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Abstract

We consider a federated data analytics problem in which a server coordinates the
collaborative data analysis of multiple users with privacy concerns and limited
communication capability. The commonly adopted compression schemes introduce
information loss into local data while improving communication efficiency, and it
remains an open problem whether such discrete-valued mechanisms provide any
privacy protection. In this paper, we study the local differential privacy guaran-
tees of discrete-valued mechanisms with finite output space through the lens of
f-differential privacy (DP). More specifically, we advance the existing literature by
deriving tight f-DP guarantees for a variety of discrete-valued mechanisms, includ-
ing the binomial noise and the binomial mechanisms that are proposed for privacy
preservation, and the sign-based methods that are proposed for data compression,
in closed-form expressions. We further investigate the amplification in privacy by
sparsification and propose a ternary stochastic compressor. By leveraging com-
pression for privacy amplification, we improve the existing methods by removing
the dependency of accuracy (in terms of mean square error) on communication
cost in the popular use case of distributed mean estimation, therefore breaking the
three-way tradeoff between privacy, communication, and accuracy.

1 Introduction

Nowadays, the massive data generated and collected for analysis, and consequently the prohibitive
communication overhead for data transmission, are overwhelming the centralized data analytics
paradigm. Federated data analytics is, therefore, proposed as a new distributed computing paradigm
that enables data analysis while keeping the raw data locally on the user devices [1]. Similarly to its
most notable use case, i.e., federated learning (FL) [2, 3], federated data analytics faces two critical
challenges: data privacy and communication efficiency. On one hand, the local data of users may
contain sensitive information, and privacy-preserving mechanisms are needed. On the other hand,
the user devices are usually equipped with limited communication capabilities, and compression
mechanisms are often adopted to improve communication efficiency.

Differential privacy (DP) has become the gold standard for privacy measures due to its rigorous
foundation and simple implementation. One classic technique to ensure DP is adding Gaussian or
Laplacian noises to the data [4]. However, they are prone to numerical errors on finite-precision
computers [5] and may not be suitable for federated data analytics with communication constraints due
to their continuous nature. With such consideration, various discrete noises with privacy guarantees
have been proposed, e.g., the binomial noise [6], the discrete Gaussian mechanism [7], and the
Skellam mechanism [8]. Nonetheless, the additive noises in [7] and [8] assume infinite range, which
renders them less communication-efficient without appropriate clipping. Unfortunately, clipping
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usually ruins the unbiasedness of the mechanism. [9] develops a Poisson binomial mechanism (PBM)
that does not rely on additive noise. In PBM, each user adopts a binomial mechanism, which takes a
continuous input and encodes it into the success probability of a binomial distribution. The output
of the binomial mechanism is shared with a central server which releases the aggregated result that
follows the Poisson binomial distribution. However, [9] focuses on distributed DP in which the server
only observes the output of the aggregated results instead of the data shared by each individual user,
and therefore, requires a secure computation function (e.g., secure aggregation [3]).

In addition to discrete DP mechanisms, existing works have investigated the fundamental tradeoff
between communication, privacy, and accuracy under the classic (¢, 0)-DP framework (e.g., [10, 11,
12, 13]). Notably, in the case of distributed mean estimation, [13] incorporates Kashin’s representation
and proposed Subsampled and Quantized Kashin’s Response (SQKR), which achieves order-optimal
mean square error (MSE) that has a linear dependency on the dimension of the private data d. SQKR
first computes Kashin’s representation of the private data and quantizes each coordinate into a 1-bit
message. Then, k coordinates are randomly sampled and privatized by the 2¥-Random Response
mechanism [14]. SQKR achieves an order-optimal three-way tradeoff between privacy, accuracy, and
communication. Nonetheless, it does not account for the privacy introduced during sparsification.

Intuitively, as compression becomes more aggressive, less information will be shared by the users,
which naturally leads to better privacy protection. However, formally quantifying the privacy
guarantees of compression mechanisms remains an open problem. In this work, we close the gap
by investigating the local DP guarantees of discrete-valued mechanisms, based on which a ternary
stochastic compressor is proposed to leverage the privacy amplification by compression and advance
the literature by achieving a better communication-privacy-accuracy tradeoff. More specifically, we
focus on the emerging concept of f-DP [15] that can be readily converted to (€, §)-DP and Rényi
differential privacy [16] in a lossless way while enjoying better composition property [17].

Our contributions. In this work, we derive the closed-form expressions of the tradeoff function
between type I and type II error rates in the hypothesis testing problem for a generic discrete-valued
mechanism with a finite output space, based on which f-DP guarantees of the binomial noise
(c.f. Section 4.1) and the binomial mechanism (c.f. Section 4.2) that covers a variety of discrete
differentially private mechanisms and compression mechanisms as special cases are obtained. Our
analyses lead to tighter privacy guarantees for binomial noise than [6] and extend the results for
the binomial mechanism in [9] to local DP. To the best of our knowledge, this is the first work
that investigates the f-DP guarantees of discrete-valued mechanisms, and the results could possibly
inspire the design of better differentially private compression mechanisms.

Inspired by the analytical results, we also leverage the privacy amplification of the sparsification
scheme and propose a ternary stochastic compressor (c.f. Section 5). By accounting for the privacy
amplification of compression, our analyses reveal that given a privacy budget ;~-GDP (which is a
special case of f-DP) with y < y/4dr/(1 —r) (in which r is the ratio of non-zero coordinates
in expectation for the sparsification scheme), the MSE of the ternary stochastic compressor only
depends on (i in the use case of distributed mean estimation (which is the building block of FL). In this
sense, we break the three-way tradeoff between communication overhead, privacy, and accuracy by
removing the dependency of accuracy on the communication overhead. Different from existing works
which suggest that, in the high privacy regime, the error introduced by compression is dominated by
the error introduced for privacy, we show that the error caused by compression could be translated
into enhancement in privacy. Compared to SQKR [13], the proposed scheme yields better privacy
guarantees given the same MSE and communication cost. For the scenario where each user ¢ observes
x; € {—c, c}? for some constant ¢ > 0, the proposed scheme achieves the same privacy guarantee
and MSE as those of the classic Gaussian mechanism in the large d regime, which essentially means
that the improvement in communication efficiency is achieved for free. We remark that the regime of
large d is often of interest in practical FL in which d is the number of training parameters.

2 Related Work

Recently, there is a surge of interest in developing differentially private data analysis techniques,
which can be divided into three categories: central differential privacy (CDP) that assumes a trusted
central server to perturb the collected data [18], distributed differential privacy that relies on secure
aggregation during data collection [3], and local differential privacy (LDP) that avoids the need for



the trusted server by perturbing the local data on the user side [19]. To overcome the drawbacks of
the Gaussian and Laplacian mechanisms, several discrete mechanisms have been proposed. [18]
introduces the one-dimensional binomial noise, which is extended to the general d-dimensional case
in [6] with more comprehensive analysis in terms of (¢, 6)-DP. [20] analyzes the LDP guarantees of
discrete Gaussian noise, while [7] further considers secure aggregation. [8] studies the Rényi DP
guarantees of the Skellam mechanism. However, both the discrete Gaussian mechanism and the
Skellam mechanism assume infinite ranges at the output, which makes them less communication
efficient without appropriate clipping. Moreover, all the above three mechanisms achieve differential
privacy at the cost of exploding variance for the additive noise in the high-privacy regimes.

Another line of studies jointly considers privacy preservation and compression. [10, 11] propose
to achieve DP by quantizing, sampling, and perturbing each entry, while [12] proposes a vector
quantization scheme with local differential privacy. However, the MSE of these schemes grows
with d2. [13] investigates the three-way communication-privacy-accuracy tradeoff and incorporates
Kashin’s representation to achieve order-optimal estimation error in mean estimation. [21] proposes
to first sample a portion of coordinates, followed by the randomized response mechanism [22]. [23]
and [24] further incorporate shuffling for privacy amplification. [25] proposes to compress the LDP
schemes using a pseudorandom generator, while [26] utilizes minimal random coding. [27] proposes
a privacy-aware compression mechanism that accommodates DP requirement and unbiasedness
simultaneously. However, they consider pure e-DP, which cannot be easily generalized to the relaxed
variants. [9] proposes the Poisson binomial mechanism with Rényi DP guarantees. Nonetheless,
Rényi DP lacks the favorable hypothesis testing interpretation and the conversion to (¢, §)-DP is lossy.
Moreover, most of the existing works focus on privatizing the compressed data or vice versa, leaving
the privacy guarantees of compression mechanisms largely unexplored. [28] proposes a numerical
accountant based on fast Fourier transform [29] to evaluate (e, §)-DP of general discrete-valued
mechanisms. Recently, an independent work [30] studies privacy amplification by compression for
central (¢, §)-DP and multi-message shuffling frameworks. In this work, we consider LDP through
the lens of f-DP and eliminate the need for a trusted server or shuffler.

Among the relaxations of differential privacy notions [31, 16, 32], f-DP [15] is a variant of e-DP
with hypothesis testing interpretation, which enjoys the property of lossless conversion to (e, §)-DP
and tight composition [33]. As a result, it leads to favorable performance in distributed/federated
learning [34, 35]. However, to the best of our knowledge, none of the existing works study the f-DP
of discrete-valued mechanisms. In this work, we bridge the gap by deriving tight f-DP guarantees of
various compression mechanisms in closed form, based on which a ternary stochastic compressor is
proposed to achieve a better communication-privacy-accuracy tradeoff than existing methods.

3 Problem Setup and Preliminaries

3.1 Problem Setup

We consider a set of N users (denoted by A') with local data z; € R<. The users aim to share z;’s
with a central server in a privacy-preserving and communication-efficient manner. More specifically,
the users adopt a privacy-preserving mechanism M to obfuscate their data and share the perturbed
results M (z;)’s with the central server. In the use case of distributed/federated learning, each user has
a local dataset .S. During each training step, it computes the local stochastic gradients and shares the
obfuscated gradients with the server. In this sense, the overall gradient computation and obfuscation
mechanism M takes the local dataset .S as the input and outputs the obfuscated result M (S). Upon
receiving the shared M (S)’s, the server estimates the mean of the local gradients.

3.2 Differential Privacy

Formally, differential privacy is defined as follows.

Definition 1 ((¢, §)-DP [18]). A randomized mechanism M is (¢, §)-differentially private if for all
neighboring datasets S and S" and all O C O in the range of M, we have

P(M(S) € 0O) <eP(M(S) € O)+5, 1)
in which S and S’ are neighboring datasets that differ in only one record, and €,6 > 0 are the
parameters that characterize the level of differential privacy.



3.3 f-Differential Privacy

Assuming that there exist two neighboring datasets S and S’, from the hypothesis testing perspective,
we have the following two hypotheses
Hj : the underlying dataset is S, H; : the underlying dataset is S’. )

Let P and Q) denote the probability distribution of M(.S) and M (S’), respectively. [15] formulates
the problem of distinguishing the two hypotheses as the tradeoff between the achievable type I and
type II error rates. More precisely, consider a rejection rule 0 < ¢ < 1 (which rejects Hy with a
probability of ¢), the type I and type II error rates are defined as vy, = Ep[¢] and B, = 1 — Eg[¢],
respectively. In this sense, f-DP characterizes the tradeoff between type I and type II error rates. The
tradeoff function and f-DP are formally defined as follows.

Definition 2 (tradeoff function [15]). For any two probability distributions P and @) on the same
space, the tradeoff function T (P, Q) : [0,1] — [0,1] is defined as T(P, Q) () = inf{By : oy < a},
where the infimum is taken over all (measurable) rejection rule ¢.

Definition 3 (f-DP [15]). Let f be a tradeoff function. With a slight abuse of notation, a mechanism
Mis f-differentially private if T(M(S), M(S")) > f for all neighboring datasets S and S’, which

suggests that the attacker cannot achieve a type I error rate smaller than f(c).

f-DP can be converted to (¢, §)-DP as follows.

Lemma 1. [15] A mechanism is f(«)-differentially private if and only if it is (e, 0)-differentially
private with
f(a) =max{0,1 -6 —e‘a,e (1 -6 —a)}. 3)

Finally, we introduce a special case of f-DP with f(a) = ®(®~1(1 — a) — ), which is denoted as
1-GDP. More specifically, u-GDP corresponds to the tradeoff function of two normal distributions
with mean 0 and p, respectively, and a variance of 1.

4 Tight f-DP Analysis for Existing Discrete-Valued Mechanisms

In this section, we derive the f-DP guarantees for a variety of existing differentially private discrete-
valued mechanisms in the scalar case (i.e., d = 1) to illustrate the main ideas. The vector case will
be discussed in Section 6. More specifically, according to Definition 3, the f-DP of a mechanism
M is given by the infimum of the tradeoff function over all neighboring datasets S and 5, i.e.,
fla) = infg g infy{Bs(c) : @y < a}. Therefore, the analysis consists of two steps: 1) we
obtain the closed-form expressions of the tradeoff functions, i.e., infy{B8s(a) : ay < a}, fora
generic discrete-valued mechanism (see Section A in the supplementary material); and 2) given
the tradeoff functions, we derive the f-DP by identifying the mechanism-specific infimums of the
tradeoff functions over all possible neighboring datasets. We remark that the tradeoff functions for
the discrete-valued mechanisms are essentially piece-wise functions with both the domain and range
of each piece determined by both the mechanisms and the datasets, which renders the analysis for the
second step highly non-trivial.

4.1 Binomial Noise

In this subsection, we consider the binomial noise (i.e., Algorithm 1) proposed in [6], which serves as
a communication-efficient alternative to the classic Gaussian noise. More specifically, the output of
stochastic quantization in [6] is perturbed by a binomial random variable.

Algorithm 1 Binomial Noise [6]

Imput: z; € [0,1,---,{], ¢ € N, number of trials M, success probability p.
Privatization: Z; £ x; + Binom(M, p).

Theorem 1. Let Z = Binom(M, p), the binomial noise mechanism in Algorithm 1 is f'(a)-
differentially private with

f(a) = min{ B} (a), B ()}, 4



in which

57 P(Z=k+))P(Z<k)  P(Z=k+l)
B ms(a) = fora € [P(Z < k),P(Z <k)],ke[0,M—1],
0, fora € [P(Z < M —1),1].
o o o (5
5 _ 7 P(Z=k-0)P(Z>k) P(Z=k-1)
P(Z<k—1)+ P(Z=F) S
ﬁq;inf(a) = fora e [P(Z >k),P(Z > k), k€ [l,M], 6)
0, fora € [P(Z >1),1].

Given that P(Z = k) = (A,f)pk(l — p)M=F_ it can be readily shown that when p = 0.5, both
5Lnf(@) and B;’inf(a) are maximized, and f (o) = ﬂ(';inf(oz) = ﬂ;inf(a).

Fig. 1 shows the impact of M when [ = 8, which confirms the result in [6] that a larger M provides
better privacy protection (recall that given the same «, a larger (3, indicates that the attacker makes
mistakes in the hypothesis testing more likely and therefore corresponds to better privacy protection).
Note that the output of Algorithm 1 Z; € {0,1,..., M + [}, which reqiures a communication
overhead of log, (M + [+ 1) bits. We can readily convert f(ca)-DP to (¢, d)-DP by utilizing Lemma 1.

Remark 1. The results derived in this work improve [6] in
two aspects: (1) Theorem 1 in [6] requires Mp(l — p) >
max(231og(10d/6),2l/s) > max(231log(10),2l/s), in which
1/s € Nis some scaling factor. When p = 1/2, it requires M > 212. s
More specifically, for M = 500, [6] requires § > 0.044. Our results ™'
imply that there exists some (€,0) such that Algorithm 1 is (¢,0)-DP ~ °*
as long as M > 1. For M = 500, § can be as small as 4.61 x 107136, oo
(2) Our results are tight, in the sense that no relaxation is applied
in our derivation. As an example, when M = 500 and p = 0.5,
Theorem 1 in [6] gives (3.18,0.044)-DP while Theorem 1 in this
paper yields (1.67,0.039)-DP.

—— M=10,p=05
= M=50,p=05
—— M=100,p=05
—— M=200,p=0.5
—— M=500,p=0.5

0.2 0.4 06 08 1.0

Figure 1: Impactaof M on Algo-
rithm 1 with [ = 8.

4.2 Binomial Mechanism

Algorithm 2 Binomial Mechanism [9]

Input: ¢ > 0, ; € [—c,c], M € N, pi(2;) € [Pmin, Pmaz]
Privatization: Z; 2 Binom(M, p;(x;)).

In this subsection, we consider the binomial mechanism (i.e., Algorithm 2). Different from Algo-
rithm 1 that perturbs the data with noise following the binomial distribution with the same success
probability, the binomial mechanism encodes the input z; into the success probability of the binomial
distribution. We establish the privacy guarantee of Algorithm 2 as follows.

Theorem 2. The binomial mechanism in Algorithm 2 is f*™(a)-differentially private with

fbm(a) = min{ﬁqtinf(a)vﬁqsz(a)}, (7)
in which
Bluae@) = 1= [P(Y < 1)+ 7P(Y =B = P(Y 2 by 4 Do P - =,

fora € [P(X < k),P(X <k)|and k € {0,1,2,--- , M}, where X = Binom(M, pymaz) and

Y = Binom(M, ppin), and
B P(Y =k)P(X > k) P(Y =k)
(o) =1— = = < _
Brane(@) = 1= [PV > 1) +9P(Y =] = P(Y < 1)+ 20 P - ZE= e,
fora € [P(X > k),P(X > k)] and k € {0,1,2,--- , M}, where X = Binom (M, pyin) and

Y = Binom(M, pmaz). When Dmaz = 1 — Dimin, we have 5;inf(o¢) = By in ().

Remark 2 (Comparison to [9]). The binomial mechanism is part of the Poisson binomial mechanism
proposed in [9]. More specifically, in [9], each user i shares the output of the binomial mechanism



Z; with the server, in which p;(x;) = % + %xi and 0 is some design parameter. It can be readily

verified that pyae = 1 — Dpin in this case. The server then aggregates the result through © =
iva (D ien Zi — @) [9] requires secure aggregation and considers the privacy leakage of
releasing x, while we complement it by showing the LDP, i.e., the privacy leakage of releasing Z; for
each user. In addition, we eliminate the constraint 0 € |0, ﬂ and the results hold for any selection of
pi(x;). Moreover, the privacy guarantees in Theorem 2 are tight since no relaxation is involved. Fig.
2 shows the impact of M on the privacy guarantee. In contrast to binomial noise, the privacy of the
binomial mechanisms improves as M (and equivalently communication overhead) decreases, which
implies that it is more suitable for communication-constrained scenarios. We also derive the f-DP of

the Poisson binomial mechanism, which are presented in Section C in the supplementary material.

In the following, we present two existing compressors that are special
cases of the binomial mechanism.

Example 1. We first consider the following stochastic sign compres-
sor proposed in [36]. z

Definition 4 (Two-Level Stochastic Compressor [36]). For any .,
given x € [—c, c|, the compressor sto-sign outputs

1, with probability A+
sto-sign(z, A) = { A

Az (8) Figure 2: Impact of M on Algo-
2A rithm 2.

where A > c is the design parameter that controls the level of

stochasticity.

0.0

—1, with probability

With a slight modification (i.e., mapping the output space from {0,1} to {—1,1}), sto-sign(z, A)

can be understood as a special case of the binomial mechanism with M = 1 and p;(x;) = A2+ Tt In
this case, we have Py, = “;ch and ppin = %. Applying the results in Theorem 2 yields

1—4%q,  fora €0, 4%<]
sto-sign — A—c s 24 Is
f ¢ g (Oé) = ﬂ;inf(a) = ﬁqﬁ,inf(a) = {A—c A—c A+c ] (9)

AT — Ao fora € [GEF,

Combining (9) with (3) suggests that the sto-sign compressor ensures (In( ﬁfﬁ), 0)-DP.

Example 2. The second sign-based compressor that we examine is CLD Py () [23].

Definition 5 (CLD P, (-) [23]). For any given x € [—c, ¢, the compressor CLD Py, (-) outputs

CLDP.,(¢), which is given by
+1, with probability 1 + %%,
CLDPs(e) = e 10
o (€) {1,with probability 1 — £ i_ﬂ (10

% In this case,

CLDP,(¢) can be understood as a special case of sto-sign(z, A) with A =
according to (9), we have

1—e‘a, foraell, ‘gzc],
CLDP.. _
= {eeu —a). fora e [4.1]. n

Combining the above result with (3) suggests that C LD P, (¢) ensures (€,0)-DP, which recovers
the result in [23]. It is worth mentioning that C LD P, (¢) can be understood as the composition of
sto-sign with A = c followed by the randomized response mechanism [22], and is equivalent to the
one-dimensional case of the compressor in [13]. Moreover, the one-dimensional case of the schemes
in [10, 11] can also be understood as special cases of sto-sign.

S The Proposed Ternary Compressor

The output of the binomial mechanism with M = 1 lies in the set {0, 1}, which coincides with the
sign-based compressor. In this section, we extend the analysis to the ternary case, which can be
understood as a combination of sign-based quantization and sparsification (when the output takes
value 0, no transmission is needed since it does not contain any information) and leads to improved
communication efficiency. More specifically, we propose the following ternary compressor.



Definition 6 (Ternary Stochastic Compressor). For any given x € [—c, ¢, the compressor ternary
outputs ternary(z, A, B), which is given by

. e A
1, with probability %5-,
ternary(z, A, B) = { 0, with probability 1 — 4, (12)
. e, A—
—1, with probability 5Z*,

where B > A > c are the design parameters that control the level of sparsity.

For the ternary stochastic compressor in Definition 6, we establish its privacy guarantee as follows.

Theorem 3. The ternary stochastic compressor is fiY(q)-
differentially private with

08 —e— sto-sign

A A— —o— ternay
1- At2a7 foroz S [Oa 236]7 os - :mm%.os)—DP
fternary(a) =¢1- % —a, forac€ [ggcv 1- égc}v (13) “oa
A— A— A .
e — are forae[l— 55 1] N

0.0 0.2 0.4 0.6 0.8 1.0

Remark 3 (Privacy amplification by sparsification). It can be 0 «
observed from (9) and (13) that f'""*"¥(a) > fsto-sion ywhen Figure 3: Sparsification im-
a € [142]—3071 _ g—gc]’ and fternary(a) — fsto-sign’ otherwise. Flg proves privacy.

3 shows ftermary(q) and f5t59" for ¢ = 0.1, A = 0.25, B = 0.5,

and the shaded gray area corresponds to the improvement in privacy. It can be observed that commu-
nication efficiency and privacy are improved simultaneously. It is worth mentioning that, if we convert
the privacy guarantees to (€,0)-DP, we have € = ln(%) for both compressors. However, the ternary
compressor ensures (In(2),0.05)-DP (i.e., f**"*% () > max{0,0.95 — 2, 0.5(0.95 — ) }) while
the sto-sign compressor does not. We note that for the same A, as B increases (i.e., communication
cost decreases), {1V () approaches f(a) = 1 — « (which corresponds to perfect privacy).

In the following, we present a special case of the proposed ternary stochastic compressor.
Example 3. The ternary-based compressor proposed in [37] is formally defined as follows.

Definition 7 (ternarize(-) [37]). For any given © € [—c, c], the compressor ternarize(-) outputs
ternarize(x, B) = sign(z) with probability |z|/ B and ternarize(x, B) = 0 otherwise, in which
B > cis the design parameter.

ternarize(x, B) can be understood as a special case of ternary(z, A, B) with A = |z|. According
10 Theorem 3, f**"""V(a) =1 — & —afora € [0,1— £] and f*""*"¥ () = 0 for v € [1 — 5, 1].
Combining the above result with (3), we have § = 5 and € = 0, i.e., ternarize(-) provides perfect
privacy protection (e = 0) with a violation probability of 6 = . Specifically, the attacker cannot
distinguish x; from x} if the output of ternarize(-) = 0 (perfect privacy protection), while no
differential privacy is provided if the output of ternarize(-) # 0 (violation of the privacy guarantee).
Remark 4. It is worth mentioning that, in [37], the users transmit a scaled version of ternarize(-)
and the scaling factor reveals the magnitude information of x;. Therefore, the compressor in [37] is
not differentially private.

6 Breaking the Communication-Privacy-Accuracy Tradeoff

In this section, we extend the results in Section 5 to the vector case in two different approaches,
followed by discussions on the three-way tradeoff between communication, privacy, and accuracy.
The results in Section 4 can be extended similarly. Specifically, in the first approach, we derive the
1-GDP in closed form, while introducing some loss in privacy guarantees. In the second approach, a
tight approximation is presented. Given the results in Section 5, we can readily convert f-DP in the
scalar case to Gaussian differential privacy in the vector case as follows.

Theorem 4. Given a vector x; = [x;1,%i2, - ,Z;q4] with |, ;| < ¢,Yj. Applying the ternary

compressor to the j-th coordinate of x; independently yields .-GDP with pi = —2@71(W).
a—e

Remark 5. Note that ||x;||2 < c is a sufficient condition for |x; ;| < ¢,Yj. In the proof of Theorem
4, we first convert f'*"""Y(a)-DP to (€,0)-DP for the scalar case, and then obtain (de,0)-DP



for the d-dimensional case, followed by the conversion to GDP. One may notice that some loss in
privacy guarantee is introduced since the extreme case |z; ;| = c,Vj actually violates the condition
l|zi|l2 < ¢ To address this issue, following a similar method in [13, 38, 9], one may introduce
Kashin’s representation to transform the ly geometry of the data into the l, geometry. More
specifically, [39] shows that for D > d, there exists a tight frame U such that for any x € R, one

can always represent each x; with y; € [—~o//d, —vo/Vd|P for some ~ and xz; = Uy;.

In Theorem 4, some loss in privacy guarantees is introduced when we convert f-DP to y-GDP. In
fact, since each coordinate of the vector is processed independently, the extension from the scalar
case to the d-dimensional case may be understood as the d-fold composition of the mechanism in the
scalar case. The composed result can be well approximated or numerically obtained via the central
limit theorem for f-DP in [15] or the Edgeworth expansion in [33]. In the following, we present the
result for the ternary compressor by utilizing the central limit theorem for f-DP.

Theorem 5. For a vector x; = [;1,%; 2, - ,&iq| with |x; ;| < ¢,Vj, the ternary compressor with
B> A > cis ft""Y(a)-DP with
Gula+y) =~ < ffr¥(a) < Gula =) +7, (14)
in which s
A—c c A+c A c
2V/de _0-56{23 50+ -5+ (-9 |5 }

__Zvde 15
Vag—c (gf%wwm ()

Given the above results, we investigate the communication-privacy-accuracy tradeoff and compare
the proposed ternary stochastic compressor with the state-of-the-art method SQKR in [13] and the
classic Gaussian mechanism. According to the discussion in Remark 5, given the [, norm constraint,
Kashin’s representation can be applied to transform it into the [, geometry. Therefore, for ease of
discussion, we consider the setting in which each user ¢ stores a vector z; = [z;1,Zi 2, " ,Ti.d

with [z < ¢ = V], and [|a]]2 < C.

Ternary Stochastic Compressor: Let Z; ; = ternary(z;;, A, B), then E[BZ; ;] = x;; and
Var(BZ;;) = AB — 27 ;- In this sense, applying the ternary stochastic compressor to each
coordinate of z; independently yields an unbiased estimator with a variance of ABd — ||x;||3. The
privacy guarantee is given by Theorem 5, and the communication overhead is (log,(d) + 1) d bits

in expectation.

SQKR: In SQKR, each user first quantizes each coordinate of x; to {—c, ¢} with 1-bit stochastic
quantization. Then, it samples k coordinates (with replacement) and privatizes the k bit message via
the 2 Random response mechanism with e-LDP [14]. The SQKR mechanism yields an unbiased

. . . <ok . .
estimator with a variance of ¢(¢£t2=1)2C2 — ||z,]|3. The privacy guarantee is e-LDP, and the

corresponding communication overhead is (log,(d) + 1)k bits.

Gaussian Mechanism: We apply the Gaussian mechanism (i.e., adding independent zero-mean
Gaussian noise n; j ~ N(0, %) to z; ;), followed by a sparsification probability of 1 — A/B as in
ternary(w; j, A, B), which gives ZC™"** = & (x; ; + n; ;) with probability A/B and ZZes* =0,
otherwise. It can be observed that E[ZC®"**] = z; j and Var(ZZ#**) = Bo2+ (5§ —1)a? ;. There-

fore, the Gaussian mechanism yields an unbiased estimator with a variance of Bo2d+ (8 - 1) [|2;] |2
By utilizing the post-processing property, it can be shown that the above Gaussmn mechamsm is

2T‘fc-GDP [15], and the communication overhead is (log,(d) + 32)4d bits in expectation.

Discussion: It can be observed that for SQKR, with a given privacy guarantee e-LDP, the variance
(i.e., MSE) depends on k (i.e., the communication overhead). When e¢ < 2F (which corresponds
to the high privacy regime), the variance grows rapidly as k increases. For the proposed ternary
stochastic compressor, it can be observed that both the privacy guarantee (in terms of -GDP) and
the variance depend on AB. Particularly, with a given privacy guarantee u < \/4dr/(1 — r) for
r = A/ B, the variance is given by (4d/u? +1)C? — ||z;||3, which remains the same regardless of the
communication overhead. In this sense, we essentially remove the dependency of accuracy on the
communication overhead and therefore break the three-way tradeoff between communication
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Figure 4: For the left figure, we set £ = 10 and derive the corresponding variance for SQKR, based
on which A and B for the ternary stochastic compressor are computed such that they have the same
communication overhead and MSE in expectation. The middle and right figures show the tradeoff
between y-GDP and MSE. For the middle figure, we set 0 € {2, 3,2,1,2,4,6,8,10} for the
Gaussian mechanism, given which A and B are computed such that AB = ¢? + o2 and the sparsity
ratio is A/ B. For the right figure, we set A € {5¢, 10¢, 20¢, 30c} and A/B € {0.2,0.4,0.6,0.8,1.0},
given which the corresponding o’s are computed such that AB = ¢? + o2.

overhead, privacy, and accuracy.' This is mainly realized by accounting for privacy amplification
by sparsification. At a high level, when fewer coordinates are shared (which corresponds to a larger
privacy amplification and a larger MSE), the ternary stochastic compressor introduces less ambiguity
to each coordinate (which corresponds to worse privacy protection and a smaller MSE) such that
both the privacy guarantee and the MSE remain the same. Since we use different differential privacy
measures from [13] (i.e., u-GDP in this work and e-DP in [13]), we focus on the comparison between
the proposed ternary stochastic compressor and the Gaussian mechanism (which is order-optimal in
most parameter regimes, see [30]) in the following discussion and present the detailed comparison
with SQKR in the experiments in Section 7.

Let AB = c¢? + 02, it can be observed that the f-DP guarantee of the ternary compressor ap-
proaches that of the Gaussian mechanism as d increases, and the corresponding variance is given
by Var(BZ; ;) = o® + ¢ — 3. When A = B, i.e., no sparsification is applied, we have
Var(BZ; ;) — Var(ZG‘“‘SS) =2 - Specifically, when z; ; € {—¢,c},V1 < j < d, the
ternary compressor demonstrates the same f DP privacy guarantee and variance as that for the Gaus-
sian mechanism, i.e., the improvement in communication efficiency is obtained for free (in the
large d regime). When B > A, we have Var(BZ; ;) — Var(ZZ#*) = (1 - 8)o? + ¢ — a2,
and there exists some B such that the ternary compressor outperforms the Gaussian mechanism
in terms of both variance and communication efficiency. It is worth mentioning that the privacy
guarantee of the Gaussian mechanism is derived by utilizing the post-processing property. We believe
that sparsification brings improvement in privacy for the Gaussian mechanism as well, which is,

however, beyond the scope of this paper.

Optimality: It has been shown that, for k-bit unbiased compression mechanisms, there is a lower
bound of Q(C?d/k) in MSE [40]. For the proposed ternary compressor, the MSE and the communica-
tion cost are given by O(ABd) and A(log(d)+1)d/ B bits, respectively. Let k = A(log(d)+1)d/B,
it achieves an MSE of O(A2d?(log(d) + 1)/k). Since A > ¢ = C/+/d, the MSE of the ternary
compressor is given by O(C2d(log(d) +1)/k), which implies that it is order-optimal up to a factor of
log(d). Note that the factor of log(d) is used to represent the indices of coordinates that are non-zero,
which can be eliminated by allowing for shared randomness between the users and the server.

7 Experiments

In this section, we examine the performance of the proposed ternary compressor in the case of
distributed mean estimation. We follow the set-up of [9] and generate N = 1000 user vectors with
dimension d = 250, i.e., 1, ..., N € R2%0, Each local vector has bounded 5 and [, norms, i.e.,
[|z:|]2 < C =1and ||z;||cc < c= f

Fig. 4 compares the proposed ternary stochastic compressor with SQKR and the Gaussian mechanism.
More specifically, the left figure in Fig. 4 compares the privacy guarantees (in terms of the tradeoff
between type I and type II error rates) of the ternary stochastic compressor and SQKR given the

'In practice, utilizing the closed-form expressions of the MSE and the privacy guarantee j, one may readily
obtain the corresponding A and B for any given privacy/MSE and communication cost specifications.



same communication overhead and MSE. It can be observed that the proposed ternary stochastic
compressor outperforms SQKR in terms of privacy preservation, i.e., given the same type I error
rate a, the type II error rate (5 of the ternary stochastic compressor is significantly larger than that of
SQKR, which implies better privacy protection. For example, for SQKR with ¢ = 2, given type I error
rate o = 0.5, the type II error rate of the attacker is around fS?¥%(a) = 0.068, while the ternary
compressor attains f'¢"%"Y(q) = 0.484. Given the same MSE and communication cost as that of
SQKR with esgxr = {1, 2, 5}, if we translate the privacy guarantees of the ternary compressor from
/-DP to e-DP via Lemma 1 (we numerically test different €’s such that f**""%"%(«) > max{0,1 —
§—e‘a,e (1 — 6 — )} holds for § = 0), we have €ernary = {0.05,0.2,3.9} for the ternary
compressor, which demonstrates its effectiveness. The middle and right figures in Fig. 4 show the
tradeoff between MSE and DP guarantees for the Gaussian mechanism and the proposed ternary
compressor. Particularly, in the middle figure, the tradeoff curves for the ternary compressor with
all the examined sparsity ratios overlap with that of the Gaussian mechanism with A/B = 1 since
they essentially have the same privacy guarantees, and the difference in MSE is negligible. For
the Gaussian mechanism with % < 1, the MSE is larger due to sparsification, which validates
our discussion in Section 6. In the right figure, we examine the MSEs of the proposed ternary
compressor with various A’s and B’s. It can be observed that the corresponding tradeoff between
MSE and privacy guarantee matches that of the Gaussian mechanism well, which validates that the
improvement in communication efficiency for the proposed ternary compressor is obtained for free.

8 Limitation

The main results derived in this paper are for the scalar case, which are extended to the vector case
by invoking the central limit theorem. In this case, the privacy guarantees derived in Theorem 5 are
tight only in the large d regime. Fortunately, in applications like distributed learning, d corresponds
to the model size (usually in the orders of millions for modern neural networks). Moreover, despite
that the privacy-accuracy tradeoff of the proposed ternary compressor matches that of the Gaussian
mechanism which is order-optimal in (e, §)-DP, the optimality of the proposed ternary compressor in
the f-DP regime needs to be further established.

9 Conclusion

In this paper, we derived the privacy guarantees of discrete-valued mechanisms with finite output
space in the lens of f-differential privacy, which covered various differentially private mechanisms
and compression mechanisms as special cases. Through leveraging the privacy amplification by
sparsification, a ternary compressor that achieves better accuracy-privacy-communication tradeoff
than existing methods is proposed. It is expected that the proposed methods can find broader
applications in the design of communication efficient and differentially private federated data analysis
techniques.
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Breaking the Communication-Privacy-Accuracy Tradeoff with
f-Differential Privacy: Supplementary Material

A Tradeoff Functions for a Generic Discrete-Valued Mechanism

We consider a general randomization protocol M(-) with discrete and finite output space. In this
case, we can always find a one-to-one mapping between the range of M(-) and a subset of Z.
With such consideration, we assume that the output of the randomization protocol is an integer,
ie., M(S) € Zym C Z,VS, without loss of generality. Given the randomization protocol and the
hypothesis testing problem in (2), we derive its tradeoff function as a function of the type I error rate
in the following lemma.

Lemma 2. For two neighboring datasets S and S', suppose that the range of the randomized
mechanism R(M(S)) UR(M(S") =Z8, = [2Y,..., Z8] C Z and R(M(S)) NR(M(S")) =
Zh,=12f,..., 2L CZ. Let X = M(S) and Y = M(S"). Then,

Case (1) If M(S) € 21,21 +1,...,2Y], M(8") € [2V, 2V +1,..., ZL], and =R s 4

P(X=F)
decreasing function of k for k € 7 ,, the tradeoff function in Definition 2 is given by
P(Y=K)P(X<k) _ P(Y=k
P(Y > k) + & P())(:(k)< = PEX:k%a’
By (a) = ifae (P(X <k),P(X <k), ke[Z], 2. (16)

0, ifae(P(X <ZL+1),1].

Case 2) IFM(S) € (2, 2Y + 1, 2}, M(S) € (2], 2] +1,--- , 2]]), and p3=3} is an

increasing function of k for k € 7, ,, the tradeoff function in Definition 2 is given by
PY <k)+ P(Y=k)P(X>k)  P(Y=k)

P(X=k) _ PX=h)
By () = ifae (P(X >k),P(X>k), ke [ZL 25 (17)
0, ifoe (P(X > 2L —1),1).

Remark 6. It is assumed in Lemma 2 that % is a decreasing function (for part (1)) or an

increasing function (for part (2)) of k € wa without loss of generality. In practice, thanks to the
post-processing property of DP [15], one can relabel the output of the mechanism to ensure that this
condition holds and Lemma 2 can be adapted accordingly.

Remark 7. We note that in Lemma 2, both X and Y depend on both the randomized mechanism
M(-) and the neighboring datasets S and S’. Therefore, the infimums of the tradeoff functions in
(16) and (17) are mechanism-specific, which should be analyzed individually. After identifying the
neighboring datasets S and S’ that minimize B;{(a) and B (a) for a mechanism M(-) (which is
highly non-trivial), we can obtain the distributions of X and Y in (16) and (17) and derive the
corresponding f-DP guarantees.

Remark 8. Since ﬂ(‘; () is a piecewise function with decreasing slopes w.r.t k (see, e.g., Fig. 1), it can
be readily shown that B(‘;(a) > max{P(Y > k) + ggZigP(X <k)-— igzga,()},v}c € Zk,.
As a result, utilizing Lemma 1, we may obtain different pairs of (¢, 0) given different k’s.

Remark 9. Although we assume a finite output space, a similar method can be applied to the

mechanisms with an infinite range. Taking the discrete Gaussian noise [20] as an example, M(x) =
7’()2 (72 )=

x+ V with P(V =v) = ZveT_/QQ/%Q One may easily verify that %ﬁzg;:; is a decreasing

function of k if ¥, > x; (and increasing otherwise). Then we can find some threshold v for the rejection

rule ¢ such that ay = P(M(x;) < v) = a, and the corresponding y(a) = 1 — P(M(x}) < v).

The key to proving Lemma 2 is finding the rejection rule ¢ such that 3, («) is minimized for a
pre-determined « € [0, 1]. To this end, we utilize the Neyman-Pearson Lemma [41], which states
that for a given «, the most powerful rejection rule is threshold-based, i.e., if the likelihood ratio

58/;2)) is larger than/equal to/smaller than a threshold h, H) is rejected with probability 1/7/0. More
specifically, since X and Y may have different ranges, we divide the discussion into two cases (i.e.,

Case (1) and Case (2) in Lemma 2). The Neyman-Pearson Lemma [41] is given as follows.
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Lemma 3. (Neyman-Pearson Lemma [41]) Let P and QQ be probability distributions on ) with
densities p and q, respectively. For the hypothesis testing problem Hy : P vs Hy : Q, a test
¢ : Q — [0, 1] is the most powerful test at level o if and only if there are two constants h € [0, +00]
and ~y € [0, 1] such that ¢ has the form

L iy > D

$(z) = { 1 if LD =, (18)

0. 555 < b
and Ep[p] = a. The rejection rule suggests that Hy is rejected with a probability of ¢(x) given the
observation x.

Given Lemma 3, the problem is then reduced to finding the corresponding h and v such that the
type I error rate cvy = «v. For part (1) (the results for part (2) can be shown similarly), we divide the
range of « (i.e., [0, 1]) into multiple segments, as shown in Fig. 5. To achieve o = 0, we set h = co
and v = 1, which suggests that the hypothesis Hy is always rejected when k < Z!{ and accepted

otherwise. To achieve a € (P(X < k), P(X < k)], for k € [2L, ZL], we set h = £=F and

P(X=k)
v = %. In this case, it can be shown that iy = e € (P(X < k), P(X < k)]. To achieve
€ (P(X < ZL+1),1],weseth=0,and y = % In this case, it can be shown that

ag = a € (P(X < Z5 +1),1]. The corresponding 34 can be derived accordingly, which is given
by (16). The complete proof is given below.

Proof. Given Lemma 3, the problem is reduced to finding the parameters h and -y in (18) such that
Ep[¢] = a, which can be proved as follows.

Case (1) We divide o € [0, 1] into 25 — Z] + 1 segments: [P(X < ZY), P(X < ZH) U (P(X <
ZH) P(X < 2D)U-- U(P(X < k),P(X <k)]U---U(PX < 2Y), P(X < 2Y)], as shown
in Fig. 5.

o " '
M £ 1 [ I T B | A
M($) L 1 1 1 [ | 1 1 1
« — —
a=0 (P(X < k),P(X < k)] (P(x < 2¥),P(x <2¥)]

Figure 5: Dividing « into multiple segments for part (1).

When a = P(X < 2V) = P(X < ZI) = 0, we set h = +oo. In this case, noticing that
POY=k) _ b for k < ZL, and L& =) < h otherwise, we have

P(X=Fk) — P(X=k) k)
Ep[¢] = yP(X < 2])=0=aq, (19)
and
B4(0)=1-Eq[¢] =1 —~vP(Y < Z]). (20)

The infimum is attained when v = 1, which yields 5$ (0)=P(Y > Zh).

When o € (P(X < k), P(X < k)] fork € [Z],Z}], weset h = Pg( g In this case, 112827;’2/,; =
hfork’ =k, and Pg IZ,; > h for k' < k, and therefore
Epl¢] = P(X < k) + vP(X = k). 21

We adjust «y such that Ep[¢] = «, which yields

_ a—P(X <k;)
W—ma (22)

B (a) = 1— [P(Y < k) +vP(Y = k)]

P(Y =k)P(X <k) P(Y =k)
P(X = k) - P(X =k)

and

=P(Y > k) +

(0%
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When a € (P(X < k), P(X < k)] fork € (25, ZY], we set h = 0. In this case, 58/;2:; = h for
k' > ZL, and 58;22:3 > hfor k' < ZL. As aresult,
Epl¢] = P(X < Zg) + 7P(X > Zp), (24)

and
Bi(@) =1—[P(Y < Zg) +vP(Y > Zg)] = 0 (25)
Similarly, we can prove the second part of Lemma 2 as follows.

Case (2) We also divide o € [0,1] into ZY — Zf + 1 segments: [P(X > ZV),P(X > ZV)]uU
- U(P(X > k),P(X > k)]U---U(P(X > ZL), P(X > ZL)], as shown in Fig. 6.

2z 2k
M(S) M(S) | 1 1 | I | 1 1 1 (]
L 1 1 1 1 | IR N | 1 1
« — —_
(P(X>2,),1] (PX > k), P(X = k)] (0.P(x=2})] a=0

Figure 6: Dividing « in to multiple segments for part (2).

When « € (P(X > k), P(X > k)] fork € [ZY, Z]), we set h = 0. In this case,

Ep[¢] = P(X > Z]) + vP(X < Z1), (26)
and
By(a) =1—[P(Y > Z]) +vP(Y < Z[)] =0 27)
When a € (P(X > k), P(X > k)| fork € [ZL, ZE], we set h = 58;733. In this case,
Ep[¢] = P(X > k) +vP(X = k). (28)
Setting Ep[¢] = « yields
a-P(X > k)
v = TPX —k) (29)
and B
5(;5 ()
=1—-[P(Y > k)+~vP(Y = k)]
a—P(X >k)
- <k)— — k) (30)
P(Y <k)-P(Y =k) PO = F)
P(Y =k)P(X >k) P =k)
= < —
PY =W+ ——Fx =5 PX =k
When a = P(X > ZL) =0, we set h = +o0. In this case,
Ep[¢] = yP(X > 25) =0 = q, (31)
and
B5(0) =1-Eqlg] =1 —~vP(Y > Zp). (32)
The infimum is attained when 7y = 1, which yields 3 (0) = P(Y < zh). O

B Proofs of Theoretical Results

B.1 Proof of Theorem 1

Theorem 1. Ler Z = Binom(M, p), the binomial noise mechanism in Algorithm 1 is f'(a)-
differentially private with

fb"(a) = min{ﬂ;;inf(a% %inf(a)}’ (33)
in which ~ o o
5o g P(Z=k+)P(Z<k)  P(Z=k+1)
P(Z Z k + Z) + P(Z:E) - P(?:k)~ ) ~ ~ ~
B ms(a) = fora € [P(Z < k),P(Z <k)],ke[0,M—1],
0, fora € [P(Z < M —1),1].

(34)
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Z
By me(@) = forae[P(Z>Fk),P(Z>k)],kell,M], (35
0, fora € [P(Z >1),1].

Given that P(Z = k) = (]Z[)pk(l — p)M=k it can be readily shown that when p = 0.5, both

ﬁdf’inf(a) and B +(«) are maximized, and f(a) = ﬁdtinf(a) = By it ().
Before proving Theorem 1, we first show the following lemma.

Lemma4. Let X = x; + Binom(M,p) andY = x}, + Binom(M,p). Then, if x; > z},
P(Y > k) + ROSRPX <) _ PY=h)

P(X=F) ~ P(x=k) %
85 () = ifa€[P(X <k),P(X <k), k€ [x;, 2z, + M]. (36)
0, ifa € (P(X <} +M+1),1].
Ifx; <,
P(Y=K)P(X>k)  P(Y=k
Py <k)+ 2 P())(:(k)> L P((X:k))a’
By (a) = ifae[P(X >k),P(X >k), ke [x,z; + M]. (37

0, fae (P(X >a,—1),1]

Proof of Lemma 4. When x; > x, it can be easily verified that P(X = k) > O only for k € [z;,z; +
1,---,z;+ M), P(Y=k) >0onlyfork € [z},z, +1,--- ,z, + M]. For k € [z;,--- ,z} + M],
we have u , ,

P =k) (lg)p" =@ —p)Mrte

S R NA T .
_ Wkt A YWV kAt 42 (N kot ) 1-pia,
= (k—xi+1)(k—z; +2)--(k— ) » .

It can be observed that % is a decreasing function of k.

When z; < 2, it can be easily verified that P(X = k) > O only for k € [z, z; + 1, -+ ,z; + M|,
P(Y =k)>0onlyfork e [a},z, +1,--- 2, + M]. For k € [z, ,x; + M], we have

17 K2

Py =k) ()P —p)M e

POC=R) ~ (T ) (1= ppitim
G n(esa)bom)  1-pg
- (N—k+zi+1)(N—k+z;+2)--(N—k+al)" p ’

It can be observed that 58233 is an increasing function of &, and invoking Lemma 2 completes the

proof. O

(39)

Given Lemma 4, we are ready to prove Theorem 1.

Proof of Theorem 1. Let Z = Binom(M,p), X = z;+ Z and Y = x; + Z. Two cases are
considered:
Case 1: z; > /.
In this case, according to Lemma 4, we have
P(Y=k)P(X<k) P(Y=k)
PY 2 k) + = px=py ~ ~ Px=h®
5;{(04) = fora € [P(X <k),P(X <k)|,k € [,z + M], (40)

0, fora € [P(X <z + M),1],
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In the following, we show the infimum of ﬁ;r(a). For the ease of presentation, let k=Fk— x; and
x; — x; = A. Then, we have

P(Y>k)=P,+Z>k)=P(Z>k+A),
HY:M:P(:%+M, o “h
P(X <k)=P(x;+Z <k)=P(Z<k),
P(X=k)=Plx;+Z=k) =P(Z=k)
(40) can be rewritten as o o o
P(Z>k+A)+ P(Z:l;,TZA:)g)(Z<k) - PS,Z(;ZE)A)&, fora € [P(Z :) P(Z < k),
ﬂg(a) = kel0,M — Al
0, fora € [P(Z <M —A),1].
(42)
Let J(A k)= P(Z>k+A)+ P(ZZE{ZA:)%(Zd) - Pf(;fjif)a, we have
JA+1,k)—JAk)=—-P(Z=k+A)
N P(Z:/Z:+A+}) 7~P(Z:I~<:+A)[P(Z <)l (43)
P(Z=k)

E+A+1)—P(Z =k+A) >0, JA+1,k)—JAE) < -P(Z=Fk+A) <0.If

P(Z=k+A41)—P(Z=k+A)<0,J(A+1,k)—J(AK) < P(Z_l%+A+1) <0.

As a result, the infimum of 3 5 (o) is attained when A = [, i.e., ; = [ and 2, = 0, which yields
P(Z>h+0)+ P(Z=k+)P(Z<k) _ P(Z=k+l)

Since a € [P(Z < k),P(Z < k)], we have P(Z < k) —a € [-P(Z = k),0]. If P(Z =

P(Z=k)  _ P(Z=k) _
B int(@) = fora € [P(Z < k), P(Z < k)], k € [0,M 1], (44)
0, fora € [P(Z < M —1),1].
Case 2: z; < z.
In this case, according to Lemma 4, we have
P(Y=k)P(X>k P(Y=k
PY <k)+ ( P())(:(k) L - ngzkg
By (o) = fora € [P(X > k),P(X > k)|, k € [a},z; + M], (45)
0, fora € [P(X > x}),1],

In the following, we show the infimum of 3(«). For the ease of presentation, let k=Fk—a; and
ai — x; = A. Then, we have

P(Y <k)=P,+Z<k)=P(Z<k-A),
P(Y =k)=P(Z=k-
( ) = P( ] A), o 46)
P(X > k)= P(x; +Z k)=P(Z > k),
P(X=k)=Pxi+Z=k)=P(Z=k
(45) can be rewritten as o o o
5 _ 7 P(Z=k-A)P(Z>k) _ P(Z=k-A)
P(Z<k-A)+ Pa=h _  _P@=h ~oz7
By () = fora € [P(Z > k), P(Z > k)], k € [A, M], (47)
0, fora € [P(Z > A), 1].
Let J(A, k) = P(?~ <k- A} + P(Z:;—?‘:{}(ZM) - P;(:ZZ})A)O" we have
JA+1,k)—JAk)=-P(Z=k—-A)
PZ=k-A-1)-P(Z=k-A),_ 5 - (48)
+ ( ~> ~( )[P(Z>k)—a]
P(Z=k)



> k),P(Z > k)], we have P(Z > k) —a € [-P(Z

k—-A-1)—-P(Z = —A)>o,thenJ(A+1,/Z;)—J(A,1}) (

P(Z=k—A—-1)—P(Z=k—-A) <0,then J(A+1,k)— (A,;Z;)< =k-A-1)<0.

As a result, the infimum of ,8;( «) is attained when A = [, i.e., x; = 0 and 7} l thh yields
P(Z<h-1)+ P(Z=k-)P(Z>F) _ P(Z=k-D) |

k),0]. If P(Z =

=k— )<0.If

Since a € [P(Z

Nx Lol
’“ N’ ||

P(Z=k)  _ P(Z=k)
B me(@) = fora € [P(Z > k), P(Z > k)|, k € [I, M], (49)
0, fora € [P(Z >1),1].

Combining (44) and (49) completes the first part of the proof. When p = 0.5, it can be found that
both ﬂ(;:inf(a) and 3, +(«v) are maximized, and f(a) = Biinf(a) = By int (). O

B.2 Proof of Theorem 2

Theorem 2. The binomial mechanism in Algorithm 2 is f*™(a)-differentially private with

Fr™ (@) = min{ B} ¢ (@), By ()}, (50)

in which
Bfumd@) = 1= [P(Y < )+ 7P(Y =B = P(Y 2 by TS P - S = o,

fora € [P(X < k),P(X <k)|and k € {0,1,2,--- , M}, where X = Binom(M, pmaz) and
Y = Binom(M, pyin), and
B P(Y =k)P(X >k) P =k)
. =1-[P(Y >k PY=k)]|=PY <k -
fora € [P(X > k),P(X > k)l and k € {0,1,2,--- , M}, where X = Binom(M, ppn) and
Y = Binom(M, pimaq ). When praz = 1 — Dimin, we have ﬂ;inf(a) = By in ().

Proof. Observing that the output space of the binomial mechanism remains the same for different
data z;,i.e., ZL = Z2Y¥ = 0and 2L = ZY = M in Lemma 2. Moreover, let X = Binom(M,p)
and Y = Binom(M, q), we have 22 =F) — (G)a"0-a™ ™" (ﬂ)M(M)k Similarly, we

14/ P(X=k) (I‘kf)pk(l_p)M—k 1-p p(l—q)/ >
consider the following two cases.

Case 1: ¢ < p.

In this case, we can find that 15)8;2’13 is a decreasing function of k. Therefore, according to Lemma

2, we have

Bg(a) =1—-[P(Y <k)+~P(Y =k)]

:P(sz)_P(Y:k)aP(];(XZ)k) (51)
B P(Y =k)P(X <k) P =k)
AL =5 o ey T

In the following, we show that the infimum is attained when p = p;,4. and ¢ = Pyir. For Binomial
distribution ¥, we have 220°<E) < and 220°=H) < 0, vk

08, (a)  9P(Y <k) 7aP(Y = k)

Jq Jq dq
oP(Y <k)  OP(Y <k) (52)
-
dq dq

=-(1-9)

> 0.
Therefore, the infimum is attained when ¢ = py,ir,-

Suppose X = Binom(M,p) and X = Binom(M, p). Without loss of generality, assume p > p.
Suppose that « € [P(X < k),P(X < k)] and o € [P(X < k), P(X < k)] for some k and k
are satisfied simultaneously, it can be readily shown that & > k. In addition, o € [max{P(X <
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k), P(X < k)},min{P(X < k), P(X < k)}]. Let
3= Pty . P RPN <o) o
and o
Bfsa) =P >k)+ P = ];)([;(i(;) k) - o‘], (54)
B p(@) = B4 5(a)
B . P(Y=EKk[P(X <k)—a] P =k[PX<k) —a
PR =P = 2 T pE—h 55)
:P(Y>k)—P(Y>1;)+P(Y=1;)([§(X§)k)—a] P(Y=/2([§(i(;k)—a}

Obviously, P(Y > k) — P(Y > k) <0and P(Y > k) — P(Y > k) < 0 for k > k. Observing
that ﬂ;;p(oz) - ﬂ;;p(oz) is a linear function of @ € [max{P(X < k), P(X < k)},min{P(X <
k), P(X < l;;)}] given Y, X, X, k and k, we consider the following four possible cases:

1) P(X < k) < P(X < k)and a = P(X < k): In this case, 2O= k)[;(xkfk) ol —

P(Y:k)[P}gf;f,)v)_P(Xd)] < 0. As aresult, ﬁ;p(a) - 5;;13(04) <0

2) P(X < k) > P(X < k)and o = P(X < k): In this case,
85 ,(@) = B 4(a)

B . P(Y=K[P(X<k)—a] PY =k[PX<k)—a]
SRR PR TR Y Sy T xR (56)
S T St k)[P](j((;j)k)_ PX < B

When k = k, since p > p, we have P(X < k) — P(X < k) > 0, which violates the condition that
P(X <k)>P(X <k).

When k > k, we have P(Y > k) — P(Y > k) < —P(Y = k). Therefore,
BY (@) = AL (a) < —P(Y =)~ L¥= BIP(X < b) - P(X < k)]

P(X = k)
_ P(Y=k)[P(X <k)-P(X <k)] (57)
o P(X = k)
<0
3) P(X < k) < P(X <k)and a = P(X < k): In this case
P(Y =k)[P(X <k)—a] P(Y =k|[PX<k)—a]
P(X =k) P(X = k) B 58)
_P(Y =k)[P(X <k)— P(X <k)] <0
P(X =k) -

Asaresult, B (o) — Bf () < P(Y > k) — P(Y > k) < 0.

4) P(X <k)>P(X <k)and o = P(X < k): In this case, when k = k, P(X < k) — P(X <
k) > 0, which violates the condition that P(X < k) > P(X < k).
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When k£ > I%,

P(Y = k)[P(X <k)— P(X <k)]
P(X =k)
P(Y = k)[P(X <k)—P(X <k)] (59)

—P(Y>k) - PY >k)+ P(Y = k)[P](D)((X<_k)k)— P(X < 1;)].

Since k > k, P(Y > k) — P(Y > k) < 0. In addition, P(X < k) — P(X < k) <0
o € max{P(X < k),P(X < I%)},P(X k)]. As a result, ﬂd:,p( a) — 6;43(04) < P(Y >
k)—P(Y >k)<0

Now that B;})(a) — B (c) is a linear function of o € [max{P(X < k), P(X < k)}, min{P(X <
k), P(X < k)}], which is non-positive in the extreme points (i.e., the boundaries), we can conclude
that B (a) — B ;(a) < 0 forany o € [max{P(X < k), P(X < k)}, min{P(X < k), P(X <
k)}]. Therefore, the infimum of ﬁ;f () is attained when p = praz-

Case 2: ¢ > p.

In this case, we can find that % is an increasing function of k. As a result, according to Lemma

2, we have
PY=kKPX>k) PY=k)

N =PY <k — 60
Similarly, it can be shown that the infimum is attained when ¢ = Py, and p = Prin-
As a result, we have
T(P,Q)(a) = min{B;, (@), By j(@)} (61)
O
B.3 Proof of Theorem 3
Theorem 3. The ternary stochastic compressor is f1"""Y(«)-differentially private with
1— ﬁfﬁa, fora €10, ‘gBC]
fremer(a) = {1 - F —a, fora €[4, 1 - 5], (62)
478 — 4%, forae [1— 4551,

We provide the f-DP analysis for a generic ternary stochastic compressor defined as follows.

Definition 8 (Generic Ternary Stochastic Compressor). For any given x € [—c, c|, the generic
compressor ternary outputs ternary(x, p1, po, p—1), which is given by

1, with probability p;(x),
ternary(x, p1,po,P—1) = 0,  with probability po, (63)
—1, with probability p_1 (x),
where py is the design parameter that controls the level of sparsity and p1(z), p—1(x) € [Pmin, Pmaz)-
It can be readily verified that p1 = %,po =1- %, p_q = % (and therefore pin = % and
Pmaz = % ) for the ternary stochastic compressor in Definition 6.

In the following, we show the f-DP of the generic ternary stochastic compressor, and the corre-
sponding f-DP guarantee for the compressor in Definition 6 can be obtained with pp, = 4=

A 2B
Pmaz = 33 c,andpg =1— 4
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Lemma 5. Suppose that pg is independent of €, pmaz + Pmin = 1 — po, and p1(x) > p1(y),Va > y.
The ternary compressor is f1¢7™9Y (o )-differentially private with

1— %a, Jor a € [0, Drminl,
ftev"naTy<a) — Do + 2pmzn —Q, fOV a [pminv 1-— pmax]v (64)

Pmin __ Ma, fOVOZ S []- — Pmaz 1]7

Pmax Pmazx

Proof. Similar to the binomial mechanism, the output space of the ternary mechanism remains the
same for different inputs. Let Y = ternary(z}, p1, po, p—1) and X = ternary(x;, p1,po, p—1), we

have
P(Y =-1) _p_a(e})
P(X=-1) p-i(zi)’
PY =0)
=1, 65
P(X =0) (65)
P(Y =1) _ pi(a))
P(X=1) pi)
When z; > z}, it can be observed that (};zg is a decreasing function of k. According to Lemma 2,
we have ,
1 iiiéi”g , fora € [0, p_1(z4)],
B () = ¢ po+p1(@) + pa(wi) —a, fora € [py(zi), 1 —pi(ai)], (66)
B - hege for a € [1—pi(z:). 1]

When z; < a, it can be observed that PE}; B is an increasing function of k. According to Lemma

2, we have

_ gig%;a’ for a € [0, p1(z4)],
By (@) = S po+p-1(7;) +pr(w:) — e, fora € [pr(w:), 1 — pa(@i)], (67)
G - e forac(lopae),1)

The infimum of 6; (o) is attained when p_1(x}) = Pmaz and p_1(z;) = Pmin, while the infimum
of B, («) is attained when p1 () = Pmaz and p1(x;) = Pmin. As a result, we have

1 — bmazg, for o € [0, Pminl,
fteTnary(a) =< po+ 2pmzn -, for o € [pmin, 1— pmar]a (68)
puis - Baino, fora€ (1~ par 1]
which completes the proof. O
B.4 Proof of Theorem 4
Theorem 4. Given a vector x; = [x;1,%i2, - ,%;q] with |, ;| < ¢,¥j. Applying the ternary

compressor to the j-th coordinate of x; independently yields p-GDP with . = —2®*1(@).
A—c

Before proving Theorem 4, we first introduce the following lemma.

Lemma 6. [42, 43] Any (¢, 0)-DP algorithm is also u-GDP for y = —2®~ ( =), in which ®(-)
is the cumulative density function of normal distribution.

Proof. According to Theorem 3, in the scalar case, the ternary stochastic compressor is {747 (q)-

differentially private with
1— A+tc

Ea, for o € [0, 43¢,
fternary(a) 21— % —a, fora e [1‘;307 1-— gEC], (69)
£+2 fH_coz foro € [1 — 4t 1].
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It can be easily verified that £ (a) > max{0, 1 — (4%¢)a, (475)(1 — a)}. Invoking Lemma 1

A+tc
suggests that it is (log(4+2), 0)-DP. Extending it to the d-dimensional case yields (dlog(4%<), 0)-
DP. As a result, according to Lemma 6, it is —2®~ (W) -GDP. O

B.5 Proof of Theorem 5

Theorem 5. For a vector x; = [x; 1,22, - , ;4] with |z, ;| < ¢, V], the ternary compressor with
B> A > cis ft""Y(a)-DP with
Gula+v) =y < [ () < Gula =) +7, (70)
in which X
A+c A c
2de _0-56{ s+ 4 -5l *(1*5)5” o
T VAB-—& T (4- giz)wdw
Before proving Theorem 5, we first define the following functions as in [15],
1
() = - [ logf'(z)ld 72
0
1
ka(f) = [ log® |f' (@)l da 73)
0
1
f) = / | log |f'(2)[|*dz, (74)
0
1
7a(f) = [ llog (@) +K1(f) P 5)
0

The central limit theorem for f-DP is formally introduced as follows.

Lemma 7 ([15]). Let f1,..., fn be symmetric trade-off functions such that k3(f;) < oo for all
1 < i < d. Denote
_ 2||kl)|1 and ~ — 0.56||ks||1
12l — [IKI]13 (k2] — [IK2|[5)3/2°
and assume v < 3. Then, for all o € [y, 1 — 7], we have
Gula+7)—7<fivf® @ fila) <Gula—7)+7. (76)

Given Lemma 7, we are ready to prove Theorem 5.

Proof. Given f;(a) in (62), we have

A—c A+e A+e A—c
kl(f){ 2B log(A—c>+ 2B 10g(z4+c>}

A4+c A-—c A+c
{ 5B }log (A—c) 77
El A+c
B Afc ’
A+c +A+cl 9 (A—c
2 g A—c 2B o8 A+ec (78)
él A+c
B® \a—¢)
A—c A+c\]P A+ec A—c\|?
() =155 10g(A—c> 3B 10g(A—|—c> ]
(79)
_ A (At
B|®\a—¢ ’
A—c c|13 A+c c |3 A\ |c 3 A+e\]?
e < _c _AN e 80
Fa(f) {23 ‘H_B‘ 3B ’1 B’ +(1 B)‘B‘Hlog(Ac> (80)
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The corresponding p and «y are given as follows
2d5 2v/de

= = _, (81)
\/%d_ %d \/AB —cC
A—c c |3 A+tc c |3 A c|3
_0-56{23 1+ 5"+ 55 1 - 5 +(1—§)’§|} )
= (4 — & )3/2q1/? )
which completes the proof. O

C f-DP of the Poisson Binomial Mechanism

The Poisson binomial mechanism [9] is presented in Algorithm 3. In the following, we show the

Algorithm 3 Poisson Binomial Mechanism

Input: pi € [pminapmam]av’i eN
Privatization: Zp, £ PB(p1,pa, -+ ,PN) = ;e Binom(M, p;).

f-DP guarantee of the Poisson binomial mechanism with M = 1. The extension to the proof for
M > 1 is straightforward by following a similar technique.

Theorem 6. The Poisson binomial mechanism with M = 1 in Algorithm 3 is fP°(c)-differentially
private with

1- min min
fpb(a)min{max{o,l Pmin ., P (1a)},

1- Pmax ’ Pmax

maz 1 — .
maX{O,l—p az pmax(l_a)}}.

Pmin ’ 1- Pmin

(83)

Proof. For Poisson Binomial, let
X = PB(p17p27 5y PDi—1,DPis Pit1, 00t apN)a

Y :PB(phan"' api—l»pgapi—o—la"' 7pN)7 (84)

Z = PB(plaPQa oy Pi-1,Pid 1, apN),
in which P B stands for Poisson Binomial. In this case,
PY=k+1) _P(Z:k+1)(1—p;)+P(Z:k)p§ (85)
PX=k+1) PZ=k+1)(1-p;)+PZ=kp;

In addition,
P(Y =k+1)P(X =k)— P(Y = k)P(X =k +1)
=[P(Z=k+1)P(Z=k—1)— (P(Z=Fk)*)(pi —p))-
Since P(Z = k+1)P(Z =k — 1) — (P(Z = k))? < 0 for Poisson Binomial distribution, we have
>0, ifp; <pl,

(86)

PY =k+1)P(X=k)—P(Y =k)P(X =k+1) { (87)

<0, if p; > pl.

That being said, % is an increasing function of k if p; < pj and a decreasing function of k if

p; > p}. Following the same analysis as that in the proof of Theorem 2, for p; > pj, we have
Bila)=1—[P(Y <k) +~P(Y = k)]

—P(Y > k)— P(Y = k)O‘J_D(PX()i;)k) )
B P(Y =k)P(X <k) P(Y =k)
—PY 2t = TP =n®

fora e [P(X <k),P(X <k)landk € {0,1,2,--- ,N}.

In the following, we show that the infimum of B;’ (o) is attained when p; = Ppas and P = ppin.
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Case 1: k£ = 0. In this case,

P 20)=1,
P(Y =0) = P(Z = 0)(1 - 7)) )
P(X <0)=0,
P(X =0)=P(Z=0)(1-p;)
Plugging (89) into (88) yields
1—pl
—+ _ 7
6¢(a)_1—1_pia. (90)
It is obvious that the infimum is attained when p; = Dmae and p; = Prin.
Case 2: k£ > 0. In this case,
(Y >k)=P(Z>k)+P(Z=k-1)p,
PY = k) = P(Z = b)(1 — p}) + P(Z = k = 1)y, o
P(X<k)=P(Z<k)—P(Z=k—-1)p,
P(X=k)=P(Z=k)(1-p)+P(Z=k-1)p

Plugging (91) into (88) yields

ﬁ;‘(a)zp(Z>/€)+P(Z=k)p;’+[P(XSk)_a] P(X = k)

92)
The p) related term is given by
P(X=k)P(Z=Ek) [P(Z=k)—P(Z=k-1][P(X<k)—qa]], 93
P(X = k) P(X = k) Pe- ©3)
Observing that (93) is a linear function of «, we only need to examine « € {P(X < k), P(X < k)}.
More specifically, when o = P(X < k), itis reduced to P(Z = k)p.; when o = P(X < k), itis
reduced to P(Z = k — 1)p}. In both cases, the infimum is attained when p, = pyn.

Given that p; = Pmin, the same technique as in the proof of Theorem 2 can be applied to show that
the infimum is attained when p = p.az-

Since g((;zig is a decreasing function of k when p; > p}, we have

Pmin < P(Y:k) < 1_pmin.

Pmazx - P(X = k) 1 — Pmax
Given that ﬂg(a) is a decreasing function of « with B(‘; (0) = 1 and B;( ) = 0, we can readily
conclude that 87 (o) > max{0,1 — %a} and §; (o) > B=in(1 — ). That being said,
ﬂ;‘(a) Z maX{O7 1 _ 1—Pmin o Pmin (1 _ a)}.

1=pmaz ' Pmaz

(94)

Similarly, for p; < pl, we have
85 (a) = 1— [P(Y > k) +4P(Y = )

—HYgM—PW—ma;§£;M 05)
- P(Y =k)P(X>k) P =k)
=PV st 55— T Phx =

foraw € [P(X > k),P(X > k)]and k € {0,1,2,--- , N}. The infimum is attained when p; = pyin,
p; = Pmax-

ﬁgcig is an increasing function of k£ when p; < p}, we have

1_pmaz < P(Y:k) < pmax.
l_pmin o P(X = k) " Pmin

Given that 3, () is an increasing function of a with 8, (0) = 1 and (1) = 0, we can easily
conclude that 8, (a) > max{0,1 — E=e2a} and B, (a) > i=Pmes (1 _ ), That being said,

1—pmin

ﬁ; (o) > max{0,1 — Bmaz o 1=pPmas (1-a)}. O

Pmin  1=Pmin

Since

(96)
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[P(Z=Fk)—[P(Z=k) — P(Z=Fk—1)pj]]
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