work sets our long term goal to develop amodel
for understanding the role of interfacial water in biological
systems. An important class of such systems are excitable cel-
lular media, such as neuronal cells and heart cells that mediate
their functions via electrical-chemical signals. Since interface
water exhibits non-neutral potential then it is reasonable to ask
whether the standard neuronal models (e.g. Hodgkin–Huxley),
which assume neutral water and ions as the main mediators for
excitability, are suf昀椀ciently correct. A fundamental feature of
interfacial water is that it reacts to light (including infrared)
by expanding the size of the interfacial layer. Interestingly,
recent neuronal experiments have shown that mid-infrared
light (by carefully avoiding thermal contributions) increases
neuronal excitability, thus hinting at the fact that interfacial
water is at play [17]. In this context our model opens a novel
avenue of enquiry, which will help clarify if excitable cellular
media and in general biological systems exploit the energy in
interfacial water to mediate their cellular functions.
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Appendix

In this appendix, we show the calculations to obtain the solu-
tion (14)–(18) and the parameter estimates (19)–(22) presen-
ted in section 3. First, we must solve:

κp ′ ′ = p

[

1
δ2

(p− ap0)(2p− ap0)+
1

ε0εW

]

, (A.1)

p(0) = p0, (A.2)

p(+∞) = 0. (A.3)

(As in section 3, we have assumed that M=+∞ and
ε(z) = εW, with εW = 80 denoting the relative permittivity of
liquid water.) The solution to (A.1)–(A.3) can be computed
analytically.

It is convenient to remove dimension from the equation.
Let L be a typical length scale of the system, introduce the
dimensionless variables:

z̄=
z
L
, p̄(z̄) =

p(z)
p0

. (A.4)

and observe that:

∂

∂z
=

1
L
∂

∂z̄
. (A.5)

With this change of variables, (A.1)–(A.3) become:

µp̄z̄ z̄ = p̄ [( p̄− a)(2p̄− a)+λ] , (A.6)

p̄(0) = 1, (A.7)

p̄(+∞) = 0, (A.8)

for

µ=
κδ2

p20L
2
, λ=

δ2

ε0εWp20
. (A.9)

Multiply (A.6) by 2p̄z̄ and integrate once to obtain:

µ(p̄z̄)
2 = p̄2

[

(p̄− a)2 +λ
]

+ c1. (A.10)

We 昀椀rst assume that we can take the integration constant c1
to be zero so that dp̄/dz̄→ 0 as z̄→+∞; we will later verify
that this is the correct choice of c1. Then the only constant
solution to (A.10) is the nonpolar state p̄= 0, and (A.11) can
be rewritten:

p̄z̄
p̄

[

(

p̄√
λ
−β

)2

+ 1

]−1/2

=±

√

λ

µ
(A.11)

for

β =
a√
λ
. (A.12)

Integrate (A.11) with Mathematica to obtain:

tanh−1









1−β
(

p̄√
λ
−β
)

√

β2 + 1

√

(

p̄√
λ
−β
)2

+ 1









=∓

√

a2 +λ

µ
z̄+ c2.

(A.13)

In order to satisfy the boundary condition at z̄=+∞, we
must take the plus sign on the right side of (A.13). Also, (A.2)
implies:

c2 = tanh−1

(

a2 − a+λ√
a2 +λ

√

(a− 1)2 +λ

)

. (A.14)
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Equation (A.13) can be rewritten:

p̄√
λ
= β+

β± (β2 + 1)tanh ω sech ω

β2sech2ω− tanh2ω
, (A.15)

with

ω = L

√

β2 + 1
κε0εW

z̄+ c2. (A.16)

It is straightforward to check that:

lim
z̄→∞

p̄= lim
ω→∞

p̄= 0, (A.17)

so our earlier choice of c1 = 0 was correct. Now, de昀椀ne
ω∗ = sinh−1β and note that:

β2sech2ω∗ − tanh2ω∗ = 0, (A.18)

tanh ω∗ sech ω∗ =
β

β2 + 1
. (A.19)

If we take the plus sign in (A.15), then limω→ω∗ p̄(ω)=+∞.
The solution p̄ should be continuous for ω > c2, and we there-
fore take the minus sign in (A.15) to get the solution:

p̄√
λ
= β+

β− (β2 + 1)tanh ω sech ω

β2sech2ω− tanh2ω
=

β2 + 1
β+ sinh ω

.

(A.20)

The dimensionless polarization p̄(z̄) depends on the phe-
nomenological parameters λ, µ, and a. We now make several
assumptions in order to estimate these parameters. First, sup-
pose that:

d2p̄
dz̄2

(z̄= 0) = 0. (A.21)

Since p̄(0) = 1, (A.6) and (A.21) imply:

λ= (2− a)(a− 1). (A.22)

So λ < 1
4 , and because λ> 0 by (A.9), we see that 1< a< 2

as well. Note that δ = δ(a) by combining (A.9) and (A.22).
Next, observe that the quantity

√

β2 + 1 controls the length
scale of the problem through ω in (A.20). This length scale is
maximized when β is minimized. Using (A.22), we can write:

β =
a

√

(2− a)(a− 1)
, (A.23)

which is minimized at:

a=
4
3
. (A.24)

Under the assumptions (A.22) and (A.24), the solution
(A.15) can be written:

p̄=
3
√
2

2
√
2+ sinh ω

, ω =
3z

√
ε0εWκ

+ tanh−1

√

2
3
.

(A.25)

From (A.9) and (A.22), we also obtain the estimate:

δ2 = 1× 10−25 m2N−1. (A.26)

The only phenomenological parameter left to estimate is κ.
With a and λ chosen as above, (A.6) is:

µp̄z̄ z̄ = 2p̄(p̄− 1)2. (A.27)

Observe that p̄z̄ z̄ = 0 at the boundaries z̄= 0,+∞. In the
interior, p̄z̄ z̄ > 0 since 0< p̄< 1. Therefore, p̄z̄ z̄ has a max-
imum at some ẑ, 0< ẑ<∞. In the region z̄< ẑ near the sur-
face, the polarization is quickly decreasing from the boundary
value of 1. Away from the surface, z̄> ẑ, the polarization has
decayed close to zero. The distance ẑ from the surface where
p̄z̄ z̄ is maximized therefore gives a good estimate of the width
of the interfacial layer.

We will suppose that p̄z̄ z̄ is maximized at z= LIF, where LIF
is an experimental measurement of the width of the interfacial
layer. Let ωIF = ω(z̄= LIF/L):

ωIF =
3LIF√
ε0εWκ

+ tanh−1

√

2
3
. (A.28)

Based on the earlier discussion, we assume:

d3p̄
dz̄3

∣

∣

∣

∣

z̄=LIF/L

= 0, (A.29)

or
(

∂

∂ω

)3( 1

2
√
2+ sinh ω

)∣

∣

∣

∣

ω=ωIF

= 0. (A.30)

Equation (A.30) implies:

ωIF = sinh−1(
√
2) or ωIF = sinh−1(7

√
2), (A.31)

with ωIF = sinh−1(7
√
2) and εW = 80, (A.28) implies:

κ=
(

3.7× 109 Nm2C−2
)

L2IF. (A.32)

The width of the interfacial layer can grow to almost 3 mm
over the course of a few hours [3]. Using the estimate:

LIF = 2 mm, (A.33)

from equation (A.32) we 昀椀nally estimate:

κ= 1.5× 104 Nm4C−2. (A.34)

Using (A.4), we 昀椀nd that the polarization p(z) (with dimen-
sion) is:

p(z) =
p0
√
λ(β2 + 1)

β+ sinh ω
. (A.35)

The electric potential Φ in (14) can then be computed from
Poisson’s equation,

Φ ′ =
p

ε0εW
, (A.36)

and the remaining boundary condition Φ(+∞) = 0.
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