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Abstract—Radio map is crucial for optimizing wireless network
performance and configuration, aiding in tasks such as network
planning, virtualization, and mobility management by providing
a visual representation of radio-frequency signal strength in
specific locations. However, generating precise radio maps with
limited prior knowledge remains a significant challenge. Existing
research in this field relies on extensive contextual information or
computations, such as detailed geographic maps and exhaustive
measurements. This hinders the adaptability of obtaining radio
maps across varying network conditions and environmental
changes. In this study, we explore the potential of generating
radio maps using a generative diffusion probabilistic model,
applicable to both indoor and outdoor wireless network scenarios.
Specifically, we propose leveraging two accessible information
pieces as input conditions for the generative model: sparse signal
strength data and transmitter locations, respectively. This ap-
proach enables cost-effective radio map generation, particularly
valuable in complex scenarios where obtaining comprehensive
measurements is challenging. To ensure the training of the
generative diffusion-based model for an adaptable map-based
prediction, we develop a ray-tracing-based method to syntheti-
cally collect training data covering a wide range of fine-grained
network scenarios across both 60 GHz and sub-6GHz frequency
bands. Through comprehensive evaluations, we demonstrate the
feasibility of our generative model to synthesize high-quality
radio maps with only a small amount of measurement data or
access point locations as guidance, achieving an accuracy rate of
over 95% in various wireless network scenarios.

Index Terms—Diffusion models, generative Al, radio map
generation, wireless networks.

I. INTRODUCTION

With the emergence of bandwidth-demanding applications
such as virtual reality, video streaming and real-time com-
munications, the demand for high-speed and reliable wireless
networks is increasing. Millimeter-wave (mmWave) technol-
ogy, particularly in the 60 GHz frequency band, is revolution-
izing indoor wireless communication by offering significant
advantages for dense, short-range networks. Concurrently, 5G
technology is redefining outdoor cellular networks, enabling
faster data speeds, reduced latency, and increased network
capacity on a much broader scale. These advancements under-
score the growing importance of efficient planning and timely
deployment with upgraded network infrastructure. In such an
evolving landscape of wireless networks, the radio map has
emerged as a pivotal tool for optimizing network performance
and configuration. A radio map is a graphical representation
of received signal strength (RSS) at various location spots,
offering a visual insight into the radio-frequency (RF) signal
coverage and strength within a specific area. This detailed

mapping facilitates the identification of strong and weak signal
reception in any location of interest, thereby enabling targeted
enhancement in network coverage and reliability.

In practice, the criticality of radio maps becomes increas-
ingly evident due to their role in understanding wireless
propagation characteristics, managing interference, planning
capacity, and ensuring deployment efficiency. This enables net-
work operators to strategically place base stations (BSs), con-
figure antennas, and virtualize networks. Several typical recent
application venues involve predictive resource planning [1],
construction of digital twin networks [2], [3], and trajectory
design for drone-assisted communications [4]. For instance, by
providing detailed RSS information in spatial domain, network
resources can be evenly allocated among areas with poor and
strong connectivity, enabling ubiquitous and fair quality of
user services. In the context of digitalizing the networks [2],
radio maps, which carry abundant spatial RF data, facilitate
the creation of accurate digital replicas of physical network
attributes. This is crucial for simulating and analyzing what-if
behavior under various channel conditions. Furthermore, the
significance of radio maps is amplified in the studies of non-
terrestrial networks, such as those utilizing unmanned aerial
vehicles (UAVs) as mobile access points (APs) [4]. In such
scenarios, the mapped RSS is used to determine optimal UAV
trajectories that address network coverage gaps, especially in
areas where traditional ground-based infrastructure is limited.

Despite the evident advantages and widespread applications,
challenges persist in generating accurate and complete radio
maps. Even minor alterations in the physical environment
or the relocation of transmitters can result in significant
fluctuations in radio maps, as illustrated in Fig. 1(a)-(c), with
the RSS measurements of three distinct AP locations in an
indoor wireless local-area network (WLAN). Consequently,
collecting real-world data across all possible scenarios to
obtain various radio maps is impractical due to the extensive
measurement campaigns required. To address this issue, some
interpolation-based algorithms have been adopted, such as
Kriging [5], matrix completion [6], and dictionary learning [7].
However, these approaches often lack the ability to learn from
experience, resulting in limited generalization capabilities,
especially in dynamic and evolving network settings. With
the advancement of artificial intelligence (Al), certain deep
learning-based methods have been proposed to predict the
entire radio map [8]-[10]. However, these methods typically
rely on extensive environmental information, including de-
tailed geographic maps and object parameters, which may not



always be readily available. These challenges highlight the
necessity for a cost-effective approach to derive precise and
adaptable radio maps with minimal prior knowledge, which is
the focus of our research. Inspired by the remarkable success
of generative Al techniques, particularly the effectiveness of
diffusion probabilistic models in generating realistic images
[11], [12], we are motivated to explore their potential for
synthesizing radio maps in wireless networks. To this end,
this work presents the following contributions:

o We propose RM-Gen, a conditional diffusion model-based
framework, for generating radio maps across diverse
wireless scenarios, including mmWave WLANs and 5G
cellular networks, using sparse measurement data and
environmental information. To the best of our knowledge,
this is the first endeavor to leverage generative diffusion
models for constructing radio maps in wireless networks.

« We demonstrate the feasibility of using two accessible
information pieces as input conditions for the generative
model: 1) a limited amount of RSS information and/or
2) transmitter locations. This approach facilitates the
cost-effective generation of radio maps, especially useful
in complex scenarios where obtaining comprehensive
measurements is challenging.

o« We develop a data collection method to synthetically
generate high-quality training data covering a wide range
of fine-grained network scenarios, which is then used to
train the generative diffusion-based model for adaptable
radio map prediction.

e« We perform comprehensive evaluations using the two
collected radio map datasets across both 60 GHz and sub-
6GHz frequency bands. The results show that RM-Gen
exhibits the capability to efficiently generate precise radio
maps, achieving accuracy of over 95% in both indoor and
outdoor wireless network scenarios.
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Fig. 1: Radio maps with different BS/AP locations (denoted
by stars) in a mmWave network scenario.

II. CONDITIONAL DIFFUSION MODEL FOR RADIO MAP
GENERATION

In this section, we first formulate the map generation
problem as an optimization problem and propose a denoising
diffusion probabilistic model as the solution, detailing the gen-
eration process based on different input information. Addition-
ally, we introduce a map-based data collection method, which
relies on radio frequency (RF)-based ray-tracing analysis.

A. Problem Formulation

In this work, the objective is to develop a generative model
that can generate a complete radio map for an N x N area,
leveraging a set of predefined conditions (prior knowledge) c.
The conditions ¢ consist of a set of parameters or contexts
that serve as the input for our RM-Gen. These can include a
small amount of measured RSS and transmitter (Tx) location,
which are often easier to obtain in practice. In this way, such
a map generation problem can be represented by a function
F : ¢ — RNV which takes the conditions ¢ as input and
outputs the estimated radio map, denoted as M.

Specifically, the collected RSS information, referred to
as partial RSS fragments, can be denoted as ¢ =
{¢1,02,...,0r}. In this situation, our task is to map ¢
to M, which can be represented by the function F}
¢ — RN*N_ On the other hand, the transmitter loca-
tions can be denoted as Tax = {Txy,Txo,...,Tx,} =
{(z1,91), (z2,92), ..., (Tn,yn)}; therefore, the task becomes
mapping Tz to M, represented as Fy : Tx — RVXV,

With both types of conditions described above, the objective
of our problem can be transformed to minimize the difference
between the generated radio map M and the ground-truth
radio map M, where M € RN*¥ is based on empirical
or measurement results. This difference can be quantified by
D(M, M ), resulting in the following optimization problem:

min D(M, M)
R N N R (1)
S.t. D(M, M) = ZZ |Mzg — Mij|7
i=1 j=1

where ¢ = 1,2,...,N and j = 1,2,..., N represent the rows
and columns of grid Rx within the radio map, respectively.
The optimal result can be achieved by iteratively training a
generative diffusion model such that M closely aligns with
M under a given set of conditions c.

B. Denoising Diffusion Probabilistic Models

In general, a diffusion model consists of two processes: a
forward process and a reverse process. The forward process
is a Markov chain that adds Gaussian noise at each time step.
Let g(xg) be the RSS data distribution, the forward process
can be defined as q(z¢|z¢—1), where ¢(z;) is the noisy map
at time step ¢. The Gaussian noise added at each time step ¢
is controlled by a variance schedule Si,..., 87, where T is
the total time step. Consequently, the forward process can be
derived as:

T
q(w1:rlo) = [ [ alwelwr—v), 2)
=1

where

q(xe|xi—1) = N(xe; /1 — Brae—1, Bed). 3

During the diffusion process, 3; € (0,1) always increases
as t grows, ie, 0 < 1 < B2 < < Br < 1. For
T — oo, RSS data xp will eventually approach an isotropic
Gaussian distribution. At time step ¢, the noisy map z; is



sampled from a conditional Gaussian distribution with a mean
of s = /T — Byx4—1 and a variance of o7 = /3, hence,

e = /1= Prwi—1 + \/Eea €]

where ¢ ~ N(0,I). According to the property of Gaussian
distribution, x; can be sampled at an arbitrary time step ¢ in
a closed form, i.e.,

q(z|zo) ~ N (ze; Vawao, (1 — ay)I), )

where ay := 1 — 3; and a; = Hf.zl o;. Then, z; can be
further formulated as:

xr = Vauzo + V1 — aqe. (6)

In the reverse process, the diffusion model recovers x¢ by
denoising z;. Such an reverse process can be defined as a
Markov chain as:

T

pe(IO:T) = P(IT) Hpe(ﬂft—l \It)a

)

where x7 ~ N (0,1), and pg(xs_1|z;) can be represented as:

po(zi—1|ze) == N (z4—1; po (e, t), Bo (x4, 1)). (®)

Following the DDPM approach proposed in [11], it is proved
that the reverse process can learn the mean value of pg(x¢,t).

LB

When setting Xg(zy,t) = o2l where 07 = 1:“(;1

1o (x4, t) can be derived as:

1 B

— | ®t — ——=rc0(®1,t €))
= (- =atnn).

where €y is the trainable denoising function estimating the
noise vector in the reverse process. Based on this, we can
formulate our loss function of the map generation model as:

2
t) —ellz- 10
IoNq(‘TO)7€~N(0,I))t||€9(xt’ ) €||2 ( )

C. Conditional DDPM for Radio Map Generation

In our RM-Gen, the forward diffusion process is formulated
with Eq. (2)-(6) as detailed in Sec. II.B. Considering the
two conditions, i.e., partial RSS fragments and Tx locations,
the objective is to train a generative model py(zoleq(c))
capable of estimating the radio signal distribution ¢(xg), where
ep represents the encoder used to extract the features of
conditions c. As a result, the reverse process can be derived
as:

Ho (xt’ t) =

=

p@(l'tfl‘l’ty 69(0)),.’ET ~ N(OaI)7

(11)
po(wi—1|zs, e0(c)) = N(ze—1; po(xs, tleg(c)), Lo (x, tleg(c))).
(12)

po(xo.rles(c)) == p(ar)

t=1

As described in Sec. ILB, we have Xg(zy,t|eq(c))

Yo(x¢,t) = 021, where 02 = 1;3;‘ B:. Hence, the diffusion

model can learn the mean pg (x4, t|eg(c)) represented as:

1 ( Bt
— | T — GQ(xtaﬂe@(C)))
1
Vo “ (13)

po (i, tleg(c)) = —=

Next, the reverse process of our conditional DDPM turns to
train eg by minimizing the following loss function based on
Eq. (10):

L= leg (e, tlea(c)) —ells (14)

E
zo~q(x0),e~N(0,I),t
Lastly, to predict the noise vector € in the reverse process,
the denoising function eg(x+, tleg(c)) is realized by training a
U-Net [13]. The detailed diffusion model framework of our
RM-Gen is shown in Fig. 2.
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Fig. 2: Overview of our conditional diffusion model RM-Gen.

D. Map-based Data Collection with Ray-tracing Analysis

To augment the map-based RSS dataset for training our
diffusion model, we utilize the commercial ray tracer Wireless
Insite® ! to synthetically generate radio map datasets in both
indoor mmWave and an outdoor sub-6GHz network scenarios.
Specifically, for the mmWave dataset, we focus on the 60
GHz frequency band. In this context, arbitrary 3-D indoor
scenarios can be configured, such as an office/lab environment
layout with dimensions of 14m X 14m X 3m as depicted in
Fig. 3(a). These indoor scenarios can include various objects
such as wooden chairs, glass tables, and wooden cabinets.
The AP serves as the transmitter and can be deployed at
arbitrary location to emit signals. To obtain the entire radio
map, we meticulously divide the space into a number of
small grids and deploy a client receiver (Rx) every 0.5m to
capture the intricate details of 60 GHz signal propagation
and attenuation. Next, the ray-tracing analysis simulates the
propagation of electromagnetic waves by tracing the paths
of individual rays as they interact with surfaces and objects
within the environment. Finally, the received signal strength
at each Rx is calculated based on the contributions of all
traced rays, accounting for their intensities, phases, and arrival
times. This process allows us to effectively collect ~ 30,000
radio maps with different scenario configurations, offering
invaluable insights into the behavior of 60 GHz mmWave
communications within a controlled setting.

For the sub-6GHz network dataset, we construct 3-D square
outdoor open scenarios, as depicted in Fig. 3(b), which include
features such as the ocean (blue region), the beach (light green
region), the land (dark green region), and various buildings
of different sizes and heights. Similar to the mmWave data
collection, BSs operating at a frequency of 3.7 GHz can be
randomly deployed in the scenario. This frequency band is

Uhttps://www.remcom.com/wireless-insite-em-propagation-software
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Fig. 3: 3-D scenario layout of (a) an indoor scenario and (b)
an outdoor scenario.

chosen to align with standard 5G frequency bands and to
ensure realistic simulation of outdoor cellular networks. Con-
sidering the longer-range propagation of sub-6GHz signals,
the grid-based Rx are deployed at intervals of every 10 meters
within the environment. Overall, approximately 26,000 radio
maps are collected in such outdoor network scenarios. For
simplicity, we denote the above two datasets as RM-In and
RM-Out, respectively. It is worth noting that the ray-tracing
technique is often used to estimate ground-truth data on RSS
for different locations in each data set instance. Measurement
studies have demonstrated that the signal profiles produced by
ray-tracing techniques are quite close to real measurements in
various wireless scenarios [14], [15].

III. PERFORMANCE EVALUATION

To evaluate the effectiveness of our proposed RM-Gen, we
conduct extensive evaluations using two collected datasets.
In the following sections, we begin by demonstrating the
efficacy of our core generative module, DDPM. Subsequently,
we evaluate the performance of RM-Gen using partial RSS
fragments and Tx locations as the input condition, respectively.

A. Performance of DDPM

We divide the experimental settings into two parts. In the
first part, partial RSS fragments are used as conditions to
generate full radio maps, and in the second part, we use Tx
locations as conditions for training DDPM. As describe in
Sec. II, the forward process adds noise to the initial map
according to the variance schedule 5 over 1" time steps. For
our evaluations, we set 7' = 400 time steps, and the variance
increases linearly from $; = 10~* to Bz = 0.02. To train
the diffusion model generating radio maps using the measured
RSS data pieces, we set a learning rate v = 10~* and
employ Adaptive Moment Estimation (Adam) to adjust v for
a total of 100 epochs. The training loss curve for this setup
on the RM-In dataset, depicted in Fig. 4(a), demonstrates a
consistent decrease in loss value over iterations, indicating an
improvement in the model’s accuracy during noise prediction.

In the second part, we utilize Tx locations as conditions to
generate radio maps. We set the learning rate v = 10~ and
use Adam to adjust v across 50 epochs. Fig. 4(b) illustrates
the training loss curve for this scenario on the RM-In dataset,
where a similar trend of decreasing loss values suggests the
model’s noise prediction capability. Comparing the loss curves

in Fig. 4(a) and Fig. 4(b), it can be observed that the perfor-
mance using Tx locations as the condition tends to converge
around 0.02, whereas the curve with partial RSS fragments
as the condition converges closer to 0.01. This observation
aligns with subsequent evaluation results, indicating that the
DDPM trained with partial RSS fragments are more adept at
predicting noise and therefore, it can generate more accurate
radio maps. For the RM-Out dataset, the trend of loss curve
for the two experiments is similar to the loss curve on RM-In
dataset, which is omitted here due to space constraints.

Training Loss Curve (RM-In) Training Loss Curve (RM-In)
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Fig. 4: Model loss curve using (a) partial RSS fragments and
(b) Tx locations as conditions.

B. Radio Map Generation with RSS Fragments

To demonstrate the effectiveness using RM-Gen in gener-
ating radio maps, we first evaluate the model performance
using partial RSS fragments as the prior knowledge, which
then gradually compensates for the missing segments to form
a complete radio map. Fig. 5 shows the accuracy of generated
radio maps from RM-Gen in both indoor mmWave and out-
door sub-6GHz networks under varying error tolerance rates
(ETRs). The ETR is a metric that specifies the maximum
allowable percentage difference between the RSS values in a
generated radio map and those in a ground-truth radio map. For
instance, an ETR of 0.10 implies that a performance difference
ratio of 10% is acceptable, and a lower ETR indicates more
stringent criteria for the quality of the radio map.

We conduct experiments with varying percentages of known
RSS fragments, ranging from 5% to 15%, to examine their
impact on the accuracy of the generated radio maps. In
Fig. 5(a), concerning indoor mmWave scenarios, there is a
noticeable trend of improved performance with increasing
fragment percentages across all ETRs. This suggests that
utilizing more data pieces enhances the model’s capability
to generate accurate radio maps. Additionally, the generation
performance consistently improves as the ETR increases. This
correlation is expected, as a higher tolerance for error typically
corresponds to higher accuracy. It is worth noting that when
ETR is 0.10, the accuracy with all three fragment percentages
exceeds 95%, highlighting RM-Gen’s efficiency in generating
precise radio maps even with just 5% measured RSS data.

Contrastingly, in Fig. 5(b), illustrating the generation perfor-
mance in outdoor cellular network scenarios, while the model
exhibits a similar trend, its performance is comparatively
lower. For instance, at ETR = 0.10, the accuracy is around
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Fig. 5: Generation accuracy using partial RSS fragments for (a)
indoor mmWave WLANS and (b) sub-6GHz outdoor networks.

90%, which is over 5% lower than the evaluated cases in
Fig. 5(a). This difference can be attributed to the complexity
of scenarios as well as the inherent characteristics of mmWave
and sub-6GHz signals. Outdoor network settings are typically
larger than indoor scenarios and include more complex el-
ements like buildings. Additionally, sub-6GHz signals, com-
monly used in outdoor environments, penetrate obstacles more
effectively, resulting in more irregular RSS distributions and
posing a greater challenge for accurate generation.
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Fig. 6: RSS distribution for indoor mmWave WLANS.
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Fig. 7: RSS distribution for outdoor sub-6GHz networks.

To further explore such differences between mmWave and
sub-6GHz signals, we randomly select two samples from the
indoor and outdoor radio maps generated by RM-Gen and
zoom in on the data results. Fig. 6 and Fig. 7 depict the
RSS distribution between the generated radio maps and the
ground truths for these samples. As seen in Fig. 6, the RSS
values in indoor mmWave scenarios cover a wide range from

-250 dBm to -50 dBm, with a concentration between -100
dBm and -70 dBm. Notably, the RSS between -80 dBm and
-90 dBm accounts for the highest proportion with a clear
peak, representing more than 40% of the RSS distribution.
Conversely, Fig. 7 illustrates that outdoor cases, while cov-
ering a similar range, exhibit a more uniform distribution,
primarily between -120 dBm and -60 dBm. In particular, the
peaks for outdoor sub-6GHz RSS, situated between -90dBm
and -70dBm, are more dispersed than indoor mmWave RSS,
reflecting the variability and instability of the outdoor radio
profiles.

Besides these observations that underscore the distinct prop-
agation characteristics of indoor mmWave and outdoor sub-
6GHz signals, the results reveal that the RSS distribution
of our generated samples closely aligns with the ground-
truth results, affirming the RM-Gen’s capability to accurately
synthesize radio maps in varying scenarios.
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Fig. 8: Visualization of generated radio maps for indoor cases.
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We also provide visual representations of the generation
results from RM-Gen. Specifically, Figs. 8(a)-(b) show a
ground-truth radio map and a corresponding generated radio
map with the 10% RSS fragments, respectively, while Fig. 8(c)
illustrates the error map between them. When considering the
environment configuration depicted in Fig. 3(a), it is notable
that both radio maps shown in Figs. 8(a)-(b) exhibit similar
trends when examining each isolated area within the scenario.
Moreover, Fig. 8(c) indicates that the error rate in most regions
is less than 0.1, affirming the accuracy of generated radio map.

Likewise, Fig. 9 shows the generation results for an outdoor
network scenario, demonstrating a high alignment between the
generated radio map and the ground-truth radio map. However,
upon comparing the error maps from Fig. 8(c) and Fig. 9(c),
it is evident that the outdoor scenario exhibits more “polluted”
points with higher error rates. This finding is consistent with



our previous evaluation results that RM-Gen performs better
in generating indoor radio maps.

C. Radio Map Generation with Tx Locations

In addition to using partial RSS fragments, we investigate
the feasibility of employing only Tx locations as input condi-
tions to RM-Gen in radio map generation. The conditional
diffusion model is trained with two Tx locations as input
on the RM-In and RM-Out datasets, and the results reported
in Fig. 10. It is observed that as the ETR increases, the
generation accuracy improves in both indoor and outdoor
network scenarios. Notably, the model performs significantly
better in indoor scenarios than in outdoor scenarios. This result
is consistent with our observation in Sec. III.B. Particularly,
when comparing the generation accuracy depicted in Fig. 5,
the results are notably inferior when Tx locations are employed
as conditions compared to RSS fragments. Specifically, at
ETR=0.10, it achieves accuracies of only 81.95% and 74.26%
in indoor and outdoor network scenarios, respectively. The
reduced accuracy observed when employing Tx locations as
conditions is attributed to the limited information they convey
compared to RSS fragments. While RSS fragments offer rich
local features of signal distributions, Tx location data primarily
provides signaling source information, posing challenges for
accurately reconstructing full radio maps. However, despite
these limitations, utilizing Tx location as conditions presents
intriguing practical potential. Generating radio maps based
on planned BS/AP positions can be particularly advantageous
in contexts where performing measurements or ray-tracing
analysis is impractical or costly. Future research could focus
on enhancing the model’s ability to interpret and effectively
utilize Tx location information alongside sparse RSS measure-
ments.
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Fig. 10: Generation accuracy using Tx locations as condition.

IV. CONCLUSION

This study introduced RM-Gen, a conditional diffusion
model designed for radio map generation in wireless networks.
Leveraging generative Al techniques, RM-Gen efficiently syn-
thesizes accurate radio maps using limited and accessible prior
data, thereby contributing to various network tasks such as
BS/AP planning and digital twinning. The results showcased

the remarkable accuracy of the generated radio maps, achiev-
ing accuracy rates of 95% for indoor WLANs and 90% for out-
door cellular networks across various ETRs. This performance
underscores not only the feasibility of generative Al techniques
in RF signal analysis but also their practical applicability
in diverse network contexts. Future research endeavors may
involve exploring the combined conditioning data and optimal
fragment selection techniques to further enhance the predictive
capability of generative models.
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