Published as a conference paper at ICLR 2024

ACHIEVING SAMPLE AND COMPUTATIONAL EFFICIENT
REINFORCEMENT LEARNING BY ACTION SPACE RE-
DUCTION VIA GROUPING

Yining Li *, Peizhong Ju",& Ness Shroff™"
“Department of Electrical and Computer Engineering
"Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210, USA

{11.12312, ju.171, shroff.ll}Qosu.edu

ABSTRACT

Reinforcement learning often needs to deal with the exponential growth of states
and actions when exploring optimal control in high-dimensional spaces (often
known as the curse of dimensionality). In this work, we address this issue by learn-
ing the inherent structure of action-wise similar MDP to appropriately balance the
performance degradation versus sample/computational complexity. In particular,
we partition the action spaces into multiple groups based on the similarity in transi-
tion distribution and reward function, and build a linear decomposition model to
capture the difference between the intra-group transition kernel and the intra-group
rewards. Both our theoretical analysis and experiments reveal a surprising and
counter-intuitive result: while a more refined grouping strategy can reduce the
approximation error caused by treating actions in the same group as identical, it
also leads to increased estimation error when the size of samples or the computation
resources is limited. This finding highlights the grouping strategy as a new degree
of freedom that can be optimized to minimize the overall performance loss. To
address this issue, we formulate a general optimization problem for determining
the optimal grouping strategy, which strikes a balance between performance loss
and sample/computational complexity. We further propose a computationally effi-
cient method for selecting a nearly-optimal grouping strategy, which maintains its
computational complexity independent of the size of the action space.

1 INTRODUCTION

Reinforcement learning (RL), a field dedicated to finding the optimal policy that maximizes the
long-term return through interactions with the environment, suffers from "the curse of dimensional-
ity" (Barto and Mahadevan, 2003). In other words, in high-dimensional scenarios, the state-action
space of RL grows exponentially with the number of degrees of freedom. For instance, in a con-
trol system, there could be millions of potential actions available at each step. Similarly, within a
large system, a recommender system might have to consider millions of items (Dulac-Arnold et al.,
2015). This exponential growth poses a significant complexity barrier to discovering optimal policies,
especially in large-scale systems (Azar et al., 2012; Agarwal et al., 2020b).

To overcome the challenges associated with the explosion of the state-action space, a common
approach is to use a low-rank representation of the Markov Decision Process (MDP). In low-rank
MDP settings that allow for polynomial sample complexity relative to the horizon length and
feature dimension, some works investigate simultaneous learning of representations and the optimal
policy (Agarwal et al., 2020a; Modi et al., 2020). However, the existing literature often assumes the
attainability of an exact low-rank representation of the state-action space, wherein the representation
accurately reflects the MDP’s characteristics. In practical scenarios, low-rank structures are often
corrupted by noise, but the literature does not consider the errors resulting from the mismatch between
the low-rank representation and the MDP itself.

Published as a conference paper at ICLR 2024

In order to address the aforementioned limitations, researchers have explored the use of abstractions,
which involves learning the low-dimensional latent state/action space that throws away some irrelevant
state/action features. Previous literature has investigated various similarity metrics to identify suitable
abstractions aligned with the original MDP, such as model similarity (Jiang et al., 2015; Gelada et al.,
2019) and the similarity of the optimal value function (Abel et al., 2016; 2020). Some studies have
investigated the performance degradation resulting from inaccurate abstractions (Abel et al., 2020).
To our knowledge, existing literature does not address the both sample complexity and computational
complexity associated with estimating abstractions.

Our work falls within the realm of learning abstractions to preserve the performance of the optimal
policy. We specifically focus on MDPs with large action spaces that exhibit group-wise similarity,
where only approximate grouping strategies of the action space are available. Leveraging abstractions
of the underlying MDP offers the advantage of reduced complexity, albeit at the cost of worse
performance due to the approximation. This raises a fundamental question: How does the trade-off
between complexity reduction benefits and performance loss manifest in the context of an MDP and
its corresponding grouping strategy?

Interestingly, our analysis yields a counter-intuitive result: while a finer grouping strategy minimizes
model approximation errors, the utilization of sample-based estimation also contributes to the
performance shortfall, especially when faced with limited samples and computational resources.
This further prompts the question of how to select a grouping strategy that strikes a balance between
approximation error and estimation error to minimize the performance loss.

Our main contributions are as follows.

* We propose an action-grouping method that clusters actions based on the similarity between
intra-group transition kernels and rewards. This grouping approach allows us to effectively
reduce the size of the action space. Furthermore, we ensure that the performance degradation
remains within acceptable bounds by carefully selecting the grouping strategy.

* We analyze the performance loss, taking into account both approximation errors caused
by information loss of grouping and estimation errors caused by limited sampling and
computational resources. We compare our result with a known lower bound on the estimation
error to show that it is tight. We then provide an example for which the approximation error
is also relatively tight. We further give some insights into understanding the relationship
between the grouping function and performance loss.

* We build a general optimization problem over the grouping function, sample size, and
iteration number, enabling us to achieve a balance between performance degradation and
sample/computational complexity. The complexity of finding the optimal grouping is
proportional to the number of feasible groups.

2 RELATED WORK

To avoid the curse of dimensionality in tabular MDP, there have been several works on learning and
exploring the inherent structure of large MDP.

Representation Learning in Low-rank MDP One line of work is to consider reducing sample
efficiency by exploring MDP structures. Several studies have explored the sufficient and necessary
conditions for learning nearly-optimal policies with polynomial sample efficiency, relative to the
horizon length and feature dimension (Jiang et al., 2017; Sun et al., 2019; Du et al., 2021; Weisz et al.,
2021). In MDP settings that allow for polynomial sample complexity, such as low Bellman rank (Jiang
et al., 2017; Wang et al., 2021; Ayoub et al., 2020; Zhou et al., 2021; Du et al., 2019; Agarwal et al.,
2020a), low witness rank (Sun et al., 2019), and bilinear structure (Du et al., 2021), some works
assume that the agent possesses knowledge of a low-rank representation and focus on exploration
algorithms (Jiang et al., 2017; Wang et al., 2021; Li et al., 2023). A more practical approach is to
learn a good latent representation of specially-structured MDPs through rich observations (Du et al.,
2019; Agarwal et al., 2020a; Modi et al., 2020; Uehara et al., 2021; Zhang et al., 2022). However,
the above-mentioned feature selection algorithms are based on the realizability assumption, which
assumes there exists an exact mapping function from the latent state space to observations. In contrast,

Published as a conference paper at ICLR 2024

our setting does not assume that this exact mapping exists, and we allow optimizing the grouping
function which belongs to the given feasible set.

State/action Abstractions Another line of work learns abstractions, which do not hold assumptions
on the specific structures of latent state/action space. The abstractions can be categorized into state,
action, and joint state/action abstractions. For the state abstractions, Li et al. (2006) build a uniform
model of state abstraction to preserve enough information to find good policies. It generalizes different
types of state abstractions, such as bisimulation (Givan et al., 2003), and homomorphisms (Ravindran
and Barto, 2002). Ravindran and Barto (2004) emphasize the performance loss by the MDP approxi-
mation. Li et al. (2006) also provide the convergence performance of the resulting abstract policy in
the ground MDP. Abel et al. (2016) further investigate the performance guarantee of approximate
state abstractions which treats nearly-identical states as equivalent. Several algorithms have been
proposed to select a good state abstraction from a given set of feasible abstractions (Jiang et al., 2015;
Ortner et al., 2019).

A well-researched action abstraction type is options which are temporally related actions from an
initial state and terminal state (Sutton et al., 1999). A trend of joint state-action abstraction is the
hierarchical abstraction design, in which higher-level policies communicate between goals (subspace
of state spaces) and lower-level policies aim to achieve goals from initial states (Nachum et al., 2019;
Abel et al., 2020; Jothimurugan et al., 2021). Specifically, Abel et al. (2020) learns the performance
loss associated by pairing the options with state abstractions and presents the sufficient and necessary
conditions for options to preserve information for nearly-optimal policy. There are also works on
learning latent state space models end-to-end using neural networks (Hafner et al., 2019; Ha and
Schmidhuber, 2018; Gelada et al., 2019).

However, previous literature on abstraction learning primarily focuses on the performance loss
resulting from approximate abstractions, while ignoring the complexity including both sample
complexity and computational complexity. In our work, we address this gap by considering both the
performance loss and the sample/computational complexity when determining the optimal grouping
function.

3 SYSTEM MODEL

3.1 MDP PRELIMINARIES

This paper focuses on infinite-horizon discounted Markov Decision Processes (MDP) M :=
(8, A,P,R,~v). Both 8§ and A are discrete and finite. Here, S and .A represent the state and
action space, with sizes denoted as S and A, respectively. P : & x A — Q(S) is the transition kernel,
where Q(8) is the collection of probability distributions over state space S. P(s’|s, @) represents the
probability of transiting to state s’ when the agent plays action a at state s. R(s,a) is the instant
reward with state-action pair being (s, a). We have the following assumption on the rewards, which
is commonly used in RL (Antos et al., 2008; Wang et al., 2021).

Assumption 1. (Bounded rewards) Assume that the reward satisfies 0 < R(s,a) < 1 for any
state-action pair (s, a).

The policy on M is defined as a mapping from S to the probability distributions over the action
space, i.e., m: S — Q(A). Let Q (s, a) and Vo (s) denote the value function based on the policy
7 from the initial state-action pair (s, a) and s, respectively. There exists an optimal policy 7} ; that
maximizes the value function simultaneously for each state, and the state-action value function based
on policy 7}, is the fixed point of the Bellman optimality operator (Puterman, 2014). For notational
simplicity, we write the value function based on the optimal policy as (), and V{; in the following.

3.2 ACTION GROUPING

To capture the similarity characteristics, we assume actions can be classified into multiple groups
based on prior knowledge of M. By grouping the actions, we are able to find the nearly-optimal
policy over a reduced-dimensional state-action space, which significantly reduces the complexity.
Define the surjective mapping function g : A — G, where g(a) = g(a’) for any actions a and a’
in the same group. The set of actions that belong to group h is denoted as Ay,. Define |g| := |G| as

Published as a conference paper at ICLR 2024

the number of groups mapped by the grouping function g, and D as the set of all feasible grouping
functions.

For each step, we consider a combined policy, where the higher-level policy 7° : & — Q(G) selects
the group and the lower-level policy 7'(-|s,h) : 8 x h — Q(Ap), h € G selects an action belonging
to that group. The joint policy is composed of the higher- and lower-level policies, denoted as
g = 7 o 7. The lower-level policy can be obtained using domain knowledge. In the case where
actions within the same group exhibit similar transition kernels and reward functions, we can also
employ the uniform distribution as the lower-level policy.

To assess the effectiveness of the grouping operation, we introduce a linear decomposition model that
quantifies the similarity between actions within the same group based on their transition kernels and
rewards. This model allows us to evaluate the extent of the performance degradation, which will be
thoroughly discussed in the following sections.

Grouped transition probability Define the linear decomposition of P by the tuple (8, P, P2) as

P(s'|s,a) = (1 - Bp(s,a))Pi(s']s,9(a)) + Bp(s, a)P2(s'|s, a), M

where Bp : S x A — [0,1], Py : S x G — S is the transition probability from the state and group
pair belonging to the state space and the group space to the next state, and Py : S x A — S is
the transition probability from the state and action pair belonging to the state space and the actions
space to the next state. Any P has at least one linear decomposition solution (3p, Py, P3) of Eq. (1)
since there exist a naive linear decomposition solution (8p(s,a) = 1,P; = 0,P; = P). Define the
probability deviation factor Sp := max, o Bp(s,a), thus 0 < fp < 1.

Grouped rewards Similar to the transition probability distribution, we write actual rewards R(s, a)
as the linear combination of 0 < Ry(s,a) < 1and 0 < Ry(s,a) < 1 with factor B (s, a), which
is shown as

R(s,a) = (1 - Br(s; a))Ri(s,g(a)) + Br(s; a)Rz(s, a). @

Define the rewards deviation parameter as Sr := maxs q Br(s,a) and 0 < fr < 1. R; can be
viewed as the reward function corresponding to state-group space, and Ro represents the deviated
reward function of the primitive state-action space.

Remark 1. (Obtaining D) Intuitively, actions that have similar transition probability distributions
and reward functions can be clustered into the same group. We can use expert knowledge of specific
applications to obtain the feasible grouping function set D before the learning process. Note that
we do not make any assumptions on D, e.g., we do not need the finer grouping function to be the
refinement of coarser grouping functions as in [Assumption 1, (Jiang et al., 2015)].

Remark 2. (Calculation of P, and P) P, is the common transition kernel for all actions in the
same group, and Py reflects each individual action’s transition characteristics. We can get (P1,Ps)
by either directly solving Eq. (1) or utilizing the domain knowledge. We provide an example of getting
(P1,Py) in the wireless access scenario in Appendix B.1.

Remark 3. (Meaning of Bp and 5r) The deviation factors Bp and B reflect how well the common
transition probability distribution and reward can represent each action’s actual transition kernel
and reward. If Bp and Br are small, then the transition kernel and rewards of joint actions in the
same group are almost identical. Specifically, when Bp = fr = 0, P(:|s,a) = P1(|s,g(a)) and
R(s,a) = Ry(s,g(a)). When Bp = 1, P(:|s,a) = Pa(:|s, @) and there is no common pattern for
all actions in the same group.

3.3 MODEL-BASED RL WITH GENERATIVE MODEL

The model-based dynamic programming algorithm with the generative model is shown in Algo-
rithm 1. Assume we can access a generative model that generates independent quadruples (s, h, r, s’)
following M. We generate K’ quadruples for each state-group pair, where 1, = Rg(s,h),
s, ~ Pg(-|s, h). The total sample complexity is K = S|g|K’. We can have an empirical estimation

'Assume f : S — A, ¢ : S = G, ¢n : h — Ap, and ¢ = {¢,}neg. We define f = ¢ o o iff
flals) = ¢(h|s)in(alh).

Published as a conference paper at ICLR 2024

Algorithm 1 Model-based RL with generative model

Input: state value function initialization Q%(s, h)=0foralls € S,h € g.
Output: policy 75
for (s,h) € S x G do
Draw sample (s, h, 71, 8,5, where 7, = Ra(s,), s}, ~ Pg(-|s, h).
end for .
Estimate P and R¢g by Eq. (3).
Execute the dynamic programming algorithm for 7" iterations and generate the policy 77..

A A SR o

of M as

K’ K’

5 > count(s,h,s") - 1

Po(s'|s, h) = ==L o , Ra(s,h) = FZrk(s, h). 3)
k=1

We can construct an empirical MDP as Mg = (S, A, Pe, Re,) by sampling over each state-group

pair and use the oracle dynamic programming algorithms such as value iteration and policy iteration

to get a nearly-optimal policy under the estimated MDP.

Here we consider the sample and computational complexity induced by Algorithm 1. Sample
complexity, denoted as Cgamp, represents the number of samples needed to obtain the epes-optimal
policy. On the other hand, computational complexity denoted as Ceomp, refers to the computational
operations required to achieve the same goal.

4 MAIN RESULTS ON PERFORMANCE EVALUATION

We now present the main theorem that establishes the upper bound on the performance gap between
the optimal policy and the output policy of Algorithm 1. Let 7g 7 = 77 o 7', where 7%, is the output
policy of Algorithm 1 after 7 iterations.

Theorem 1. Assume the reward is deterministic>. Given M and grouping function g, when the
value function difference between the optimal policy and the output policy 5. under the estimated

~ o . 648S|g| log 8SL‘7‘ .
MDP Mg denoted as |V~ — V/\T;[T < €opt, and the sample size K > w with
G G

0o (1-v)2
probability exceeding 1 — 0, one has

”V./:\k/l - V/ClG’THOC < €Eperfs

where

85]|g]
S|g| IOg (6(1*97)> 46opt

B B)
Eperf — 2 + + 20’7 + 9 (4)
vt ((17)2 17y K(1—7)3 1—7y
approximation error €approx estimation error €.g
= g 2 P) v
Br = max (R(s,a1) — R(s,a2)). (6)

s€8,9(a1)=g(a2)

As shown in Eq. (4), the performance gap between 7* and 7 7 contains two part: approximation
error and estimation error. We now explain the two error terms as follows.

Approximation error arises when the dynamic programming algorithm operates at the group level
and ignores the disparities in transition probability distributions and rewards among actions within
the same group. Specifically, 55 and (7, are the minimal Sp and Bg, where (8p,P1,P3) and
(Br, R1, R2) are the solutions to Eqs. (1) and (2), respectively. It is important to note that 8 and 55,
are solely determined by the grouping function and do not depend on any other factors.

*This assumption implies Rc in Eq. (3) is accurate.

Published as a conference paper at ICLR 2024

As the number of groups increases, the approximation error generally decreases. The underlying
intuition is that a finer grouping function has the potential to improve performance by minimizing
grouping errors and capturing subtle distinctions within groups. We illustrate this concept by
providing an example, where a finer grouping function in the feasible grouping function set is a
refinement of a coarser grouping function. This structure has also been considered in prior work
such as Jiang et al. (2015). As the grouping function becomes coarser, the differences in probability
transition distribution and rewards within each group become larger, resulting in a monotonic increase
in the approximation error.

Estimation error can be further decomposed into two terms: €gmp (the first term of ecy) and €, (the
second term of €qy). Specifically, €smp and e, reflect the performance loss caused by transition
kernel estimation with finite samples and limited iteration numbers, respectively. When using policy
iteration (Antos et al., 2008) or value iteration (Munos, 2005; Munos and Szepesvari, 2008) as the
planning algorithm in Algorithm 1, €y, decreases at a linear rate in the number of iterations 7'. To
provide a comprehensive understanding, we present the detailed derivations of €., specifically for the
case of value iteration in Appendix D.

The detailed analysis of the tightness of Theorem 1 in special cases and the proof sketch are presented
in Section 6.

Comparison with Wang et al. (2021) We compare our results with [(Wang et al., 2021), Theorem
3]. Wang et al. (2021) also considers the model-based method utilizing the generative model and
investigates the performance loss caused by inaccurate feature extraction in [(Wang et al., 2021),
Theorem 3]. We summarize our main differences as follows. Compared with Theorem 1, our result
characterizes the performance gap caused by the rewards model deviating from the grouping model,
which was not considered in previous work. Furthermore, our result improves the approximation error
of transition kernel difference by a factor of 22. We demonstrate the tightness of our approximation

error with a constant difference when deviation factors are small enough. Notably, our approach
optimizes over (P1,P2) and (R, R2) to find the minimum /3 and (.

Theorem 1 reveals that the performance loss ||V, — V(""" || s can be mitigated through tuning the

sample size, iteration number, and the grouping function. Increasing the sample size K or the number
of computational operations 7" can reduce the performance loss since K and 1" are inversely related to
€opt- This coincides with the intuition that a larger sample dataset and larger available computational
complexity leads to a better-performed policy. However, the relationship between the performance
loss and the grouping function is surprising.

A grouping function with a larger number of groups can sometimes achieve better performance.
When the sample size and the number of computation operations are extremely large, the estimation
error becomes significantly smaller compared to the approximation error, making the performance
loss predominantly determined by the approximation error. In such cases, we can choose a grouping
function with a larger number of groups to achieve better performance.

As demonstrated in Fig. 1(a), comparing the grouping and non-grouping settings with K’ = 500 (red
and blue lines with marker (), the non-grouping setting has a smaller estimation error. The number
of samples for each action is sufficient for accurate estimation, leading to better performance in the
non-grouping setting than in the grouping setting. This observation aligns with our analysis, which
suggests the performance loss decrease as the number of groups increases.

Adjusting grouping function can sometimes enable a trade-off between approximation and
estimation errors. When the sampling size and the computation operations are limited, the estimation
error cannot be disregarded. According to Theorem 1, €smp decreases sublinearly as the number of
groups decreases. This can be intuitively understood: when the sample size is fixed, having fewer
groups allows for more samples to estimate the transition probability of each state-group pair, which
consequently leads to a smaller estimation error. Similarly, when the computational complexity is
limited, a smaller number of groups indicates a larger iteration number 7', therefore reducing ;.

As demonstrated in Fig. 1(a), comparing the grouping and non-grouping settings with K’ = 10
(red and blue lines with marker [J), the non-grouping setting has a higher estimation error than the
grouping setting. However, even though the approximation error is smaller in the non-grouping
case, setting small deviation factors ensures that the grouping error remains small. Therefore, the

Published as a conference paper at ICLR 2024

@
_0s8 ;3/ - —— =2
z g e
§)6 ’ —e— grouping, K’ = 500 ‘V. ey | == G=5
E ,E(=G+ non-grouping, K’ = 500 ; —— Q=10
2“4 ,z' —8— grouping, k' = 10 % G=15
g , =& non-grouping, K’ = 10 G=20
S02f non-grouping
E , grouping
&= /
=0 o

) 10

10 107 107 100

5 5
Tteration Number Tteration Number Sample Size

Figure 1: Performance loss with grouping and non-grouping Figure 2: Performance loss versus
structure under the downlink transmission scenario (details sample size. Each point is averaged
are in Appendix B.2). Each point is averaged over 20 rounds. over 1000 rounds.

A = 1000, and G = 10. A = 1000.

overall performance loss of the non-grouping case is still significantly larger than the grouping setting.
Fig. 1(b) implies the grouping can decrease the computational complexity drastically.

This surprising result can also be verified by Fig. 2. When we only have limited sampling resources,
coarser grouping functions are preferred. For example, when the total sample size is K = 10%, the
grouping function with group number G = 20 (yellow line) is preferred over other settings. However,
in scenarios where the sample resources are unlimited (e.g., sample size K = 107), the non-grouping
function becomes the preferred option.

The above analysis based on Theorem | reveals that optimizing the grouping function is a key factor
in reducing performance loss. In Section 5, we propose a general optimization problem considering
the trade-off between performance loss and complexity.

5 PERFORMANCE-COMPLEXITY TRADE-OFF

Theorem 1 highlights the possibility of optimizing the grouping function to reduce performance loss
when all available sample and computational resources are utilized. However, practical applications
often involve additional costs for acquiring samples and computational operations, which may
not scale proportionally with the size of these resources (Luo et al., 2021). To address this, we
aim to find the optimal sample size, iteration number, and grouping function that strike a balance
between complexity and performance loss. This trade-off allows us to achieve an acceptable level of
performance degradation while keeping the sample and computational complexity manageable.

To capture this trade-off, we introduce a utility function f : R? — R that characterizes the preferences
for performance loss and complexity. We make the following assumption.

Assumption 2. f is monotone decreasing w.rt each variable, i.e., f(x1,y,2) < f(z2,y,2) iff
1 > x9, and same applies to y and z.

Assumption 2 guarantees that the utility function decreases when either the performance loss or
the sample/computational complexity increases while holding other terms constant. According to
Assumption 2, the minimization of f (epers, Csamp, Ccomp) Teflects a preference for lower performance
loss and complexity. An example of f is a weighted-sum function: f(z,y,2) = a1z + a2y + asz,
where « is a vector of weighting coefficients and o; < 0,7 = 1,2, 3.

The utility-maximization problem can be written as

gEHDl?I}((,T f(eperf(gy K, T): Csamp(K)7 Ccomp(|g|a T)) (P1)
Specifically, if we set f(epert(g, I, T)) = €pert(g, I, T), and (Csamp, Ceomp) are infinite when exceed-
ing some threshold, the grouping function reduces to the performance loss minimization with fixed
sampling complexity and computational complexity. For a given feasible grouping function g, the
optimization over K and 7" can be performed independently. Specifically, if f is a convex function of
K and T, we can directly use convex optimization methods to get the optimal K*(|g|) and T*(|g|).
The optimization problem can be rewritten as

glea%{f(eperf(gaK*(lg‘)7T*(|g|))aCsamp(K*(lgl))aCcomp(‘g‘aT*(lgD))'

Published as a conference paper at ICLR 2024

By solving the above optimization problem, we can achieve a balance between minimizing perfor-
mance loss and managing complexity. However, solving the above optimization problem involves
several challenges. Firstly, the feasible grouping function set D is discrete, and €pef is implicitly
related to the grouping function, therefore the optimization objective is not easily solvable. Addi-
tionally, Eq. (5) shows the exact calculation of epert(g, K*(|g|), T*(|g|)), which requires traversing
over all coefficients of [P the R, and results in a computational complexity that grows with the size of
the action space. Moreover, the exact probability transition kernel is usually not known by the agent.
Hence, we next devise a practical approach to handle this problem and analyze its performance.

5.1 PRACTICAL METHOD

To mitigate the computational demands of solving (P1), we propose (P2) as its approximated counter-
part. Since the computational complexity of solving (P1) is dominated by the calculation of 5} and
B% in its objective, we approximate these terms in (P2). Instead of iterating through all the actions
within the same group and applying Eqgs. (5) and (6) to calculate accurate values of 35 and %, we
propose an approximation of epert(g, K*(|g|), T%(|g|)) based on randomly selected actions. Specifi-
cally, we utilize samples obtained from the generative model to estimate the transition probabilities of
selected state-action pairs, and then substitute these estimated probabilities into Eq. (4) to obtain the
estimation €. This approach significantly reduces the computational complexity, as the complexity
of the calculation of approximate deviation factors is only related to the group size, which is much
smaller than the entire action space. (P1) can be approximated as

max f(Epert(g, K7 (191), T (191)): Coamp (K7 (191)), Ceomp (lg], ™ (191))) (P2)

where the calculation of épert(g, K*(|g]), 7*(|g)) only uses actions belonging to A = Upeg Ay, and
Ay}, is the randomly selected actions of the group h € G. Subsequently, we can iterate through D to
determine the optimal grouping function.

5.2 PERFORMANCE ANALYSIS OF THE PRACTICAL METHOD

We show that the above approximation in (P2) is reasonable. Intuitively, since actions within a group
have comparable transition kernels and reward functions in the grouped action space setting, we can
capture intra-group dissimilarity by only selecting a subset from each group. Now We formalize this
intuition.

We impose the condition that the rate of change of the utility function remains bounded in response
to variations in the performance loss. The following assumptions are presented to capture these
requirements.

Assumption 3. (f(z,y, z) is Lipschitz continuous w.r.t x.) There exists L > 0 such that | f(z1,y,2)—
f(anyvz” < L|£L’1 — £L'2|.

We define np and np as

- P(- _Py(.
wo=_, mas_[B(ls,a1) ~ B(ls,a)].c.
nr= max (R(s,a1) — R(s,as)). 0
s,h,a1,a2€A;,

In particular, Eq. (7) represents the proximity of the transition probability distributions and the reward
functions in the same group. Note that 83 < Snp and 85 < ng.
Denote the optimal grouping function of (P1) as g* and of (P2) as ¢*, respectively. Correspondingly,

the utility functions under ¢g* and §* are denoted as f* and f *, respectively. Let Ky be the number of
total samples required by the estimation of epe.r. We have the following lemma to quantify the gap

between f* and f *.

Proposition 1. Assume the reward is deterministic. With probability exceeding 1 — §, we have

o oo Mm ALySnp | ALYS | 5| Al log 224l
Tl (=92 (1-9)? 2K,

action sampling error probability estimation error

Published as a conference paper at ICLR 2024

The performance gap between the optimal utility function obtained by solving (P1) and (P2) can be
decomposed into two components: the action sampling error and the probability estimation error.
In certain MDPs where the actions in the same group are close enough (small np and nr) and the
utility function shows limited variation with respect to changes in eperr (small L), the action sampling
error is low. Note that the probability estimation error is associated with the accuracy of estimating
the transition probability distribution. The good news is that the required number of samples is only
proportional to the number of groups, which is significantly smaller than the size of the entire action
space. Therefore, these findings suggest that solving the approximate optimization problem (P2)
allows us to obtain the optimal grouping function g with little performance degradation across a wide
range of MDPs, while maintaining the sample costs at a reasonable level.

6 PROOF SKETCH OF MAIN THEOREM AND TIGHTNESS ANALYSIS

Proof Sketch The presented Theorem 1 establishes the upper bound for HV/’(/(— VLG’T HOO, the
performance loss between the optimal policy and the policy obtained by our algorithm. Let 7, be the
group-wise optimal policy. We can decompose this difference into two parts: the approximation error

Vi — VX,:G ||o and the estimation error HVX,:G — Vi oo

To establish an upper bound for the approximation error, we introduce an auxiliary MDP M; =
{8, A, Py, Ry,~} which shares the same state and action spaces as the original MDP but differs in
terms of transition distribution and rewards. The extent of this dissimilarity can be quantified by
parameters Sp and Sr. By comparing the value functions of executing the same policy on M and
M, we can derive value function difference in terms of Sp, Sr, and the horizon 1/(1 — «). We can
further get the approximation error is upper bounded by the twice of the value function difference
under M and M.

To derive the upper bound of the estimation error, we employ the leave-one-out analysis (Agarwal
et al., 2020b), which constructs auxiliary MDPs where one state is set as absorbing while the others
remain unchanged. This helps us to disentangle the connection between probability kernel estimation
P¢; and the optimal group-wise policy 77, (Agarwal et al., 2020b). Compared with (Agarwal et al.,
2020b; Wang et al., 2021), we extend the estimation error analysis from tabular MDPs to grouped
MDPs, obtaining a minimax optimal upper bound for the estimation error.

Tightness Analysis We compare our result with a known lower bound on the estimation error to
show that it is tight. Further, we provide an example in Appendix C.3 for which the approximation
error is also relatively tight.

Tightness of Estimation Error: Recall that the estimation error contains sampling error €s,mp Which is
related to K and algorithmic error which is related to 7. While sampling error decreases sublinearly
with respect to K, the algorithmic error diminishes at a faster, linear rate. Consequently, the limited
sample size predominantly limits the estimation performance. The required sample size to achieve

e-optimal approximation error is 0(0 1;9#(;‘352). Due to the lower bound of sample complexity in the

generative model (Azar et al., 2012), we achieve the minimax optimal sample complexity.

Example showing tightness of Approximation Error: The example is designed such that the group-
wise optimal policy 7, has a high probability of selecting a state-action pair with nearly zero potential
reward while letting the optimal policy 7* choose state-action pairs that have large potential rewards.
We show that for any € > 0, the difference between the derived performance loss of Theorem 1 and
€approx/ 2 1s smaller than € when Sp and g are small enough. This implies that the derived upper
bound of the approximation error only differs by a constant factor of 2.

7 CONCLUSION

This paper addresses the curse of dimensionality by exploring the inherent structure of group-wise
similar action space. We introduced a linear decomposition model for representing the similarity of
actions within the same group. Our work provides insights into the trade-off between complexity and
performance loss when applying reinforcement learning algorithms to practical applications.

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work has been supported in part by NSF grants: CNS-2312836, CNS- 2223452, CNS-2225561,
CNS-2112471, CNS- 2106933, a grant from the Army Research Office: W911NF-21-1-0244, and
was sponsored by the Army Research Laboratory under Cooperative Agreement Number W91 1NF-
23-2-0225. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation herein.

REFERENCES

Abel, D., Hershkowitz, D., and Littman, M. (2016). Near optimal behavior via approximate state
abstraction. In International Conference on Machine Learning, pages 2915-2923. PMLR.

Abel, D., Umbanhowar, N., Khetarpal, K., Arumugam, D., Precup, D., and Littman, M. (2020). Value
preserving state-action abstractions. In International Conference on Artificial Intelligence and
Statistics, pages 1639-1650. PMLR.

Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W. (2020a). Flambe: Structural complexity
and representation learning of low rank mdps. Advances in neural information processing systems,
33:20095-20107.

Agarwal, A., Kakade, S., and Yang, L. F. (2020b). Model-based reinforcement learning with a
generative model is minimax optimal. In Conference on Learning Theory, pages 67-83. PMLR.

Antos, A., Szepesvdri, C., and Munos, R. (2008). Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71:89-129.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang, L. (2020). Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pages
463-474. PMLR.

Azar, M. G., Munos, R., and Kappen, B. (2012). On the sample complexity of reinforcement learning
with a generative model. arXiv preprint arXiv:1206.6461.

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1-2):41-77.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G., Sun, W., and Wang, R. (2021). Bilinear classes:
A structural framework for provable generalization in rl. In International Conference on Machine
Learning, pages 2826-2836. PMLR.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik, M., and Langford, J. (2019). Provably
efficient rl with rich observations via latent state decoding. In International Conference on Machine
Learning, pages 1665-1674. PMLR.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, Jonathan andd Mann,
T., Weber, T., Degris, T., and Coppin, B. (2015). Deep reinforcement learning in large discrete
action spaces. arXiv preprint arXiv:1512.07679.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Bellemare, M. G. (2019). Deepmdp: Learning
continuous latent space models for representation learning. In International Conference on Machine
Learning, pages 2170-2179. PMLR.

Gheshlaghi Azar, M., Munos, R., and Kappen, H. J. (2013). Minimax pac bounds on the sample
complexity of reinforcement learning with a generative model. Machine learning, 91:325-349.

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model minimization in markov
decision processes. Artificial Intelligence, 147(1-2):163-223.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. Advances in
neural information processing systems, 31.

10

Published as a conference paper at ICLR 2024

Hafner, D., Lillicrap, T., Fischer, 1., Villegas, R., Ha, D., Lee, H., and Davidson, J. (2019). Learning
latent dynamics for planning from pixels. In International conference on machine learning, pages
2555-2565. PMLR.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and Schapire, R. E. (2017). Contextual
decision processes with low bellman rank are pac-learnable. In International Conference on
Machine Learning, pages 1704-1713. PMLR.

Jiang, N., Kulesza, A., and Singh, S. (2015). Abstraction selection in model-based reinforcement
learning. In International Conference on Machine Learning, pages 179-188. PMLR.

Jothimurugan, K., Bastani, O., and Alur, R. (2021). Abstract value iteration for hierarchical rein-
forcement learning. In International Conference on Artificial Intelligence and Statistics, pages
1162-1170. PMLR.

Li, G., Cai, C., Chen, Y., Wei, Y., and Chi, Y. (2023). Is g-learning minimax optimal? a tight sample
complexity analysis. Operations Research.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state abstraction for mdps.
In AI&M.

Luo, B., Li, X., Wang, S., Huang, J., and Tassiulas, L. (2021). Cost-effective federated learning
design. In IEEE INFOCOM 2021-1EEE Conference on Computer Communications, pages 1-10.
1IEEE.

Modi, A., Jiang, N., Tewari, A., and Singh, S. (2020). Sample complexity of reinforcement learning
using linearly combined model ensembles. In International Conference on Artificial Intelligence
and Statistics, pages 2010-2020. PMLR.

Munos, R. (2005). Error bounds for approximate value iteration. Proceedings of the National
Conference on Artificial Intelligence, page 1006.

Munos, R. and Szepesviri, C. (2008). Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(5).

Nachum, O., Gu, S., Lee, H., and Levine, S. (2019). Near-optimal representation learning for
hierarchical reinforcement learning. In International Conference on Learning Representations.

Ortner, R., Pirotta, M., Lazaric, A., Fruit, R., and Maillard, O.-A. (2019). Regret bounds for learning
state representations in reinforcement learning. Advances in Neural Information Processing
Systems, 32.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Ravindran, B. and Barto, A. G. (2002). Model minimization in hierarchical reinforcement learning.
In Abstraction, Reformulation, and Approximation: 5th International Symposium, SARA 2002
Kananaskis, Alberta, Canada August 2—4, 2002 Proceedings 5, pages 196-211. Springer.

Ravindran, B. and Barto, A. G. (2004). Approximate homomorphisms: A framework for non-exact
minimization in markov decision processes. In the 5th International Conference on Knowledge-
Based Computer Systems.

Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., and Langford, J. (2019). Model-based rl
in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pages 2898-2933. PMLR.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211.

Uehara, M., Zhang, X., and Sun, W. (2021). Representation learning for online and offline 1 in
low-rank mdps. arXiv preprint arXiv:2110.04652.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press.

11

Published as a conference paper at ICLR 2024

Wang, B., Yan, Y., and Fan, J. (2021). Sample-efficient reinforcement learning for linearly-
parameterized mdps with a generative model. Advances in Neural Information Processing Systems,
34:23009-23022.

Weisz, G., Amortila, P., and Szepesvari, C. (2021). Exponential lower bounds for planning in mdps
with linearly-realizable optimal action-value functions. In Algorithmic Learning Theory, pages
1237-1264. PMLR.

Zhang, X., Song, Y., Uehara, M., Wang, M., Agarwal, A., and Sun, W. (2022). Efficient reinforce-
ment learning in block mdps: A model-free representation learning approach. In International
Conference on Machine Learning, pages 26517-26547. PMLR.

Zhou, D., Gu, Q., and Szepesvari, C. (2021). Nearly minimax optimal reinforcement learning for
linear mixture markov decision processes. In Conference on Learning Theory, pages 4532-4576.
PMLR.

12

Published as a conference paper at ICLR 2024

A ADDITIONAL NOTATIONS

Define the the set of policies of MDP M := (S, A, P, R,v) as Il := {7|7 : § — Q(.A)}. Given M
and policy 7 € II : & — €)(A), we can have a collection of trajectories 73, = (8¢, a;, ;)72 starting
from state-action pair (sg, ag). Here, s;11 ~ P(:|st, at), azp1 ~ w(-|S¢41), and 1 = R(St, az).
We present the definition of value functions Q o4 and V4 as for any s € S and a € A,

Qhu(s,a) :=Er |> 'ri|so=s,a0=al,)
=0
VJ(T/I (3) = EQNTF("S) [Qﬂ(sa a)}) 9

where E.r [-] is taking expectation with respect to the randomness of 77,. The optimal policy
under M is defined as 7, and its corresponding value functions are denoted as %, and V.
Define Bellman optimal operator Tr(f(s,a) := R(s,a) + v (P(-|s,a), maxq’ f(-,a’)). Bellman
optimality equation indicates that (), is the fixed point of the Bellman optimality operator and
satisfies Q7 = Tam Q-

In addition to the set of policies 1I defined on M, we also define the set of grouped policies based on
a "lower-level" policy 7' as follows:

g := {ng|lrg =m°on,7°: 8 = Q(G)}. (10)

Let 7, denote the optimal policy belonging to I that maximizes V(.

We also construct some special MDPs based on the grouping function g and "lower-level" pol-
icy 7. We define the grouped MDP as Mqg = {8,G,Pq, Rg,v}, where Pg(s'|s,h) =
Eqri(n) [P(8'|s,a)] and Rg (s, h) := Eq.ricn) [R(s, a)].

When P and R of M have the linear decomposition form as Egs. (1) and (2), we define M; :=
(8, AP, R,~), where P} (s'|s,a) :==P1(s'|s,g(a)) and R (s,a) := Ri(s,g(a))for any (s, a).

For notational simplicity, we write z; = (8¢, a¢), P™(z¢41]2t) = P(ser1|ze)m(@is1]Si+1),
Py (2141]2e) = Pi(8t41]20)m(@rs1]8041), and PE (z411|20) = Pa(se41|20)m(@r41]8141)-

B EXAMPLES OF GROUPED DEVIATED MODEL

B.1 WIRELESS ACCESS EXAMPLE

Consider a wireless access system where multiple users send packets to an access point. Assume we
have an access point and N users, where all users generate the same packet arrival rate and possess
the same finite queue buffer. The local state of each user is defined as the number of packets in their
buffer. When a user’s local state is not less than 1, they have two available actions: either remain idle
or transmit a packet to the access point. A collision occurs if multiple users attempt to send packets
simultaneously, resulting in transmission failure.

The success of a transition in the wireless access system depends not only on collision-free scheduling
but also on the system’s operational mode since the system may experience failures due to system
errors. We denote the probability of the transmitter being in good condition and the corresponding
transition kernel under state-action pair (s, @) as good(8, @) and Pgeoq(+|s), respectively. Note that
when a collision does not happen, Pgoq is irrelevant to which user is sending the packets, that is,
Psood is irrelevant to a. We also denote the probability and transition kernel of the system failing due
to system error k under the state-action pair (s, @) as Qerr, (S, @) and Pey, (-], @), respectively.

We can divide all actions into two groups .A; and A by the grouping function shown as

g(a) = 1, if la]1 = 1;
2, otherwise.

13

Published as a conference paper at ICLR 2024

K
— err 9 Pcn’ TS
Let Bp(s,a) = 1 — agooa(s, @), P1([5,1) = Pyooa(-|5), and Pa(-[s, @) = Zi=r el lla),
For a € A;, we can write the transition probability distribution as
K

P(-[s,a) = O‘good(sa a)Pgood("Sv a) + Z Qerry, (8, @)Per, (-]5, @)
k=1

=(1-8p(s,a))P(:|s,1) + Bp(s,a)Ps(:|s, a).

For other actions belonging to A, the transmission certainly fails, therefore they have the same
transition distribution, which we denote as Pcoision. Therefore, for a € Az, we have Py (+|s,2) =
]P)collision('|3a a’)7 and [p (87 a) =0.

To account for the varying importance levels of users, we assign a reward of wy ,, to the user n whose
packet is transmitted without collision. Additionally, to discourage long queues, we can introduce a
penalty term w?'s. The reward function is defined as

R(s,a) = {

max ('wlTa - wQTs,O) , a€ A,

0, otherwise.

B.2 DOWNLINK WIRELESS TRANSMISSION

Consider a downlink transmission system where a base station transmits packets to multiple users.
In this system, adjacent users typically exhibit similar channel characteristics, leading to similar
successful transmission rates. Furthermore, adjacent users often belong to the same category (e.g.,
machines in a factory) and have similar packet requirements.

Define the state s € {0,1,---,S — 1} as the length of the packet queue at the base station, with
a buffer size of S — 1. The action a € {1,--- , A} represents the user with whom the base station
establishes a connection. Assume users can be classified into G groups by the grouping function
g: A—{1,--- G}, where the set of users belonging to group h is Ap. The arrival rate at the base
station is .

We assume the successful transmission rate and reward of user a € Ay are u(s,a) = (1 —
Bp(s,a))p(s,h)+Bp(s,a)wp(s,a)and R(s,a) = (1—Fr(s,a))R1(s, h) + Br(s,a)wr(s,a) —
c(s), respectively. p1 and Ry represent the common transmission rate and common reward function,
respectively. wp(s,a) and wg(s, a) are independently sampled from the normal distribution. Note
that we put penalty c¢(s) proportional to the queue length to discourage congestion at the base station.

The setting of Fig. 1 and Fig. 2 is as follows. The common successful transmission rate and rewards
of all groups are evenly spaced between [0, 1], given by 1 (s, h) = %T_l and Ry(s,h) =1— LGTl

The penalty for queue-length s is defined as c(s) = 5. We set Bp(s,a) = Br(s,a) = 0.01 in

Fig. 1 and Bp(s,a) = Br(s,a) = 0.001 in Fig. 2. The packet arrival rate at the base station is
A = 0.5. It is worth noting that the transmission rate and reward values are clipped within the range
of [0, 1]. The probability transition matrix can be obtained based on the arrival rate at the base station
and the successful transmission rate for each user.

C PROOF OF THEOREM 1

C.1 TIGHTNESS EXAMPLE

We now give an example to show that the approximation error bound of Theorem 1 is tight with
only a constant difference. Consider an MDP M = {S, A, P, R, v, p}, where S = {sg, s1} and
A - {ao, al}.

The corresponding transition probability and reward function are shown in Table 1. Assume all
actions belong to the same group, then it follows that there exist (P1, P2) and (R;, R2) such that P
and R can be decomposed as

P([s,a) = (1 = Bp)P1(:|s) + BrPa(:s, a),
R(s,a) = (1 = Br)Ri(s) + BrRa(s;),

14

Published as a conference paper at ICLR 2024

s, a
s 50, @o 50, 41 51,00 81,01 s ao ai
S0 1 1-8p Bp 0 50 0 Br
51 0 Bp 1-8p 1 51 1-pr | 1
() Transition kernel P(s’|s, a) (b) Reward function R(s, a)
Table 1: Transition distribution and rewards setting of the example MDP
51so|s @ s /s1,a0 | So/s1,a “1a /a “1ag | a
s 0 1 s 0/51, a0 0/51,0a1 s 0/a1 s 0 1
So 1 0 So 1 0 So 0 So 0 0
S1 0 1 S1 0 1 S1 1 51 0 1
(@ P1(s']s) (b) P2(s'|s, a) (©) Ri(s) (d) Ra(s,a)

Table 2: Linear decomposition of the example MDP

where Py, P2, Ry, and Ry are shown in Table 2. Set the action-selection policy 7 as choosing ag
with probability 1. Therefore, 7§, = 7°* o 7' is

w2 (als) = 1, a=agp,s€S;
0, a=a,s€eS.
Applying 7/, into the example MDP, we can have the long-term return as
Vi (s0) =0,
1-Pr
1—(1-8p)y
Moreover, it is obvious that the optimal policy that can maximize global long-term returns is

*(als) = {

and the corresponding value function is

Vig(s1) =

0, a=agp,s€eS;
1, a=ai,s€S,

. _ ﬂR BP
Vil ST 0 B T A B -)
1
VX/((SI) :ﬁ.
Then for any initial state s € S, we have
o B Br V8P
Viu(s) VMG(S)—’l_(l__ﬂpyy (1-(1-B8p)y)A-7)" (11

’
€approx

As shown in Eq. (4) of Theorem 1, the approximation error resulting from treating all actions within
the same group as identical is bounded by

] _ 2Br 2v6p
approx 1 _ ,7 (1 _ 7)27

where we replace 8% and 8%, by Bp and (g, since we have 85 = p and 85 = B in this example
MDP.

(12)

Comparing Eq. (11) and Eq. (12), we can see that the actual error caused by grouping e;ppmx is close

to the upper bound when Sp is small.

€approx

2

Specifically, we can show that for any ¢ > 0, if Bp < \/5(1 — 7)25 and S < %, then
€; rox
dP2P > — 62/1ppr0x <e.

15

Published as a conference paper at ICLR 2024

Figure 3: [“= —¢ |
To show this, we rewrite | “%= — ¢, | as
Capprox s _ BrBRY n (Bp7)? <
2 P (1= (A= (1=8p)y) (1=7)2(1=(1-8p)y) ~
a b

By letting a < (1 — y)e and b < e, we can get the conditions of Sp and 8p as

Bp <V2(1—7)%, fBr< 1\;277

toprox and = by simulation. Let 3p and S range from 0 to
0.1 and v = 0.5. As shown in Fig. 3, we can approximate HV/’\"A - Viie ||OO by 6“"% when Sp and

Br are small enough.

We also verify the closeness between €

Therefore we can achieve the upper bound shown in Lemma | with a constant difference.

C.2 PROOF OF THEOREM 1

The presented Theorem 1 establishes the upper bound for || Vi — VJCIG'T HOO, the performance loss
between the optimal policy and the policy obtained by our algorithm. The performance loss can

and the estimation error
oo

HVLG — V/&G’T . where 7/, is the optimal policy belonging to II;. We provide two lemmas to
bound these errors: the approximation error lemma, whose derivations can be found in Appendix C.3,
and the estimation error lemma, whose derivations can be found in Appendix C.4.

be decomposed into two parts: the approximation error HVXA — Vf/f

Lemma 1. (Approximation Error Lemma) Under Assumption I, we have

Br 18p)
w§2(1—7+(1—7)2 ’

v

where 85 and (%, are given in Eq. (22).

Lemma 2. (Estimation Error Lemma) Assume HV* —Vir
Mea Mg

< €opt. When K' >

(o]

648 log (;ﬁfﬂ))

=) , with probability larger than 1 — §, one has

8S|g|
S|g| log (5(17—97)) deopt
T e

T TQ, T
HVM - VM

< 207y

16

Published as a conference paper at ICLR 2024

Using the above two lemmas, we can easily get the performance loss bound. When K’ >

648 log (23l
W, with probability exceeding 1 — &, one has

Vi = Ve < || Vit = ViE

‘ + HVLg -V (triangle inequality)

o0

85|g]
<o(Lr . P) o, S|g‘log<5(l_7)) 4 Leopt
T \l-y (1-9? (I—=7)2K 1—v
(by Lemma 1 and Lemma 2).

C.3 APPROXIMATION ERROR: PROOF OF LEMMA 1

Proof. We begin by demonstrating that the difference between Vi, and V3, is determined by S5
and 5. As both 7}, and 7¢; are policies within I, with 77, being the optimal policy in Ilg, we

can subsequently establish an upper bound on the difference between V/Cf and V{,. We now proceed
to formalize this derivation.

Define

T

ZVtTt + ’YT+1EZT+1~P”(-‘ZT) QM (zr41)] | - (13)
=0

G}(Zo) =K

7_71'
My

Substituting Eq. (1) into G7.(2¢), we have

T

Zryt’/‘t —+ fyT—i-l(l — ﬁP(ZT))EzT+1~P;W('|zT) [QﬂM(ZT+1)}
t=0

" Bp(21)Exy, P (o) (@R ()]

G7(z0) =Erg,

T
<E.g, Zovtn + WTHEZTHNP';(.\ZT) [QKA(ZTH)]] (14)
t=
Ay
+ By T By, |Bar obp(ze) [@(2741)] | (using 0 < Bp(zr) < Bp)
TMy 2l ~P5 (c|z7) M*T+1 s PplzT) > PP
Bpyt Tt 1
<A _— b " < —).
<A; + 1= (yQM(Z)_l—y)

We then derive the upper bound of A;. Since

Qm(zt) = B pzy) 1] + VB2 obr()20) (@M (Ze41)]

17

Published as a conference paper at ICLR 2024

we have
rT
Ay :ET}\(/U Z’ytrt + 7T+1EZT+1~P11W("ZT) [ETT+1NR(ZT+1) [rr41]
Lt=0
+7]EzT+2NP" (‘lzr41) [QﬂM (ZT+2)H }
rT
:ET}{AI Z ’Yt’l“t + 7T+1EzT+1~]P’/1"(-\zT) [(1 — ﬁR(zT+1))ET‘T+1NR/1(ZT+1) [TT+1]
Lt=0
+BR(2011) By ~Ro(zrpn) FT41] + VB b (zrg) [Q(2742)]]] (by Eq. (2))
rT
T+1
:ETJ\rAl Z’yt’rt + M EzT_,_lN]P’/l"(-\zT) [ETT+1NR'1(ZT+1) [TTJrl]
Lt=0
+ﬁRE’I"T+1NR2(ZT+1) [TT+1] + ’YEZT+2~PW(~|ZT+1) [QKM (ZT+2)]]] (by 0 S ﬂR(ZT) S /BP)
[T+1
=E-7, Z Ve + VBag ok (fzry) (@M (Zr42)] | + BrYTT by r741 < 1)
L t=0
=GT41(z0) + Bry" T
(15)
Plugging Eq. (14) into Eq. (15), we have
T+1
G71(20) §<??+Azo)4—6RvT+l+—§f%5;—. (16)
We can expand Q7% 4(20) as
Qh(20) =Ergnr(zo) [ro] + Bz apr(120) [QR(21)]
S]ET‘UNRll (z0) [TO] + ﬂR]ET‘ONRQ (z0) [TO] + IEzlr\JIF"7‘(<|zo) [Q}Z/[(21)] (by Eq (2))
=Er7, [70 4+ VB, mpr (|20) (@4 (21)]] + Br
=Gi(z0) + Br (by definition of G (2) in Eq. (13))
T+1 T+1 an
; Bry'
< lim [GT(z0) + BrY" +
| GRG0+ DS+ D T
(by applying Eq. (16) for T" times and letting T approach infinity)
_ 1 T BR BP’V
—;g;Gﬂaﬁ+177+(lin
Specifically,
T
Th—I};o G%(Zo) - Th—r};o ET}\T’“ |JX—; ’Ytrt * 7T+1EZT+1NP"('|ZT) [QﬂM (ZT-‘rl)]
T (18)
= fim B, [Z V| = QR (20)
Plugging Eq. (18) into Eq. (17), we finally get
Q% = Q|| =max [Q%4(2) = QR4 (2)]
(19)
< Pr n Bpy

Tl-y (1=

18

Published as a conference paper at ICLR 2024

To get a tighter bound, we want to get the minimum 5} and 5} such that there exist (55, P, P3)
and (8%, R}, R3) satisfying Eq. (1) and Eq. (2). The Sp minimization problem can be written as

min fBp
s.t. Eq. (1), (s',s,a) e S xS x A,
SwesPi(sls) =1 (81 €8 .
sesP2(s'|s,a) =1, (s,a) e S x A, (20)
Py(s'|s,h) >0, (s,8,h) e 8§ xS x G,
Py(s'|s,a) > 0, (¢,8,a) eSS xS x A,
O</8P(7)<ﬁP7 (370‘)68XA7

where Eq. (1) is the linear decomposition of P, the last constraint is the the definition of Sp, and all
other constraints ensure P; and P, are transition probability distributions.

The Sz minimization problem can be built in a similar way as

min fBgr

s.t. Eq.(2), (s,a) e S x A,
0< Ri(s,h) <1, (s,h)eSxG, 1)
0< Ra(s,a) <1, (s,a)eSxA,
0<Br(s,a)<Pr, (s,a)eSx A

The derivations presented in Appendix C.5.1 reveal the following minimum values for Sp and Sg.

Bp = max 1—ZmlnP "Is,a)),

ses,heg aE h
(22)
5= R — min R .
Pk = 2% (mA (o)~ i Risva))
Plugging 35 and S5 into Eq. (19), we have
Br Bpy
T —Qn < . 23
HQM QM1HOO—177+(177)2 (23)

We can write Vi, (s) — Vo™ (s) as

Via(s) = Vi (8) =Via(s) + (—VIH(8) + VI (8)) + (~Vi, () + Vig, (8)) — Vi (s)
=(Via(s) = Vi () + (Vi) = Vi (60) + (Vi () = Vi (s)
<(Via(s) = V() + (Via, (8) = Ve (s)) (by VI (s) = Vig, (s) < 0).

Since Vi, (s) — Vo (s) > 0, we have

* ﬂj\fll
Vi —vaa

[V - Vi + Vi - Vi
oo

o0

<[v

" LY
Vi = VM |

(by triangle inequality)
Eanms, (1s) {QJ‘\A(& a) — Q' (s, a)} ‘
anﬂ' (:|s) |:QM1 (S a) Q O (Sa a):| ‘

< max |Qiu(s,a) — Q! (s,a)| + max | Qi (s.0) ~ Q" (s.)

= [l@u— @it +lem, -k
i (1%v " <1767}>2) '

19

= max
s

+ max

(24)

Published as a conference paper at ICLR 2024

We can write Vi (s) — V/C[a (s) as

*

Vii(s) = VIE(s) =V (8) + (=V (s) + Vi (s)) — V£ (s)
<VI(8) = Vi (s)

(by Ty, € Ilg and 75, = arg max V().
wellg

Since Vi, (s) — V34 (8) > O forall s € S, we can apply infinity norm to both sides of the above
equation and get

Vi = Vi oo <||VEC = vie™

B 85)
<2 + by Eq. (24)).
< (17 =) (by Eq. (24))

This concludes the proof of Lemma 1. O

C.4 ESTIMATION ERROR: PROOF OF LEMMA 2

Proof. To quantify the estimation error, we convert the upper bound to the disparity in policy
performance between two variants: M and M. To accomplish this, we utilize the leave-one-out

analysis (Agarwal et al., 2020b). In this analysis, we create an auxiliary MDP denoted as Mc,s,u,
where one state s is treated as an absorbing state while leaving the rest unchanged. This approach

enables us to disentangle the relationship between the estimation of the probability kernel P¢ and the
optimal policy for the entire group 7/..

We can write V3, . (s) — V;;TG (s) as
Vit (8) = Vi, (8) =Viag (8) + (=Vi (8) + Vi (8)) + (—Vigy () + Vi (5))
+ (~VIE () + VT (s)) = VIE (s)
<(Viae(8) = Vi () + (Vi (8) = VI (8)) + (VT (s) = VIE (s))
(by VI;G(S) < Vjac(s) for any s).

(25)
Applying infinite norm on both sides, we have
Ve =i = Ve = v+ Voo - v L+ v ik
< @me — @3, ||+ eom + | @, — Q3| (26)

(by HVMG N VMTG

S 6opt)~
e}

We first bound HQ‘NM%G — Q”MOTG

, and HQleG — Qﬁ* H can then be bounded in the same manner.
o) G lloo

By Lemma 4, we have

T _ T
HQMG QMG

TN —1 /73 * €o
z|ha-rE) i@ -rayvy, ||+ 17”;. @7)

Since VX% is not independent with P, therefore we cannot directly use the concentration of the
G

sum of independent variables to bound the sampling error ’(fF’G — PG)VXZG ‘ We construct the

s-absorbing MDP Mc,s,u = {S,Q,I@’G,S,u, Rc,s,uﬁ}, where s € S, u € Us, and U, is the set
of the feasible v in state s. For any hy € G and 5o € S, P s, (+|S0, ho) and R 5., (S0, ho) are

20

Published as a conference paper at ICLR 2024

defined as .
X Pg(s1]s0,ho), s0# 8,81 €8,
PG s,u(s1]80, ko) =1 1, So = 8,81 =8,

0,

S0 = S§,81 # S,
. R ah’ ’ ’
R o (0, o) = { c(S0,ho), So#s

u, Sp = 8.

Denote (]f»G)(&h) = ﬁDG(.\& h). We can rewrite ’(]IADG - Pc)V/’*}lG’ as

(Bo —Pa)(sm Vi, ‘ < ‘(]P’G —Pa)em Vi, ‘ + ’ (P —Pa) (sm) (VX%G,M - VX%G)‘

’(]P’G —Pa)s,m Vi, (28)

V*

Mea

(since H(PG -]P)G)(s,h)

<1).
1
Note that V£, is independent with (EDG)(SJL) and (Pg) s,5). We can use the variant of Bernstein’s

inequality Lemma 7 and union bound to bound the first term. With probability exceeding 1 — §/2
for all s, h, u, one has

(Pe — Pg) s,V

_Aog dUs|S|g|/5 \/410g4lus|3|9/5

Masu| = 3K/(1 _ ’Y) K’ AL(PG) (s,n) {VXAG B J
(@ 41og 4Us|Sgl/6 \/410g4IU REIG H o
- 3K’(1—’y) K’ MG su Mea 0
4log 4|Us|S|gl/9 "
+ \/ K! Var(PG)(s.h) {VMG:|7
(29)
where (a) is because

\/vaqPG(Sh Vi] <\/Vaqpchsﬂ)[v;;&&u-viac]4—x/vaqpc(5h Vi)

(by /Varp [X + Y] < \/Varp [X] + /Varp [Y])

< Wit = Vil + y Veroran Vi)

Substituting Eq. (29) into Eq. (28), we have

4log 4|Us|S|g|/d . x
(]P)G —]PG)(S h) ' < (\/[(/ +1 HVMG,S,U. - VMG

4log 4Us|S|g| /6 . 4log 4|Us|Slg| /0

+ \/ —E Ve (Vi) + T3K1-1)
(30)

By Lemmas 10 and 11, we have
Vo =Vt = Vit = Vit o Sl Vie@l o0
G o)

where the first equality is because Lemma 10 and the second inequality is because Lemma 11
Substituting Eq. (31) into Eq. (30), we have

‘(PG — PG)(s,h)VXzG' < (\/W + 1) HVA*hG - “HOO

4log 4|Us|Slg|/0 " 4log 4Us|Slg|/
+ \/ K/ Var(]P’G)(a,h) [VMG] + 3K'(1—7)
(32)

21

Published as a conference paper at ICLR 2024

on(511
We set Us as the uniformly spaced elements in [V, (s) — (1_77)2 21 gg{/) Ve (8) +

eV 2] ana o =

respectively, and then we have

) We replace M and M in Lemma 8 by MG and Mg,

in|lve — H <(1—~)?
ELHEIZI}H Ma uooi(IY)

Plugging the above equation into Eq. (32), we have

8S S
‘ 8log(5(1‘~"w‘)>) 8log 519l

(Pg — Pc) (s,mV SK(1—7) v 7

8log 574,
K’ \/VB‘r(PG)(s,h) [VMG}

8 As R As
= (3(1 " 87) K2 (” " \/ Var®e)em [VMGD Vi

(33)

where A := log (;fﬁl)) Specifically, \/ Vareg) .) [V/TA] can be rewritten as
, e}

\/Var(pc)(m) [VX;IG} <\/Var(]pc)(syh) |:V/;k}lg — V/Z;TG} + \/Var(pc)(m) [V.;;TG — VLTG:|
+ \/Var([pg)(syh) [VLOTG} (by /Varp [X + Y] < \/Varp [X] + /Varp [Y])
\/Var(]P’G)(s‘m [VLTG}

+ \/Var(PG)(s,h) [V/CITG}

< 6opt)-
o0

<|lvx —yrr
_HVMG VMG

Vg v
OO+H Mg Ma oo+

Seopt + HQEG - QHG

(34)
We come back to the upper bound of HQWMT - QWT
G

@3, -,

< |ha-pE) e - o)V, (by Eq. 27))

Y 8 A(s \/A»é '7€opt
< — =
_1—7<<3(1—7)+8’Y)K’+2\/§7 7 +1_7

+2v2y

H 'Y opt
—

(by Eq. (33))

y 8 As As Yeopt 2As
< N NPTy 1+2
—1—7<<3(1—v)+87) K v2y K’>+1—7 N E

(I —~APE) =" [Vars,, [VJEG}

A . -
+ 2v K,5 (I- ’YPGT) 1 Varp,, [VMTg}
(oo}
2y 204 || no o
1-~V K’ ’Qﬁc — QM (by Eq. (34)).

22

Published as a conference paper at ICLR 2024

We replace P and 7 in Lemma 9 by P and 77, respectively, and then we have

(L= PG)~ Vareg [ViE |

SVa=

oo

Plugging the above equation into HQﬁMT — QWMTG
G

, we then get
Y 8 As As YEopt 275
< — -9
S STS ((3(1—7) +87) = +2ﬁm/K, g L+2y/ %5
[As | 1 2A5

Rearranging the above equation, we have

o3, - <%

MG

o 1 5 8 As
Q| < 87) 7
HQMG Y T2 f2as | 1y <3(1—fy) * ’Y> K’
V&
—_— b

a

2v/2+2 1 A € 2A
+<ff7 +47\/<1—>3)VK‘?+3_” 142y 5
v v g

C

By
(11—~ 3K” < 8y (1—4)3K"

Therefore, we get the upper bound of HQ;%G — Qﬁg

When K’ > (6148,?)52 , we have

OO\@
co\oo
IN

| Ut

as

Aé 3760 t
<10 4
A Ty e e
With a similar derivation, we have
. o As
HQMG N MGHOO =1 B

Plugging the above equations into Eq. (26), we finally get

Aé 376015
<20 , P o
o SN BT T Ty e
K -7

T T
HQMG B QMG

* 77%
H VMG - VMG

SlglAs deopt

<20
<20y T

We finally show V{, = = VL*G . Since 7, € I, there exists 7°* such that 7, = 7°* o ', For any
7 : 8 — Q(G) is a higher-level policy, we can establish the equivalence between V7r °m and Vj\fG

23

Published as a conference paper at ICLR 2024

using the following reasoning.

V.,Cfoﬂl (30) = Z 7T°(h|80)EaU~ﬂi(.‘SU’h)
heg

R(so,a0) +v Y _ P(s1]so, ao) Vi ™ (31)1

81

(by Bellman equation)

= Z 7°(h|80) (Eqqmri(.[s0,h) [R(S0, @0)]
heg

+7 Y EagrriClson) [B(s1]50, a0)] V/C:OWI(Sl)>

S1

- Z 7°(h|s0) (Rg(so, h) +~ ZP0(51|30, h)Vf,;OWi(sl))
heg s1

=E_xo lz vtrt|301 (by repeating above steps for infinite times)
Mo =

:V/C;G (s0) (by definition of Viq,,).

(35)
Therefore,
T s e S|g‘A§ 476 t
vig = vier| = |Vike - Vil | <20 opt
H M M . Mg Mal|l o = g K(l—’y)3 11—+~
This concludes the proof of Lemma 2. O

C.5 SUPPLEMENTAL LEMMAS OF THEOREM 1

C.5.1 MINIMIZATION OF [Sp AND B

We solve the Sp and Sr minimization problem (20) and (21) in this section.

We rewrite (20) as follows.

min fSp
s.t. Eq. (1), (s,8,a) e S xS x A,
YsesPi(s'|s,h) =1, (s,h) €S xG,
s,§3P2(S’|s,a):1, (s,a) e S x A,
Py(s'|s,h) >0, (s',8,h) eS8 xS x G,
Py(s'|s,a) > 0, (¢,8,a) e S§ xS x A,
0 Bp(s.,a) < B, (s.0) €6 x A,

As the optimizations over Sp(s,h),s € 8, h € G are independent, we can decompose the above
optimization problem into S|g| sub-problems. Each sub-problem seeks to find the minimum value
of 85 (s, h) that satisfies the given constraints related to state s and group h. Consequently, 5}
is determined as the maximum of 8} (s,h) overall s € S and h € G. We formally express this
relationship as follows.

- % (s, h 36
Bp serggigﬁp(&)s (36)

where 8}.(s, h) is the solution to the following problem.

min fSp
s.t. Eq. (1), (s',a) e 8 x Ap,
YsesPi(s[s,h) =1,
sesP2(s']s,a) =1, ac Ay, (37)
Py(s'|s,h) >0, s'e S,
Py(s'|s,a) >0, (s',a) € 8 x Ay,.

0<Bp(s,a) <Bp, ac Ay

Published as a conference paper at ICLR 2024

Without loss of generality, we assume Sp(s,a;) = 85(s, h), where a; € Ay,. This implies that for
any other actions a such that g(a;) = g(a), we have Sp(s,a) < Bp(s,aq).

We firstly show the optimal solution 55 (s, k) to Problem (36) is also the optimal solution to the
following problem which relaxes the constraint 0 < 8p(s,a) < Sp.

min Bp
st. P(s'|s,a) = (1 — Bp)P1(s'|s, h) + BpP2(s|s,a), (s',a) € S x Ay,
s'eS Pl('sl"s?h =4 (38)
vesP2(s]s,a) =1, ac Ay,
Py(s'|s,h) > 0, s'e S,
Py(s'|s,a) > 0, (,a) € 8 x Ay,

We verify the equivalence between Problem (37) and Problem (38) through two steps. We first show
that 55 (s, h) is a feasible solution to Problem (38), then we show 8} (s, k) is a optimal to Problem
(38).

(Step 1) Suppose Pi(-|s,h) and P}(+|s,a) are the common and individual transition probabil-
ity distribution when Problem (37) attains optimal. We construct P, (+|s,h) = Pj(-|s,h), and

Py(-|s,a) = WP*(|s,h) + ’gpgz Z;IE”*(|s,a). Then we can easily verify P (-|s, h)

and Py (+|s, a) satisfy constraints of problem (38), respectively.

(1) For the first constraint, we have
P(|s,a) =(1 - Bp(s,a))Pi(|s, h) + Bp(s,a)P5([s, a)
(B (s, h), Pi(:|s, h), and P;(+|s, @) satisfy the first constraint of Problem (37))
=(1 = Bp(s,h)P1(|s, h) + Bp(s, h)P2(-]s,)
(substituting Py (-|s, h) and Pa(+|s, @)).
(2) Since), sPi(s'|s,h) =3, csPi(s]s, h) = 1, the second constraint is satisfied.

3) DgesPa(s|s,h) = LEICH h)(s h)(s a) + 5”%2 Z; = 1, then the third constraint is satisfied.

(4) By the definition of P} and P}, we have Py (s’|s, h) = Pi(s’|s, h) > 0 and P5(s’|s,a) > 0O for
all s’ € 8.

(5) Since 0 < B5(s,a) < Bh(s,h) < 1, then ZE(&M—Bp(=a) . g 4pq ﬂ”(sa) > 0. We have

Bp(s;h) Bp(s;h)
Py(s'|s,a) = %—sﬁ}gw 1(s]s, h)—l—gP(ZZ]P’*(s'|s,a) > 0forall s’ € S.

(Step 2) We then show that §5(s,h) is the optimal solution to Problem (38). If there ex-
ists (Bp(s,h),P1(-|s, h),Pa(:|s,a)) that satisfy all constraints of Problem (38) and Sp(s,h) <
B%(s, h), we arrive at a contradiction. In this case, Sp (s, h) is also a feasible solution to sub-Problem
Eq. (37), and it contradicts the assumption that 3% (s, h) is the optimal solution to Problem (37).

We will focus on solving Problem (38). By the first constraint of problem (38), for any a,a’ € Ay,
we have

P(s'|s,a) = P(s|s,aj), o) = Bp(s, h) (P2(s'|s,af) o) — Pa(s']s, a)) . (39)
Summing both sides of Eq. (39) over s” and using) | _, . g P2(s’[s, a) = 1, we have
1—2P(s’|s,a:,h7s) Bp(s,h) (1—2}?2 'Is, ash5)>.
s'es s'es

Therefore Sp(s, h) can be rewritten as

1_23’68 (|S a’shs)
1_2568 (|Sa‘shs)
1—2?8‘87(1;]1’5/) (byPQ(|S ashs)zo)
s'eS
=1- in P(s’ byal, .. = in P(s’ ,
D min B(s'|s,a) (byag,,, =arg min Ps'|s, a)

h

BP(Sv h) =

Y

25

Published as a conference paper at ICLR 2024

where the inequality is tight when P2(s'[s, a} ;, .,) = O forall s, s € S. Thus we have

Bp(s,h)=1— min P(s'|s, a).

Plugging % (s, h) into Eq. (36), we have 87 = maxses,heg(l — D, cg Minaca, P(s'[s, a)).

[r minimization problem can be built in a similar way as the $p minimization problem.

min fBr
st. Eq.(2),
0 < Ry(s,h) <1, (s,h) eS8 x G, (40)

0 < Ry(s,a) <1, (s,a)eSxA,
0 < Br(s,a) < Br, (s,a)e 8 x A

Same to the discussion in the Sp minimization, the optimization solution to the above problem is

BR = sEIgfl;z}(egﬂR(S’ h)7 (41)
where 5}(s, h) is the optimal solution to the followin problem.
min fBgr
st. R(s,a)=(1—pBr)Ri(s,h) + frR2(s,a), ac Ap, 42)
0 S Rl(S,h) S 1,
0 < Ry(s,a) <1, ac A,

By the first constraint in the above problem, for any s € S, a,a’ € Ay, such that R(s,a) # R(s,a’),
we have R(s.a) — R(s.a)
I = s, a)~ ol)
> R(s,a) — R(s,a’) (using 0 < Ry(s,a) < 1).
Therefore, Sr(s, h) should satisfy
Br(s,h) > max (R(s,a)— R(s,a’))

a,a’ €A,

= R — min R
g R(s,) — g R(sva),

where inequality is tight when Ra(s,a) = 1 and Ry(s,a’) = 0 with @ = arg maxge 4, R(s,a) and
a’ = argminge 4, R(s,a). Thus 85 (s, h) = maxqca, R(s,a) — mingea, R(s,a). Plugging
B%(s, h) into Eq. (41), we have

2(g9) = R — min R .
Brlg) = max (arré% (s,) — min (s7a))

concludes the proof.

C.5.2 SUPPLEMENTAL LEMMAS FOR ESTIMATION ERROR

Lemma 3. For any MDP M = (S, A, P, R,), the action value function with any policy 7 : 8§ —
Q(A) can be written as

Q= (1—P")"'R.

Proof. By definition of Q7%,(s, a), we have

o}

Qh(s,a) =Bz | > ' | s0=8,a0=a
=0

’ytpﬂ(st = Sla ay = a’/|30 = 8,00 = a)R(S,7 a’/)

M

-
Il
=)

(YP™)'R = (I —~P™)"'R.

M

~
I
o

26

Published as a conference paper at ICLR 2024

Vite ™ Ve o
e [[T ot I

|, —Qik|| . < | @ @e - a)vy,

Lemma 4. Let

< €opt- Then

Proof. We have

HQﬁ*c N Qj\/lc = H 'R (I- ’YPEO*)AR‘ . (by Lemma 3)

= a-+ez >-1<<I —9PE) — (L2))Q5;

Ma || oo
= | a-rg @y - rEey |
=y [= P& ®e - Pe)V,
(o)

Similar to the above derivation, we have

|, - Q|| = | @ @e -V ||

= || =P B — Pa)(VEE — Ve + Vi)

‘ o0

o0

<y||@=+PF) B~ Pa) (Vi ~ Vi)

+7 H (I—7PE) " (Be — PG)VX;IG)HOO
'7 opt 7 *
S +7H 1P~ (B —IP’G)VMG)HOO

e

O

Lemma 5 (Hoeffding’s inequality for general bounded random variables (Vershynin (2018), Theorem
2.2.6)). Let X1, -+ , Xy be independent random variables. Assume that X; € [m;, M;] for every i.
Then, for any t > 0, we have

al 242
P XZ—EXZ Zt §ex — 2 .
{Z(: } p(S (M —my))

Lemma 6 (Bernstein’s inequality for bounded distributions (Vershynin (2018), Theorem 2.8.4)). Let

X1, , XN be independent, mean zero random variables, such that | X;| < B for all i. Then for
everyt > 0, we have
al £2/2
P Xi| >ty <2 - 43
; i[>ty < exp(02+Bt/3), (43)

where 02 = Zfil Var [X;].

Lemma 7 (Variant of Bernstein’s inequality). Let X,--- , Xy be independent, identically dis-
tributed, mean zero random variables, such that | X;| < B and Var [X;] = Var [X] for all i. Then
with probability exceeding 1 — §/2, we have

X
——log —. (44)

Proof. When X7, -, X are identically distributed and Var [X;] = Var [X] for all 4, Eq. (43) can
be rewritten as N
1 Nt2/2
P — Xi| >ty <2 —_——].
{N 2 Xz } eXp(Var[X]+Bt/3)

i=1
27

Published as a conference paper at ICLR 2024

Let

Nt2/2)
2exp (V[X]+Bt/3) <3 “3)

we can rewrite the above equation as

2 2Var[X]1 g4+2—Btl 4

- N 0 3N 5
A sufficient condition of ¢ satisfying the above inequality is
4Var [X] 4 4Bt 4
t* > ———log~ and t*> ——log-.
=T N %5 © 3N 5
413 4Var[X] 4
Therefore, when t > log 5+ ~ — log 5
N
1)
P = X;| >ty < -
{N >x|zef <

On the other words, with probability exceeding 1 — §/2, we have
4 4Var [X] 4
< — 1 ———log -.
5TV N %%
O

Lemma 8 (Gheshlaghi Azar et al. (2013), Lemma 4). Consider MDP M = {8, A, P, R, ~} which

satisfies Assumption 1. M is a estimation of M based on the generative model with n samples for
each state-action pair. With a probability exceeding 9, one has

Vi — VM| <
Vi~ Vil <5 ;
25A
||V.A*/1_V*A ||oc< v 210g(5)
MET T (L =9)? n

Lemma 9 (Agarwal et al. (2020b) Lemma 5). For any policy m and MDP M = {S, A,P, R, v},

HI—*}/IP” 4/ Varp | VM H 1/ 01—~

Lemma 10 (Agarwal et al. (2020b) Lemma 8). Let u* = VM) and u™ (s). We have
Vit = Vg sur> andforall policies w, Vi = VVM’S’M.
Lemma 11 (Agarwal et al. (2020b) Lemma 9). For all states s,u,u’ € R, and policies T,

HQ?\/{,S,U - Qj\/[,s,u’ 00 < I'LL - U/| and HQ”M,S,’U‘ - Q?\A,S,’U/! oo < |U - ul| .

Lemma 11 implies

<|u-—1u'].

S HQj\/l,s,u - Qj\/l,s,'u/! [e's)

HV./g\K/l,s,u - V_/él,s,u’ 00

D UPPER-BOUND OF PERFORMANCE LOSS WITH VALUE ITERATION

We consider value iteration (VI)—a specific dynamic programming algorithm—as shown in Algo-
rithm 2. Algorithm 2 provides generative-model-based value iteration, where Q'™ = T Q" for

each iteration ¢ and the output policy is 72(s) = arg max;, Q(s, h).

28

Published as a conference paper at ICLR 2024

Corollary 1. Let that Algorithm 2 be the dynamic programming algorithm in Algorithm 1. When
sample complexity and computational complexity are Cogmy(K) = K and Ceomp(|g|, T) = (S?|g| +
2S|g|)T, respectively, With a probability larger than 1 — 6,

’V/»\K/l - V./CIGTHOO < Epe’f(g7K> T)7

where

Br(9)
1— T

8S|g|
vﬁj‘v(g))+20 Sg|log (auw)) 8y 7

Eperf(g7K7T):2(K(l*’y)g (177)3

Algorithm 2 Value Iteration

Input: Mg = {S,G, A, Pg, R, v}
Output: policy 75
fort=1,---,7Tdo
for (s,h) € S x G do
Qt+1(‘s’ h’) = RG(87 h‘) + ’}/<]P>G('|S, h)7 maxpeg Qt('a h/)>
end for
end for .
Output policy 7%(s) = arg maxyeg Q7 (s, h),s € S.

RN RN

Previous research has demonstrated that the value function of the resulting policy converges to that

of the optimal policy under MG at a linear rate Munos (2005); Munos and Szepesvéri (2008). This
convergence is formalized in the following lemma.

Lemma 12. Let 3. be the output policy of Algorithm 2 after T iterations. Then we have

5 27T
* _ T < 27
VMG V/\/lc 0o (1 _ fY)Q :

For the completeness of this paper, we provide the proof of Lemma 12 in Appendix D.1.

Plugging Lemma 12 into Theorem 1 leads to Corollary 1.

D.1 ALGORITHM ERROR
Proo{. By Bellman optiAmality equation and VI update rule, we have Qj\?tc (8:h) =Ty, Q%G (s,h)
and Q7 (s, h) = TMGQT_1 (s, h), respectively, where T x4, is the Bellman operator under M. We

can write |Q’;, (s, h) — QT (s, h)’ as

(@ (3:0) = QT (8,1)| = T, Qi (8:1) = T, Q" (5. 1)
= | (Pl 1) Qi) = g Q7 1)
(by definition of Trq f)
Qg (1)~ e Q70)
(by triangle inequality)
= {Patls, x|, (1) - @710
Qi (1) = QTS W) by Y Pa(s|s,h)) = 1)

=Y <]PG('|Sah)»

<
=7 YSI}%(

< || @, - Q™|

oo

29

Published as a conference paper at ICLR 2024

Maximizing both sides of over (s, h), we have
O R T “
Since Q! < ﬁl, we can apply the Eq. (46) over HQLG — QTH for T steps and get

] .
by 0 Q. QT

Then we can write V};, (s) VI;TG
Vit (8) = Vi (8) = Qi (5,7 () = Q3F_(s,75(s)
= Qi (57 (8) + (~Q7 (5.7°(3)) + Q" (5,7 (5))) + Q" (5.7%(5)) + Q" (5,75(5)))
(@, (5 75(5) + Qg (5. 75(5))) = Q3 _(5,75(5))
< (@i, (577 () = Q7 (5.7 ()) + (Q7 (s, 7(5)) = Qi (5. 75(5)))
(@ (3. 75() = _(5.75(9)))

where the inequality is because Q7 (s,7%*(s))) — QT(s,73) < 0 since 7%(s) =
arg maxy, Q7 (s, h).

(s) as

Since V' (s) — V;;T (s) > 0, we apply infinity norm on both sides of the above equation and get
G G

I, -V,

oo

< max Qi (5,77 (5)) = Q7 (5,7 (5))) + (Q7 (5,78(5)) — Qg (5,78(5)))
@y, (5,75(8)) = Q7 _(5,75(s)))

< max | @y, (5,7 (5)) = Q7 (5,7 () + max [Q7 (s,75:(5) — Qi (5,75 (5))

Ay

+ max ‘Qj\;lc(s, o (s)) — Qﬁg(s, F%(S))’ (by triangle inequality).

A>
We bound A; and A, separately.

A <max |Qug, (s,h) = Q7 (s,)| + max| Q7 (s,) — @y (s,)

Mg Mg
* AT
Then,
Ay Smax |Qly, (5. 75(s)) — QFF_(s.75(s))

— max | R(s, 75(s)) + (P (|3, m5()), Vi, ()

—(R(s,7%(s)) + 7<PG('\87 7%(s))), VETG('»)‘ (by Bellman’s Equation)
—yma | (B (3. 7 (5)). Vi ()~ ViE ()
<oymax (Bl w5). Vi, () = VE O} < Vi, — ViE

oo

30

Published as a conference paper at ICLR 2024

. . T
Plugging the upper bound of A; and A, into H VMG VMG

and rearranging the equation, we have

I il R
HVX%G_VMTG = 1—~ (1— 7)2’
where the last inequality is because Eq. (47).
This concludes the proof of Lemma 12. O

E PROOF OF PROPOSITION 1

The approximate grouping function optimization problem can be rewritten as
max f(&err(g; K7 (191), T (191)), Coamp (K7 (191)), Ceomp (lg], ™ (191))) (48)

where

N Ay 8S|g|
vﬂpﬂgD%_ﬁaﬂgD> ooy 18 () | e

%A%KWQMTWMD=2<O_WP - KO- 1-7

3 = 1- P(s
Br(lgl) 552%§g< me Is, a)>,

acAp

Brllgh) = __ max (R(s,al) - R(s; a2)).

s€8,9(a1)=g(a2)
(49)
For notational simplicity, we write f (€pert(g, K (|g]), T (|g1)), Coamp (K™ (I91)); Ceomp(lg], T (l91))),
the optimization objective function in Eq. (48) that maps from G to R , as f:G>R.

Proof. We first show for any MDP satisfying Eq. (7), the approximation error of 55,(|g|) is bounded
by terms related to np.

* —
Br(lgl) = max -

(by Z P(s'|s, a) for any a)

) o
)

= max | max Y P(s'|s,a) Z mm P(s'|s,a)
- acA

s€S,heg <aeAh
S

P(s’ - in P(s’
> max P(s']s, a) a Jnin P(s'|s, a)

< max
s€S,heg

= max

/ o . ’
SES,hEG ZS: <£% P(s'|s, a) — min P(s |s,a))>
e <Z< (s)3,a1) ~ B(s |s,a2>>)
< P(s (s
=2 (serfsl%gaifféw (s'ls,a1) — (s |s,a2>>>
<Snp (byEq. (7).
Since 0 < B5(|g]), B (lg]) < 1. we can write 83 (|g]) — B5(|g]) as

Br(l9)) = Bp(Igl) < Br(lg]) < Snp-

31

Published as a conference paper at ICLR 2024

Define a} ;, = argmin, ¢ 4, P(s'|s,a). We can rewrite 35 (|g|) — 85 (]g]) as

Bi(lal) = B(1gl) = max (1 - 3 mip P(sls, a)) - e (1 - 2 uip Pl a))

acAy, acAp

= max min P(s'|s,a) — Z min P(s'|s, a)
s€S,heg o acAy, o acAy,

< max min P(s|s,a) — min P(s'|s, a)
s€S,heg B acAp ac Ay
< awe > (Pls/)s a3) — B(s'ls,a,)
S

(by P(s'|s,a% ;) > min P(s'|s,a))
’ acAy

<s|p-#|
We also slightly abuse the infinite norm at the last line and define

HP_@H = max [P(s|s,a) — P(s'|s,a)].
s,8'€S,he A

Through Hoeffding’s inequality shown in Lemma 5, with probability exceeding 1 — §, one has

1 S|A
5| < S\A|log¥.
o 2K,

The above equation shows 0 < 35(|g|) < 85(|g|). Combining the above equations, we have

. - S|A log 254
5i(laD) — Bp(lab| < Smax o, TAE 50)
1
Similarly,
Fillg) = max (Ra(s, 1)~ Ru(s,a2)) < e

SES, heg nEN aj,azcA;

where the inequality is by Eq. (7). Comparing the definition of 8%(|g|) and 5%(|g|), we have
0 < Bx(lgl) < Br(lg]). Therefore,

0 < B3(lgl) — Brlg)) < Br(lg]) < nr. (51)

32

Published as a conference paper at ICLR 2024

(2) (b)

4]
B g5 8- 10 =
Z z A o
é % 75 D’Z ,@’@ —6— grouping, K’ = 500
= g):r s =G=+ non-grouping, K’ = 500
=
g t(o 50 ﬂ/@,'@ === grouping, K’ = 10
5 5
‘%10 g [== non-grouping, K’ = 10
A~ \ =25 Q/B’
\ = &
bo-coooo| L& ..,
0 10 20 0 10 20
[teration Number Iteration Number

Figure 4: Downlink transmission setting with S = 5, A = 10°, and G = 10. (a) Performance loss
comparison between grouping and non-grouping structure. (b)Running time comparison.

Then we can get Lemma | by decreasing and Lipschitz continuity property of the utility function. We
have

= =f(g*]) = f(|§*]) (by definitions of f* and f* in Section 5)
FUg™)+ (=FUg)+ Fg™D) + (=F(a*D) + F(g°1) — f(1a™D)
(f(g™)) = Fg™D) + (Fla™D = FUg* D) + (FUg"D) — £Ug*])
(f(lg™1) = Fg™) + (Fla™D) = F(g°])

(by [g"| = agmaXf(lgl)andf(|g*|)—f(\Q*I) <0)

SL‘eperf“g*D - eperf(|g |)\ + L|€perf(‘g*|) - éperf(|g*‘)| (by Eq. (7))
<2L max lepert(19]) — Epert([g])]

#(191) = Bi(la)| MCACOREATD)]
=4[max + 4L max

9l 1—7y 1 (1-9)?
(by definitions of epers(|g|) and épert(|g|) in Eqs. (4) and (49))

- 25|A|
4LySmax | np, 1/ SW;#
SALnr

==X T (by Egs. (50) and (51)).

IN

This concludes the proof of Proposition 1. O

F EMPIRICAL RESULTS

F.1 LARGER ACTION SPACE

We conducted an experiment under the wireless transmission system with a larger action space. We
set S =5, A = 10°, and the number of groups is G = 10. The details of the downlink transmission
setting are in Appendix B.2. As demonstrated in Fig. 4, when the number of samples is limited,
the grouping-based algorithm performs significantly better than the non-grouping method, and the
computational complexity is greatly reduced. This simulation implies that the grouping method is
applicable to a practical setting with a large action space.

F.2 GROUPING SELECTION METHOD
We applied the grouping selection method within a downlink transmission scenario, detailed in

Appendix B.2. For this purpose, we randomly selected 20 actions from each group, allocating 200
samples for the MDP estimation corresponding to each action. In this specific scenario, addressing

33

Published as a conference paper at ICLR 2024

Z gl
i %’- —— G=2
g0~ E —— G=5
= —=—- gl £ —== C=10
3 —
Lé G=20
= "E—E\E
10~ 100,

10° 10* 106 10° 10 106

Sample Size Sample Size

Figure 5: Downlink transmission setting with A = 1000, S = 5. (a) Performance loss of applying
Algorithm 2. (b)Objective function of (P2).

the approximated optimization problem (P2) enables us to effectively identify an optimal grouping
function, which balances the trade-off between sample complexity and performance loss. Notably,
in conditions where a substantial sample size is available, our optimization approach tends to select
a more refined grouping function. Conversely, under sample size constraints, the method inclines
towards a coarser grouping approach. This adaptability reflects the capability of the proposed
grouping function optimization method in practical settings.

34

	Introduction
	Related Work
	System Model
	MDP Preliminaries
	Action Grouping
	Model-based RL with Generative Model

	Main Results on Performance Evaluation
	Performance-complexity trade-off
	Practical Method
	Performance Analysis of the Practical Method

	Proof Sketch of Main Theorem and Tightness Analysis
	Conclusion
	Additional Notations
	Examples of grouped deviated model
	Wireless access example
	Downlink wireless transmission

	Proof of Theorem 1
	Tightness Example
	Proof of Theorem 1
	Approximation Error: Proof of Lemma 1
	Estimation Error: Proof of Lemma 2
	Supplemental Lemmas of Theorem 1
	Minimization of and
	Supplemental Lemmas for Estimation Error

	Upper-bound of performance loss with value iteration
	Algorithm Error

	Proof of Proposition 1
	Empirical Results
	Larger Action Space
	Grouping Selection Method

