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Abstract—In recent years, the complexity of 5G and be-
yond wireless networks has escalated, prompting a need for
innovative frameworks to facilitate flexible management and
efficient deployment. The concept of digital twins (DTs) has
emerged as a solution to enable real-time monitoring, predictive
configurations, and decision-making processes. While existing
works primarily focus on leveraging DTs to optimize wireless
networks, a detailed mapping methodology for creating virtual
representations of network infrastructure and properties is still
lacking. In this context, we introduce VH-Twin, a novel time-
series data-driven framework that effectively maps wireless
networks into digital reality. VH-Twin distinguishes itself through
complementary vertical twinning (V-twinning) and horizontal
twinning (H-twinning) stages, followed by a periodic clustering
mechanism used to virtualize network regions based on their
distinct geological and wireless characteristics. Specifically, V-
twinning exploits distributed learning techniques to initialize
a global twin model collaboratively from virtualized network
clusters. H-twinning, on the other hand, is implemented with an
asynchronous mapping scheme that dynamically updates twin
models in response to network or environmental changes. Lever-
aging real-world wireless traffic data within a cellular wireless
network, comprehensive experiments are conducted to verify that
VH-Twin can effectively construct, deploy, and maintain network
DTs. Parametric analysis also offers insights into how to strike a
balance between twinning efficiency and model accuracy at scale.

Index Terms—Digital twin, distributed learning, wireless net-
works, digital mapping

I. INTRODUCTION

In the realm of telecommunications, wireless networks are

experiencing a paradigm shift, primarily driven by the advent

of edge computing, spectrum sharing, and millimeter-wave

communication technologies in 5G era. These technological

advancements are foundational to a multitude of novel ap-

plications and services, notably enhancing mobile broadband

and facilitating the seamless integration of Internet of Things

(IoT) [1], [2], autonomous transportation [3], urban infrastruc-

ture [4], and remote healthcare delivery [5]. Furthermore, the

nascent stages of 6G research are indicative of potential revolu-

tionary leaps in hybrid physical-virtual wireless technologies,

paving the way for ubiquitous and intelligent connectivity

worldwide.

Parallel to these advancements, the concept of digital

twin (DT) has surfaced as a significant technological break-

through [6]–[8]. The DTs embody intricate virtual represen-

tations of physical entities or systems and gain traction in

the context of the Fourth Industrial Revolution. This con-

cept synergistically harnesses the capabilities of IoT, machine
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learning, and big data analytics, meticulously constructing

a comprehensive digital model that mirrors the physical at-

tributes, processes, and dynamics of its real-world counterpart.

Such models play a pivotal role in facilitating predictive

simulations, what-if analysis, and system optimizations within

a virtual environment, thereby offering tangible insights into

operational challenges and maintenance requirements [9]–[11].

In essence, the foundation of DTs lies in a continuous

mapping between the physical and digital domains. This

convergence is exemplified by a process that intricately as-

sociates the physical properties of an entity or system with its

digital realm. This concept, though evolving, has experienced

significant advancements in recent study. For instance, [12]–

[14] explored the foundational aspects of DTs, establishing

a comprehensive framework for their development and de-

ployment across diverse sectors. These works highlight the

importance of precise mapping for real-time synchronization,

which is essential for predictive maintenance and operations of

products. Furthermore, DT mappings extend beyond industrial

applications to encompass urban planning and smart city

initiatives, as demonstrated by [15] for high-stake ecosystems.

In healthcare, [16], [17] emphasizing the versatility of DTs

in personalizing patient care and advancing medical research.

These studies collectively underscore the multifaceted nature

of DT mappings as a cornerstone of emerging applications.

In contrast, our work herein presents the inaugural attempt to

adapt DT mapping techniques to wireless networks, aiming

to comprehensively model the network system and attributes

with heightened precision and efficacy.

In the telecommunication domains, existing works primar-

ily focus on leveraging DTs to optimize wireless networks

but often overlook the detailed mapping methodology for

creating virtual representations of network infrastructure and

properties [18]–[20]. This mapping is a crucial prerequisite for

subsequent applications of DTs in the field. The construction

of DTs in the context of wireless networks faces numerous

challenges. A predominant obstacle lies in the integration

of diverse data sources, crucial for accurately reflecting the

complex dynamics of wireless networks. This integration

involves processing a wide spectrum of sensory data, from

network parameters to user behaviors and environmental fac-

tors, making it a data-intensive task. Furthermore, achieving

real-time data synchronization between the physical network

and its digital counterpart is imperative for maintaining an

accurate model representation. This synchronization requires

continuous processing and robust communication frameworks,



posing both data exchange and resource-related challenges.

Lastly, scalability also emerges as a significant concern during

the mapping process. Given the mobility behavior of wireless

devices, the DTs must be constantly updated and adapted to

remain accurate, presenting a computation-demanding task due

to the complexity and scale of contemporary network systems.

To address the aforementioned challenges, our research pio-

neers a joint vertical-horizontal mapping methodology, called

VH-Twin, for the creation, deployment, and synchronization

of DTs with time-series data in wireless networks. We first

introduce a novel clustering algorithm, systematically exe-

cuted to categorize network base stations (BSs) according

to their distinct infrastructure characteristics. Following this,

we exploit distributed machine learning techniques for precise

digital twinning to ensure the privacy of handling time-series

data within each BS, while maintaining overall mapping

performance. As illustrated in Fig. 1, we explore the use

of federated learning (FL), incorporating both synchronous

and asynchronous approaches at different stages of the digital

mapping process. Synchronous FL proves advantageous for

its ability to facilitate consistent model updates and ensure

uniform data distribution among participating BSs. In contrast,

asynchronous FL offers increased flexibility in participation

and timing of updates, catering to the dynamic nature of

wireless environments. Accordingly, synchronous FL is em-

ployed to construct an initial twin model vertically, while

asynchronous FL is subsequently used to maintain the accu-

racy of the twin models horizontally over time. The resulting

self-evolved twins can then be applied for collaboratively

forecasting precise time-series data, such as heterogeneous

wireless traffic. The main contributions are multifaceted and

can be summarized as follows:

1) We introduce a novel twinning framework that maps the

wireless networks into digital reality, adaptively utilizing

a time-series data-driven method for the creation and

continuous synchronization of network DTs.

2) We augment the twinning framework with a distinctive

clustering algorithm that dynamically groups BSs based

on both geographical and data communication charac-

teristics. This enables the high-efficiency evolution of

specialized twin models for each virtual network region.

3) We demonstrate the feasibility of the proposed V-H Twin

framework in addressing a real-world wireless traffic

prediction problem within cellular wireless networks.

4) Extensive evaluations show that VH-Twin can efficiently

map the network attributes with heterogeneous wireless

data, achieves adaptive twin synchronization, and scales

effectively to accommodate dense wireless networks

with parameterized configurations.

II. PRELIMINARIES AND RELATED WORKS

A. Digital Twin for Wireless Networks

The integration of DTs in the wireless network sector

represents a significant technological milestone within this

rapidly evolving field. As detailed in [21]–[23], the application

of DT involves constructing detailed virtual representations

of network components and infrastructure. This facilitates

real-time analytical capabilities and optimization processes,

providing deeper insights into network behaviors across a

variety of scenarios. Such methodologies are invaluable for

predictive maintenance and performance monitoring, thereby

substantially enhancing network reliability and efficiency. In

the realm of next-generation wireless technologies, the role

of DT has become increasingly critical, as discussed in [24].

Through the simulation of diverse network configurations and

load conditions, DT is investigated to provide the strategic

deployment of 5G infrastructures, thereby maximizing cov-

erage and data throughput. [25] thoroughly examines the net-

working prerequisites for DT implementation. By emphasizing

robust data collection systems and real-time data processing,

it underscores the vital integration of IoT devices with DT to

ensure a continuous and accurate flow of data for maintaining

up-to-date virtual models. In [26], the innovative application

of Graph Neural Networks in developing DT for network

slicing is proposed, aiming at predicting network behaviors

and dynamically optimizing resource management in high-

demand bandwidth and low-latency scenarios. Furthermore,

the implementation of DT within vehicular networks is eluci-

dated in [27]. This research showcases the potential of DT in

modeling and managing software-defined vehicular networks,

significantly boosting the efficiency and reliability of vehicular

communication systems. While prior works have explored

versatile applications of DT in wireless networks, none of

them explicitly delve into the creation and mapping process

of network DTs, which is the primary focus of our work.

B. Distributed Learning and DTs

In the rapidly evolving domain of DTs, distributed learn-

ing has emerged as a transformative approach, especially in

the context of large-scale networks and Industrial IoT. The

integration of these two technologies is not only enhancing

system efficiency but also revolutionizing data processing

capabilities. A prime example of this integration is seen in the

adaptation of DTs for smart agricultural practices, as explored

in [28]. This study exemplifies the potential of DTs in real-time

environmental monitoring and decision-making. [29] focuses

on optimizing industrial IoT operations through the synergy

of FL and DTs. This is further complemented by studies

such as [30], which delve into the integration of blockchain

technology for securing FL models within DT frameworks.

Besides the data security enhancement, the challenge of

efficient data communication in a distributed learning system is

addressed in [31] and [32]. These studies propose to optimize

data transfer and processing, a critical aspect of the scala-

bility of massive access applications. Moreover, the dynamic

nature of DTs, combined with incentive mechanisms in FL,

is explored in [33] for real-time data processing and accurate

modeling. Lastly, the optimization of resource allocation using

DT-enabled FL frameworks is investigated in [34], [35], which

demonstrates the effectiveness of using FL and DT in resource

management problems. In contrast, our work explores the
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Fig. 1. Motivation and basic architecture of network DT enabled by joint vertical and horizontal learning.

potential use of FL in addressing a fundamental DT mapping

problem, laying the foundation for implementing a precise DT

tailored for wireless networks. The distributed nature among

multiple twins not only collaboratively handles the time-series

data stream from diverse sources but also ensures real-time

synchronization and scalability in dense wireless networks.

C. Network Digital Twin for Traffic Forecasting

As an application, we focus on a wireless traffic prediction

problem as a use case to evaluate the efficacy of our mapped

network digital twin (NDT) with time-series data streams. The

architecture of this functional system is underpinned by an FL

mechanism and encompasses a central DT, named global twin,

coordinating with a network of M BSs. Each BS, denoted as

m in the set [M ], independently holds a proprietary dataset

dm = {d1m, d
2
m, . . . , d

L
m}. In this dataset, L indicates the total

number of time intervals, and dlm represents the traffic load at

BS m during the l-th interval, where l ranges over [L].
The NDT involves constructing input-output predictive traf-

fic sequences locally, denoted as {rnm, s
n
m}

z
n=1, for each

BS to generate future predictions. Here, rnm is a subset of

historical traffic data corresponding to the output snm =
{dl−1

m , . . . , dl−a
m , dl−ρ1

m , . . . , dl−ρb
m }. The parameters a and b

represent sliding windows that capture immediate and cyclical

temporal dependencies, respectively, while Ä reflects inherent

periodicities in the network, which might be influenced by

user activity patterns or application service demands.

With the real-time synchronization with the physical net-

works, the NDTs can be tailored for one-step-ahead traffic

forecasts. Specifically, for each BS m, their corresponding

NDT predicts the upcoming traffic load s̃nm using the historical

data rnm and a twin model vector α. This prediction is

formulated as s̃nm = f(rnm,α), where f(·) represents the

regression function.

Considering an FL-based NDT system for traffic forecast-

ing, the primary objective is to minimize prediction errors

across all M BSs for a better understanding of the physical

network. This can be formulated as an optimization problem,

aiming to identify the optimal DT model α
∗ for the down-

stream tasks. The problem is generally defined as:

α
∗ = argmin

α

1

Mz

M∑

m=1

z∑

n=1

F (f(rnm,α), snm),

with F being the quadratic loss function, specifically

F (f(rnm,α), snm) = |f(rnm,α)− snm|
2
. This problem can be

resolved through FL with distributed NDTs, and unfolds in

each global training round t as follows:

1) Synchronization: The global twin broadcasts the current

twin model αt to all participating BSs.

2) Local Updating: Each BS m, within the range M ,

refines its local twin using its private dataset and the

current global twin model. The updated local twin, αt
m,

is then sent back to the global twin.

3) Models Aggregation: The global twin aggregates the

attributes from the M connected local twins using an ag-

gregation rule (AGG), and updates its own functionality

as α
t+1 = AGG{αt

1,α
t
2, . . . ,α

t
M}. Typically, Feder-

ated Averaging (FedAvg) method [36] can be adopted

in this problem, where the global twin directly average

the model parameters of M local twins for evolution,

expressed as AGG{αt
1,α

t
2, . . . ,α

t
M} =

1

M

∑M
m=1

α
t
m.

This single-level mapping approach utilizes a classical FL

strategy to aggregate multiple local twin models, and we will

employ this scheme as the baseline in Sec. IV to compare it

with our proposed joint vertical-horizontal mapping scheme.

III. JOINT VERTICAL AND HORIZONTAL TWINNING FOR

DIGITAL NETWORK MAPPING

To achieve a high-fidelity and high efficient digital network

mapping, we introduce an innovative framework termed VH-

Twin, incorporating both vertical twinning, which involves

initial mapping from physical networks to create a global

network digital twin (G-NDT), and horizontal twinning, which



integrates with legacy digital twins for synchronization. This

framework is also wrapped with a dynamic connectivity seg-

mentation (DCS) stage, which is employed periodically to

ensure effective regional-based network digitalization.

Physical-Digital Mapping

Digital Twins

V-twinning: Synchronous Update
H-twinning: Asynchrnous Update

Cluster
NDTs

Global
NDTs

Base
Stations

Fig. 2. Framework of VH-Twin.
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Wait Synchronize Update G-NDTTrain

Fig. 3. Synchronous and asynchronous NDT mappings.

A. Dynamic Connectivity Segmentation

Algorithm 1 Dynamic Connectivity Segmentation (DCS)

Require: Relationship matrix {g, k, ´, Ä}, attribute weights

É, C clusters, N BSs

Ensure: Clusters c
1: Initialize Φ;

2: for m1 = 1 to N do

3: for m2 = 1 to N do

4: Φm1,m2
← Ég/gm1,m2

+ Ék · km1,m2

5: + Éβ · ´m1,m2
+ Éτ · Äm1,m2

6: end for

7: end for

8: if Fixed C clusters desired then

9: Identify clusters by Φ with Girvan-Newton method

10: else if Adaptive C clusters desired then

11: Identify clusters by Φ with Louvain method

12: end if

13: return c

The DCS algorithm, as outlined in Algorithm 1, is designed

to cluster multiple BSs responsible for network service areas

with similar communication characteristics and networking

configurations. This clustering step is integral to the following

creation and updates of multiple distributed network DTs, i.e.

clustered network digital twins (C-NDT), which demonstrate

distinct network behaviors and perform paralleled synchro-

nization with the G-NDT. This algorithm is executed peri-

odically, ensuring dynamic clustering and thereby enhancing

the twinning performance in real time. In the DCS algorithm,

clusters are formed based on an attribute sequence of BSs

{g, k, ´, Ä}, representing their geological distances, backhaul

link capacities to the core network, coverage area overlaps,

and similarity of wireless traffic data distribution, respectively.

Initially, a relationship matrix incorporating these attributes,

weighted by É, is constructed. For instance, the algorithm

calculates a metric Φm1,m2
to quantify the correlation between

BS m1 and BS m2 using the formula as:

Φm1,m2
=

Ég

gm1,m2

+Ék ·km1,m2
+Éβ ·´m1,m2

+Éτ · Äm1,m2
,

(1)

where É is the tunable weight to balance the significance

of each network attribute. Next, to assess interconnection

strength among BSs within a wireless network, two clustering

methods are employed based on different scenarios. The first,

utilized when a specific cluster count C is needed, involves

calculating betweenness centrality denoted by Φ. This mea-

sure indicates how frequently an edge serves as a bridge

on the shortest network paths. Following a Girvan-Newman-

like approach [37], we iteratively remove edges with low Φ
until the desired cluster count C is achieved. For scenarios

requiring flexible cluster numbers, we employ the Louvain-

like method [38], which maximizes network modularity by

initially assigning each node to an individual community

and then iteratively merging these communities to enhance

the overall modularity score. The method assesses the edge

density within communities relative to what is expected in a

random graph. Specifically, a high modularity score indicates

a strong community division, characterized by dense internal

connections within communities and sparser links between

them. In essence, this approach allows for the identification

of the network’s hierarchical community structure, unveiling

both minor and major community clusters. On the other hand,

there is no need to specify the number of clusters, making

it a more adaptive approach for the subsequent twinning

process. Overall, this clustering process is crucial in effectively

virtualizing network regions covered by distributed BSs into

several C-NDTs, ultimately contributing to the update of G-

NDT, as discussed in Sec. III-B-C.

B. Vertical Twinning for Initialization

Algorithm 2 Vertical Twinning (V-twinning)

Require: Local twin models α
t
1,α

t
2, . . . ,α

t
M , C clusters

Ensure: Updated G-NDT α
t+1

1: for c = 1, 2, . . . , C synchronously do

2: P ← BS in cluster c
3: α

t
c ←

1

P

∑P
p=1

α
t
p

4: end for

5: α
t+1 ← 1

C

∑C
c=1

α
t
c

6: return α
t+1



The V-twinning stage aims to create an initial G-NDT

with historical time-series data on, e.g., wireless traffic from

the physical network. It employs an FL-based framework for

accurate mappings, specifically tailored for wireless networks

with multiple BSs organized in clusters. FL is well-suited for

this problem because model parameters are shared among BSs

instead of raw data, enabling collaborative training of a global

model. This approach efficiently distributes twinning tasks

across BSs while ensuring content data privacy. As depicted

in Algorithm 2, historical time-series data from each BS m
are used to train C-NDTs for each cluster c. With local twin

models shared from BSs within the same cluster, denoted as

α
t
1,α

t
2, . . . ,α

t
M , the corresponding C-NDT α

t
c aggregates the

models to reach a consensus. The most common aggregation

rule FedAvg [36] can be used to compute the dimension-wise

arithmetic mean of each twin model parameter.

G-NDT, represented as α
t+1, is the averaged aggregator

of multiple C-NDTs at C clusters, i.e., αt+1 = 1

C

∑C
c=1

α
t
c,

where C is the number of clusters. Then, the model parameters

of G-NDT are sent back to each cluster for synchronizing C-

NDTs after the twinning aggregation process.

Specifically, the V-twinning process employs synchronous

NDT mapping update, ensuring that all C-NDTs update their

twin models simultaneously. It involves a coordinated train-

ing process where all participating twins update their local

models and synchronize these updates with a central server,

typically at predetermined intervals, as shown in Fig. 3. This

synchronicity is crucial during the initial twinning process,

which always demands a large amount of data from the

physical counterpart to build a consistent twin basis across

the network regions. Additionally, the use of synchronous

mapping updates can simplify the management of model

updates and reduce issues related to stale or incompatible data,

making it suitable for network scenarios where uniformity and

coordination among BSs are critical.

C. Horizontal Twinning for Model Evolution

Algorithm 3 Horizontal Twinning (H-twinning)

Require: Local twin models α
t
1,α

t
2, . . . ,α

t
M , current G-

NDT α
t, C clusters, threshold È

Ensure: Updated G-NDT α
t+1

1: for c = 1, 2, . . . , C asynchronously do

2: P ← BS in cluster c
3: α

t
c ←

1

P

∑P
p=1

α
t
p

4: ϵ← (αt
c +α

t)2

5: if ϵ > È then

6: α
t+1 ← 1

C

∑C
c=1

α
t
c

7: else

8: α
t+1 ← α

t

9: end if

10: end for

11: return α
t+1

To ensure the network DTs remain relevant in a dynamic

wireless environment, H-twinning stage is designed to periodi-

cally synchronize between the physical network and DTs with

time-series data. Unlike V-twining, it adopts an asynchronous

NDT mapping strategy to update with fluctuations from the

physical network, aiming to provide a scalable and flexible

solution for wireless networks composed of multiple clusters.

As described in Algorithm 3, H-twinning begins with N
local models α

t
1,α

t
2, . . . ,α

t
M from respective BSs and the

current G-NDT α
t. The threshold È serves as a criterion to

decide whether the G-NDT should be updated. It assesses the

deviation between a C-NDT α
t
c and the current G-NDT α

t,

quantified by ϵ = (αt
c − α

t)2. If ϵ surpasses the threshold

È, indicating a significant change in the physical network,

the G-NDT is updated to reflect the fresh information. The

updated G-NDT, α
t+1, is calculated as an average of C-

NDTs at the current time slot, α
t+1 = 1

C

∑C
c=1

α
t
c. If

ϵ is within the threshold È, the G-NDT remains with the

current model, i.e. αt+1 = α
t. This threshold-based update

mechanism enhances the network’s efficiency by ensuring that

only significant changes will lead to twin updates, thereby

reducing unnecessary computational overhead and preserving

bandwidth.

Compared with V-twinning, H-twinning does not require

simultaneous updates from all clusters, although the overall

procedure to compute C-NDT and G-NDT is quite similar.

In the context of this hybrid time-series learning, the model

update mechanisms differ significantly between synchronous

updates and asynchronous updates. In synchronous updates,

the global model update is synchronized across all participat-

ing twins at specific intervals. Thus, the G-NDT at time t can

be updated as follow:

α
t =

1

C

C∑

c=1

α
t
c. (2)

Here, α
t represents the G-NDT model after the t-th syn-

chronization, C is the total number of clusters, and α
t
c are

the C-NDT model parameters from cluster c at the t-th
synchronization. On the other hand, asynchronous updates

enable each twin to update the global twin model based on

its individual training schedule. When each C-NDT inde-

pendently contributes its twinning results that cover specific

network regions, the G-NDT can be updated continuously as:

α
tn = α

tn−1 + ¸n(α
tn
c −α

tn−1). (3)

In this equation, αtn is the G-NDT model updated after the

c-th twin’s contribution at its local time tn, ¸c is a weighting

factor for the c-th twin, αtn
c are the C-NDT model parameters

from twin c at its local time tn, and α
tn−1 is the G-NDT model

before the n-th update. This approach enables continuous and

potentially faster adaptation but requires careful management

of update consistency. It allows each participating twin to

update and share its model updates with the central server

independently and at different times, without waiting for other

C-NDTs, thereby accommodating diverse data availability and

computational capacities across the network. In a practical

scenario, each BS m can store the real-time data stream and

then train its affiliated C-NDT model when the amount of data



reaches a threshold in batches. The asynchronous mapping

mechanism allows for greater flexibility in participation, as

BSs and C-NDTs within edge servers may contribute to the

twinning process at their own pace and availability, without

being bound to a strict synchronization schedule. This feature

is particularly beneficial in wireless networks with BSs having

varying computational resources or backhaul connectivity,

ensuring that the twinning process is inclusive and efficient

even in less ideal network conditions.

IV. EVALUATION RESULTS AND ANALYSIS

In this section, we perform comprehensive evaluations to

assess the performance of VH-Twin in a wireless traffic

forecasting scenario, aiming at constructing, deploying, and

maintaining precise twin models. The dataset and code imple-

mentation is available at [39].

A. Dataset

In this evaluation, we employ a real-world dataset provided

by Telecom Italia, as referenced in [40], to evaluate the

effectiveness of our proposed VH-twin. The dataset, origi-

nating from Milan City, is composed of wireless traffic data

intricately divided into 10,000 grid cells. Each cell, measuring

approximately 235 meters on each side, is equipped with its

own dedicated BS. These BSs collectively capture a wealth of

time-series data records, which include detailed information on

short message service (SMS), call activities, and internet usage

patterns. This extensive dataset facilitates a comprehensive

analysis of urban telecommunications behaviors. Specifically,

our focus centers on utilizing internet usage data to construct

traffic twin models with the VH-Twin framework.

B. Performance Metrics

To evaluate the precision of the constructed twins, we use

Mean Squared Error (MSE), Mean Absolute Error (MAE), and

Normalized Root Mean Square Error (NRMSE) as key perfor-

mance metrics. These statistical measures indicate distinctions

between the time-series traffic data collected from the physical

cellular network and that generated from the mapped NDTs.

offering insights into the model discrepancy between the twins

and their real-world counterparts. Lower values of MSE, MAE,

and NRMSE indicate higher precision and, consequently,

more effective performance of our V-twinning and H-twinning

processes. Additionally, we evaluate the efficiency of the V-

twinning process by measuring the initial model training time

within a FL framework. This metric enables a comparison

of the time duration required for model initialization during

the V-twinning stage against that of a baseline single-level

mapping scheme. In the single-level mapping scheme, local

twin models are constructed on each BS without clustering and

aggregated using the same aggregation rule, as detailed in Sec.

II-C, to generate a global twin model, and the synchronous

updating is enforced in vertical and horizontal mapping stages.

Next, to evaluate the overhead of twin evolution during the

subsequent model update process, we analyze the communi-

cation round required for the H-twinning phase, indicating

the cost of data exchanges needed to update G-NDT when

necessary. This measurement is crucial for understanding the

network bandwidth and time costs associated with maintaining

the fidelity of NDTs in a dynamic wireless environment.

Particularly, both model training time and communication

rounds are normalized by dividing by 10,000 for graphical

representation in this paper.

C. Network and Experiment Settings

In our evaluation, we randomly select 50 BSs in an ur-

ban network environment to assess the performance of our

joint DCS, V-twinning, and H-twinning methodologies. In

the DCS phase, we implement the clustering algorithm at

different intervals for the vertical and horizontal twinning

stages, respectively – every 10 model training epochs out of

a total of 100 for V-twinning, and every 5 model training

epochs out of 20 for H-twinning. We set up the default

network topology with distributed BSs as a 20-regular graph,

implying that each BS is connected to 20 neighbors. Although

the connections maintain a consistent number, the backhaul

link strengths and other attributes may vary over time. We

ensure a balanced distribution of weight across each attribute

to maintain equilibrium. Lastly, for FL-based model training

stage, we set the learning rate at 0.01 and choose a batch size

of 64. The FedAvg rule serves as the default model aggregation

method.

D. Numerical Evaluations
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Fig. 4. Performance metrics of VH-Twin compared with single-level twinning.

1) Accuracy and efficiency of VH-Twin: We evaluate the

accuracy of constructed twin models and mapping efficiency

using our VH-Twin. The single-level twinning method is also

included as a point of comparison, where the results are

reported in Fig. 4. For the single-level mapping, we use

classical FL to aggregate local twin models without clustering.

In the vertical twinning stage, MSE, MAE, and NRMSE for

single-level twinning are observed to be 0.138, 0.258, and

0.090, respectively. By contrast, the error rates of our VH-Twin

at this stage are marginally elevated, exceeding the single-level

twinning by approximately 1.5%. This occurs because models

developed via clustering tend to excel within their designated

clusters but often face challenges in effectively generalizing to

different groups or the entire dataset. Additionally, the twin-

ning overhead for VH-Twin exhibits a modest increase over

the single-level twinning, estimated at 3.5%. This increment

can be attributed to the additional DCS stage in our VH-

Twin, which first virtualizes network regions covered by BSs

into distinct clusters. Following that, NDTs are tasked with



aggregating local twin models from the BSs and dispatching

them back, thereby potentially extending the overall twinning

process. However, theoretically, as VH-Twin exclusively uti-

lizes synchronous updates, the communication rounds should

be comparatively analogous to those of single-level twinning,

which aligns with the evaluation results obtained herein.

Despite the slight compromise in the one-time V-twinning

stage, the full potential of VH-Twin is revealed during the

subsequent H-twinning stage. First, our H-twinning process

showcases an enhancement in twin accuracy when compared

to single-level twinning method. This is because asynchronous

model updates can effectively handle real-time heterogeneous

data, resulting in a more stable and accurate twin as the

time-series data evolves. Notably, the required overhead for

H-twinning is significantly reduced in comparison to single-

level twinning, by approximately 43.8%. Due to the slightly

prolonged initialization of twin models and the significantly

reduced synchronization costs with the physical network,

our joint vertical-horizontal twinning scheme yields a more

efficient framework for digital network mapping.

2) Impact of Cluster Configuration on VH-Twin: As

explained in Sec. III, the clustering process is critical in

effectively virtualizing network regions covered by distributed

BSs, providing a solid foundation for the subsequent twinning

process. Utilizing the Girvan-Newton clustering algorithm to

appropriately group BSs into the desired number of clusters,

Table I shows the variations in twinning accuracy and effi-

ciency across different cluster configurations.

First, it is observed that the accuracy of twin models,

encapsulated by MSE, MAE, and NRMSE, exhibits minimal

fluctuations across different cluster sizes for the V-twinning

stage. Specifically, MSE and MAE values remain relatively

stable across 5, 10, 20, and 30 clusters, thereby maintaining

a similar performance trend. This aligns with the common

sense that global model errors should not be significantly

impacted by the number of clusters when collecting the initial

data from BSs. Nevertheless, it is observed that lower cluster

counts in the H-twinning stage result in reduced error rates,

potentially attributable to the diminished data heterogeneity

at each BS. When it comes to the efficiency section, there

is a noticeable rise in initial mapping time for V-twinning

as the number of clusters increases. This trend is evident

from the progression of model training time, which escalates

from 1,356 seconds for 5 clusters to 1,372 seconds for 30

clusters. Such an increase can be attributed to the enhanced

computational load and complexity associated with managing

more clusters. Regarding the cost for twin update process,

measured by communication rounds between C-NDTs and G-

NDT, the H-twinning process results in a progressive increase

in communication overhead as the number of clusters rises.

This is evidenced by the twin model update of 2,169 seconds

for 5 clusters, escalating to 3,164 seconds for 30 clusters. This

suggests that more clusters lead to higher twin synchronization

overhead, which could potentially result in an inclination

towards local model training due to efficiency concerns. It is

also noteworthy that the mapping time metric is not applicable

(N/A) for H-twinning, and the update round is not applicable

for V-twinning. This distinction highlights the different oper-

ational purposes of the two twinning phases and underscores

the trade-off between data heterogeneity and overall twinning

overhead when choosing an appropriate cluster configuration.

3) Impact of BS density on mapping process: To evaluate

the scalability of VH-Twin in accommodating dense wireless

networks, Table II presents a comprehensive overview of how

the deployment density of BSs affects our twinning process.

The analysis reveals that increasing the number of BSs from

25 to 200 in a large urban environment has a negligible impact

on twinning accuracy. This is evident from the stable MSE,

MAE, and NRMSE across different BS densities. Both V-

twinning and H-twinning stages exhibit minor fluctuations,

maintaining a consistent performance trend. These findings

suggest the robustness of VH-Twin to changes in network

scale, ensuring reliable model accuracy. As expected, there

is a notable increase in the mapping time for V-twinning

as the network scale expands. The mapping time rises from

642 seconds with 25 BSs to 6,665 seconds with 200 BSs,

reflecting the necessity to gather more data for the initial

twinning process. In contrast, the update rounds during the

H-twinning period show a reduction with an increased BS

density, albeit with a less steep curve, ranging from 3,000

seconds for 25 BSs to 2,302 seconds for 200 BSs. This

decrease in mapping overhead suggests that a greater number

of BSs could lead to more decent initial model accuracy and

stability. Consequently, the G-NDT may not require frequent

updates to synchronize with the physical networks. Further-

more, an insightful finding uncovered through the data anal-

ysis presented in Table II pertains to our adaptive clustering

mechanism based on the Louvain method, where the number

of clusters expands alongside the increase in network scale

for both V-twinning and H-twinning processes. This outcome

underscores the potential of the adaptive clustering stage to

alleviate complexity and reduce twin update overhead (i.e., in

the H-Twinning phase), particularly in the context of large-

scale networks. Such pre-processing contributes to ensuring

the scalability and efficiency of the mapping process.
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Fig. 5. Impact of different values of ψ.

4) Trade-off between mapping accuracy and efficiency:

In Algorithm 3 for the H-Twinning stage, a tunable threshold

value È is utilized to regulate the frequency of twin model

updates. If the disparity between a current C-NDT and the G-

NDT exceeds È, the G-NDT will synchronize with the corre-

sponding C-NDT for model evolution. Otherwise, the G-NDT



TABLE I
IMPACT OF CLUSTER CONFIGURATIONS ON V-TWINNING AND H-TWINNING PROCESSES

Metric
5 Clusters 10 Clusters 20 Clusters 30 Clusters

V-twinning H-twinning V-twinning H-twinning V-twinning H-twinning V-twinning H-twinning

MSE 0.140 0.140 0.139 0.136 0.140 0.135 0.141 0.135

MAE 0.260 0.258 0.260 0.256 0.260 0.253 0.262 0.256

NRMSE 0.088 0.089 0.091 0.089 0.092 0.088 0.091 0.088

Initial Mapping (sec.) 1356 N/A 1359 N/A 1368 N/A 1372 N/A

Update (rounds) N/A 2169 N/A 2360 N/A 2921 N/A 3164

TABLE II
IMPACT OF BS DENSITY ON V-TWINNING AND H-TWINNING PROCESSES

Metric
25 BSs 50 BSs 100 BSs 200 BSs

V-twinning H-twinning V-twinning H-twinning V-twinning H-twinning V-twinning H-twinning

MSE 0.143 0.120 0.139 0.134 0.139 0.138 0.135 0.135

MAE 0.270 0.248 0.260 0.254 0.260 0.259 0.261 0.261

NRMSE 0.092 0.085 0.091 0.087 0.091 0.091 0.090 0.090

Initial Mapping (sec.) 642 N/A 1359 N/A 2628 N/A 6665 N/A

Update (rounds) N/A 3000 N/A 2260 N/A 2325 N/A 2302

Number of clusters 4 4 5 5 6 6 10 10

remains unchanged. Fig. 5 presents a comprehensive insight

into how different values of È influence the performance of

twin model. As È increases from 0.001 to 0.05, a notable

trend of rising model error is observed, suggesting a decrease

in twinning accuracy with higher threshold values due to the

reduced synchronization over time. As expected, a significant

observation from Fig. 5 is the reduction in mapping costs

with larger thresholds, primarily attributed to the decrease

from 4,000 at the lowest threshold to 2,132 at the highest.

These results highlight a critical trade-off between mapping

efficiency and model accuracy achieved through the tuning

of È. For instance, there is potential to improve twinning

overhead by up to 50% by sacrificing approximately 10%

accuracy in our evaluated scenario.

5) Investigation on Feasibility of Partial Twinning: In

the context of our VH-Twin mechanism, encompassing both

vertical mapping for initialization and horizontal mapping for

ongoing updates, our focus is on reducing overall mapping

time without compromising twinning accuracy. One poten-

tial approach involves decreasing the percentage of twinning

network regions covered by BSs in the V-twinning or H-

twinning stage. This reduction can be achieved by lowering the

participation percentage of BSs during the mapping process,

allowing for the exclusion of certain BSs from the construction

of C-NDTs. Given the time-series data interdependence among

distributed BSs, a randomized selection of a specific percent-

age of participating BSs in each twinning round is feasible.

To validate this approach, Table III provides valuable insights

into performance variations across multiple dimensions as

the participation rate of BSs fluctuates. Specifically, with

participation rates ranging from 40% to 100%, we observe the

mapping time for V-twinning process increases significantly,

from 642 seconds at 40% to 6,665 seconds at a full twinning

level. Conversely, in the H-twinning stage, there is a notable

decrease in the update overhead as the participation rate

increases, attributed to more comprehensive twin initialization.

This implies that higher BS participation contributes to more

efficient ongoing maintenance of twins, potentially due to

reduced redundancy in data synchronization and enhanced

data aggregation. Remarkably, the accuracy of the twin model

remains consistently stable across various participation levels

in both V-twinning and H-twinning processes. This stability

indicates the robustness of our VH-Twin scheme even with

fluctuations in the number of participating BSs. On the other

hand, the results reveal the importance of striking a balance

between mapping time and update cost. While a more com-

plete level of V-twinning seems advantageous for reducing the

following update rounds, it concurrently extends initial map-

ping time which may consume more resources. This dedicated

interplay paves the way for addressing scalability concerns

in large-scale network DT systems. Determining an optimal

participation rate should involve resource considerations, such

as scheduling appropriate bandwidth or slots, to ensure a

scalable and efficient twinning process.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced VH-Twin as a fundamen-

tal mapping framework for digitalizing emerging wireless

networks. This framework represents a significant technical

advancement, synergistically leveraging the capabilities of

vertical twinning and horizontal twinning schemes, along

with dynamic connectivity segmentation, to efficient cluster

distributed base stations within an urban cellular network.

Extensive evaluations demonstrate that VH-Twin can effec-

tively and efficiently create, deploy, and maintain network

DTs. With the advent of the new digitalization era, such

an accurate mapping of network DTs opens up numerous

opportunities for future research and development. One avenue

for future work involves enhancing the capabilities of DTs

to incorporate real-time data streams and predictive analytics,

enabling proactive network management and optimization.

Additionally, exploring the integration of generative artificial

intelligence techniques can further refine DT models, allowing

for more precise model creation and simulations.



TABLE III
IMPACT OF PERCENTAGE OF MAPPED BSS ON V-TWINNING AND H-TWINNING PROCESSES

Metric
40% 60% 80% 100%

V-twinning H-twinning V-twinning H-twinning V-twinning H-twinning V-twinning H-twinning

MSE 0.136 0.135 0.137 0.136 0.138 0.135 0.137 0.134

MAE 0.257 0.255 0.257 0.256 0.258 0.256 0.258 0.256

NRMSE 0.091 0.089 0.091 0.089 0.091 0.089 0.090 0.089

Initial Mapping (sec.) 642 N/A 1359 N/A 2628 N/A 6665 N/A

Update (rounds) N/A 3000 N/A 2360 N/A 2325 N/A 2302
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