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Abstract—Unmanned Aerial Vehicles (UAVs) have
a variety of applications, making them a focus of
growing research interest. Estimates say that there
could be over three million aerial vehicles taking to the
skies in the next few years. Thus, it has become critical
to develop and test mission-specific algorithms without
compromising safety. Currently, FAA rules allow only
Line-of-Sight (LoS) testing for Aerial Vehicles, which
limits the number of applications that can be verified.
Furthermore, validating infrastructure-intensive algo-
rithms in the field is not feasible for every researcher.
To mitigate this issue, remote research infrastructure
testbeds have been developed. AERPAW is one such
project funded by US NSF where researchers can
develop their programs in a Digital Twin simulation
environment which the AERPAW team will then test.
In this paper, we have utilized the AERPAW testbed to
develop a localization algorithm for finding the source
of a radio signal using a single UAV. We observe the
results and note the differences between the emulation
and real-world conditions.

Index Terms—Unmanned Aerial Vehicle, au-
tonomous agents, source localization, testbed, drone,
aerial wireless network

I. INTRODUCTION

In recent times, Unmanned Aerial Vehicles have
gained significant popularity owing to their ma-
neuverability and versatility of applications. While
UAVs started as exclusively military tools [1], more
and more of them are now being deployed for
civilian use. Autonomous UAVs, in particular, have
been utilized for a variety of applications, such as,
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search and rescue [2], target monitoring [3] and
disaster surveillance [4]. With millions of UAVs
set to take to the air in the next few years [5],
it has become increasingly important to not only
theoretically develop and test algorithms for UAV
functionality but also verify correctness and safety
in the real world. However, it is not always feasible
for researchers to build and deploy the necessary
infrastructure. The Aerial Experimentation and Re-
search Platform for Advanced Wireless (AERPAW)
was developed to solve this issue.

AERPAW is a national aerial wireless experi-
mentation platform that provides remote access to
researchers for flexible and programmable experi-
ments focused on wireless research and unmanned
vehicles. AERPAW offers adaptability and resources
to researchers, allowing them to develop their algo-
rithms in an emulation environment, which is the
Digital Twin [6] of ground conditions, and then,
see the outcome of their theories in the real world.
However, uncertainty in the real world means that
not all aspects line up completely. In this paper,
we demonstrate the differences observed when an
experiment is run in the AERPAW emulation envi-
ronment versus the actual testbed. To do this, we
have implemented a Source Localization algorithm
in AERPAW where a UGV hidden in a field emits a
radio signal and a UAV must find the source of the
signal. Our results show that, in case of AERPAW,
while the real world implementation is very close
to the emulation environment, some key differences
exist. This experiment was conducted as part of
the AERPAW Find A Rover (AFAR) Challenge.
We note that this manuscript includes information
including images from the AERPAW website [7].



II. RELEVANT PRIOR WORK

As stated previously, our goal in this paper was
to observe and analyze how real world conditions
could add to uncertainties which were not present
in the emulation environment. As such, the choice
of our experiment, though constrained by the chal-
lenge requirements, was still uniquely suited as an
exemplar problem for our task. Localization is the
problem of determining the position of an object by
measuring some emission like odor, sound, or radio
waves. It has a variety of applications and is rapidly
becoming an area of considerable interest. Problems
can consist of finding the source of a pollutant [8] or
gaseous leak [9], to locating a sound source [10] or
mapping a node in a wireless sensor network [11].
Fink and Kumar [12] in their paper, presented an on-
line Gaussian model for approximating the location
of a static source by measuring the signal strength
of a radio in an indoor setting. Lee et al. [13] devel-
oped a cost-effective signal measurement model for
indoor localization using fingerprinting technology.
Fan et al. [14] presented a method for 3D indoor
localization using a Structured Bidirectional Long
Short-term Memory (SBi-LSTM) architecture.

While outdoor localization problems have usu-
ally focused GPS-based vehicular tracking, in some
cases, GPS might not be available and other methods
may be necessary. Bhattacharjee et al. [15] presented
a tracking algorithm for detecting a UAV using only
passive RF signals. Al-Sadoon et al. [16] tackled the
issue of asset tracking in a dense GPS-unfriendly
environment by utilizing a compact-size sensor array
of six electrically small dual-band omnidirectional
spiral antenna elements for the angle of arrival
(AOA) method. Kwon and Guvenc [17] showed five
methods for estimating a static RF signal source
using a linear least square (LLS) based localization
scheme and a waypoint-based UAV trajectory.

III. PROBLEM MODEL

The goal of our study is to implement and val-
idate outdoor source localization under real-world
circumstance. The source signal is emitted by a
stationary Unmanned Ground Vehicle (UGV) which
is located somewhere in the area defined by the
green square, as can be seen in Fig. 1. The UGV
has one transmit antenna and continuously emits
a GNU Radio-based channel-sounding narrowband
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Fig. 1: Illustration of UAV traversing the field using
waypoints. Based on the estimated signal strength,
the UAV calculates the circular area the source could
be in. The intersection of 3 such circles provides the
final estimate.

waveform with a bandwidth of 125KHz. A UAV
will be able to receive this signal using software-
defined radios and determine the strength of the
signal based on its distance to the source. Three tests
were conducted, two with the rover hidden in the
area the UAV is allowed to fly over and one outside
this region. This allowed us to test for scenarios
where a signal source may be located in a restricted
or dangerous zone, e.g., somewhere with extreme
wind conditions [18], in addition to regular cases
where the UAV can search an entire region. Two
difference testing scenarios were selected to judge
the accuracy of the algorithm. The first scenario
consisted of a fast estimation and allowed the UAV
to fly for a total of 3 minutes before reporting its
findings. For a more robust estimation, allowed the
UAV to take a longer time (10 min) so that more
samples could be collected.

A. AERPAW Architecture

AERPAW is a batch-mode facility consisting of
a set of virtual computing nodes, each aligning
with a physical AERPAW computing node. The
programs can be tested in a simulation environment
which is the Digital Twin of real-world conditions.
To ensure an easy learning curve, the AERPAW
software provides a range of extendable modules
that allow the user to easily program each node. In
this section, we will briefly describe the necessary
parts required in this experiment.



Software Libraries

The AERPAW software library can be roughly sep-
arated into two categories - Programmable Entities
and Backplane. The programmable entities are those
exposed to the user and can be modified as required.
These include vehicle control software, GNU Ra-
dio, and some utility functions. The vehicle control
software is designed as a State Machine where
users can define their states. A single thread keeps
track of which state the vehicle is in, while another
may interrupt the current thread to enforce some
action. The aerpawlib package provides functions
that allow users to convert GPS coordinates to angle
headings and vice versa. To communicate with the
drones, we use MAVLink. The secure Backplane is
responsible for isolating the platform with the rest
of the world and the experiments from each other.

Hardware Nodes

AERPAW provides several resources that the user
can program as per their requirements. A comput-
ing system, commonly denoted as a Companion
Computer, is equipped with client-sidle AERPAW
control software and accompanies the experimental
resources (such as radios or vehicles) which re-
searchers aim to investigate. This is referred to as
an AERPAW Node. When physically instantiated for
an experiment, it becomes an AERPAW Hardware
Node (AHN). Nodes are of two types - fixed and
portable. In this experiment, we focus only on the
portable nodes, which are The Large AERPAW Mul-
tirotor (LAM) and the Unmanned Ground Rover.
All AERPAW nodes use USRP radio software to
communicate with the central system.

IV. OUR APPROACH

To localize the source, we adopted the Linear
Least Square method to estimate the position of the
rover based on repeated sampling of the received
signal. Since the experiment would be conducted on
an open field, we have considered that the UAV will
maintain a Line of Sight (LoS) connectivity with the
signal source and, thus, have chosen the free space
path loss model. The formula for calculating path
loss is given by [19]

Pd = Po + 10« loglo <CZ)> + )(U7

where Py is the path loss at some reference dis-
tance dy and X, is a Gaussian random variable
with mean 0 and standard deviation o. « refers to
the path loss coefficient. d refers to the distance
between the ground target and the UAV, d; =
F@iyiszi) = /(x = 23)2 + (y — )2 + (2 — 2:)?
where (z,vy,z) is the real target location. For the
reference point we have used field test data provided
by the AERPAW team.

Positioning in AERPAW follows the NED (North,
East, Down) system. To move the vehicle, users can
provide GPS coordinates which converted internall
by the software library to relative directions of angle
and distance. Alternatively, users can explicitly turn
the vehicle in the direction required and move along
a specified vector. The movement command is sent
to the MAVLink, which executes the actual displace-
ment of the vehicle. Error tolerance by defaults is
2m. The UAV will take off from the bottom right,
as shown in Fig. 1, marked in red. While the UAV
is allowed to fly in the entire region marked by
the blue square in this experiment, it is evident
that the rover cannot be placed in the region which
comprises of only the blue square but not the green
one. Thus, in our algorithm, the UAV flies to the
bottom right corner of the green square to begin its
search. Once the UAV reaches the corner, it follows
a set of predefined waypoints present inside the blue
square region and measures the power at each point.
A safety checker has been constructed to ensure
that the UAV remains within the boundaries of the
defined geofence. While the dark blue line, as shown
in Fig. 1, represents the general UAV boundaries for
all AERPAW experiments, the blue square is the
flight boundary for the UAV. Before moving to a
waypoint, the UAV checks whether the coordinate
is within the boundary and begins flight if it is so.
If not, the UAV moves on to the next waypoint.
Once the list of waypoints has been exhausted, it
keeps moving forward and measures power after
every 40m. If, at any point, it hits the geofence,
the UAV turns right and repeats the process.

At each location, the UAV hovers till a predeter-
mined (5 in our case) number of measurements are
recorded. This ensures that random noise does not




distort the signal power. We also take into account
the quality of the signal recorded. Power and Quality
are measured as per GNURadio parameters with
frequency 3.32GHz. The UAV then records the
weighted measurement of power as

1 m=>5 ) ‘
P= 3 P+
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where Pj and Q{ are the j** measurement of power
and quality respectively at the i*” waypoint. P; is the
weighted i*" power measured. Power is measured
in decibels, while quality is measured in decimals,
with 1 being the highest. Once the measurements
are done, the UAV moves on to the next waypoint.

Determining the location of the ground target in-
volves obtaining distance measurements to the target
from at least three distinct UAV anchor positions.
In addition to this, for any LLS-based localization

approach, the r-th index must be selected as a

Algorithm 1 : Rover Search Approach
Procedure: search (vehicle : Drone)
. await TakeOf f
. while time, o < timegiowed do
await goTo(get Bottom RightCoords())

1

2

3

4 msrqy.append(sum(power * quality) /m)
5: if msrau.size() > 4 then

6: ref_pts = msrqu.pop(0)

7 Ty, Yr, 2r = ref_pts[0]

8

: dr = ref_pts[1]
9: zrx =2 % o+ y2 * o % 0.64
10: for i € range(1, msrqy.size()) do
11: ZToar = msTau|i][0].lat — zr * o * 2
12: Yval = MsTqu[i][0].lon — yr * o x 1.28
13: boal — d2 — msruzz[i][l}2
14: A.append([Tval, Yvai
15: b.append(byai)
16: AT — transpose(A)
17: 1+ (AT xb)/(AT x A)
18: best_position < (l.lat,l.lon, z,)
19: moveCoord < waypointList.pop()
20: while isOutside Fence(moveCoord) do
21: if waypointList.size() > 0 then
22: moveCoord « waypoint List.pop()
23: else
24: moveCoord + turnRight()
25: await goTo(moveCoord)

26: await goTo(homeCoords)
27: await Land

reference point. In our experiment, we have set
r = 0, which means the first point is selected as the
reference. Once at least 4 power measurements have
been completed, the UAV calculates the estimated
target location as

AT,
T ATA,

l

where A, and b, are computed as in [17]. All data
obtained are stored in logs maintained by the UAYV,
which the experimenter can obtain and evaluate.
For this experiment, we stored power and quality
measurements, as well as the best estimate of the
rover at different points. As mentioned previously,
the best estimates at 3min and 10min are used for
evaluation criteria. The experiment is concluded af-
ter the assigned 10 minutes are over, at which point
the UAV returns to its home coordinates. Details of
our algorithm can be found in Algorithm 1.

V. EVALUATION RESULTS

As mentioned previously, AERPAW is a batch-
mode facility, which means that every program is
tested virtually before being executed in the field.
For this challenge, both virtual and physical testing
was conducted by the AERPAW team. Once the
virtual testing satisfied safety considerations, only
then were UAVSs tested in the actual testbed. For both
virtual and physical (testbed) testing, the algorithm
is evaluated three times. Each time, UGV is kept at
a different known location, as shown in Fig. 2. The
AERPAW team ran the algorithm to find the 3 min
speed estimation and 10 min accuracy estimation
for each test. The distance between the estimated
location and the actual UGV location called an error,
is calculated for each test. The error for three tests is
then averaged to evaluate the algorithm’s accuracy.

A. Emulation Testing

Emulation Testing is the first stage of verification
conducted in the AERPAW testbed. AERPAW com-
prises two primary virtual entities: the E-VM and C-
VM. The E-VM serves as the experimenter’s virtual
computer, granting root access. The experimental
SDRs, along with the UAV/UGV (specifically its
autopilot), are directly reachable from the E-VM
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Fig. 2: Tests performed in Virtual Environment (Top) and AERPAW Test Bed (Bottom).

through APIs supplied by standard programming li-
braries. Additionally, each AERPAW Node runs a C-
VM container, tasked with monitoring and providing
override capabilities. This allows the AERPAW team
to evaluate safety conditions, as well as FAA guide-
line compliance, and abort experiments which may
violate regulations or lead to dangerous situations.

As per the evaluation criteria, location estimates
were recorded for 3 and 10 minute marks, with
the caveat that the experiment would be aborted if
the UAV tried violate the geofence. Fig. 2 (Top)
shows the test scenarios and results for our algo-
rithm, containing actual position of the UGV, the
3 min estimate, and the 10 min estimate given by
the algorithm in 3 tests. Table 1 shows the error
in localization in all three instances (i.e. distance
between source and estimation). The average error
for the 3 min estimate was found to be 149.6m, and
for 10 min was 142.86m.

B. Testbed Testing

As with the emulation testing, the final testing
scenario also consisted of 3 runs with the UGV
being placed in the same location as in the digital
environment. Fig. 2 (Bottom) shows the actual posi-
tion, the 3 min estimate, and the 10 min estimate by
the algorithm for each test performed, while Table 1
shows the error in localization for these tests. The

algorithm estimated the location of UGV with the
error of 310m in 3 min and 119.4m in 10 min.

In both Emulation and Testbed scenarios, we
observe that our estimations are better for the 10
min scenario, which is in line with our expectations
that more number of samples will produce greater
accuracy. However, it is interesting to note that each
individual run does not provide better accuracy for
the 10 minute results (Emulation Run 1). This oddity
was not observed in the Testbed results which is
likely because of using a weighted measurement
of signal that helped get a better average. In an
emulated environment, signal strength was not a
strong indicator of power but in real life situations

TABLE 1. Emulation and Testbed Results
Category Time | Run Error Average
(min)| No (m) Error (m)
Emulation | 3 92.4
152.7
203.7
155.4
134.1
139.1
91.6
146.7
691.7
93.1
116.2
148.8

—_

149.6

10

142.9

Testbed 3

310.0

10

W N ]| WO N | W N | W N

119.4




signal power as well as quality were both necessary
to correctly estimate signal strength. Additionally,
we observed that in Testbed Run 3, our algorithm
provided poor results for the fast (3 min) estimate
when the rover was placed outside the UAV’s flight
zone, while this was not the case in the Emulated
environment, indicating that processing of signal
power in real-world scenario needs additional care.

VI. CONCLUSION & FUTURE WORK

In this paper, we have demonstrated our imple-
mentation of a wireless source localization algo-
rithm using a UAV on the AERPAW testbed and
compared its performance with the same algorithm
on the Digital Twin Emulation environment. This
algorithm was developed as a part of the AERPAW
Find A Rover Challenge and, as such, we have dis-
cussed the limitations of our implementation based
on the guidelines provided. Our results show that
the AERPAW Digital Twin is a near-identical copy
of the real life environments and can be depended
upon by researchers to conduct their experiments
safely. However, some changes do exist and real-
life conditions can alter certain results.

We plan to perform further experiments on the
testbed and are currently working on implementa-
tions where multiple UAVs need to communicate
with each other in order to complete a task. Initially,
we plan to do this by using the Backbone Message
Queue channel and, in the future, extend this to
utilize purely wireless communication.
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