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Abstract. With an increasing number of Internet of Things (IoT)
devices present in homes, there is a rise in the number of potential infor-
mation leakage channels and their associated security threats and privacy
risks. Despite a long history of attacks on IoT devices in unprotected
home networks, the problem of accurate, rapid detection and prevention
of such attacks remains open. Many existing IoT protection solutions are
cloud-based, sometimes ineffective, and might share consumer data with
unknown third parties. This paper investigates the potential for effective
IoT threat detection locally, on a home router, using AI tools combined
with classic rule-based traffic-filtering algorithms. Our results show that
with a slight rise of router hardware resources caused by machine learn-
ing and traffic filtering logic, a typical home router instrumented with
our solution is able to effectively detect risks and protect a typical home
IoT network, equaling or outperforming existing popular solutions, with-
out any effects on benign IoT functionality, and without relying on cloud
services and third parties.

1 Introduction

Internet of Things (IoT) devices are increasingly popular, pervasive, and promise
a wide range of functionality including remote health monitoring, adaptive cli-
mate and lighting, automated control of various appliances and assets within
smart spaces. The heterogeneity of IoT device types, functionality, and their
applications lead to major security and privacy threats for smart home users.
IoT devices are manufactured all over the world, send data globally, may be
updated over-the-air, and use a myriad of third-party software libraries [47]. A
single vulnerability in one part of the IoT supply chain can have broad secu-
rity and privacy impacts for IoT users. For example, compromised IoT devices
can compromise user privacy, e.g., exposing sensitive user activities on personal
computers by reading power consumption from a compromised smart plug [27],
among many other serious threats described in recent literature [32,48,49,51].
Also, the combination of IoT device sensors with Internet connectivity poses
substantial risks of personally identifiable information (PII) exposure [47].
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To address such risks, several IoT protection solutions have been proposed so
far, but they pose several issues, including their lack of completeness. Evidence
from prior research [39] suggests that popular IoT protection solutions fail to
accurately detect and mitigate a significant proportion of threats, particularly
those available with basic subscriptions. Moreover, most IoT protection solutions
largely rely on cloud-based ML models for detecting attacks. Such cloud-based
models necessarily require vendors to collect personal and sensitive data from
the networks they protect, and this itself poses the risk of such data being
shared with third-parties, used for purposes beyond threat detection, and even
being compromised by attacks on cloud infrastructure. In contrast, implementing
IoT protection solutions locally can enhance user privacy, obviating the need to
disclose personal and potentially sensitive data to other parties outside the local
network. Such an edge protection approach can also improve robustness and
stability of operations by eliminating the dependence on cloud services. However,
a key open question is how feasible such locally run solutions are, and how well
they work compared to cloud-based ones.

In this paper, we investigate the possibility of using threat detection and pre-
vention algorithms on a home router, as well as measure quantitative implications
on the router’s memory (RAM), processing power (CPU), bandwidth (BW), and
whether consuming these resources has any impact on the smooth operation of
IoT devices and applications. Specifically, we demonstrate the feasibility of a
completely local IoT protection solution, named SunBlock, which combines exist-
ing rule-based traffic filtering tools and machine-learning libraries to provide a
resource-efficient prototype combining both intrusion detection (IDS) and intru-
sion prevention (IPS) systems. SunBlock operates on a typical home router, thus
improving user privacy without the need for end users to share potentially sensi-
tive data with cloud-based IDS/IPS solutions as well as bypassing the expense of
their premium subscriptions. We conclude this paper by exposing our SunBlock
prototype to a set of various IoT threats, demonstrating that it can detect a
spectrum of threats more than twice as large as that detected by commercial
IoT protection solutions [39]. The paper’s code is available online [17].

Goals. The paper targets two main research questions (RQs) detailed below.
RQ1: How can we replace commercial cloud-based safeguards by a threat detec-
tion and prevention software running locally on a home router? We address this
by designing a new cloudless threat detection/prevention approach (Sect. 3) and
implementing it on popular off-the-shelf router hardware (Sect. 4).
RQ2: What is the performance of our solution in terms of overhead and threat
detection capability? We address this by establishing a rigorous evaluation
methodology (Sect. 5) and performing an extensive evaluation (Sect. 6) to evalu-
ate: (i) the overhead of running AI and rule-based IDS locally in terms of router
memory, processing power, and bandwidth; (ii) how successfully our cloudless
solution detects popular attacks compared to existing cloud-based IoT security
solutions.

Non-goals. The following topics are not the focus of this paper.
Novel ML/AI algorithms for anomaly detection. We assess existing ML methods
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for their feasibility to run on constrained devices performing IPS functions.
Classification of end-user traffic, such as smartphones, tablets and PCs. The
main focus of the paper is on protecting smart home IoT devices.
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Fig. 1. Threat model diagram. Victim zone is a smart home with connected IoT
devices. A potential adversary can analyze traffic and conduct privacy/security attacks
from smart home, ISP and wider zones, such as the Internet.

2 Threat Model

In this paper we investigate the problem of protecting a typical home network
from threats deriving from its IoT devices. We focus on instrumenting the home
router providing connectivity to the IoT devices with existing algorithms (i.e.,
combining IDS/IPS functions with a classic rule-based approach) to investigate
the feasibility of running anomaly detection at the edge. This paper is not about
proposing novel ML/AI algorithms or about surveying and comparing different
AI/ML models for IoT anomaly detection, as done in previous studies [33,34,55].

Our threat model (Fig. 1) assumes a typical smart home deployment, with
a home router connected to the Internet (WAN interface) creating and provid-
ing connectivity to a local smart home network ((W)LAN interface), where IoT
devices are deployed. In this setting, we assume the victim to be a user of IoT
devices, and the adversary any entity that can gain network access either from
the WAN side (e.g., an attacker in the ISP network or the Internet) or the
(W)LAN side (e.g., a compromised IoT device). In both cases the adversary can
abuse network access and capture network data (such as traffic rates, protocols
used, source/destination IP addresses, etc.) that can result in security and pri-
vacy threats for the victim. For example, network data can be used to conduct
analyses to infer victim’s sensitive data (e.g., user activities [47]), and assess
and exploit vulnerabilities [44]. The threats we focus on in this paper are the
following:
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Security: anomalous traffic, anomalous upload as well as various flooding
(e.g., DoS) and scanning attacks (e.g. port-scanning).

Privacy: PII exposure, unencrypted network/application data.
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Traffic Inspector Traffic 
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Fig. 2. SunBlock architecture running on a home router.

3 System Design

In this section we propose the design of SunBlock, i.e., an approach for detect-
ing IoT threats at a home router without relying on the cloud. Figure 2 shows
the architecture of our system. SunBlock runs on a home router and is com-
posed of: (i) a rule-based traffic filtering module; and (ii) an AI-based network
threat detection module. Raw IoT traffic traversing the home router is inspected
against a defined set of IPS rules [26], the features are extracted and fed to the
trained threat detection model. Both rule-based and AI threat detection steps
are performed in parallel and described in detail below.

3.1 Rule-Based Traffic Filtering Module

This module is responsible for blocking unwanted or potentially harmful traffic
while allowing safe and necessary traffic to pass, thereby enhancing the overall
security of the network. This module is composed of the following components.

Traffic Inspector: As network packets arrive, they are inspected against a
defined set of rules at various levels: IP (i.e., the source and destination IP
addresses are checked), transport level (TCP or UDP source and destination
ports), and/or at the application level (where the actual content of the packets
is inspected, if the HTTP protocol is used, for example).

Traffic Filtering: Based on the set of pre-defined rules, allowed traffic passes
further, while all the inspected traffic matching the blocking rules is dropped.
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3.2 AI-Based Network Threat Detection Module

AI anomaly detection identifies irregular traffic patterns that could indicate
potential security threats. The module consists of the following components.

Feature Extraction. Similar to rule-based traffic filtering, the first step
includes collecting and processing raw network data, including information about
source and destination IP addresses, port numbers, packet sizes, time dura-
tions, etc. The collected data is then transformed into a set of features, which are
measurable properties or characteristics of the observed network traffic. These
could include rate of data transmission, number of connections to a specific
server, or frequency of a certain type of packet.

Model Training. An ML model is trained locally on the extracted dataset of
network features. At the training phase, the model learns what ‘normal’ network
traffic looks like.

Threat Detection. SunBlock uses the trained model for comparing live incom-
ing network traffic to the ‘normal’ patterns learned during training. If the live
traffic deviates significantly from normal patterns, SunBlock reports a threat.

Model Update. To support high threat detection accuracy, the model continues
to learn and refine its understanding of what constitutes normal behavior.

4 Implementation

This section answers our first research question by describing a SunBlock proto-
type, demonstrating that IoT protection can run at the edge, on a home router.

4.1 Hardware

To demonstrate our approach, we use an off-the-shelf middle-range home router:
a LinkSys WRT3200ACM [8]. The reason for this choice is its popularity and
support for OpenWrt [12], a Linux-based OS targeting embedded devices. Due
to the router’s limited flash memory (256MB), we use a USB stick to allo-
cate 4GB and 512MB partitions for AI libraries/dependencies and swap space,
respectively.

4.2 Rule-Based Traffic Filtering

We use Snort3 [15] as a rule-based IDS/IPS. The reason for this choice is the
extensive support for rule-based detection techniques, deep packet inspection
and various customization options, making it flexibly well-suited for IoT threat
prevention use cases. We prefer Snort3 over other solutions like Fail2ban [4],
Zeek [21], and Suricata [18] due to its comprehensive rule-based detection tech-
niques, extensive customization options, and flexibility. Other tools have either
narrower focus (e.g., Fail2Ban focuses on log-based IDS/IPS) or require more
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scripting overhead to match Snort3’s functionality. Besides utilizing the Snort3
community rules [16], we enhanced them by adding blocking logic for DoS, scan-
ning attacks, and unencrypted HTTP traffic.

We configure Snort3 to run in NFQ IPS mode, which allows it to operate as
an inline IPS. In this mode, Snort3 intercepts network traffic using Netfilter [10],
a packet filtering and manipulation framework in the Linux kernel. In NFQ IPS
inline mode, Snort3 receives network packets before they reach their target, thus
allowing the system to react promptly to any suspicious traffic.

Upon receiving packets, SunBlock performs packet inspection by applying
the pre-defined rules serving as criteria for identifying and blocking security
and privacy threats. The inspection process involves protocol decoding, traffic
analysis, and pattern matching against the defined rule set. Based on the results
of the inspection, SunBlock applies rule-based actions. It determines if a packet
matches any rules in its rule set and takes actions accordingly, such as dropping
the packet or blocking the entire malicious traffic flow.

4.3 AI-Based Network Threat Detection

For our threat detection model, we utilize the netml library [11,55], a robust tool
designed for feature extraction and threat detection in network traffic traces.

While the netml library is primarily intended for powerful machines with
ample RAM and CPU resources, we successfully adapt it to be used on home
routers. As netml is initially dedicated to x86 architectures, we adapt it for the
ARMv7l architecture, commonly used in modernWi-Fi routers and other embed-
ded networked systems with limited resources. This portability enhances Sun-
Block’s accessibility and flexibility, allowing it to run on a wider range of router
configurations. We incorporate netml into a Docker image based on Debian ver-
sion 10. The resulting image is open-source and accessible online [17]. After a
series of deployment installations and tests, we selected the following versions
of netml dependencies, a combination of which allows for the successful running
of ML anomaly detection logic on the ARMv7l architecture: numba = 0.56.0,
netaddr = 0.8.0, numpy = 1.22.0, pandas = 1.5.3, pyod = 1.0.9, scapy = 2.4.5
and scikit-learn = 0.24.1.

For anomaly detection tasks, SunBlock employs the One-Class Support Vec-
tor Machine (OCSVM) model in unsupervised mode with the packet interarrival
time (IAT) feature. The OCSVM model is recognized for its outlier detection
capabilities, lightweightness and efficacy [38,46,50]. The precision of the netml-
based OCSVM implementation, used by SunBlock, has been extensively evalu-
ated by the netml authors on various datasets, showing high precision for IoT
anomaly classification tasks when using the IAT feature [55]. The Area Under
the ROC Curve (AUC) metric is 0.95 for detecting infected devices, 0.96 for
detecting novel devices, and 0.81–0.97 for detecting abnormal device activity.
The chosen OCSVM configuration has been wrapped into a real-time threat
detection logic having the following characteristics:
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– Our system is configured to capture batches of 200 packets1, thus capturing
and classifying network traffic every batch.

– Our model is set up to learn from the most recent 7 days of network traf-
fic. This period is chosen based on research indicating a decrease in model
accuracy beyond a week without retraining [34].

– Upon detection of a threat, SunBlock uses iptables [7] for blocking malicious
sources of traffic.

5 Evaluation Methodology

In this section we describe how we assess the performance of SunBlock in terms
of overhead and threat detection capability. We first describe the IoT testbed
we use for analyzing SunBlock, then how we emulate the threats, and finally
describe the experiment setting and the evaluation metrics.

5.1 Evaluation Testbed

To assess the efficacy of SunBlock, we build an IoT testbed that emulates a
typical smart home setting. According to previous research [31] that examined
smart home traffic from 4,322 households, an average home tends to host around
10 IoT devices. Based on this number, and considering popular IoT device models
and categories, we build our testbed using the 10 IoT devices detailed below.

– Smart speaker: Amazon Echo Spot, Google Home.
– Video: Amazon Fire TV.
– Camera: Yi Home Camera, Blink Home Camera.
– Home automation: Nest thermostat, TP-Link Kasa plug, WeMo plug,
Gosund bulb, TP-Link Kasa bulb.

The IoT devices are performing daily activities within a 2.4GHz WiFi home
network in a location similar to a two-bedroom flat. We trigger the IoT device
functionality by using a methodology similar to [40] for a period of one week.

5.2 Threats Emulation

For triggering the threats, we employ a Raspberry Pi Model B+ (RPi) as a
threat generation node, equipped with 4GB RAM and running a Debian image.
The RPi is connected to the (W)LAN side of the home network along with the
IoT devices. In order to check the SunBlock performance in realistic scenarios,
the RPi used real attack scripts from an open GitHub repository [14] containing
threat emulation scripts from recent research on the efficiency of IoT protection
systems [39]. The threats we emulate are the following.

1 We obtained this number empirically after extensive testing showing a good trade-off
between ML accuracy and reaction time.
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Anomalous Traffic. RPi acts on behalf of the Echo Spot device by spoofing its
IP and MAC addresses. However, instead of sending typical Echo Spot traffic,
the RPi injects previously captured traffic from the Google Home. We inject this
traffic using tcpreplay [19], where we replace the IP and MAC addresses of the
Google Home with Echo Spot’s ones.

Anomalous Upload. We emulate anomalous upload behavior by making the
RPi upload a video to an external unauthorized server while spoofing the IP and
MAC addresses of the Yi home camera using the tcpreplay tool [19].

DoS Flooding. For SYN, UDP, DNS and HTTP flooding threats, the RPi uses
suits of attacks from Kali Linux emulating a typical Mirai-infected device [23].

Privacy Script. The RPi acts on behalf of Google Home (by spoofing its IP
and MAC addresses) and transmits unencrypted sensitive data, such as login
details, passwords and other private data, to an external server through HTTP.

Scanning Attacks. We emulate OS and port scanning using Nmap [37]. This
information can be utilized by a potential attacker to determine the most effec-
tive attack strategy for the detected OS, taking advantage of the open ports.

5.3 Experiments Description and Evaluation Metrics

Prior to executing the threat emulation scripts, we benchmark the resource uti-
lization (CPU, RAM, and bandwidth) of the home router running SunBlock
with respect to a router not running it. We continuously monitor these metrics
using a Python-based script, which captures resource consumption data over a
span of 3.5 h of regular IoT traffic.

To evaluate SunBlock performance, we time the training process under four
distinct conditions: both modules operational, only the AI-based module active,
only the Rule-based module active, and an unprotected scenario. Under each con-
dition, the model underwent five training iterations. A background script records
CPU usage, RAM (actual RAM used by the system, excluding buffers/cache),
bandwidth consumption, and the start and end times of each training instance.

We conduct each attack for 100 s in 10 separate iterations. After each attack,
we reset the network to its normal operational state before we start the next
iteration. The RPi logs both the start and end times for each individual attack.
We conduct all experiments in a home network environment equipped with the
SunBlock router. We then repeat the same set of experiments in a network with
the same router, but with SunBlock disabled.

To measure resource utilization of the home router, both with and without
SunBlock, we execute a background Python-based script during each attack,
which records the utilization of CPU, RAM, and BW every second.

To measure threat prevention latency, we execute a script to capture Sun-
Block’s notifications, which provided timestamps and types of blocked threats.
We calculate the prevention latency as the time between the start of the attack
and the arrival of a SunBlock’s notification indicating a blocked threat.
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6 Evaluation

In this section we answer our second research question by evaluating the perfor-
mance of SunBlock in terms of overhead and threat detection capability.

6.1 Performance Overheads

Table 1 shows model training performance overhead in distinct conditions: fully
protected (Rule-based and AI-based enabled modes), partially protected (either
Rule-based or AI-based mode is enabled), and unprotected (disabled SunBlock).

Table 1. ML training time and resource usage for various protection levels.

Protection Level CPU (%) RAM (MB) swap (MB) Training
Time (s)

Rule-based & AI-based 18 ± 3 444 ± 4 296 ± 21 924 ± 253

AI-based only 26 ± 2 442 ± 6 197 ± 28 429 ± 171

Rule-based only 32 ± 4 423 ± 9 132 ± 20 180 ± 22

Unprotected 39 ± 2 410 ± 3 55 ± 1 113 ± 10

When deployed in tandem, Rule-based and AI-based modules constitute the
most secure mode. Although the fully protected mode takes the longest time
for training—up to 20min—it has the lowest CPU utilization among all modes.
Compared to AI-based/Rule-based only modes, the fully protected mode has
increased training time by a factor of 1.5–6.5, and up to a factor of 10.5 when
compared to the unprotected mode. However, the duration of fully protected
training remains within an acceptable range and can be scheduled during off-
peak hours to minimize disruptions.

Memory usage is also critical for a home router. During the fully protected
mode, swap memory usage peaks at around 300MB, which is manageable for a
typical home router equipped with sufficient flash memory (either internally or
through an external USB stick). It is noticeable that swap is required only for
model training and is not used in SunBlock’s daily behavior. Swap should be
allocated as a separate partition for its isolation from router’s storage memory.

Figure 3 provides a performance comparison between the router in SunBlock’s
protected mode and the same router in the unprotected mode, during their rou-
tine operation without network threats. SunBlock exhibits a wider CPU utiliza-
tion range compared to the unprotected router; however, the utilization peaks
at only ∼15%. The median CPU utilization remains at an approximate 3%, thus
maintaining a negligible impact on overall performance. SunBlock has 1.7 times
higher RAM consumption than the unprotected router. While this increment is
notable, the overall RAM usage remains well within the router’s capacity, leav-
ing about 30% of free RAM. The bandwidth usage is the same in both modes
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Fig. 3. Resource usage in protected vs. unprotected mode for regular IoT traffic.

due to the same traffic conditions under which both protected and unprotected
modes were tested.

Figure 4 illustrates the Empirical Cumulative Distribution Functions
(ECDFs) representing the times taken by SunBlock to prevent threat types
listed in Sect. 5.2. It can be observed that most threats are blocked within ∼5 s.
However, SunBlock requires more time to detect anomaly threats, namely ∼10 s
for anomalous upload and ∼50 s for anomalous traffic.

Fig. 4. ECDFs of SunBlock’s prevention time per each attack.

Figures 5, 6 show RAM, CPU and BW overhead of SunBlock under a num-
ber of traffic-heavy attacks (DNS, HTTP, SYN, UDP flooding and anomalous
upload), compared to an unprotected mode.

As anticipated, SunBlock exhibits an elevated CPU/RAM usage due to the
operational load imposed by Rule-based and AI-based modules actively perform-
ing threat mitigation tasks. SunBlock’s median CPU consumption varies between
3–40%, while the RAM usage remains fairly stable within a range of 365–375MB.
Conversely, an unprotected router exhibits significantly lower RAM/CPU usage,
∼220MB of RAM and 1–25% of median CPU utilization.

The protective effects of SunBlock are evident in the bandwidth consump-
tion under heavy DoS attacks. The box plots indicate a substantial bandwidth
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Fig. 5. Resource usage in protected vs. unprotected mode under DoS attacks.

Fig. 6. Resource usage in protected vs. unprotected mode for anomalous upload.

reduction of up to ∼8 times during intense DoS attacks, with the strongest reduc-
tions during HTTP and UDP flooding. During the attacks, SunBlock maintains
an adequate buffer of resources, with 50% of CPU and 30% of RAM always
available.

6.2 Threat Detection Capability

Table 2 presents a comprehensive comparison of SunBlock’s threat detection
capability with existing IoT protection solutions. The data on threat detection
capabilities of existing solutions is sourced from prior comparative research [39],
which evaluated a number of most popular IoT protection solutions (Avira [20],
Bitdefender [2], F-Secure [3], Fingbox [5], Firewalla [6], McAfee [9], RATtrap [13],
and TrendMicro [1]) using the same threat generation scripts as our evaluation.
For the sake of brevity, the table shows merged IoT threat detection results
of these protection systems. A check mark against a threat means at least one
system can detect it. Results show that SunBlock outperforms IoT protection
solutions in terms of threat detection capabilities.
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Table 2. Threats detected by existing IoT solutions vs. detected by SunBlock.

Threat IoT Protection Systems SunBlock

Anomalous Traffic ✗ ✓

Anomalous Upload ✗ ✓

SYN Flooding ✓ ✓

UDP Flooding ✗ ✓

DNS Flooding ✗ ✓

HTTP Flooding ✓ ✓

Port Scanning ✓ ✓

OS Scanning ✓ ✓

PII Leakage ✗ ✓

7 Limitations and Future Work

Hardware. Our approach was tested on an off-the-shelf router with 512MB of
RAM. We choose this since full-featured routers offered by the most popular
US ISPs have more memory than that (e.g., the Xfinity xFi XB6 from Comcast
has 768MB [42] and the CR1000A [53] from Verizon has 2GB). However, some
older routers and lower-tier router offerings may still have a lower amount of
RAM. In such case, our approach would be slower due to requiring swap space.
Future improvements involve developing a more efficient Docker image for ML
anomaly detection by utilizing lighter Linux distributions such as Arch Linux,
which require more custom configuration compared to Debian-based images.
Additionally, it is worthwhile to monitor emerging ML/AI methods and associ-
ated compression and pruning techniques that may reduce RAM and CPU usage
while maintaining high classification performance.

Zero-Day Threat Protection. Zero-day threats pose a common challenge for ML
systems, as learning models require time to gather relevant training data during
their first run. Shortening the initial training period can reduce exposure but
might compromise accuracy, necessitating more user input for custom classifica-
tion. This is not always feasible as home users are not typically security experts.
SunBlock’s Rule-based Traffic Filtering, functioning from day one, reduces the
risk of zero-day exposure by protecting against most severe threats, such as
flooding and scanning. Additionally, other security measures during the initial
setup may include factory resetting all present IoT devices, ensuring they are
updated with the latest software versions, and, if feasible, placing them on a
separate network segment with limited Internet access.

Model Updates. Since our approach is cloudless, it does not include external
(cloud-based) means of updates. The capability of our approach to learn and self-
adapt partially address this limitation; however, faster updates can be achieved
by allowing the periodic download of updated Snort community rules [16] and/or
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by building and sharing AI models in a privacy-preserving crowdsourced way
(e.g., as discussed in [25,56]).

Configuration. As discussed before, default parameters of our approach were
chosen empirically for our prototype. However, depending on the particularities
of deployment scenario and user needs, such parameters may need to be tuned
to achieve the desired trade-off between false negative and false positive threat
reporting. This limitation can be addressed, for example, by using a interactive
ML approaches [29,54], where the user is asked to confirm what to do for each
threat until the system learns how to make this decision on its own.

8 Related Work

The growing privacy and security issues in the consumer IoT domain have
prompted the creation of various tools [36,40] designed to block malicious traffic
originating from IoT devices. Despite the promising advances these tools repre-
sent, there remains an area for their potential improvement by incorporating AI
for the detection of threats.

Other attempts [28,43,45] to shift IoT protection to the edge have limita-
tions. Implementations of [28,45] rely solely on classic rule-based traffic filtering,
which is less sensitive to anomalous traffic threats and requires additional AI-
based classification. The evaluations in [28,43,45] were conducted on non-router-
specific superior hardware and may not reflect consumer router performance.

There have been recent introductions of AI-based methodologies dedicated
to device identification tasks at the edge [33,35,41,52]. However, they alone are
insufficient for comprehensive protection against major IoT threats and would
benefit from rule-based and AI-based threat detection techniques.

Numerous studies have examined IoT threats, assessing smart home vulner-
abilities, attack scenarios, and defense strategies [22,24,30]. Recent research [39]
introduced a methodology to assess the efficacy of current IoT protection solu-
tions in responding to prevalent security and privacy threats. The associated
threat emulation scripts and benchmarks were adopted in our study for testing
the effectiveness of our prototype against popular IoT protection solutions.

9 Discussion and Conclusion

The growing ubiquity of IoT devices in residential settings is transforming our
homes into sophisticated, interconnected digital environments. As such, the
importance of robust and proactive protection measures for these devices is
vital, ensuring not only their functionality but also the privacy and security of
the vast amounts of personal data they handle.

Our research reveals that IoT threats can be rapidly mitigated on a home
router, equipped with ML/AI anomaly detection and rule-based traffic filtering
algorithms. Most types of threats are promptly identified and blocked within the
first 5 s. Nonetheless, certain threats such as anomalous traffic and anomalous
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upload require a longer time due to their initial similarity with normal network
behavior of other IoT devices in the network. The presented local threat detec-
tion approach eliminates the need for dependence on cloud-based IoT security
solutions and thus blocks extra channels of potential PII and other user-sensitive
data exposure. It is important to note that integrating ML with rule-based traf-
fic analysis in our off-the-shelf router (which has inferior hardware with respect
to full-featured routers currently offered by top ISPs in the US [42,53]) cause
a slight increase in CPU utilization (up to ∼15% with an average use of ∼3%)
and RAM consumption (by ∼150MB) during normal operation, without affect-
ing main router functions. Our plans for further enhancements involve intensive
beta testing and precise performance benchmarking against existing cloud-based
security solutions.
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