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Abstract—Radio map is crucial for optimizing wireless network
performance and configuration, aiding in tasks such as network
planning, virtualization, and mobility management by providing
a visual representation of radio-frequency signal strength in
specific locations. However, generating precise radio maps with
limited prior knowledge remains a significant challenge. Existing
research in this field relies on extensive contextual information or
computations, such as detailed geographic maps and exhaustive
measurements. This hinders the adaptability of obtaining radio
maps across varying network conditions and environmental
changes. In this study, we explore the potential of generating
radio maps using a generative diffusion probabilistic model,
applicable to both indoor and outdoor wireless network scenarios.
Specifically, we propose leveraging two accessible information
pieces as input conditions for the generative model: sparse signal
strength data and transmitter locations, respectively. This ap-
proach enables cost-effective radio map generation, particularly
valuable in complex scenarios where obtaining comprehensive
measurements is challenging. To ensure the training of the
generative diffusion-based model for an adaptable map-based
prediction, we develop a ray-tracing-based method to syntheti-
cally collect training data covering a wide range of fine-grained
network scenarios across both 60 GHz and sub-6GHz frequency
bands. Through comprehensive evaluations, we demonstrate the
feasibility of our generative model to synthesize high-quality
radio maps with only a small amount of measurement data or
access point locations as guidance, achieving an accuracy rate of
over 95% in various wireless network scenarios.

Index Terms—Diffusion models, generative AI, radio map
generation, wireless networks.

I. INTRODUCTION

With the emergence of bandwidth-demanding applications

such as virtual reality, video streaming and real-time com-

munications, the demand for high-speed and reliable wireless

networks is increasing. Millimeter-wave (mmWave) technol-

ogy, particularly in the 60 GHz frequency band, is revolution-

izing indoor wireless communication by offering significant

advantages for dense, short-range networks. Concurrently, 5G

technology is redefining outdoor cellular networks, enabling

faster data speeds, reduced latency, and increased network

capacity on a much broader scale. These advancements under-

score the growing importance of efficient planning and timely

deployment with upgraded network infrastructure. In such an

evolving landscape of wireless networks, the radio map has

emerged as a pivotal tool for optimizing network performance

and configuration. A radio map is a graphical representation

of received signal strength (RSS) at various location spots,

offering a visual insight into the radio-frequency (RF) signal

coverage and strength within a specific area. This detailed

mapping facilitates the identification of strong and weak signal

reception in any location of interest, thereby enabling targeted

enhancement in network coverage and reliability.

In practice, the criticality of radio maps becomes increas-

ingly evident due to their role in understanding wireless

propagation characteristics, managing interference, planning

capacity, and ensuring deployment efficiency. This enables net-

work operators to strategically place base stations (BSs), con-

figure antennas, and virtualize networks. Several typical recent

application venues involve predictive resource planning [1],

construction of digital twin networks [2], [3], and trajectory

design for drone-assisted communications [4]. For instance, by

providing detailed RSS information in spatial domain, network

resources can be evenly allocated among areas with poor and

strong connectivity, enabling ubiquitous and fair quality of

user services. In the context of digitalizing the networks [2],

radio maps, which carry abundant spatial RF data, facilitate

the creation of accurate digital replicas of physical network

attributes. This is crucial for simulating and analyzing what-if

behavior under various channel conditions. Furthermore, the

significance of radio maps is amplified in the studies of non-

terrestrial networks, such as those utilizing unmanned aerial

vehicles (UAVs) as mobile access points (APs) [4]. In such

scenarios, the mapped RSS is used to determine optimal UAV

trajectories that address network coverage gaps, especially in

areas where traditional ground-based infrastructure is limited.

Despite the evident advantages and widespread applications,

challenges persist in generating accurate and complete radio

maps. Even minor alterations in the physical environment

or the relocation of transmitters can result in significant

fluctuations in radio maps, as illustrated in Fig. 1(a)-(c), with

the RSS measurements of three distinct AP locations in an

indoor wireless local-area network (WLAN). Consequently,

collecting real-world data across all possible scenarios to

obtain various radio maps is impractical due to the extensive

measurement campaigns required. To address this issue, some

interpolation-based algorithms have been adopted, such as

Kriging [5], matrix completion [6], and dictionary learning [7].

However, these approaches often lack the ability to learn from

experience, resulting in limited generalization capabilities,

especially in dynamic and evolving network settings. With

the advancement of artificial intelligence (AI), certain deep

learning-based methods have been proposed to predict the

entire radio map [8]–[10]. However, these methods typically

rely on extensive environmental information, including de-

tailed geographic maps and object parameters, which may not



always be readily available. These challenges highlight the

necessity for a cost-effective approach to derive precise and

adaptable radio maps with minimal prior knowledge, which is

the focus of our research. Inspired by the remarkable success

of generative AI techniques, particularly the effectiveness of

diffusion probabilistic models in generating realistic images

[11], [12], we are motivated to explore their potential for

synthesizing radio maps in wireless networks. To this end,

this work presents the following contributions:

• We propose RM-Gen, a conditional diffusion model-based

framework, for generating radio maps across diverse

wireless scenarios, including mmWave WLANs and 5G

cellular networks, using sparse measurement data and

environmental information. To the best of our knowledge,

this is the first endeavor to leverage generative diffusion

models for constructing radio maps in wireless networks.

• We demonstrate the feasibility of using two accessible

information pieces as input conditions for the generative

model: 1) a limited amount of RSS information and/or

2) transmitter locations. This approach facilitates the

cost-effective generation of radio maps, especially useful

in complex scenarios where obtaining comprehensive

measurements is challenging.

• We develop a data collection method to synthetically

generate high-quality training data covering a wide range

of fine-grained network scenarios, which is then used to

train the generative diffusion-based model for adaptable

radio map prediction.

• We perform comprehensive evaluations using the two

collected radio map datasets across both 60 GHz and sub-

6GHz frequency bands. The results show that RM-Gen

exhibits the capability to efficiently generate precise radio

maps, achieving accuracy of over 95% in both indoor and

outdoor wireless network scenarios.

Fig. 1: Radio maps with different BS/AP locations (denoted

by stars) in a mmWave network scenario.

II. CONDITIONAL DIFFUSION MODEL FOR RADIO MAP

GENERATION

In this section, we first formulate the map generation

problem as an optimization problem and propose a denoising

diffusion probabilistic model as the solution, detailing the gen-

eration process based on different input information. Addition-

ally, we introduce a map-based data collection method, which

relies on radio frequency (RF)-based ray-tracing analysis.

A. Problem Formulation

In this work, the objective is to develop a generative model

that can generate a complete radio map for an N × N area,

leveraging a set of predefined conditions (prior knowledge) c.

The conditions c consist of a set of parameters or contexts

that serve as the input for our RM-Gen. These can include a

small amount of measured RSS and transmitter (Tx) location,

which are often easier to obtain in practice. In this way, such

a map generation problem can be represented by a function

F : c → R
N×N , which takes the conditions c as input and

outputs the estimated radio map, denoted as M̂ .

Specifically, the collected RSS information, referred to

as partial RSS fragments, can be denoted as ϕ =
{ϕ1, ϕ2, . . . , ϕk}. In this situation, our task is to map ϕ

to M̂ , which can be represented by the function F1 :
ϕ → R

N×N . On the other hand, the transmitter loca-

tions can be denoted as Tx = {Tx1, Tx2, . . . , Txn} =
{(x1, y1), (x2, y2), . . . , (xn, yn)}; therefore, the task becomes

mapping Tx to M̂ , represented as F2 : Tx → R
N×N .

With both types of conditions described above, the objective

of our problem can be transformed to minimize the difference

between the generated radio map M̂ and the ground-truth

radio map M , where M ∈ R
N×N is based on empirical

or measurement results. This difference can be quantified by

D(M, M̂), resulting in the following optimization problem:

minD(M, M̂)

s.t. D(M, M̂) =

N
∑

i=1

N
∑

j=1

|Mij − M̂ij |,
(1)

where i = 1, 2, . . . , N and j = 1, 2, . . . , N represent the rows

and columns of grid Rx within the radio map, respectively.

The optimal result can be achieved by iteratively training a

generative diffusion model such that M̂ closely aligns with

M under a given set of conditions c.

B. Denoising Diffusion Probabilistic Models

In general, a diffusion model consists of two processes: a

forward process and a reverse process. The forward process

is a Markov chain that adds Gaussian noise at each time step.

Let q(x0) be the RSS data distribution, the forward process

can be defined as q(xt|xt−1), where q(xt) is the noisy map

at time step t. The Gaussian noise added at each time step t

is controlled by a variance schedule ´1, . . . , ´T , where T is

the total time step. Consequently, the forward process can be

derived as:

q(x1:T |x0) =

T
∏

t=1

q(xt|xt−1), (2)

where

q(xt|xt−1) = N (xt;
√

1− ´txt−1, ´tI). (3)

During the diffusion process, ´t ∈ (0, 1) always increases

as t grows, i.e., 0 < ´1 < ´2 < · · · < ´T < 1. For

T → ∞, RSS data xT will eventually approach an isotropic

Gaussian distribution. At time step t, the noisy map xt is



sampled from a conditional Gaussian distribution with a mean

of µt =
√
1− ´txt−1 and a variance of Ã2

t = ´t, hence,

xt =
√

1− ´txt−1 +
√

´tϵ, (4)

where ϵ ∼ N (0, I). According to the property of Gaussian

distribution, xt can be sampled at an arbitrary time step t in

a closed form, i.e.,

q(xt|x0) ∼ N (xt;
√
³̄tx0, (1− ³̄t)I), (5)

where ³t := 1 − ´t and ³̄t :=
∏t

i=1 ³i. Then, xt can be

further formulated as:

xt =
√
³̄tx0 +

√
1− ³̄tϵ. (6)

In the reverse process, the diffusion model recovers x0 by

denoising xt. Such an reverse process can be defined as a

Markov chain as:

p¹(x0:T ) := p(xT )

T
∏

t=1

p¹(xt−1|xt), (7)

where xT ∼ N (0, I), and p¹(xt−1|xt) can be represented as:

p¹(xt−1|xt) := N (xt−1;µ¹(xt, t),Σ¹(xt, t)). (8)

Following the DDPM approach proposed in [11], it is proved

that the reverse process can learn the mean value of µ¹(xt, t).
When setting Σ¹(xt, t) = Ã2

t I, where Ã2
t = 1−³̄t−1

1−³̄t

´t,

µ¹(xt, t) can be derived as:

µ¹(xt, t) =
1√
³t

(

xt −
´t√
1− ³̄t

ϵ¹(xt, t)

)

, (9)

where ϵ¹ is the trainable denoising function estimating the

noise vector in the reverse process. Based on this, we can

formulate our loss function of the map generation model as:

L = E
x0∼q(x0),ϵ∼N (0,I),t

∥ϵ¹(xt, t)− ϵ∥22 . (10)

C. Conditional DDPM for Radio Map Generation

In our RM-Gen, the forward diffusion process is formulated

with Eq. (2)-(6) as detailed in Sec. II.B. Considering the

two conditions, i.e., partial RSS fragments and Tx locations,

the objective is to train a generative model p¹(x0|e¹(c))
capable of estimating the radio signal distribution q(x0), where

e¹ represents the encoder used to extract the features of

conditions c. As a result, the reverse process can be derived

as:

p¹(x0:T |e¹(c)) := p(xT )

T
∏

t=1

p¹(xt−1|xt, e¹(c)), xT ∼ N (0, I),

(11)

p¹(xt−1|xt, e¹(c)) := N (xt−1;µ¹(xt, t|e¹(c)),Σ¹(xt, t|e¹(c))).
(12)

As described in Sec. II.B, we have Σ¹(xt, t|e¹(c)) =
Σ¹(xt, t) = Ã2

t I, where Ã2
t = 1−³̄t−1

1−³̄t

´t. Hence, the diffusion

model can learn the mean µ¹(xt, t|e¹(c)) represented as:

µ¹(xt, t|e¹(c)) =
1√
³t

(

xt −
´t√
1− ³̄t

ϵ¹(xt, t|e¹(c))
)

(13)

Next, the reverse process of our conditional DDPM turns to

train ϵ¹ by minimizing the following loss function based on

Eq. (10):

L = E
x0∼q(x0),ϵ∼N (0,I),t

∥ϵ¹(xt, t|e¹(c))− ϵ∥22 (14)

Lastly, to predict the noise vector ϵ in the reverse process,

the denoising function ϵ¹(xt, t|e¹(c)) is realized by training a

U-Net [13]. The detailed diffusion model framework of our

RM-Gen is shown in Fig. 2.

Fig. 2: Overview of our conditional diffusion model RM-Gen.

D. Map-based Data Collection with Ray-tracing Analysis

To augment the map-based RSS dataset for training our

diffusion model, we utilize the commercial ray tracer Wireless

Insite® 1 to synthetically generate radio map datasets in both

indoor mmWave and an outdoor sub-6GHz network scenarios.

Specifically, for the mmWave dataset, we focus on the 60

GHz frequency band. In this context, arbitrary 3-D indoor

scenarios can be configured, such as an office/lab environment

layout with dimensions of 14m × 14m × 3m as depicted in

Fig. 3(a). These indoor scenarios can include various objects

such as wooden chairs, glass tables, and wooden cabinets.

The AP serves as the transmitter and can be deployed at

arbitrary location to emit signals. To obtain the entire radio

map, we meticulously divide the space into a number of

small grids and deploy a client receiver (Rx) every 0.5m to

capture the intricate details of 60 GHz signal propagation

and attenuation. Next, the ray-tracing analysis simulates the

propagation of electromagnetic waves by tracing the paths

of individual rays as they interact with surfaces and objects

within the environment. Finally, the received signal strength

at each Rx is calculated based on the contributions of all

traced rays, accounting for their intensities, phases, and arrival

times. This process allows us to effectively collect ∼ 30,000

radio maps with different scenario configurations, offering

invaluable insights into the behavior of 60 GHz mmWave

communications within a controlled setting.

For the sub-6GHz network dataset, we construct 3-D square

outdoor open scenarios, as depicted in Fig. 3(b), which include

features such as the ocean (blue region), the beach (light green

region), the land (dark green region), and various buildings

of different sizes and heights. Similar to the mmWave data

collection, BSs operating at a frequency of 3.7 GHz can be

randomly deployed in the scenario. This frequency band is

1https://www.remcom.com/wireless-insite-em-propagation-software



Fig. 3: 3-D scenario layout of (a) an indoor scenario and (b)

an outdoor scenario.

chosen to align with standard 5G frequency bands and to

ensure realistic simulation of outdoor cellular networks. Con-

sidering the longer-range propagation of sub-6GHz signals,

the grid-based Rx are deployed at intervals of every 10 meters

within the environment. Overall, approximately 26,000 radio

maps are collected in such outdoor network scenarios. For

simplicity, we denote the above two datasets as RM-In and

RM-Out, respectively. It is worth noting that the ray-tracing

technique is often used to estimate ground-truth data on RSS

for different locations in each data set instance. Measurement

studies have demonstrated that the signal profiles produced by

ray-tracing techniques are quite close to real measurements in

various wireless scenarios [14], [15].

III. PERFORMANCE EVALUATION

To evaluate the effectiveness of our proposed RM-Gen, we

conduct extensive evaluations using two collected datasets.

In the following sections, we begin by demonstrating the

efficacy of our core generative module, DDPM. Subsequently,

we evaluate the performance of RM-Gen using partial RSS

fragments and Tx locations as the input condition, respectively.

A. Performance of DDPM

We divide the experimental settings into two parts. In the

first part, partial RSS fragments are used as conditions to

generate full radio maps, and in the second part, we use Tx

locations as conditions for training DDPM. As describe in

Sec. II, the forward process adds noise to the initial map

according to the variance schedule ´ over T time steps. For

our evaluations, we set T = 400 time steps, and the variance

increases linearly from ´1 = 10−4 to ´T = 0.02. To train

the diffusion model generating radio maps using the measured

RSS data pieces, we set a learning rate µ = 10−4 and

employ Adaptive Moment Estimation (Adam) to adjust µ for

a total of 100 epochs. The training loss curve for this setup

on the RM-In dataset, depicted in Fig. 4(a), demonstrates a

consistent decrease in loss value over iterations, indicating an

improvement in the model’s accuracy during noise prediction.

In the second part, we utilize Tx locations as conditions to

generate radio maps. We set the learning rate µ = 10−5 and

use Adam to adjust µ across 50 epochs. Fig. 4(b) illustrates

the training loss curve for this scenario on the RM-In dataset,

where a similar trend of decreasing loss values suggests the

model’s noise prediction capability. Comparing the loss curves

in Fig. 4(a) and Fig. 4(b), it can be observed that the perfor-

mance using Tx locations as the condition tends to converge

around 0.02, whereas the curve with partial RSS fragments

as the condition converges closer to 0.01. This observation

aligns with subsequent evaluation results, indicating that the

DDPM trained with partial RSS fragments are more adept at

predicting noise and therefore, it can generate more accurate

radio maps. For the RM-Out dataset, the trend of loss curve

for the two experiments is similar to the loss curve on RM-In

dataset, which is omitted here due to space constraints.

Fig. 4: Model loss curve using (a) partial RSS fragments and

(b) Tx locations as conditions.

B. Radio Map Generation with RSS Fragments

To demonstrate the effectiveness using RM-Gen in gener-

ating radio maps, we first evaluate the model performance

using partial RSS fragments as the prior knowledge, which

then gradually compensates for the missing segments to form

a complete radio map. Fig. 5 shows the accuracy of generated

radio maps from RM-Gen in both indoor mmWave and out-

door sub-6GHz networks under varying error tolerance rates

(ETRs). The ETR is a metric that specifies the maximum

allowable percentage difference between the RSS values in a

generated radio map and those in a ground-truth radio map. For

instance, an ETR of 0.10 implies that a performance difference

ratio of 10% is acceptable, and a lower ETR indicates more

stringent criteria for the quality of the radio map.

We conduct experiments with varying percentages of known

RSS fragments, ranging from 5% to 15%, to examine their

impact on the accuracy of the generated radio maps. In

Fig. 5(a), concerning indoor mmWave scenarios, there is a

noticeable trend of improved performance with increasing

fragment percentages across all ETRs. This suggests that

utilizing more data pieces enhances the model’s capability

to generate accurate radio maps. Additionally, the generation

performance consistently improves as the ETR increases. This

correlation is expected, as a higher tolerance for error typically

corresponds to higher accuracy. It is worth noting that when

ETR is 0.10, the accuracy with all three fragment percentages

exceeds 95%, highlighting RM-Gen’s efficiency in generating

precise radio maps even with just 5% measured RSS data.

Contrastingly, in Fig. 5(b), illustrating the generation perfor-

mance in outdoor cellular network scenarios, while the model

exhibits a similar trend, its performance is comparatively

lower. For instance, at ETR = 0.10, the accuracy is around



Fig. 5: Generation accuracy using partial RSS fragments for (a)

indoor mmWave WLANs and (b) sub-6GHz outdoor networks.

90%, which is over 5% lower than the evaluated cases in

Fig. 5(a). This difference can be attributed to the complexity

of scenarios as well as the inherent characteristics of mmWave

and sub-6GHz signals. Outdoor network settings are typically

larger than indoor scenarios and include more complex el-

ements like buildings. Additionally, sub-6GHz signals, com-

monly used in outdoor environments, penetrate obstacles more

effectively, resulting in more irregular RSS distributions and

posing a greater challenge for accurate generation.

Fig. 6: RSS distribution for indoor mmWave WLANs.

Fig. 7: RSS distribution for outdoor sub-6GHz networks.

To further explore such differences between mmWave and

sub-6GHz signals, we randomly select two samples from the

indoor and outdoor radio maps generated by RM-Gen and

zoom in on the data results. Fig. 6 and Fig. 7 depict the

RSS distribution between the generated radio maps and the

ground truths for these samples. As seen in Fig. 6, the RSS

values in indoor mmWave scenarios cover a wide range from

-250 dBm to -50 dBm, with a concentration between -100

dBm and -70 dBm. Notably, the RSS between -80 dBm and

-90 dBm accounts for the highest proportion with a clear

peak, representing more than 40% of the RSS distribution.

Conversely, Fig. 7 illustrates that outdoor cases, while cov-

ering a similar range, exhibit a more uniform distribution,

primarily between -120 dBm and -60 dBm. In particular, the

peaks for outdoor sub-6GHz RSS, situated between -90dBm

and -70dBm, are more dispersed than indoor mmWave RSS,

reflecting the variability and instability of the outdoor radio

profiles.

Besides these observations that underscore the distinct prop-

agation characteristics of indoor mmWave and outdoor sub-

6GHz signals, the results reveal that the RSS distribution

of our generated samples closely aligns with the ground-

truth results, affirming the RM-Gen’s capability to accurately

synthesize radio maps in varying scenarios.

Fig. 8: Visualization of generated radio maps for indoor cases.

Fig. 9: Visualization of generated radio maps for outdoor

cases.

We also provide visual representations of the generation

results from RM-Gen. Specifically, Figs. 8(a)-(b) show a

ground-truth radio map and a corresponding generated radio

map with the 10% RSS fragments, respectively, while Fig. 8(c)

illustrates the error map between them. When considering the

environment configuration depicted in Fig. 3(a), it is notable

that both radio maps shown in Figs. 8(a)-(b) exhibit similar

trends when examining each isolated area within the scenario.

Moreover, Fig. 8(c) indicates that the error rate in most regions

is less than 0.1, affirming the accuracy of generated radio map.

Likewise, Fig. 9 shows the generation results for an outdoor

network scenario, demonstrating a high alignment between the

generated radio map and the ground-truth radio map. However,

upon comparing the error maps from Fig. 8(c) and Fig. 9(c),

it is evident that the outdoor scenario exhibits more “polluted”

points with higher error rates. This finding is consistent with



our previous evaluation results that RM-Gen performs better

in generating indoor radio maps.

C. Radio Map Generation with Tx Locations

In addition to using partial RSS fragments, we investigate

the feasibility of employing only Tx locations as input condi-

tions to RM-Gen in radio map generation. The conditional

diffusion model is trained with two Tx locations as input

on the RM-In and RM-Out datasets, and the results reported

in Fig. 10. It is observed that as the ETR increases, the

generation accuracy improves in both indoor and outdoor

network scenarios. Notably, the model performs significantly

better in indoor scenarios than in outdoor scenarios. This result

is consistent with our observation in Sec. III.B. Particularly,

when comparing the generation accuracy depicted in Fig. 5,

the results are notably inferior when Tx locations are employed

as conditions compared to RSS fragments. Specifically, at

ETR=0.10, it achieves accuracies of only 81.95% and 74.26%

in indoor and outdoor network scenarios, respectively. The

reduced accuracy observed when employing Tx locations as

conditions is attributed to the limited information they convey

compared to RSS fragments. While RSS fragments offer rich

local features of signal distributions, Tx location data primarily

provides signaling source information, posing challenges for

accurately reconstructing full radio maps. However, despite

these limitations, utilizing Tx location as conditions presents

intriguing practical potential. Generating radio maps based

on planned BS/AP positions can be particularly advantageous

in contexts where performing measurements or ray-tracing

analysis is impractical or costly. Future research could focus

on enhancing the model’s ability to interpret and effectively

utilize Tx location information alongside sparse RSS measure-

ments.

Fig. 10: Generation accuracy using Tx locations as condition.

IV. CONCLUSION

This study introduced RM-Gen, a conditional diffusion

model designed for radio map generation in wireless networks.

Leveraging generative AI techniques, RM-Gen efficiently syn-

thesizes accurate radio maps using limited and accessible prior

data, thereby contributing to various network tasks such as

BS/AP planning and digital twinning. The results showcased

the remarkable accuracy of the generated radio maps, achiev-

ing accuracy rates of 95% for indoor WLANs and 90% for out-

door cellular networks across various ETRs. This performance

underscores not only the feasibility of generative AI techniques

in RF signal analysis but also their practical applicability

in diverse network contexts. Future research endeavors may

involve exploring the combined conditioning data and optimal

fragment selection techniques to further enhance the predictive

capability of generative models.
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