Published as a conference paper at ICLR 2024

UniversalNER: TARGETED DISTILLATION FROM
LARGE LANGUAGE MODELS FOR OPEN NAMED
ENTITY RECOGNITION

Wenxuan Zhou'*, Sheng Zhang?*, Yu Gu?, Muhao Chen'-3, Hoifung Poon?
LUniversity of Southern California 2Microsoft Research 2University of California, Davis
! {zhouwenx,muhaoche} @usc.edu 2 {shezhan,yugul,hoifung} @microsoft.com

ABSTRACT

Large language models (LLMs) have demonstrated remarkable generalizability,
such as understanding arbitrary entities and relations. Instruction tuning has proven
effective for distilling LLMs into more cost-efficient models such as Alpaca and
Vicuna. Yet such student models still trail the original LLMs by large margins
in downstream applications. In this paper, we explore fargeted distillation with
mission-focused instruction tuning to train student models that can excel in a
broad application class such as open information extraction. Using named entity
recognition (NER) for case study, we show how ChatGPT can be distilled into much
smaller UniversalNER models for open NER. For evaluation, we assemble the
largest NER benchmark to date, comprising 43 datasets across 9 diverse domains
such as biomedicine, programming, social media, law, finance. Without using any
direct supervision, UniversalNER attains remarkable NER accuracy across tens of
thousands of entity types, outperforming general instruction-tuned models such as
Alpaca and Vicuna by over 30 absolute F1 points in average. With a tiny fraction of
parameters, UniversalNER not only acquires ChatGPT’s capability in recognizing
arbitrary entity types, but also outperforms its NER accuracy by 7-9 absolute F1
points in average. Remarkably, UniversalNER even outperforms by a large margin
state-of-the-art multi-task instruction-tuned systems such as InstructUIE, which
uses supervised NER examples. We also conduct thorough ablation studies to
assess the impact of various components in our distillation approach. We release
the distillation recipe, data, and UniversalNER models to facilitate future research
on targeted distillation.'

1 INTRODUCTION

Large language models (LLMs) such as ChatGPT (Ouyang et al., 2022; OpenAl, 2023) have demon-
strated remarkable generalization capabilities, but they generally require prohibitive cost in training
and inference. Moreover, in mission-critical applications such as biomedicine, white-box access to
model weights and inference probabilities are often important for explainability and trust. Conse-
quently, instruction-tuning has become a popular approach for distilling LLMs into more cost-efficient
and transparent student models. Such student models, as exemplified by Alpaca (Taori et al., 2023)
and Vicuna (Chiang et al., 2023), have demonstrated compelling capabilities in imitating ChatGPT.
However, upon close inspection, they still trail the teacher LLM by a large margin, especially in
targeted downstream applications (Gudibande et al., 2023). Bounded by limited compute, it is
unsurprising that generic distillation can only produce a shallow approximation of the original LLM
across all possible applications.

In this paper, we instead explore fargeted distillation where we train student models using mission-
focused instruction tuning for a broad application class such as open information extraction (Etzioni
et al., 2008). We show that this can maximally replicate LLM’s capabilities for the given application
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class, while preserving its generalizability across semantic types and domains. We choose named
entity recognition (NER) for our case study, as it is one of the most fundamental tasks in natural
language processing (Wu et al., 2017; Perera et al., 2020). Recent studies (Wei et al., 2023; Li et al.,
2023) show that when there are abundant annotated examples for an entity type, LLMs still fall
behind the state-of-the-art supervised system for that entity type. However, for the vast majority of
entity types, there is little annotated data. New entity types constantly emerge, and it is expensive
and time-consuming to generate annotated examples, especially in high-value domains such as
biomedicine where specialized expertise is required for annotation. Trained on pre-specified entity
types and domains, supervised NER models also exhibit limited generalizability for new domains
and entity types.

We present a general recipe for targeted distillation from LLMs and demonstrate that for open-domain
NER. We show how to use ChatGPT to generate instruction-tuning data for NER from broad-coverage
unlabeled web text, and conduct instruction-tuning on LLaMA (Touvron et al., 2023a) to distill the
UniversalNER models (UniNER in short).

To facilitate a thorough evaluation, we assemble the largest and most diverse NER benchmark to
date (UniversalNER benchmark), comprising 43 datasets across 9 domains such as biomedicine,
programming, social media, law, finance. On zero-shot NER, LLaMA and Alpaca perform poorly
on this benchmark (close to zero F1). Vicuna performs much better by comparison, but still trails
ChatGPT by over 20 absolute points in average F1. By contrast, UniversalNER attains state-of-
the-art NER accuracy across tens of thousands of entity types in the UniversalNER benchmark,
outperforming Vicuna by over 30 absolute points in average F1. With a tiny fraction of parameters,
UniversalNER not only replicates ChatGPT’s capability in recognizing arbitrary entity types, but
also outperforms its NER accuracy by 7-9 absolute points in average F1. Remarkably, UniversalNER
even outperforms by a large margin state-of-the-art multi-task instruction-tuned systems such as
InstructUIE (Wang et al., 2023a), which uses supervised NER examples. We also conduct thorough
ablation studies to assess the impact of various distillation components, such as the instruction
prompts and negative sampling.

2 RELATED WORK

Knowledge distillation. While LLMs such as ChatGPT achieve promising results, these models
are often black-box and have high computational costs. To address these issues, distilling the task
capabilities of LLMs into smaller, more manageable models has emerged as a promising direction.
Knowledge distillation (Hinton et al., 2015) often revolves around the transfer of knowledge from
larger, more complex models to their smaller counterparts. Recent work (Taori et al., 2023; Chiang
et al., 2023; Peng et al., 2023) seeks to distill the general abilities of LLMs with the objective of
matching, if not surpassing, the performance of the original LLMs. Particularly, Alpaca (Taori et al.,
2023) automates the generation of instructions (Wang et al., 2023c¢) and distills the knowledge from
a teacher LLM. Vicuna (Chiang et al., 2023) adopts the ShareGPT data, which are comprised of
real conversations with ChatGPT conducted by users, thereby providing a more authentic context
for distillation. Another line of work (Smith et al., 2022; Jung et al., 2023; Hsieh et al., 2023; Gu
et al., 2023) focuses on distilling task-level abilities from LLMs. Particularly, Jung et al. (2023)
propose an efficient method to distill an order of magnitude smaller model that outperforms GPT-3
on specialized tasks summarization and paraphrasing in certain domains. Hsieh et al. (2022) propose
to distill LLMs’ reasoning abilities into smaller models by chain-of-the-thought distillation. However,
these studies perform distillation either on certain datasets or domains, while our work focuses on a
more general formulation that can be applied to diverse domains.

Instruction tuning. As an effective method to adapt LMs to perform a variety of tasks, instruction
tuning has attracted an increasing number of community efforts: FLAN (Chung et al., 2022), TO (Sanh
etal., 2021), and Tk-Instruct (Wang et al., 2022) convert a large set of existing supervised learning
datasets into instruction-following format, and then fine-tune encoder-decoder models, showing
strong zero-shot and few-shot performance on NLP benchmarks. Ouyang et al. (2022) crowd-source
high-quality instruction data and fine-tune GPT-3 into InstructGPT, enhancing its ability to understand
user intention and follow instructions. Recent advancements (Taori et al., 2023; Chiang et al., 2023;
Peng et al., 2023) have also led to smaller models that exhibit task-following capabilities, after being
fine-tuned on instruction data generated by LLMs, such as ChatGPT or GPT4. However, these smaller
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models often struggle to generate high-quality responses for a diverse range of tasks (Wang et al.,
2023b). A closer examination on targeted benchmarks reveals a substantial gap between these models
to ChatGPT (Gudibande et al., 2023). Our proposed method, in contrast, focuses on tuning models
to excel at a specific type of tasks. The diversity in our instructing-tuning method comes from task
labels (e.g., relation types for relation extraction, entity types for NER), rather than instructions. By
focusing on task-level capabilities and using NER as a case study, we demonstrate that it is possible
to devise a tuning recipe that not only closes the performance gap but also surpasses ChatGPT. Wang
et al. (2023a) also explore instruction-tuning for information extraction tasks. However, their method
relies solely on supervised datasets and yields subpar performance when compared to ChatGPT.

3  MISSION-FOCUSED INSTRUCTION TUNING

Instruction tuning (Ouyang et al., 2022; Wei et al., 2021) is a method through which pretrained
autoregressive language models are finetuned to follow natural language instructions and generate
responses. Existing work focuses on tuning models to do diverse tasks (Taori et al., 2023; Chiang
et al., 2023). In contrast, we introduce a general recipe for mission-focused instruction tuning, where
the pretrained model is tuned for a broad application class such as open information extraction.

In this paper, we conduct a case study on the NER task, as it is one of the fundamental tasks for
knowledge extraction from text. The objective is to learn a model f : (X x 7) — Y, where X
represents the set of inputs, 7 denotes a predefined set of entity types, and ) represents the set of
entities of a specific type in the given input.

3.1 DATA CONSTRUCTION

A typical instruction-tuning example is made of three parts, including instruction, input, and
output, where the diversity of instruction causes the models to follow a wide range of task
instructions. However, for mission-focused instruction tuning, our goal is to tune the model to
maximally generalize across semantic types and domains for the targeted application class. Therefore,
we focus on increasing the diversity of input rather than instruction.

While earlier work (Jung et al., 2023) employs
language models to generate inputs, these mod-
els typically assume that the domains of test data
are known and prompt LMs to generate data for
each domain. This method falls short when ap-
plied to disti'llat'ion for a broad appli'cation class, extract all entities and identify their entity
where the dlstr1.b1.1t10n of test data is unknown. types. The output should be in a list of tuples
Consequently, it is challenging to generate in- of the following format: [("entity 1", "type
puts from LMs that provide wide coverage of of entity 1"), ... ].

the test domains.

System Message: You are a helpful informa-
tion extraction system.
Prompt: Given a passage, your task is to

Passage: {input_passage}

To address this limitation, we propose an alter-
native: directly sampling inputs from a large
corpus across diverse domains, and then using
an LLM to generate outputs. In this paper, we
sample inputs from the Pile corpus (Gao et al.,
2020), which compiles 22 distinct English sub-
datasets. We chunk the articles in Pile to passages of a max length of 256 tokens and randomly sample
50K passages as the inputs. Subsequently, we use ChatGPT (gpt-3.5-turbo-0301) to generate
entity mentions and their associated types based on the sampled passages. To ensure stability, we
set the generation temperature to 0. The specific prompt for constructing the data is shown in Fig. 1.
In this prompt, we do not specify the set of entity types of interest, allowing the LLM to generate
outputs encompassing a broad coverage of entity types.

Figure 1: Data construction prompt for generating
entity mentions and their types for a given passage.

Data statistics. After filtering out unparseable outputs and inappropriate entities, including non-
English entities and those classified under ’ELSE’ categories, such as None, NA, MISC, and ELSE,
our dataset comprises 45,889 input-output pairs, encompassing 240,725 entities and 13,020 distinct
entity types. We divide the entity types according to frequency and show the top 10 entity types
in each range in Tab. 1. The distribution of these entity types exhibits a heavy tail, where the top
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Frequency | Entity types
Top 1% person, organization, location, date, concept, product, event, technology, group, medical
(74%) condition, ...
19%-10% characteristic, research, county, module, unit, feature, cell, package, anatomical structure,
(19%) equipment, ...
10%-100% | attribute value, pokemon, immune response, physiology, animals, cell feature, FAC, input
(7%) device, ward, broadcast, ...

Table 1: Examples of entities across different frequency ranges - top 1%, 1-10%, and 10-100%, along
with the percentage of total frequencies for each range.

1% of entities account for 74% of total frequencies. We find that the generated data contain entity
types from various domains, ranging from the general domain (e.g., PERSON) to the clinical domain
(e.g., MEDICAL CONDITION). Moreover, we observe variations in granularity among the entity types.
E.g., COUNTY is the subset of LOCATION, and INPUT DEVICE is a subset of PRODUCT. These data
characteristics offer extensive coverage of entity types, making them suitable for distilling capabilities
from LLMs across various domains.

Definition-based data construction. Besides entity types, we also prompt ChatGPT to generate
entity mentions and define their types using short sentences. To do so, we simply change the prompt
in Fig. 1 from “extract all entities and identify their entity types” to “extract all entities and concepts,
and define their type using a short sentence”. This method generates a much more diverse set of
353,092 entity types and leads to a tuned model that is less sensitive to entity type paraphrasing
(Section 5.5), but performs worse on standard NER benchmarks (Section 5.2).

3.2 INSTRUCTION TUNING

After obtaining the data, we apply instruction Conversation-style Instruct Tuning Template
tuning to smaller models to distill for a broad _ _ )
application class, e.g., diverse entity types in A virtual assistant answers questions from a
NER. Our template, as shown in Fig. 2, adopts Eser l:.’a;sred (')f}éhe provided text.
a conversation-style tuning format. In this ap- ser: Text Xpmsage
. . Assistant: I've read this text.

proach, the language model is presented with a . . .

. . User: What describes ¢ in the text?
passage Xpassage as input. Then, for each entity Assistant: g
type t; that appears in the output, we transform
it into a natural language query “What describes User: What describes ¢ in the text?
t;?” Subsequently, we tune the LM to generate Assistant: yr
a structured output y; in the form of a JSON
list containing all entities of ¢; in the passage.

We consider y1, o YT 88 g91d .tokens and ap- Figure 2: The conversation-style template that
ply a language modeling objective on these to-  converts a passage with NER annotations into a
kens. Our preliminary experiments show thgt conversation, where X pasage 1S the input passage,
conversation-style tuning is better than tradi- [t1, ..., t7] are entity types to consider, and y; is
tional NER-style tuning adopted by Wang et al. 4 [ist of entity mentions that are ¢;. The conver-
(2023a); Sun et al. (2023). sation is used to tune language models. Only the
Besides one entity type per query, we also con- highlighted parts are used to compute the loss.
sider combining all entity types in a single query,

requiring the model to output all entities in a single response. Detailed results and discussions can be
found in Section 5.2.

Negative sampling. Our data construction process follows an open-world assumption where we allow
the model to generate entity types that have appeared in the passage. However, the generated data do
not account for entity types that are not mentioned in the passage, i.e., negative entity types. As a
result, it is challenging for us to apply a model trained on this data to a closed-world setting, where
one may ask for entity types that do not exist in the passage. To address this potential mismatch, we
sample negative entity types from the collection of all entity types that do not appear in the passage
as queries and set the expected outputs as empty JSON lists. The sampling of negative entity types
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is done with a probability proportional to the frequency of entity types in the entire dataset. This
approach greatly improves the instruction tuning results, as shown in Section 5.4.

Supervised finetuning. When we have additional human annotations, model performance can be
further improved with supervised data. However, a significant challenge arises when training with
multiple datasets, as there might be discrepancies in label definitions among these datasets, resulting
in label conflicts. For instance, some datasets like ACE (Walker et al., 2006) consider personal
pronouns (e.g., she, he) as PERSON, while other datasets like multiNERD (Tedeschi & Navigli, 2022)
do not include pronouns.

To address this issue, we propose to use dataset- Dataset-specific Instruct Tuning Template
specific instruction tuning templates to harmo-
nize the discrepancies in label definitions, as
illustrated in Fig. 3. Specifically, we augment
the input with an additional field denoting the

A virtual assistant answers questions from a
user based on the provided text.

User: Dataset: D \n Text: Xpassage
Assistant: I've read this text.

dataset name D. By QOing 50, th.e model can User: What describes ¢1 in the text?

learn the dataset-specific semantics of labels. Assistant: wi

During inference, we use the respective dataset

name in the prompt for the supervised setting, User: What describes ¢ in the text?

whereas we omit the dataset field from the Assistant: yr

prompt in the zero-shot setting. \ J

Figure 3: The dataset-specific instruction tuning
4 UNIVERSAL NER BENCHMARK template. We add the dataset name D (colored in
red) as part of the input to resolve conflicts in label

To conduct a comprehensive evaluation of NER ~ definitions.

models across diverse domains and entity types, we collect the largest NER benchmark to date. This
benchmark encompasses 43 NER datasets across 9 domains, including general, biomedical, clinical,
STEM, programming, social media, law, finance, and transportation domains. An overview of data
distribution is shown in Fig. 4. Detailed dataset statistics are available in Appendix Tab. 6.

Dataset processing. To make the entity types
semantically meaningful to LLMs, we conduct
a manual inspection of the labels and convert
the original labels into natural language for-
mats. For instance, we replace PER with PER-
SON. While we try to collect a broad coverage
of NER datasets, we do not use all entity types.
This is because some entity types (e.g., ELSE)
are not coming from consistent sources across
the different datasets. Their annotations often
come from different ontologies for different pur-
poses. The choices of entity types and their an-
notation guidelines are not optimized for holistic
or comprehensive assessments, which renders
them suboptimal for use as a “ground truth” to
evaluate a universal NER model. Therefore, we
remove those labels from the datasets. In ad-
dition, some datasets are at the document level
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and contain very long contexts, which might ex- -:

ceed the input length limit of models. Therefore, 2k _

we split all instances in document-level datasets Number...of...instances

into sentence-level ones. Figure 4: Distribution of UniNER benchmark.

5 EXPERIMENTS

This section presents experimental evaluations of UniversalNER. We start by outlining experimental
settings (Section 5.1), followed by presenting the results on both distillation and supervised settings
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(a) Comparisons of zero-shot models on different
domains. Our distilled models achieve better results
than ChatGPT in all evaluated domains.
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(b) Comparisons between UniNER-7B and two vari-
ants. UniNER-7B-definition is distilled on Pile data
prompted with entity type definitions. UniNER-7B-

all-in-one is tuned with the template where all entity
types are asked in one query.

(Sections 5.2 and 5.3). Finally, we conduct analysis (Section 5.4) and case study (Section 5.5) to
provide deeper insights into the model’s performance.

5.1 EXPERIMENTAL SETTINGS

Model configurations. We train models based on LLaMAZ? (Touvron et al., 2023a) following the
training schedule of Chiang et al. (2023) for a fair comparison. Considering the large size of certain
test datasets, we perform evaluation by sampling up to 200,000 passage-query pairs from each dataset.
We use strict entity-level micro-F} in evaluation, requiring both the entity type and boundary to
exactly match the ground truth.

Compared models. We compare our model (UniNER) against the following models: (1) ChatGPT
(gpt-3.5-turbo-0301). We use the prompting template in Ye et al. (2023) for NER. (2) Vicuna (Chi-
ang et al., 2023) is finetuned with ChatGPT conversations, using LLaMA as the base model. (3)
InstructUIE (Wang et al., 2023a) is a supervised model finetuned on diverse information extraction
datasets, employing a unified natural language generation objective. It adopts Flan-T5 11B (Chung
et al., 2022) as the base model.

5.2 DISTILLATION

We first evaluate the models in a zero-shot setting. We compare the performance of ChatGPT,
Vicuna, and our model UniNER, which is distilled from ChatGPT NER annotations on Pile without
human-labeled datasets in training. Results are shown in Fig. 5a.> We observe that our distilled

2We also train models based on LLaMA 2 (Touvron et al., 2023b). However, no significant difference is
observed in our experiments.

3Due to limited space, we only show the average F) of all datasets and the average F of each domain. See
Appendix Fig. 9 for full results.
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models, namely UniNER-7B and UniNER-13B, outperform ChatGPT in terms of average F}. The
average F scores of UniNER-7B and UniNER-13B are 41.7% and 43.4%, respectively, compared to
34.9% for ChatGPT. This demonstrates that our proposed targeted distillation from diverse inputs
yields models that have superior performance on a broad application class while maintaining a
relatively small model size. Additionally, UniNER-13B exhibits better performance compared to
UniNER-7B, indicating that fine-tuning on larger models may lead to improved generalization. In
terms of domains, both UniNER-7B and UniNER-13B outperform ChatGPT on all domains, showing
that the improvements exist across various domains.

We further compare different variations of UniNER, in- BERT- InstructUIE |UniNER
clfudlilng (I) UniNER-all-in-one, where the extraction Dataset base 11B 7B
of all entity types are combmeq into one query a'nd CEOS 3730 79.04 6.6
response, and (2) UniNER-definition, where queries
in instruction tuning data use entity type definitions AnatEM 8582 88.52 | 88.65
generated by ChatGPT instead of entity types. Re- bc2gm 80.90  80.69 82.42
sults are shown in Fig. 5b. We observe that both bcdchemd | 86.72  87.62 89.21
Un@NER—all—in—one and UniNER-definition underperform beScdr 8528  89.02 | 89.34
UniNER-type by 3.3% and 11.8% on average, respec- g Tyier | 58.61 8027 | 81.25
tively. The UniNER-definition variant’s decreased per-
formance could be due to its lower consistency with CoNLLO3 (9240 9153 93.30
the evaluation datasets, which all adopt words or short FabNER 6420 7838 | 81.87
phrases as labels instead of sentences. The performance FindVehicle | 87.13 87.56 98.30
disparity in the UniNER-all-in-one variant can be poten- GENIA 733 75.71 77.54
tiallylatt‘rtibu\t)&e[;i1 tot;lhe attgrlltion dis'trigutti?ln aélld tasll< HarveyNER | 82.26  74.69 7421
complexity. When the model is required to handle mul- MIT Movie | 8878  89.58 90.17
tiple entity types within a single query, it might disperse
its attention across these varied types, possibly result- ~MIT Restaurant 8102 82.59 82.35
ing in less accurate identification for each individual MultiNERD | 91.25  90.26 93.73
type. Conversely, by decomposing the task into sev- ncbi 80.20 86.21 86.96
ergl simpler ones, ea'ch focusing on one entity type at OntoNotes | 91.11 88.64 89.91
a time, the Ipodel mlght bf: better equipped to handle PolyglotNER | 75.65 5331 65.67
the complexity, thus yielding more accurate results.

TweetNER7 | 56.49 65.95 65.77

WikiANN | 70.60  64.47 | 84.91
5.3 SUPERVISED FINETUNING o

wikiNeural | 82.78 88.27 93.28
We study whether our models can be further improved Avg 80.09  8l1.16 84.78

using additional human annotations. We compare the
performance of ChatGPT, Vicuna, InstructUIE (Wang
et al., 2023a) 4, and UniNER.

Table 2: F} on 20 datasets used in Wang
et al. (2023a). BERT-base results are
from Wang et al. (2023a). InstructUIE re-
Out-of-domain evaluation. We first Stlldy whether sults are from our reevaluation.

supervised finetuning leads to better generalization on

unseen data. We follow InstructUIE to exclude two datasets CrossNER (Liu et al., 2021) and
MIT (Liu et al., 2013) for out-of-domain evaluation, and fine-tune our model using training splits
of the remaining datasets in the universal NER benchmark. Results are shown in Tab. 3. Notably,
without any fine-tuning, instruction-tuned UniNER 7B and 13B already surpass ChatGPT, Vicuna,
and the supervised fine-tuned InstructUIE-11B by a large margin. If we train our model from scratch
only using the supervised data, it achieves an average F of 57.2%. Continual fine-tuning UniNER-7B
using the supervised data achieves the best average F; of 60.0%. These findings suggest that the
models’ generalization can be further improved with additional human-annotated data.

In-domain evaluation. We then study the performance of UniNER in an in-domain supervised setting,
where we fine-tune UniNER-7B using the same training data as InstructUIE (Wang et al., 2023a).
Results are shown in Tab. 2. Our UniNER-7B achieves an average F; of 84.78% on the 20 datasets,
surpassing both BERT-base and InstructUIE-11B by 4.69% and 3.62%, respectively. This experiment
demonstrates the effectiveness of our model in the supervised setting.

*Please note that the original evaluation script in InstructUIE contains a critical bug. For passages that do not
contain any entities, the script adds NONE as a placeholder entity and takes it into account when calculating F.
To rectify this error, we re-evaluated InstructUIE using their released checkpoint.
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Model Movie Restaurant Al Literature Music Politics Science | Avg

Zero-shot

Vicuna-7B 6.0 53 12.8 16.1 17.0 20.5 13.0 |13.0

Vicuna-13B 0.9 0.4 22.7 22.7 26.6 27.2 220 |17.5

ChatGPT 53 32.8 524 39.8 66.6 68.5 67.0 |475

UniNER-7B 424 31.7 535 59.4 65.0 60.8 61.1 |534

UniNER-13B 48.7 36.2 54.2 60.9 64.5 61.4 63.5 |55.6
In-domain supervised

InstructUIE-11B - - 48.4 48.8 544 49.9 494 -

UniNER-7B (sup. only) 54.2 16.0 62.3 67.4 69.0 64.5 669 |57.2

UniNER-7B (inst-tuned + sup.) | 61.2 35.2 62.9 64.9 70.6 66.9 70.8 | 61.8

Table 3: Out-of-domain evaluation on datasets from Wang et al. (2023a). “sup. only” denotes a
variant of UniNER-7B, trained from scratch using in-domain supervised data only and evaluated on

out-of-domain datasets.

5.4 ANALYSIS

Strategy Movie Restaurant Al Literature Music Politics Science | Avg
None 19.1 19.1 25.1 39.5 42.7 48.9 262 | 315
Uniform 425 29.0 42.5 53.3 574 56.8 52.6 | 47.7
Frequency | 42.4 31.7 53.5 59.4 65.0 60.8 61.1 |534

Table 4: Ablation study on negative sampling strategies for UniNER-7B. All models are instruction-

tuned on Pile.

Negative sampling strategies. We experiment

B w/o label overlap B w/ label overlap

with different negative sampling strategies in in- CoNLL03 |
struction tuning, including (1) no negative sam- Ontonotes i’
pling, (2) uniform sampling where entity types WikiNeural — [EE0]
are randomly sampled with equal probability Bm\-:(llkﬁii %l
for each one, and (3) frequency-based sampling MultiNERD [
where we sample entity types with probabili- Polveothi ]:l
ties proportional to their frequency in the con- bedchemd ]
structed dataset. Results are shown in Tab. 4. i ement %
Among the approaches tested, frequency-based nebi
B . . TweetNER7  [I
sampling yielded the best results, outperforming FabNER =
no sampling and uniform sampling by 21.9% H‘l“l“gﬁfj I
and 5.7%, respectively. These findings high- FindVehtle
light the crucial role of negative sampling in *(“&\EI\AI
instruction tuning, with frequency-based sam- T

pling emerging as the most effective method for
enhancing model performance in our study.

Dataset-specific template. We compare the re-
sults of our dataset-specific instruction tuning
template and the original template in the super-
vised setting. As shown in Fig. 6, we find that
the data-specific template outperforms the orig-
inal template on most datasets. To gain deeper

=}

5 10 15 20
Different in £y (%)

Figure 6: Different in F; between data-specific
and original templates in the supervised setting.

and Blue mark datasets with/without label
overlap with other datasets, respectively.

insights into the improvements achieved, we further divide the datasets into two categories: those
with label (entity type) overlap with other datasets and those without overlap. Our analysis reveals
that datasets with label overlap demonstrate more substantial improvements.

To explore this further, we measure F score across all evaluation datasets and calculate the difference.
Apart from the long-tail entity types that manifest a high variance in results, we identify two entity
types where the dataset-specific template outperforms the original template by over 10%: FACILITY
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Partial match | Model Movie Restaurant AI Literature Music Politics Science | Avg
ChatGPT 53 32.8 524 398 66.6 685 67.0 (475

No UniNER-7B 424 31.7 535 594 65.0 60.8 61.1 |534
UniNER-7B w/sup  61.2 352 629 649 706 669 70.8 |61.8

ChatGPT 59 40.1 557 428 702 717 70.1 |50.9

Yes UniNER-7B 46.9 40.3 577 627 629 632 63.3 |56.7
UniNER-7B w/sup  65.5 39.4 662 672 72.7 689 734 |64.8

Table 5: Allowing partial match between the prediction and the gold that has overlap increases the
results. When it is allowed, any partial match is regarded as half correct (counted as 0.5 in true
positive) when computing F .

(22.0%) and TIME (12.4%). Intriguingly, both labels exhibit inconsistencies in their definitions across
various datasets. The FACILITY label has been annotated on pronouns (e.g., it, which) as entities in
ACE datasets but are excluded in OntoNotes. The TIME label denotes well-defined time intervals
(e.g., Christmas) in MultiNERD, but may encompass any general time expressions (e.g., 3 pm) in
OntoNotes. This finding suggests that the improvements provided by the data-specific template are
particularly effective in resolving label conflicts.

Evaluation with partial match. While using strict F} as an evaluation metric, we notice that it may
underestimate the zero-shot learning capabilities of NER models. In particular, strict F; penalizes
slight misalignments in the boundaries of the extracted entities, which may not necessarily indicate
an incorrect understanding of the text. For instance, given the sentence any asian cuisine around and
the entity type CUISINE, UniNER extracts asian cuisine as the named entity, while the ground truth
only labels asian as the correct entity. However, the model’s prediction can still be viewed as correct,
even though it is deemed incorrect by strict ;. To better estimate the zero-shot abilities, we also
consider partial match (Segura-Bedmar et al., 2013) in evaluation. In this context, a prediction that
exhibits word overlap with the ground truth is regarded as half correct (counted as 0.5 in true positive)
when computing F;. Results are shown in Tab. 5. We find that allowing partial match consistently
improves the results. Besides, our models is still the best-performing model on average.

5.5 CASE STUDY

Sensitivity to entity type paraphrasing. One type of entity can be expressed in multiple ways, so
it is essential for our model to give consistent predictions given entity types with similar meanings.
An example of sensitivity analysis is present in Fig. 7. We observe that UniNER-7B-type sometimes
fails to recognize entities with similar semantic meanings. On the other hand, UniNER-7B-definition,
despite performing worse on our Universal NER benchmark, exhibits robustness to entity type
paraphrasing. It demonstrates that although using definitions may result in lower performance on
standard NER benchmarks, it could yield improved performance for less populous entity types.

Recognition of diverse entity types. We present an example in Fig. 8 showcasing the capabilities
of UniNER in recognizing various entities. Particularly, we focus on a novel domain of code and
assess UniNER’s ability to extract diverse types of entities within the code. Despite minor mistakes
(e.g., from_pretrained is not identified as a method), this case study effectively demonstrates our
model’s capacity to capture entities of various types.

6 CONCLUSION

We present a targeted distillation approach with mission-focused instruction tuning. Using NER
as a case study, we train smaller and more efficient models for open-domain NER. The proposed
method successfully distills ChatGPT into a smaller model UniversalNER, achieving remarkable
NER accuracy across a wide range of domains and entity types without direct supervision. These
models not only retain ChatGPT’s capabilities but also surpass it and other state-of-the-art systems in
NER performance.
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A APPENDIX

A.1 CASE STUDY

Sensitivity to entity type paraphrasing. One type of entity can be expressed in multiple different
ways. In this scenario, it is essential for our model to give consistent predictions given entity types
with similar meanings. An example of sensitivity analysis is present in Fig. 7. We observe that
UniNER-7B-type sometimes fails to recognize entities with similar semantic meanings. On the other
hand, UniNER-7B-definition, despite performing worse on our Universal NER benchmark, exhibits
robustness to entity type paraphrasing. It demonstrates that although using definitions may result
in lower performance on standard NER benchmarks, it could yield improved performance for less

populous entity types.

Sensitivity Analysis of Entity Types

Text: I'm visiting Los Angeles next week.

User: What describes city in the text?
UniNER-7B-type: ["Los Angeles"]
UniNER-7B-definition: ["Los Angeles"]

User: What describes place in the text?
UniNER-7B-type: []
UniNER-7B-definition: ["Los Angeles"]

User: What describes metropolis in the
text?

UniNER-7B-type: []
UniNER-7B-definition: ["Los Angeles"]

User: What describes urban area in the text?
UniNER-7B-type: []
UniNER-7B-definition: ["Los Angeles"]

User: What describes human settlement in
the text?

UniNER-7B-type: []
UniNER-7B-definition: ["Los Angeles"]

Figure 7: Sensitivity of UniNER-7B on different entity types. Green and red mark correct and wrong

predictions, respectively.

Recognition of diverse entity types The code snippet provided is for text generation using the

Huggingface library:

from transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained ( 'gpt2 ")
model = GPT2LMHeadModel. from_pretrained ( 'gpt2 ")

input_text = "Thisyisuausimpleyprogram”
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate (input_ids, max_new_tokens=50)

generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

Figure 8: A code snippet to assess UniNER’s ability to extract diverse types of entities within the code.

In the ensuing conversations with UniNER, we present the queries and corresponding results:
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User: What describes library in the text?
Assistant: ["transformers"]

User: What describes local variable in the text?
Assistant: ["input_text", "input_ids", "output”, "
User: What describes global variable in the text?
Assistant: []

User: What describes method in the text?
Assistant: ["encode", "generate", "decode"]
User: What describes class in the text?

Assistant:["GPT2Tokenizer","GPT2LMHeadModel"]

generated_text"]

Despite minor mistakes (e.g., from_pretrained is not identified as a method), this case study effectively

demonstrates our model’s capacity to capture entities of various types.

B FuULL EVALUATION RESULTS

Full results on ChatGPT, UniNER-7B-type, and UniNER-7B-sup+type are shown in Fig. 9.

C DATA STATISTICS

We show the full dataset statistics in Universal NER in Tab. 6, including the number of instances in
train/dev/test data, number of entity types, average number of tokens in input text, and the average

number of entities in each instance.
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Avg.  Avg.
Domain Dataset #train #dev #test #types tokens entities

ACEQ04 (Mitchell et al., 2005) 6202 745 812 7 37 4.5

ACEOQS5 (Walker et al., 2006) 7299 971 1060 7 21 2.8

conllpp (Wang et al., 2019) 14041 3250 3453 3 25 1.9

CrossNER Al (Liu et al., 2021) 100 350 431 13 52 53

CrossNER literature (Liu et al., 2021) 100 400 416 11 54 54

CrossNER music (Liu et al., 2021) 100 380 465 12 57 6.5

CrossNER politics (Liu et al., 2021) 199 540 650 8 61 6.5

General CrossNER science (Liu et al., 2021) 200 450 543 16 54 54
FewNERD-coarse (Ding et al., 2021) 131767 18824 37648 17 35 2.6
FewNERD-fine (Ding et al., 2021) 131767 18824 37648 59 35 2.6
MultiNERD (Tedeschi & Navigli, 2022) 134144 10000 10000 16 28 1.6

Ontonotes (Weischedel et al., 2013) 59924 8528 8262 18 18 0.9
PolyglotNER (Al-Rfou et al., 2015) 393982 10000 10000 3 34 1.0

TASTEset (Wréblewska et al., 2022) 556 69 71 9 62 19.1

WikiANN en (Pan et al., 2017) 20000 10000 10000 3 15 1.4

WikiNeural (Tedeschi et al., 2021) 92720 11590 11597 3 33 1.4

AnatEM (Pyysalo & Ananiadou, 2014) 5861 2118 3830 1 37 0.7

BioRED (Luo et al., 2022) 4373 1131 1106 6 46 3.0

GENIA (Kim et al., 2003) 15023 1669 1854 5 43 3.5

Biomed JNLPBA (Collier & Kim, 2004) 18608 1940 4261 5 39 2.8
bc2gm (Smith et al., 2008) 12500 2500 5000 1 36 0.4

bedchemd (Krallinger et al., 2015) 30682 30639 26364 1 45 0.9

bcScdr (Li et al., 2016) 4560 4581 4797 2 41 2.2

ncbi (Dogan et al., 2014) 5432 923 940 1 39 1.0

ebmnlp (Nye et al., 2018) 40713 10608 2076 3 43 1.7

12b2 2006 deid 1B (Uzuner et al., 2007) 34958 14983 18095 8 16 0.3

Clinics i2b2 2010 concepts (Uzuner et al., 2011) 14553 1762 27625 3 18 1.0
i2b2 2012 temporal (Sun et al., 2013) 6235 787 5282 6 22 2.3

i2b2 2014 deid (Stubbs et al., 2015) 46272 4610 32587 23 21 0.4

n2c2 2018 task2 (Henry et al., 2020) 84351 9252 60228 9 14 0.6
ShAEeCLEF (Mowery et al., 2014) 12494 2459 14143 1 13 0.3

DEAL (Grezes et al., 2022) 26906 20800 36665 30 35 1.4

FabNER (Kumar & Starly, 2022) 9435 2182 2064 12 36 5.1

STEM SOFC (Friedrich et al., 2020) 568 135 173 3 68 53
SciERC (Luan et al., 2018) 350 50 100 4 163 16.0

SciREX (Jain et al., 2020) 71511 15182 16599 4 29 1.4

SoMeSci (Schindler et al., 2021) 31055 159 16427 14 41 24

WLP (Kulkarni et al., 2018) 8177 2717 2726 16 25 4.5
Programming | Stackoverflow-NER (Tabassum et al., 2020) 9263 2936 3108 25 19 1.2
HarveyNER (Chen et al., 2022) 3967 1301 1303 4 48 0.4

Broad Tweet Corpus (Derczynski et al., 2016) 5334 2001 2000 3 28 0.5

Social media |TweetNER7 (Ushio et al., 2022) 7111 886 576 7 52 3.1
mit-movie (Liu et al., 2013) 9774 2442 2442 12 13 1.8
mit-restaurant (Liu et al., 2013) 7659 1520 1520 8 13 2.2

E-NER (Au et al., 2022) 8072 1009 1010 6 55 0.8

Law MAPA-coarse (Arranz et al., 2022) 893 98 408 5 56 0.9
MAPA-fine (Arranz et al., 2022) 893 98 408 17 56 1.3

Finance FiNER-ord (Shah et al., 2023) 3262 403 1075 3 34 1.1
Transportation | Find Vehicle (Guan et al., 2023) 21565 20777 20777 21 33 5.5

Table 6: Statistics of datasets in our benchmark.
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