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Abstract—Unmanned Aerial Vehicles (UAVs) have
a variety of applications, making them a focus of
growing research interest. Estimates say that there
could be over three million aerial vehicles taking to the
skies in the next few years. Thus, it has become critical
to develop and test mission-specific algorithms without
compromising safety. Currently, FAA rules allow only
Line-of-Sight (LoS) testing for Aerial Vehicles, which
limits the number of applications that can be verified.
Furthermore, validating infrastructure-intensive algo-
rithms in the field is not feasible for every researcher.
To mitigate this issue, remote research infrastructure
testbeds have been developed. AERPAW is one such
project funded by US NSF where researchers can
develop their programs in a Digital Twin simulation
environment which the AERPAW team will then test.
In this paper, we have utilized the AERPAW testbed to
develop a localization algorithm for finding the source
of a radio signal using a single UAV. We observe the
results and note the differences between the emulation
and real-world conditions.

Index Terms—Unmanned Aerial Vehicle, au-
tonomous agents, source localization, testbed, drone,
aerial wireless network

I. INTRODUCTION

In recent times, Unmanned Aerial Vehicles have

gained significant popularity owing to their ma-

neuverability and versatility of applications. While

UAVs started as exclusively military tools [1], more

and more of them are now being deployed for

civilian use. Autonomous UAVs, in particular, have

been utilized for a variety of applications, such as,
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search and rescue [2], target monitoring [3] and

disaster surveillance [4]. With millions of UAVs

set to take to the air in the next few years [5],

it has become increasingly important to not only

theoretically develop and test algorithms for UAV

functionality but also verify correctness and safety

in the real world. However, it is not always feasible

for researchers to build and deploy the necessary

infrastructure. The Aerial Experimentation and Re-

search Platform for Advanced Wireless (AERPAW)

was developed to solve this issue.

AERPAW is a national aerial wireless experi-

mentation platform that provides remote access to

researchers for flexible and programmable experi-

ments focused on wireless research and unmanned

vehicles. AERPAW offers adaptability and resources

to researchers, allowing them to develop their algo-

rithms in an emulation environment, which is the

Digital Twin [6] of ground conditions, and then,

see the outcome of their theories in the real world.

However, uncertainty in the real world means that

not all aspects line up completely. In this paper,

we demonstrate the differences observed when an

experiment is run in the AERPAW emulation envi-

ronment versus the actual testbed. To do this, we

have implemented a Source Localization algorithm

in AERPAW where a UGV hidden in a field emits a

radio signal and a UAV must find the source of the

signal. Our results show that, in case of AERPAW,

while the real world implementation is very close

to the emulation environment, some key differences

exist. This experiment was conducted as part of

the AERPAW Find A Rover (AFAR) Challenge.

We note that this manuscript includes information

including images from the AERPAW website [7].
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II. RELEVANT PRIOR WORK

As stated previously, our goal in this paper was

to observe and analyze how real world conditions

could add to uncertainties which were not present

in the emulation environment. As such, the choice

of our experiment, though constrained by the chal-

lenge requirements, was still uniquely suited as an

exemplar problem for our task. Localization is the

problem of determining the position of an object by

measuring some emission like odor, sound, or radio

waves. It has a variety of applications and is rapidly

becoming an area of considerable interest. Problems

can consist of finding the source of a pollutant [8] or

gaseous leak [9], to locating a sound source [10] or

mapping a node in a wireless sensor network [11].

Fink and Kumar [12] in their paper, presented an on-

line Gaussian model for approximating the location

of a static source by measuring the signal strength

of a radio in an indoor setting. Lee et al. [13] devel-

oped a cost-effective signal measurement model for

indoor localization using fingerprinting technology.

Fan et al. [14] presented a method for 3D indoor

localization using a Structured Bidirectional Long

Short-term Memory (SBi-LSTM) architecture.

While outdoor localization problems have usu-

ally focused GPS-based vehicular tracking, in some

cases, GPS might not be available and other methods

may be necessary. Bhattacharjee et al. [15] presented

a tracking algorithm for detecting a UAV using only

passive RF signals. Al-Sadoon et al. [16] tackled the

issue of asset tracking in a dense GPS-unfriendly

environment by utilizing a compact-size sensor array

of six electrically small dual-band omnidirectional

spiral antenna elements for the angle of arrival

(AOA) method. Kwon and Guvenc [17] showed five

methods for estimating a static RF signal source

using a linear least square (LLS) based localization

scheme and a waypoint-based UAV trajectory.

III. PROBLEM MODEL

The goal of our study is to implement and val-

idate outdoor source localization under real-world

circumstance. The source signal is emitted by a

stationary Unmanned Ground Vehicle (UGV) which

is located somewhere in the area defined by the

green square, as can be seen in Fig. 1. The UGV

has one transmit antenna and continuously emits

a GNU Radio-based channel-sounding narrowband

Fig. 1: Illustration of UAV traversing the field using

waypoints. Based on the estimated signal strength,

the UAV calculates the circular area the source could

be in. The intersection of 3 such circles provides the

final estimate.

waveform with a bandwidth of 125KHz. A UAV

will be able to receive this signal using software-

defined radios and determine the strength of the

signal based on its distance to the source. Three tests

were conducted, two with the rover hidden in the

area the UAV is allowed to fly over and one outside

this region. This allowed us to test for scenarios

where a signal source may be located in a restricted

or dangerous zone, e.g., somewhere with extreme

wind conditions [18], in addition to regular cases

where the UAV can search an entire region. Two

difference testing scenarios were selected to judge

the accuracy of the algorithm. The first scenario

consisted of a fast estimation and allowed the UAV

to fly for a total of 3 minutes before reporting its

findings. For a more robust estimation, allowed the

UAV to take a longer time (10 min) so that more

samples could be collected.

A. AERPAW Architecture

AERPAW is a batch-mode facility consisting of

a set of virtual computing nodes, each aligning

with a physical AERPAW computing node. The

programs can be tested in a simulation environment

which is the Digital Twin of real-world conditions.

To ensure an easy learning curve, the AERPAW

software provides a range of extendable modules

that allow the user to easily program each node. In

this section, we will briefly describe the necessary

parts required in this experiment.



Software Libraries

The AERPAW software library can be roughly sep-

arated into two categories - Programmable Entities

and Backplane. The programmable entities are those

exposed to the user and can be modified as required.

These include vehicle control software, GNU Ra-

dio, and some utility functions. The vehicle control

software is designed as a State Machine where

users can define their states. A single thread keeps

track of which state the vehicle is in, while another

may interrupt the current thread to enforce some

action. The aerpawlib package provides functions

that allow users to convert GPS coordinates to angle

headings and vice versa. To communicate with the

drones, we use MAVLink. The secure Backplane is

responsible for isolating the platform with the rest

of the world and the experiments from each other.

Hardware Nodes

AERPAW provides several resources that the user

can program as per their requirements. A comput-

ing system, commonly denoted as a Companion

Computer, is equipped with client-side AERPAW

control software and accompanies the experimental

resources (such as radios or vehicles) which re-

searchers aim to investigate. This is referred to as

an AERPAW Node. When physically instantiated for

an experiment, it becomes an AERPAW Hardware

Node (AHN). Nodes are of two types - fixed and

portable. In this experiment, we focus only on the

portable nodes, which are The Large AERPAW Mul-

tirotor (LAM) and the Unmanned Ground Rover.

All AERPAW nodes use USRP radio software to

communicate with the central system.

IV. OUR APPROACH

To localize the source, we adopted the Linear

Least Square method to estimate the position of the

rover based on repeated sampling of the received

signal. Since the experiment would be conducted on

an open field, we have considered that the UAV will

maintain a Line of Sight (LoS) connectivity with the

signal source and, thus, have chosen the free space

path loss model. The formula for calculating path

loss is given by [19]

Pd = P0 + 10α log
10

(

d

d0

)

+Xσ,

where P0 is the path loss at some reference dis-

tance d0 and Xσ is a Gaussian random variable

with mean 0 and standard deviation σ. α refers to

the path loss coefficient. d refers to the distance

between the ground target and the UAV, di =
f(xi, yi, zi) =

√

(x− xi)2 + (y − yi)2 + (z − zi)2

where (x, y, z) is the real target location. For the

reference point we have used field test data provided

by the AERPAW team.

Positioning in AERPAW follows the NED (North,

East, Down) system. To move the vehicle, users can

provide GPS coordinates which converted internall

by the software library to relative directions of angle

and distance. Alternatively, users can explicitly turn

the vehicle in the direction required and move along

a specified vector. The movement command is sent

to the MAVLink, which executes the actual displace-

ment of the vehicle. Error tolerance by defaults is

2m. The UAV will take off from the bottom right,

as shown in Fig. 1, marked in red. While the UAV

is allowed to fly in the entire region marked by

the blue square in this experiment, it is evident

that the rover cannot be placed in the region which

comprises of only the blue square but not the green

one. Thus, in our algorithm, the UAV flies to the

bottom right corner of the green square to begin its

search. Once the UAV reaches the corner, it follows

a set of predefined waypoints present inside the blue

square region and measures the power at each point.

A safety checker has been constructed to ensure

that the UAV remains within the boundaries of the

defined geofence. While the dark blue line, as shown

in Fig. 1, represents the general UAV boundaries for

all AERPAW experiments, the blue square is the

flight boundary for the UAV. Before moving to a

waypoint, the UAV checks whether the coordinate

is within the boundary and begins flight if it is so.

If not, the UAV moves on to the next waypoint.

Once the list of waypoints has been exhausted, it

keeps moving forward and measures power after

every 40m. If, at any point, it hits the geofence,

the UAV turns right and repeats the process.

At each location, the UAV hovers till a predeter-

mined (5 in our case) number of measurements are

recorded. This ensures that random noise does not



distort the signal power. We also take into account

the quality of the signal recorded. Power and Quality

are measured as per GNURadio parameters with

frequency 3.32GHz. The UAV then records the

weighted measurement of power as

Pi =
1

m

m=5
∑

j

P
j
i ∗Q

j
i

where P
j
i and Q

j
i are the jth measurement of power

and quality respectively at the ith waypoint. Pi is the

weighted ith power measured. Power is measured

in decibels, while quality is measured in decimals,

with 1 being the highest. Once the measurements

are done, the UAV moves on to the next waypoint.

Determining the location of the ground target in-

volves obtaining distance measurements to the target

from at least three distinct UAV anchor positions.

In addition to this, for any LLS-based localization

approach, the r-th index must be selected as a

Algorithm 1 : Rover Search Approach

Procedure: search (vehicle : Drone)

1: await TakeOff

2: while timenow < timeallowed do

3: await goTo(getBottomRightCoords())

4: msrall.append(sum(power ∗ quality)/m)
5: if msrall.size() > 4 then
6: ref pts = msrall.pop(0)
7: xr, yr, zr = ref pts[0]
8: dr = ref pts[1]
9: xxx = x2

r ∗ α+ y2

r ∗ α ∗ 0.64
10: for i ∈ range(1,msrall.size()) do
11: xval = msrall[i][0].lat− xr ∗ α ∗ 2
12: yval = msrall[i][0].lon− yr ∗ α ∗ 1.28
13: bval ← d2r −msrall[i][1]

2

14: A.append([xval, yval]
15: b.append(bval)

16: AT ← transpose(A)
17: l← (AT ∗ b)/(AT ∗A)
18: best position← (l.lat, l.lon, zr)

19: moveCoord← waypointList.pop()
20: while isOutsideFence(moveCoord) do
21: if waypointList.size() > 0 then
22: moveCoord← waypointList.pop()
23: else
24: moveCoord← turnRight()

25: await goTo(moveCoord)

26: await goTo(homeCoords)
27: await Land

reference point. In our experiment, we have set

r = 0, which means the first point is selected as the

reference. Once at least 4 power measurements have

been completed, the UAV calculates the estimated

target location as

l =
AT

v bv

AT
v Av

where Av and bv are computed as in [17]. All data

obtained are stored in logs maintained by the UAV,

which the experimenter can obtain and evaluate.

For this experiment, we stored power and quality

measurements, as well as the best estimate of the

rover at different points. As mentioned previously,

the best estimates at 3min and 10min are used for

evaluation criteria. The experiment is concluded af-

ter the assigned 10 minutes are over, at which point

the UAV returns to its home coordinates. Details of

our algorithm can be found in Algorithm 1.

V. EVALUATION RESULTS

As mentioned previously, AERPAW is a batch-

mode facility, which means that every program is

tested virtually before being executed in the field.

For this challenge, both virtual and physical testing

was conducted by the AERPAW team. Once the

virtual testing satisfied safety considerations, only

then were UAVs tested in the actual testbed. For both

virtual and physical (testbed) testing, the algorithm

is evaluated three times. Each time, UGV is kept at

a different known location, as shown in Fig. 2. The

AERPAW team ran the algorithm to find the 3 min

speed estimation and 10 min accuracy estimation

for each test. The distance between the estimated

location and the actual UGV location called an error,

is calculated for each test. The error for three tests is

then averaged to evaluate the algorithm’s accuracy.

A. Emulation Testing

Emulation Testing is the first stage of verification

conducted in the AERPAW testbed. AERPAW com-

prises two primary virtual entities: the E-VM and C-

VM. The E-VM serves as the experimenter’s virtual

computer, granting root access. The experimental

SDRs, along with the UAV/UGV (specifically its

autopilot), are directly reachable from the E-VM



(a) Emulation - Test 1 (b) Emulation - Test 2 (c) Emulation - Test 3

(d) Testbed - Test 1 (e) Testbed - Test 2 (f) Testbed - Test 3

Fig. 2: Tests performed in Virtual Environment (Top) and AERPAW Test Bed (Bottom).

through APIs supplied by standard programming li-

braries. Additionally, each AERPAW Node runs a C-

VM container, tasked with monitoring and providing

override capabilities. This allows the AERPAW team

to evaluate safety conditions, as well as FAA guide-

line compliance, and abort experiments which may

violate regulations or lead to dangerous situations.

As per the evaluation criteria, location estimates

were recorded for 3 and 10 minute marks, with

the caveat that the experiment would be aborted if

the UAV tried violate the geofence. Fig. 2 (Top)

shows the test scenarios and results for our algo-

rithm, containing actual position of the UGV, the

3 min estimate, and the 10 min estimate given by

the algorithm in 3 tests. Table 1 shows the error

in localization in all three instances (i.e. distance

between source and estimation). The average error

for the 3 min estimate was found to be 149.6m, and

for 10 min was 142.86m.

B. Testbed Testing

As with the emulation testing, the final testing

scenario also consisted of 3 runs with the UGV

being placed in the same location as in the digital

environment. Fig. 2 (Bottom) shows the actual posi-

tion, the 3 min estimate, and the 10 min estimate by

the algorithm for each test performed, while Table 1
shows the error in localization for these tests. The

algorithm estimated the location of UGV with the

error of 310m in 3 min and 119.4m in 10 min.

In both Emulation and Testbed scenarios, we

observe that our estimations are better for the 10
min scenario, which is in line with our expectations

that more number of samples will produce greater

accuracy. However, it is interesting to note that each

individual run does not provide better accuracy for

the 10 minute results (Emulation Run 1). This oddity

was not observed in the Testbed results which is

likely because of using a weighted measurement

of signal that helped get a better average. In an

emulated environment, signal strength was not a

strong indicator of power but in real life situations

TABLE 1. Emulation and Testbed Results

Category Time
(min)

Run
No

Error
(m)

Average
Error (m)

Emulation 3 1 92.4

2 152.7

3 203.7 149.6

10 1 155.4

2 134.1

3 139.1 142.9

Testbed 3 1 91.6

2 146.7

3 691.7 310.0

10 1 93.1

2 116.2

3 148.8 119.4



signal power as well as quality were both necessary

to correctly estimate signal strength. Additionally,

we observed that in Testbed Run 3, our algorithm

provided poor results for the fast (3 min) estimate

when the rover was placed outside the UAV’s flight

zone, while this was not the case in the Emulated

environment, indicating that processing of signal

power in real-world scenario needs additional care.

VI. CONCLUSION & FUTURE WORK

In this paper, we have demonstrated our imple-

mentation of a wireless source localization algo-

rithm using a UAV on the AERPAW testbed and

compared its performance with the same algorithm

on the Digital Twin Emulation environment. This

algorithm was developed as a part of the AERPAW

Find A Rover Challenge and, as such, we have dis-

cussed the limitations of our implementation based

on the guidelines provided. Our results show that

the AERPAW Digital Twin is a near-identical copy

of the real life environments and can be depended

upon by researchers to conduct their experiments

safely. However, some changes do exist and real-

life conditions can alter certain results.

We plan to perform further experiments on the

testbed and are currently working on implementa-

tions where multiple UAVs need to communicate

with each other in order to complete a task. Initially,

we plan to do this by using the Backbone Message

Queue channel and, in the future, extend this to

utilize purely wireless communication.
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