Revisiting Prompt Engineering via Declarative Crowdsourcing

Aditya G. Parameswaran, Shreya Shankar, Parth Asawa, Naman Jain, Yujie Wang
UC Berkeley
{adityagp,shreyashankar,pgasawa,naman_jain,yujie_wang} @berkeley.edu

ABSTRACT

Large language models (LLMs) are incredibly powerful at compre-
hending and generating data in the form of text, but are brittle and
error-prone. There has been an advent of toolkits and recipes cen-
tered around so-called prompt engineering—the process of asking
an LLM to do something via a series of prompts. However, for LLM-
powered data processing workflows, in particular, optimizing for
quality, while keeping cost bounded, is a tedious, manual process.
We put forth a research agenda around declarative prompt engineer-
ing. We view LLMs like crowd workers and explore leveraging ideas
from the declarative crowdsourcing literature—including multiple
prompting strategies, ensuring internal consistency, and exploring
hybrid-LLM-non-LLM approaches—to make prompt engineering a
more principled process. Preliminary case studies on sorting, entity
resolution, and missing value imputation demonstrate the promise
of our approach.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4, ChatGPT, Claude,
and Bard, have taken the world by storm. At least part of the ex-
citement surrounding LLMs has been that they show promise in
new tasks for which they have not been explicitly trained for. Now,
users can simply specify instructions for new tasks as a text prompt,
and the LLM can perform these tasks as instructed, to varying de-
grees of accuracy [34, 62]. Developers spend long periods of time
iterating on prompts and sequences thereof, i.e., performing prompt
engineering. Prompt engineering, despite its name, is very much an
art—supplemented with the rise of cookbooks, recipes, guides, and
more—all offering varying degrees of help for how to best involve
LLMs in various types of workflows [1, 5, 10, 15, 42, 49]. Specifi-
cally, for prompts that produce promising demos on a small scale,
reliably translating such demos to production—as part of complex
workflows operating on more data to consistently accomplish a
global objective—is often laborious and frustrating. We therefore
need a set of principles around prompt engineering that make robust
production deployments possible.

To develop principles for leveraging LLMs in complex work-
flows, we turn to the domain of crowdsourcing. Fundamentally,
one can view LLMs as noisy human oracles. Like humans, LLMs
make mistakes, are biased and inconsistent, fail to precisely follow
instructions, make up information, and answer confidently even
if they don’t know the right answer. Thankfully, there is a rich
body of literature spanning over a decade on how to best leverage
the crowd for various data processing workflows, and specifically,
dealing with the fact that humans are error-prone when answering

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR °24). January 14-17, 2024, Chaminade, USA

questions. In particular, the database community focused on sys-
tems and toolkits for declarative crowdsourcing [16, 40, 46], with the
vision that the user simply specifies the high-level data processing
objectives, and the system will decompose it to the right sequence
of human tasks automatically, taking into account cost, accuracy,
and latency [30, 38].

Building on this literature, we propose a new research agenda
around declarative prompt engineering. We similarly envision users
of LLMs specifying their data processing objectives at a high level
with the system decomposing it into unit calls to one or more types
of LLMs with appropriate prompts, acting on one or more units
of data, orchestrating the calls, and issuing more as needed, until
completion to the desired degree of accuracy, within the specified
monetary budget. Our focus is on data processing to keep the scope
finite, but our techniques are broadly applicable.

Like the declarative crowdsourcing literature, our focus is not so
much on the specific textual instructions for a given task—in LLM
parlance, an individual prompt—but much more on the underlying
data processing operation. Indeed, we are still in the early days
of understanding how the textual wording of the prompt impacts
accuracy—for example, even small variations can yield different
results [69]—or when and how LLMs hallucinate [20]. We instead
focus on the underlying data processing operation—i.e., the input
data items embedded into the prompt, and the output data items
extracted from the text generated by the LLM, and the relationships
thereof—and consider how one or more such operations can be
sequenced as part of a broader workflow. We take as a given textual
prompts that work well on the small scale—possibly drawn from
one of the prompt repositories [5, 15] or guides [1, 49] and focus
more on scaling up their use for multi-step production deployments.

Example 1.1 (Entity Resolution). To illustrate the challenges with
leveraging LLMs for data processing, and how ideas from crowd-
sourcing may help, let’s consider a simple example. Suppose we
have a number of product listings, each as individual records, and
wanted to perform entity resolution across this set of records. The
standard approach would be to simply provide the entire list of
records, prefixed with an appropriate prompt, to the LLM, and ask it
to group these into distinct groups of records. Unfortunately, LLMs
have limited context lengths (i.e., a limit on the number of tokens
they can accept as input), so it may be hard to fit the entire list of
records into a prompt. And even if one could, LLMs often make
mistakes and hallucinate, even on tasks with as few as 20 records, as
we will see in the following. It’s not clear how one can easily detect,
let alone deal with, mistakes and hallucinations. Drawing on the
crowdsourcing literature, one could decompose this problem into
smaller tasks for the LLM, such as asking the LLM to compare pairs
of records to see if they are duplicates [39]. However, this approach
could be expensive, requiring O(n?) comparisons. An intermediary
option could be to provide the LLM smaller groups of records to
resolve into duplicates, but we would need to sequence the tasks or


adityagp,%20shreyashankar,%20pgasawa,%20naman_jain,%20yujie_wang
@%20berkeley.edu

CIDR’24, January 14-17, 2024, Chaminade, USA

prompts in the right way to ensure that every record is compared to
every other record [57]. There are also other mechanisms from the
crowdsourcing literature that could help reduce cost. We could, for
example, leverage transitivity to automatically determine that two
records a and b are duplicates if they are, for example, deemed to be
identical to another record [58]. We could also combine LLM-based
approaches with other non-LLM-based proxies, such as a cheaper
embedding-based model, that helps identify potential duplicates or
non-duplicates—and only use the LLM for the “confusing” cases.
We could even ask the LLM to synthesize blocking rules [18], or de-
rive features to help build a cheaper proxy model [39]. Overall, it’s
clear that there are many ideas from the declarative crowdsourcing
literature that can be leveraged to provide valuable points along
the cost-accuracy tradeoff curve for this problem.

Related Work. To the best of our knowledge, ours is the first pa-
per to view LLMs as noisy human oracles, and leverage principles
from declarative crowdsourcing to craft better data processing work-
flows powered by LLMs. Over the past six months, there has been
an advent of software solutions for LLM-based data processing
applications, recognizing that LLMs are error-prone and that LLM-
based workflows often involve multiple LLM invocations. These
solutions, including LangChain (python.langchain.com), Guardrails
(getguardrails.ai), Llamalndex (www.llamaindex.ai), and Prompt-
Chainer [54], however, are wrappers around LLM APIs that enable
users to implement multi-step LLM workflows, combine with ex-
ternal knowledge bases, and check syntactic correctness of outputs,
but offer no guidance on how to craft LLM-based data processing
workflows to meet certain desired objectives.

A concurrent preprint explores the complementary question of
whether LLMs can be used in the place of the crowd in crowd-
sourcing workflows [67]. Other papers have explored the use of
LLMs for specific unit crowdsourcing tasks [4, 17, 55], while oth-
ers have found that crowd workers often use LLMs [56]. Another
recent paper confirms that LLMs do not, in fact, behave exactly
like crowd workers [60], yet they do show similarities [14]. Some
recent work has recognized that problem decomposition in LLM
workflows is related to that in crowdsourcing [66], without actu-
ally leveraging any principles from crowdsourcing. On the other
hand, a recent preprint has applied techniques analogous to those
in crowdsourcing to determine whether to get additional samples
from LLMs [2], while another has applied ensembling techniques
across multiple LLMs to reduce cost [12]. While these approaches
are in the spirit of what we propose, here, we craft a broader agenda
around leveraging declarative crowdsourcing principles for prompt
engineering. Finally, a recent paper explores the use of LLMs for
data wrangling [43], without exploring optimizing the workflow
for cost or accuracy.

In this work, we focus on closed-ended tasks, such as sorting,
filtering, or categorizing a set of data items, rather than open-ended
ones. There is indeed work on open-ended crowdsourcing that may
be applicable; e.g., Turkomatic [29] uses the crowd to break down
an open-ended task into sub-tasks that are then each individually
crowdsourced. However, the emergent properties of LLMs for open-
ended tasks are still largely being discovered [9] and so we plan
to investigate that as future work. Finally, we note that we do
not believe that LLMs are a replacement for human expertise and

Aditya G. Parameswaran, Shreya Shankar, Parth Asawa, Naman Jain, Yujie Wang

domain knowledge; however, there are finite, closed-ended tasks
that we believe LLMs can offer a compelling low-cost approach.

2 LLMS AND CROWDSOURCING

LLMs and Prompts: A Primer. This process of leveraging LLMs
by providing instructions as part of a textual prompt is called in-
context learning, and when a few examples are provided, it is called
few-shot learning [8]; the alternative is zero-shot, where no examples
are provided. Standard LLMs take text as input and provide the next
most likely text as output; chat-based LLMs are a variant that are
tuned specifically for text that looks like a conversation between a
human user and the model. The text input can’t be arbitrarily long,
and are bounded by an LLM-specific context length. LLM providers
include OpenAl, Cohere, Hugging Face, and Anthropic, as well
as all major cloud platforms; these providers expose an API with
various parameters in addition to the text input, and return a text
output. Inputs and outputs can be broken down into tokens, which
are essentially fragments of words, or contiguous, non-overlapping
sequences of approximately four characters [1]. Typical parameters
include the model name and version, temperature (i.e., the degree
of randomness in sampling the next token from the model) and
maximum number of tokens (i.e., a constraint on the output length).
Other, less frequently used parameters include those that priori-
tize the presence or absence of certain types of tokens (e.g., those
that have appeared before, or those that are common), or those
that additionally accept function definitions—if the output has to
match certain output constraints. For our purpose, we focus on the
most common parameters. Some models, while returning a text
output, also return other alternative predicted outputs, as well as
log probabilities for each token generated [64]. Pricing for LLMs is
based on a per-token rate, usually with a different rate for inputs
and outputs.

Shared Terminology. To maintain parallels between prompting
and crowdsourcing, we discuss terminologies together. We are given
a problem on one or more datasets, e.g., sorting a collection of text
snippets on sentiment. Each dataset contains multiple data items or
records. We refer to a single invocation of the LLM or the crowd as
a task or prompt, with the structure of the prompt or task referred
to as the template: usually, a template contains some instructions
and/or examples, followed by the specific data items to be operated
on by the LLM or crowd worker. Conventionally, in crowdsourcing,
the examples are fixed. In LLMs, the examples could be picked to be
similar to the data items at hand [32, 47], or diverse [53]. Given a
task or prompt, the LLM or crowd worker returns a response. While
this response can contain other text, such as an explanation or
formatting, we can automatically extract the underlying answer
to the task. While some recent LLMs accept multiple modalities
of input (e.g., images with GPT-4V), here, we focus on text-only
models.

How Crowds are Similar to LLMs. Since LLMs are trained on
massive volumes of textual data authored by humans, they can
be viewed to be an amalgamation of many human opinions [48],
and typically complete text in ways that are analogous to human
authors [3]. Moreover, instruction-tuned LLMs, which have widely
been regarded as highly successful, leverage crowdsourced prefer-
ence data as a key ingredient [44]. Asking LLMs to explain answers



Revisiting Prompt Engineering via Declarative Crowdsourcing

rather than simply stating them helps them avoid mistakes in a
so-called chain of thought approach [27, 61]; similarly the crowd-
sourcing literature recommends using a free-text explanation field
that the crowd worker needs to complete in order to ensure they
are spending time on the task and not answering randomly [26].
Prior work in crowdsourcing has shown that the instructions in
the task impacts accuracy, as does examples [23, 25], just like with
LLMs [49].

How Crowds are Different from LLMs. There are several ways
crowd workers are different from LLMs. First, there are different
knobs for controlling LLMs and crowdsourcing. For example, there
is no analog of temperature in controlling the non-determinacy of
outputs with crowds. With crowdsourcing, one can enforce strict
output constraints as part of the interface, e.g., using drop-downs
to restrict the space of values. Enforcing constraints with popu-
lar LLMs is much trickier—one must do some form of rejection
sampling to draw observations from a constrained space, or ask
for a JSON output, which LLMs are good at understanding, but
this might shifts the calibration of the LLM on the task. Second,
crowds and LLMs respond differently to instructions. For example,
small changes in instructions [69] and examples [35] can have an
outsized effect for LLMs, unlike crowd workers. Third, crowds and
LLMs behave differently. LLMs have trouble with logical reason-
ing, or even basic arithmetic. They are also prone to hallucination,
where they conjure up new facts that are amalgams of existing
facts, while crowds are less likely to do so. LLMs also are more
likely to accumulate errors over the course of generating text [20].
Instead, crowd workers are more prone to satisficing, responding
quickly without reading through the entire set of instructions, so
that they can get paid and move onto the next task. Crowd workers
also make more mistakes on tasks that require them to remember
and recall more data, unlike LLMs that have a higher limit for this
in the form of context length, even if they do ignore large fractions
of long prompts [33]. Fourth, cost models for crowds and LLMs are
different, where crowds are paid per-task—and varying this price
tends to impact the accuracy by attracting different sets of crowd
workers—while LLMs are charged per-token.

Overall, while there are certainly key differences between the
two, there are enough similarities to justify leveraging principles
drawn from crowdsourcing to make LLM-centric data processing
workflows better.

3 DECLARATIVE PROMPT ENGINEERING

We envision a wrapper around a tool like LangChain, with individ-
ual data processing primitives such as sort, filter, join, categorize,
cluster, find, fill, resolve, ... to be applied to one or more datasets.
Users can also provide an overall budget and a desired accuracy. In
addition, users can also provide “gold standard” test answers as well
as special prompt templates that pertain to the task at hand—these
templates can also be drawn from repositories or guides [1, 5, 15, 49]

Next, we describe a series of principles drawn from the crowd-
sourcing literature that we can leverage and extend for prompt
engineering. We also include some case studies to illustrate benefits
of using such principles, leveraging a variety of LLMs, problems,
and datasets. For all case studies, we set the LLM temperature to
0 for reproducibility. This means that the LLM generates output

CIDR’24, January 14-17, 2024, Chaminade, USA

Method Kendall | # Prompt To- | # Completion
Tau-f kens Tokens
Sorting in one prompt 0.526 152 117
Coarse-grained ratings 0.547 1615 900
Fine-grained comparisons | 0.737 12065 10884

Table 1: Results for sorting 20 flavors, demonstrating the
tradeoff between cost and accuracy in prompting strategies.

by sampling the next token with highest probability, avoiding any
randomness and ensuring that all LLM calls on the same input
produce the same output. If variance in outputs is desired—for ex-
ample, if a user marks an LLM output as incorrect and asks for a
new output—then temperature can be set to a value > 0, or the
prompt can be modified to produce a different result.

3.1 Varying Prompting Strategies

Users of LLMs typically make use of a single task to accomplish
their entire objective. For example, if they wanted to sort a number
of textual snippets on sentiment, they would place them all in one
task, and ask the LLM to rank them. The crowdsourcing literature
tells us that there are multiple ways to accomplish the same goal,
often with different cost/accuracy trade-offs. For the specific task of
sorting [39], instead of having a single task for sorting the entire set
of data items, one could use pairwise comparisons, where a given
task involves comparing a pair of data items at a time, with O(n?)
tasks in total. Another approach involves soliciting a rating per item,
with O(n) tasks, and using those ratings to sort. In such settings,
we would expect the more fine-grained approach to perform better
than the more coarse-grained one in terms of accuracy, but cost
more. Similarly, for counting [37], one option is to use coarse-
grained tasks that estimate the proportion of data items that satisfy
some property (via “eyeballing”), versus those that individually
check each data item in a fine-grained manner. Finally, for entity
resolution [57], one could use a coarse-grained task that involves
grouping multiple data items into identical sets, or one could use
a fine-grained task that involves comparing pairs of data items at
a time. Therefore, for all these tasks, if we wanted to guarantee
higher accuracy and cost didn’t matter as much, rather than simply
asking the LLM to resolve, sort, or count the items, all in one single
task, it would be advantageous to employ finer-grained unit tasks
that are then aggregated together to give the answer.

Case Study on Sorting via Three Prompting Strategies. Here,
we explore sorting with the three aforementioned approaches: (i)
listing all the items in the prompt and asking the LLM to sort the
list—our baseline approach, (ii) employing O(n?) pairwise com-
parisons each as a separate task, followed by sorting based on the
total number of pairwise comparisons a given data item “won”,
with ties broken arbitrarily, and finally (iii) getting a rating from
1 (least)-7 (most) for each data item each as a separate task, and
then sorting based on those ratings, with ties broken arbitrarily.
Specifically, we used the gpt-3.5-turbo model from OpenAl to rank
20 ice cream flavors by how “chocolatey” they are, comparing the
results to a human-labeled ground truth ordering, verified by two
of the authors of the paper. The ground truth contained flavors with
“chocolate” in the beginning of the list and fruit-related ice creams
such as “lemon sorbet” at the end. For our baseline approach, we
found that the LLM ordered the flavors with “chocolate” in the title



CIDR’24, January 14-17, 2024, Chaminade, USA

Trial | Method ‘ Score ‘ # Missing ‘ # Hallucinated

1 Sorting in one prompt | 0.966 | 4 1
1 Sort then insert 0.999 | 0 0
2 Sorting in one prompt | 0.889 | 7 0
2 Sort then insert 0.980 | 0 0
3 Sorting in one prompt | 0.940 | 4 1
3 Sort then insert 0.992 | 0 0

Table 2: Results for sorting 100 words in alphabetical order,
over 3 trials. Asking the LLM to perform comparisons to in-
sert words missed in the original sort improves performance.

at the beginning of the list, while the rest of the ordering was seem-
ingly random—this approach had a Kendall Tau-f score—a standard
metric to compare rankings—of 0.526. The pairwise comparison
strategy required (220) calls to the LLM, and had a score of 0.737,
while the rating-based strategy had a score of 0.547. We list the
scores and the total input and output sizes in tokens—which dictate
the cost—in Table 1. Overall, we find that different strategies offer
different cost-accuracy characteristics, with the pairwise approach
leading to highest cost and accuracy, the baseline approach hav-
ing the lowest cost and accuracy, and the rating approach being
in the middle on both fronts. Note that while the ground truth
ordering is subjective in this instance, this experiment still demon-
strates that different sorting strategies can yield different results,
and more importantly, significantly varying correlations with hu-
man preferences. Takeaway: Rather than trying to accomplish the
entire objective via a single task, it is beneficial to explore other task
types, especially to maximize accuracy.

3.2 Hybrid Coarse — Fine-grained Prompting

In our previous case study, accomplishing the entire task via one
LLM call was viable—even if it led to a low accuracy overall. This
was because we had a relatively small number of data items for the
LLM to sort. As we increase the number of data items, it becomes
difficult for the LLM to even complete the task, despite the fact that
LLMs have high context windows. The responses are error-prone,
with random hallucinations (new data items introduced) and low
recall (old data items omitted). Recent work has also shown that
LLMs largely ignore text “in the middle” of long prompts [33]. In
such cases, it is advantageous to use multiple types of tasks to
accomplish the goal, often with coarse-grained tasks first, followed
by fine-grained tasks.

Similar strategies have been applied in crowdsourcing as well.
For example, for finding the max in a set of items, Khan et al. [24]
employ two kinds of tasks: a pairwise comparison task and a rat-
ing task. The latter is more appropriate at the early stages for
coarse-grained bucketization into ratings, while the former can be
employed for fine-grained comparisons amongst those that have
higher ratings. This approach was shown to have higher accuracy
and lower cost than approaches that leveraged ratings alone, and
lower cost than approaches that leveraged pairwise comparisons
alone. Similar hybrid approaches were applied for sorting [39] as
well. For clustering, Jain et al. [22], employ a two-stage process of
identifying appropriate clustering schemes, and then categorizing
the remaining items in the clusters.

Case Study on Sorting Many Items: Sort — Insert. We consider
sorting once again, with a larger number of items, to investigate

Aditya G. Parameswaran, Shreya Shankar, Parth Asawa, Naman Jain, Yujie Wang

if it leads to hallucinations and dropped words. To allow us to
programmatically consider sorting a large number of items, we
generated a list of n = 100 random English words from a dictionary,
with the goal of having the words sorted in alphabetical order—a
task we would expect the LLM to do well. We then used the same
baseline approach as in Section 3.1, where we provided the entire
list of words to the LLM (Anthropic’s Claude 2), and asked it to
return the words in sorted order. Across three trials, sorting in a
single prompt led to between 4-7 words that were missing, and
0-1 words that were hallucinations in the LLM response. In Table 2,
we also report the Kendall’s Tau score after inserting the missing
items in random locations.

To improve on this approach, we then considered a coarse-to-fine
grained hybrid prompting strategy, where we started by asking the
LLM to sort the entire list of items. We then dropped all hallucinated
words. Finally, to reinsert missing words into the sorted list, we
asked the LLM to compare each missed word to the other words in
the partially sorted list as pairwise comparisons (i.e., O (kn) calls
to the LLM, for k missing words). A naive strategy for deriving the
index where we insert a missed word w; is to find the first sorted
word that the LLM deems less than w;j; however, this method can
perform poorly because the LLM is not guaranteed to correctly
order each pair of words, and a mistake at an early index can
disproportionately penalize the resulting sort. Instead, we compared
each word w; to all sorted words, twice (one prompt with w; listed
first, and the other prompt with w; listed second), to account for
any ordering biases present in the LLM. Then, we derived its index
by maximizing the “alignment” of all of w;’s comparisons. That is,
we picked the location for w; that had the least number of pairwise
comparison results inverted. Over 3 trials, i.e., different lists of 100
words, this insertion strategy gave a nearly perfect final sort, with
an average Kendall Tau- statistic of 0.990; and trivially, thanks to
the insertion, the number of missing items at the end of this process
is 0. Takeaway: Employing hybrid strategies, with coarse-grained
tasks first, followed by fine-grained ones, can lead to low cost and
high accuracy overall.

3.3 Ensuring Internal Consistency

When a given problem involves issuing a batch of interrelated tasks,
enforcing consistency across the tasks can be used to improve the
accuracy on each individual task. Consider entity resolution, for
example, by having the LLM compare pairs of entities at a time. If
an LLM says that entity A is the same as entity B, and that entity B
is the same as entity C, then either C is the same as A, or one of
the first two comparisons are incorrect. Said another way, entity
resolution with a batch of pairwise entity resolution tasks must
respect transitivity. This approach of ensuring consistency for a
batch of tasks has been applied in crowdsourcing to a few problems.
For example, for entity resolution on bipartite graphs, which can be
formulated as a fuzzy join, Wang et al. [58] leveraged transitivity to
sequence comparisons in a manner that reduces cost by avoiding the
obvious matches and non-matches. In a similar vein, one can ensure
internal consistency in sorting and max determination problems,
e.g., [19], where, given a set of pairwise comparisons (i.e., is a > b),
the goal is to identify those that are incorrect ones, such that we can
ensure a global topological sort order or global consensus on the



Revisiting Prompt Engineering via Declarative Crowdsourcing

Nearest Neighbors‘ F1 ‘Recall Precision

0 (Baseline) 0.658 0.503 0.952
1 0.706 0.569 0.930
2 0.722 0.593 0.923

Table 3: Results for identifying duplicate citations in a slice
of the DBLP-Google Scholar dataset. Enforcing consistency
between pairwise comparisons amongst more neighbors in-
creases the F1 score.

max. Under certain accuracy models, flipping the minimum number
of edges that leads to a topological sort leads to the maximum
likelihood sort order or max item. Given LLMs randomly make
mistakes, we expect that they often violate internal consistency—
and therefore patching their results after the fact can help improve
accuracy.

Case Study on Entity Resolution while enforcing Internal
Consistency. We consider applying this idea to an entity resolu-
tion task on the DBLP-Google Scholar citations dataset [28]. Prior
work has crafted a set of questions from this dataset, including
train, validation, and test sets, where each question compares a pair
of citations [13]. We restricted our experiments to the validation
set of 5742 pairs. As a baseline, for each question, we asked the
LLM (OpenAT’s gpt-3.5-turbo model) whether two citations were
duplicates. We used the prompt “Are Citation A and Citation B the
same? Yes or No? Citation A is.... Citation B is... Are Citation A
and Citation B the same? Start your response with Yes or No.” The
baseline method achieved a F1 score of 0.658, with a high precision
(0.952) and low recall (0.503). For entity resolution tasks, recalling
duplicates is quite important, so we wanted to leverage internal
consistency to improve recall.

One simple approach to leverage internal consistency is to flip
LLM “no” responses to “yes” if, by transitivity, two citations were
duplicates. Since the validation set is sparse relative to the number
of entities, the number of transitive edges is quite small. There-
fore, we augmented the validation set with additional comparisons.
We used the OpenAl text-embedding-ada-002 model to create an
embedding for each entity and determined neighboring citations
based on L2 distance in embedding space. For each question in our
dataset, where a question has two citations A and B, we considered
the k-nearest neighbors of each citation (i.e., O (2k) citations), and
asked the LLM to compare each pair of citations within the set of
citations and its neighbors (i.e., (zzk) pairs). If the LLM found some
“path” from A to B, where an edge between two citations exists iff
the LLM deems the citations duplicates, then we also marked A and
B as duplicates, even if there was no edge between A and B. We
experimented with k = 1 and k = 2, finding an increase in F1 score,
as shown in Table 3, of over 6%. This simple strategy of flipping
“no” edges based on transitivity is highly effective in improving
the F1 score in this setting, by increasing the recall while slightly
reducing the precision. As future work, to improve both precision
and recall, one could consider flipping both “yes” and “no” edges
based on whether there is enough evidence in the opposite direc-
tion. Takeaway: Fixing erroneous LLM responses based on evidence
from other responses can be an effective way to improve accuracy.

CIDR’24, January 14-17, 2024, Chaminade, USA

| Accuracy # Tokens
Strategy [ Rest. | Buy | Rest. [ Buy
Naive k-NN 73.26% | 67.69% 0 0
LLM-only (no examples) 59.30% 81.54% 5676 3640
Hybrid (no examples) 84.88% | 87.69% | 2838 (| 50%) | 1624 (] 55%)
LLM-only (3 examples) 89.53% | 92.31% 15910 11505
Hybrid (3 examples) 89.53% | 87.69% | 7955 (| 50%) | 5133 (] 55%)

Table 4: Results for a missing value imputation task with
a mix of LLM and non-LLM (k-NN) strategies. k = 3 for the
k-NN algorithm. Even when including k = 3 neighboring
examples in the prompt, boosting LLM performance, the
hybrid method achieves similar performance to the “LLM-
only” strategy, while significantly reducing the number of
calls to the LLM.

3.4 Leveraging LLM and non-LLM Approaches

A useful way to reduce cost is by avoiding LLM invocations entirely,
especially for those tasks where there are cheaper proxies. For
example, say we could tell what the LLM response to a given task
would be with high probability using a low-cost approach, such as
a cheaper, open-source LLM or other model. Then, we can avoid
asking the LLM, and instead save the budget for other tasks that
really require it. For example, for entity resolution, Wang et al. [57]
use a hybrid human-machine workflow for entity resolution, only
crowdsourcing the comparison of pairs of entities that exceed a
certain likelihood threshold as determined by a cheap model. In
this case, the cheaper proxy was determined upfront. In other cases,
this cheaper proxy can be determined using the LLM/crowd. For
example, Marcus et al. [39] leverage the crowd to extract features
of each entity and use them as a filter to determine whether the
entities need to be compared for the purpose of entity resolution.
Similarly, Gokhale et al. [18] use the crowd to derive blocking rules
for entity resolution (i.e., predicates defined on a subset of features
that create groups—or blocks—of potentially matching entities, but
where the groups themselves are no longer compared with each
other), and then use the crowd for comparing entities within each
block, following which they train an ML model to avoid having to
ask the crowd for every entity pair.

Similar ideas are applicable to LLMs. One could use a low-cost
non-LLM model built by a human expert—and only ask the hard
cases to the LLM. Or, given LLMs can synthesize programs, one
could use the LLM to write code to train a model given the specific
task, e.g., entity resolution or data imputation. In either case, the
low-cost model can be used by default, and for the cases where
there is uncertainty (as deemed by model confidence scores), we
can leverage the LLM.

Case Study on Data Imputation by Combining LLM and
non-LLM Approaches. We explore using k-nearest neighbor (k-
NN) as a non-LLM strategy, and focus on data imputation for
records with a missing attribute value (i.e., predicting the correct
value). Specifically, for each such record, k-NN imputes the miss-
ing attribute from the mode, or most commonly occurring value,
of the neighbors’ attribute values. The LLM-based strategy asks
the LLM (here, Anthropic’s Claude model) to predict the value
of the missing attribute given a serialized representation of the
known attributes in the entity. A serialized entity e with j at-
tributes a; ... aj, and values e; . .. e; where e; is missing is listed as:
“ayisey;azisey;...aj—1is ej—1.” We finally considered a hybrid



CIDR’24, January 14-17, 2024, Chaminade, USA

approach where we use the value imputed by k-NN if all neighbors
contain the same value for the missing attribute—otherwise, the
LLM is prompted to return the missing value. Since, in this case,
we have a set of records with have ground truth values (used by
k-NN), we could optionally insert examples into the prompt for
the LLM, in both the Hybrid and the LLM-Only approaches, since
examples can help improve accuracy [34], while also increasing
cost (in terms of input tokens). Overall, we consider five approaches:
k-NN, LLM-Only (with no examples), Hybrid (with no examples on
LLM calls), LLM-Only (with k" = 3 examples), and Hybrid (with k’
examples on LLM calls), with the results shown in Table 4 on the
Restaurants and Buy datasets [41].

Focusing on the no-examples setting first, we find that the hybrid
method outperformed both the non-LLM and LLM-only strategies,
at roughly half the cost of the LLM-only strategy. Notably, the hy-
brid approach performed better than the LLM-only approach in this
case, because the LLM-only approach sometimes imputed values
that did not match exactly with the ground truth (e.g., “TomTom”
instead of “Tom Tom” or “Elgato Systems” instead of “Elgato”), and
thus may have been unfairly penalized. When examples are added,
both the hybrid and LLM-only strategy get more expensive, but
the hybrid approach manages to achieve an identical performance
on one dataset, and a slightly worse performance on the other, at
roughly half the cost of the LLM-only strategy. Takeaway: Lever-
aging a non-LLM proxy can help substantially reduce costs while
keeping accuracy similar.

3.5 Quality Control

The main approach for ensuring accuracy with LLMs is to check
if the LLM outputs an answer that violates certain syntactic con-
straints (e.g., 0 for a Yes/No answer), and then retry the query. We
propose drawing on ideas from crowdsourcing to make this more
principled. The first challenge is even understanding what the accu-
racy of the LLM is for a given type of task. Following best practices
in the crowdsourcing literature [11, 26], one way to do this is via
a validation set, for which the ground truth answer is known—
and one can infer the accuracy based on the fraction of correct
responses. In the cases where a validation set is unavailable, we
can apply expectation-maximization type approaches [21] across a
set of LLMs for the same task, where the underlying assumption
is that each LLM answers the task independently, and has a fixed,
but unknown accuracy for that type of task. Other approaches to
quality control include verification [6, 31], i.e., having the LLM
verify its own response as a followup, or have another LLM do so.
Similar ideas have demonstrated promise in LLMs [36]. Finally, one
can also try to debias or better calibrate LLM answers, just like
one would in crowdsourcing [52, 71]—there have been some early
attempts at calibrating LLMs [69], but more remains to be done.
Once we know about the accuracy for each LLM for a given task,
we can then apply techniques that determine which LLM to ask at
each step, to ensure a given accuracy overall, while keeping costs
low. Of particular note are probabilistic approaches drawn from
crowdsourcing [45], where we determine, based on the answers
so far, whether it is worth asking another LLM, or to finalize an
answer—data items for which there is more disagreement across
LLM:s or less confidence from each LLM are more valuable to spend

Aditya G. Parameswaran, Shreya Shankar, Parth Asawa, Naman Jain, Yujie Wang

money on rather than those for which there is high confidence or
agreement across LLMs. Similar approaches have demonstrated
promise for reasoning tasks, even for a single LLM [59], where
multiple reasoning paths are extracted, following by a majority
vote to arrive at the final answer.

4 DISCUSSION

While we can draw from the crowdsourcing literature when think-
ing about how to reliably decompose LLM-native workflows into
subtasks, as in crowdsourcing, there is no “one-size-fits-all” strategy.
Moreover, the costs of querying, fine-tuning, and serving LLMs
are highly variable, with new models released weekly, making it
difficult to study cost-accuracy-latency tradeoffs, let alone prescribe
cost-optimal strategies for various tasks. In this section, we discuss
some practical considerations necessary to achieve our research
vision of a declarative prompt engineering toolkit for a variety
of data-related tasks, as well as complementary work from ML
communities around prompting strategies.

Identifying Best Prompting Strategies Automatically. It’s rel-
atively easy to decompose data-related workflows into primitives
such as “sort” and “filter”, but there are many algorithms to perform
these primitives, all with various tradeoffs between cost and accu-
racy, as described in Section 3. There are several lingering questions,
such as: which algorithms get us “good-enough” performance? Do
we need to improve the performance by ensuring internal consis-
tency? For processing a subset of records, can we rely on non-LLM
strategies to save cost? Answering these questions requires experi-
mentation on a sample of the dataset, much akin to the train-val-test
split paradigm in traditional machine learning [50]. We envision
users of a declarative prompt engineering toolkit to label a small
number of records as a “validation set,” which can be used to ex-
plore the cost-accuracy tradeoff for the user’s specific workflow.
Similar to AutoML, a declarative prompt engineering toolkit can
shoulder the burden of evaluating all strategies and recommend a
strategy to apply to the entire dataset, given a user-defined budget.
Additionally, the toolkit can consider hyperparameters, such as
batch size, as other dimensions to optimize over: for example, one
can ask the LLM to process a small number of comparison tasks
in a single prompt, reducing cost and latency with implication on
accuracy. We could also leverage prompt repositories [5, 15] to iden-
tify other prompting strategies and templates and explore/evaluate
them automatically. Recent work has also demonstrated that one
can explore a space of prompts automatically to pick the best ones
from a quality standpoint [51, 70]. Additionally, one prompting
strategy we did not explore is synthesizing code to perform a task,
which easily scales to large datasets but may not reflect domain-
specific knowledge encoded in the LLM. For example, the LLM
could generate a Python program to do entity resolution, but its
accuracy may be worse if some real-world knowledge is required
or the criteria is too fuzzy to encode in a program.

Mitigating Prompt Brittleness. Prior work has noted the brit-
tleness of prompts, where slight changes in wording drastically
alters overall accuracy [68]. Moreover, the effectiveness of a given
prompt can also vary greatly between models [65]. While prompts
may prove to be less brittle in the long run, as LLMs are trained on
a larger variety of prompts, using LLMs for data-related tasks now



Revisiting Prompt Engineering via Declarative Crowdsourcing

requires us to consider best practices for reliably extracting informa-
tion from an LLM response. The applied LLM community has put
forth primers on techniques such as chain-of-thought prompting,
where instructing the LLM to “think step by step” in the prompt
produces longer and more accurate results [61]. Of course, this is
at the expense of additional tokens, pointing back to exploration
of the cost-accuracy tradeoff that a declarative prompt engineer-
ing toolkit should help its users understand. Moreover, chain-of-
thought prompting and similar techniques that draw out LLM re-
sponses with no particular structure make it difficult to transform
an LLM’s response into the answer programmatically. For example,
asking a multiple choice question and instructing the LLM to ex-
plain why they chose an answer might yield a response including
instances of each answer in the text, e.g., “I choose A because B and
C are not relevant, and D is not accurate.” If not every answer begins
with “I choose,” and some LLMs might put the chosen answer at the
end of the response, which answer choice do we extract? In fact, for
our entity resolution case study, we found that experimenting with
chain-of-thought would sometimes lead to the LLM outputting:
"They are not the same...[explanation]...They are the same." Addi-
tional subtasks to infer the answer from another LLM’s response
might be necessary, if LLM response structure is not well-defined or
consistent among multiple calls, but this will add to the cost. More
recently, LLMs have been shown to reliably output information
in specific data formats, such as JSON, when explicitly prompted
to [63]. Extracting structured data allows us to apply well-known
data management for ML techniques, such as validating schemas
and constraints on specific attributes [7], to outputs of an LLM,
improving their reliability and thus our confidence in using them.

5 CONCLUSION

We presented a new research agenda around making it easier to
optimize LLM-powered data processing workflows for cost and
accuracy, when run at scale. The declarative crowdsourcing litera-
ture provides a rich set of techniques for handling cost and accu-
racy tradeoffs when dealing with noisy oracles—and all of these
techniques could, at least in theory, be applied to LLM-powered
workflows as well. We illustrate via case studies that some of these
techniques do provide benefits in either accuracy or cost or both.
We therefore believe the database community has a key role to play
in making the vision of declarative prompt engineering a reality.
Acknowledgments. We acknowledge support from grants DGE-
2243822, 11S-2129008, 1IS-1940759, and IIS-1940757 awarded by the
NSF, an NDSEG Fellowship, funds from the Alfred P. Sloan Foun-
dation, as well as EPIC lab sponsors: G-Research, Adobe, Microsoft,
Google, and Sigma Computing. The content is the responsibility of
the authors and does not necessarily represent the official views of
the funding agencies and organizations.

Finally, it bears mentioning that some of us (among others) explored
crowdsourcing as an intellectual curiosity more than a decade ago,
and then, at some point, ended up not pursuing them further once
we found greener pastures elsewhere. Little did we realize that
those same decade-old ideas may be relevant in an entirely different
setting today. We are humbled to have the opportunity to learn the

same lesson as many before us: that scientific intellectual curiosity
is valuable as an end in and of itself—and that it is hard to predict

how useful scientific ideas may end up being in the long run.

CIDR’24, January 14-17, 2024, Chaminade, USA

REFERENCES

[1] Openai cookbook. https:/github.com/openai/openai-cookbook, 2023.

[2] P. Aggarwal, A. Madaan, Y. Yang, et al. Let’s sample step by step: Adaptive-
consistency for efficient reasoning with llms. arXiv preprint arXiv:2305.11860,
2023.

[3] J. Andreas. Language models as agent models. arXiv preprint arXiv:2212.01681,
2022.

[4] L.P.Argyle, E. C. Busby, N. Fulda, J. R. Gubler, C. Rytting, and D. Wingate. Out of
one, many: Using language models to simulate human samples. Political Analysis,
31(3):337-351, 2023.

[5] S.H. Bach, V. Sanh, Z.-X. Yong, A. Webson, C. Raffel, N. V. Nayak, A. Sharma,
T. Kim, M. S. Bari, T. Fevry, et al. Promptsource: An integrated development
environment and repository for natural language prompts. arXiv preprint
arXiv:2202.01279, 2022.

[6] M.S.Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger,
D. Crowell, and K. Panovich. Soylent: a word processor with a crowd inside. In
UIST, pages 313-322, 2010.

[7] E.Breck, N. Polyzotis, S. Roy, S. Whang, and M. Zinkevich. Data validation for
machine learning. In MLSys, 2019.

[8] T.Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

[9] S.Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee,
Y. T. Lee, Y. Li, S. Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[10] ChatGPT Can Give Great Answers. But Only If You Know How to Ask the Right
Question, Wall Street Journal. https://www.wsj.com/articles/chatgpt-ask-the-right-
question-12d0f035, 2023.

[11] J.J. Chen, N. J. Menezes, A. D. Bradley, and T. North. Opportunities for crowd-
sourcing research on amazon mechanical turk. Interfaces, 5(3):1, 2011.

[12] L. Chen, M. Zaharia, and J. Zou. Frugalgpt: How to use large language models
while reducing cost and improving performance. arXiv preprint arXiv:2305.05176,
2023.

[13] S.Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, Y. Govind, and D. Paulsen. The

magellan data repository. https://sites.google.com/site/anhaidgroup/projects/

data.

L. Dasgupta, A. K. Lampinen, S. C. Chan, A. Creswell, D. Kumaran, J. L. McClelland,

and F. Hill. Language models show human-like content effects on reasoning.

arXiv preprint arXiv:2207.07051, 2022.

N. Ding, S. Hu, W. Zhao, Y. Chen, Z. Liu, H.-T. Zheng, and M. Sun. Openprompt:

An open-source framework for prompt-learning. arXiv preprint arXiv:2111.01998,

2021.

M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answer-

ing queries with crowdsourcing. In SIGMOD Conference, pages 61-72, 2011.

F. Gilardi, M. Alizadeh, and M. Kubli. Chatgpt outperforms crowd-workers for

text-annotation tasks. arXiv preprint arXiv:2303.15056, 2023.

C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu.

SIGMOD 2014.

[19] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who won?: dynamic max

discovery with the crowd. In SIGMOD Conference, 2012.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural

text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[21] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon mechan-
ical turk. In HCOMP ’10, New York, NY, USA, 2010.

[22] A.Jain, ]J. Y. Seo, K. Goel, A. Kuznetsov, A. Parameswaran, and H. Sundaram.

It’s just a matter of perspective (s): Crowd-powered consensus organization of

corpora. arXiv preprint arXiv:1601.02034, 2016.

S.Jain and D. C. Parkes. The role of game theory in human computation systems.

In KDD Workshop on Human Computation, pages 58-61, 2009.

[24] A.R.Khan. Dynamic Strategies for Crowdsourced Data Management. PhD thesis,
Stanford University, 2017.

[25] S. Khanna, A. Ratan, J. Davis, and W. Thies. Evaluating and improving the
usability of mechanical turk for low-income workers in india. In Proceedings of
the first ACM symposium on computing for development, pages 1-10, 2010.

[26] A.Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with mechanical

turk. In CHI, pages 453-456, 2008.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models

are zero-shot reasoners. Advances in neural information processing systems,

35:22199-22213, 2022.

H. K6pcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on

real-world match problems. Proc. VLDB Endow., 3(1-2):484-493, sep 2010.

[29] A.P.Kulkarni, M. Can, and B. Hartmann. Collaboratively crowdsourcing work-

flows with turkomatic. CSCW, pages 1003-1012, 2012.

G.Li, ]. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data management: A

survey. IEEE Transactions on Knowledge and Data Engineering, 28(9):2296-2319,

[14

[15

[16

=
]

(18

[20

[23

[27

[28

[30


https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data

CIDR’24, January 14-17, 2024, Chaminade, USA

[31]

2016.
G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit: human computation
algorithms on mechanical turk. In UIST, pages 57-66, 2010.

[32] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen. What makes good

[33]

[34]

[35]

[36]

[37]

(38]

[39]
[40]

[41]

[42]

[43]

[44

[45]

in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang.
Lost in the middle: How language models use long contexts, 2023.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language
processing. ACM Comput. Surv.,, 55(9), jan 2023.

Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity.
arXiv preprint arXiv:2104.08786, 2021.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon,
N. Dziri, S. Prabhumoye, Y. Yang, et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting with the
crowd. PVLDB, 6(2):109-120, 2012.

A. Marcus, A. Parameswaran, et al. Crowdsourced data management: Industry
and academic perspectives. Foundations and Trends® in Databases, 6(1-2):1-161,
2015.

A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Human-powered
sorts and joins. PVLDB, 5(1):13-24, 2011.

A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced databases: Query
processing with people. In CIDR, pages 211-214, 2011.

Y. Mei, S. Song, C. Fang, H. Yang, J. Fang, and J. Long. Capturing semantics
for imputation with pre-trained language models. 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 61-72, 2021.

Mom, Dad, I Want To Be A Prompt Engineer, Forbes Magazine,
https://www.forbes.com/sites/craigsmith/2023/04/05/mom-dad-i-want-to-
be-a-prompt-engineer/, 2023.

A. Narayan, . Chami, L. Orr, and C. Ré. Can foundation models wrangle your
data? Proceedings of the VLDB Endowment, 16(4):738-746, 2022.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, et al. Training language models to follow instruc-
tions with human feedback. Advances in Neural Information Processing Systems,
35:27730-27744, 2022.

A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh,
and ]. Widom. Crowdscreen: algorithms for filtering data with
humans. In SIGMOD Conference, pages 361-372, 2012. Online:
http://doi.acm.org/10.1145/2213836.2213878.

A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. Widom.
Deco: declarative crowdsourcing. In CIKM, pages 1203-1212, 2012.

D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, 1987.

S. Santurkar, E. Durmus, F. Ladhak, C. Lee, P. Liang, and T. Hashimoto. Whose
opinions do language models reflect? arXiv preprint arXiv:2303.17548, 2023.

E. Saravia. Prompt Engineering Guide. https://github.com/dair-ai/Prompt-
Engineering-Guide, 12 2022.

S. Shankar, R. Garcia, J. M. Hellerstein, and A. G. Parameswaran. Operationalizing
machine learning: An interview study. arXiv preprint arXiv:2209.09125, 2022.

T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh. Autoprompt: Eliciting
knowledge from language models with automatically generated prompts. arXiv
preprint arXiv:2010.15980, 2020.

Aditya G. Parameswaran, Shreya Shankar, Parth Asawa, Naman Jain, Yujie Wang

(52]

(53]

[54]

[55]

[56

[57]
(58]

[59]

[60]

R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast - but is it good?
evaluating non-expert annotations for natural language tasks. In EMNLP, pages
254-263, 2008.

H. Su, J. Kasai, C. H. Wu, W. Shi, T. Wang, J. Xin, R. Zhang, M. Ostendorf,
L. Zettlemoyer, N. A. Smith, et al. Selective annotation makes language models
better few-shot learners. arXiv preprint arXiv:2209.01975, 2022.

T. Wu et al. Promptchainer: Chaining large language model prompts through
visual programming. In CHI Extended Abstracts, pages 1-10, 2022.

P. Térnberg. Chatgpt-4 outperforms experts and crowd workers in annotating
political twitter messages with zero-shot learning. arXiv preprint arXiv:2304.06588,
2023.

V. Veselovsky, M. H. Ribeiro, and R. West. Artificial artificial artificial intelligence:
Crowd workers widely use large language models for text production tasks. arXiv
preprint arXiv:2306.07899, 2023.

J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER: Crowdsourcing Entity
Resolution. PVLDB, 2012.

J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive
relations for crowdsourced joins. In SIGMOD, pages 229-240, 2013.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and
D. Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

A. Webson, A. M. Loo, Q. Yu, and E. Pavlick. Are language models worse than
humans at following prompts? it’s complicated. arXiv preprint arXiv:2301.07085,
2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou,
et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824-24837, 2022.

L. Weng. Prompt engineering. lilianweng.github.io, Mar 2023.

J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-
Smith, and D. C. Schmidt. A prompt pattern catalog to enhance prompt engi-
neering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

Wikidot, Logprobs, http://gptprompts.wikidot.com/intro:logprobs, 2023.

M. Woolf. The problem with langchain. https://minimaxir.com/2023/07/langchain-
problem/, 2023.

T. Wu, M. Terry, and C. J. Cai. Ai chains: Transparent and controllable human-ai
interaction by chaining large language model prompts. In Proceedings of the 2022
CHI conference on human factors in computing systems, pages 1-22, 2022.

T. Wu, H. Zhu, M. Albayrak, A. Axon, A. Bertsch, W. Deng, Z. Ding, B. Guo,
S. Gururaja, T.-S. Kuo, et al. Llms as workers in human-computational algorithms?
replicating crowdsourcing pipelines with llms. arXiv preprint arXiv:2307.10168,
2023.

J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang. Why johnny can’t
prompt: how non-ai experts try (and fail) to design 1lm prompts. In CHI, 2023.
Z.Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine
Learning, pages 12697-12706. PMLR, 2021.

Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba. Large lan-
guage models are human-level prompt engineers. arXiv preprint arXiv:2211.01910,
2022.

H. Zhuang, A. G. Parameswaran, D. Roth, and J. Han. Debiasing crowdsourced
batches. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13,
2015, pages 1593-1602, 2015.



	Abstract
	1 Introduction
	2 LLMs and Crowdsourcing
	3 Declarative Prompt Engineering
	3.1 Varying Prompting Strategies
	3.2 Hybrid Coarse  Fine-grained Prompting
	3.3 Ensuring Internal Consistency
	3.4 Leveraging LLM and non-LLM Approaches
	3.5 Quality Control

	4 Discussion
	5 Conclusion
	References

