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Abstract

The knockoff filter is a recent false discovery rate (FDR) control method for high-dimensional
linear models. We point out that knockoff has three key components: ranking algorithm,
augmented design, and symmetric statistic, and each component admits multiple choices.
By considering various combinations of the three components, we obtain a collection of
variants of knockoff. All these variants guarantee finite-sample FDR, control, and our goal
is to compare their power. We assume a Rare and Weak signal model on regression coeffi-
cients and compare the power of different variants of knockoff by deriving explicit formulas
of false positive rate and false negative rate. Our results provide new insights on how to
improve power when controlling FDR at a targeted level. We also compare the power of
knockoff with its propotype - a method that uses the same ranking algorithm but has access
to an ideal threshold. The comparison reveals the additional price one pays by finding a
data-driven threshold to control FDR.

Keywords: Cl-knockoff, Hamming error, phase diagram, Rare/Weak signal model, SDP-
knockoff, variable ranking, variable selection

1 Introduction

We consider a linear regression model, where y € R"™ is the vector of responses and X € R"*P
is the design matrix. We assume

y=XB+e, X =[X1,Xo,...,X,)) €eR™P; BcRP, e~ N(0,0°I,). (1.1)

Driven by the interests of high-dimensional data analysis, we assume p is large and ( is a
sparse vector (i.e., many coordinates of 3 are zero). Variable selection is the problem of
estimating the true support of 5. Let S C {1,2,...,p} denote the set of selected variables.
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The false discovery rate (FDR) is defined to be

#{j:jedvl

Controlling FDR is a problem of great interest. When the design is orthogonal (i.e., X'X is
a diagonal matrix), the BH-procedure (Benjamini and Hochberg, 1995) can be employed to
control FDR at a targeted level. When the design is non-orthogonal, the BH-procedure faces
challenges, and several recent FDR, control methods were proposed, such as the knockoff
filter (Barber and Candes, 2015), model-X knockoff (Candes et al., 2018), Gaussian mirror
(Xing et al., 2023), and multiple data splits (Dai et al., 2022). All these methods are shown
to control FDR at a targeted level, but their power is less studied. This paper aims to
provide a theoretical understanding to the power of FDR control methods.

We introduce a unified framework that captures the key ideas behind recent FDR control
methods. Starting from the seminal work of Barber and Candes (2015), this framework has
been implicitly used in the literature, but it is the first time that we abstract it out:

(a) There is a ranking algorithm, which assigns an importance metric to each variable.
(b) An FDR control method creates an augmented design matriz by adding fake variables.

(¢) The augmented design and the response vector y are supplied to the ranking algorithm
as input, and the output is converted to a (signed) importance metric for each original
variable through a symmetric statistic.

The three components, ranking algorithm, augmented design, and symmetric statistic,
should coordinate so that the resulting importance metrics for null variables (3; = 0) have
symmetric distributions and that the importance metrics for non-null variables (5; # 0) are
positive with high probability. When these requirements are satisfied, one can mimic the
BH procedure (Benjamini and Hochberg, 1995) to control FDR at a targeted level.

The choices of the three components are not unique. For example, we may use any
linear regression method f as the ranking algorithm, where we assign |BJ\ as the importance
metric for variable j. Similarly, the other two components also admit multiple choices. This
leads to many different combinations of the three components. The literature has revealed
insights on how to choose these components to get a valid FDR control, but there is little
understanding on how to design them to boost power. The main contribution of this paper
is dissecting and detailing the impact of each component on the power.

1.1 Main results and discoveries

We start from the orthodox knockoff in Barber and Candes (2015), which uses Lasso as
the ranking algorithm, a semi-definite programming (SDP) procedure to construct the aug-
mented design, and the signed maximum function as the symmetric statistic. We then
replace each component of the orthodox knockoff by a popular alternative choice in the
literature. We compare the power of the resulting variant of knockoff with the power of the
orthodox one. This serves to reveal the impact of each component on power.

Our results lead to some noteworthy discoveries: (i) For the choice of symmetric statistic,
the signed maximum is better than a popular alternative - the difference statistic; (ii) For
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the choice of the augmented design, the SDP approach in orthodox knockoff is less favored
than a recent alternative - the conditional independence approach (Liu and Rigollet, 2019);
(iii) For the choice of ranking algorithm, we compare Lasso and least-squares and find that
Lasso has an advantage when the signals are extremely sparse and least-squares has an
advantage when the signals are moderately sparse.

For each variant of knockoff, we also consider its prototype, which applies the ranking
algorithm to the original design X and selects variables by applying an ideal threshold on the
importance metrics output by the ranking algorithm. We note that the core idea of knockoff
is hinged on the other two components - augmented design and symmetric statistic, as these
two components serve to find a data-driven threshold on importance metrics. Therefore, the
comparison of knockoff and its prototype reveals the key difference between FDR control
and variable selection - we need to pay an extra price to find a data-driven threshold. If an
FDR control method is designed effectively, it should have a negligible power loss compared
with its prototype. In the knockoff framework, when the design is orthogonal or blockwise
diagonal and when the ranking algorithm is Lasso, we can show that knockoff (with proper
choices of augmented design and symmetric statistic) indeed yields a negligible power loss
compared with its own prototype. On the other hand, this is not true for a general design
or when the ranking algorithm is not Lasso.

1.2 The theoretical framework and criteria of power comparison

Let G = X'X € RP*P be the Gram matrix. Without loss of generality, we assume that each
column of X has been normalized so that the diagonal entries of G are all equal to 1.1 We
study a challenging regime of “Rare and Weak signals” (Donoho and Jin, 2015; Jin and Ke,
2016), where for some constants ¥ € (0,1) and r > 0, we consider settings where

#{j:B8; #0} ~ p' " |Bj| ~ /2rlog(p) if B; # 0.

The two parameters, ¥ and r, characterize the signal rarity and signal weakness, respectively.
Here, \/log(p) is the minimax order for a successful inference of the support of 5 (Genovese
et al., 2012), and the constant factor  drives subtle phase transitions. This model is widely
used in multiple testing (Donoho and Jin, 2004; Arias-Castro et al., 2011; Barnett et al.,
2017) and variable selection (Ji and Jin, 2012; Jin et al., 2014; Ke et al., 2014).

The power of an FDR control method depends on the target FDR level ¢q. Instead of
fixing ¢, we derive a trade-off diagram between FDR and the true positive rate (TPR) as ¢
varies. This trade-off diagram provides a full characterization of power, for any given model
parameters (9, 7). We also derive a phase diagram (Jin and Ke, 2016) for each FDR control
method. The phase diagram is a partition of the two-dimensional space (9, ) into different
regions, according to the asymptotic behavior of the Hamming error (i.e., the expected sum
of false positives and false negatives). The phase diagram provides a visualization of power
for all (9, r) together. Both the FDR-TPR trade-off diagram and phase diagram can be
used as criteria of power comparison. We prefer the phase diagram, because a single phase
diagram covers the whole parameter range (in contrast, the FDR-TPR trade-off diagram is

1. We use a conventional normalization of X in the study of Rare/Weak signal models. It is different from
the standard normalization where the diagonal entries of G are assumed to be n. We note that our 3 is
actually y/n in the standard normalization. This is why n disappears in the order of nonzero ;.
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tied to a specified (¢, r)). Throughout the paper, we use phase diagram to compare different
variants of knockoff. At the same time, we also give explicit forms of false positive rate and
false negative rate, from which the FDR-TPR trade-off diagram can be deduced easily.

1.3 Related literature

Power analysis of FDR control methods is a small body of literature. Su et al. (2017) set
up a framework for studying the trade-off between false positive rate and true positive rate
across the lasso solution path. Weinstein et al. (2017) and Weinstein et al. (2021) extended
this framework to find a trade-off for the knockoff filter, when the ranking algorithm is the
Lasso and thresholded Lasso, respectively. These trade-off diagrams are for linear sparsity
(number of nonzero coefficients of f is a constant fraction of p) and independent Gaussian
designs (X (i,7) are iid N(0,n~'/?) variables). However, their analysis and results do not
apply to our setting: In our setting, 5 is much sparser, and the overall signal strength as
characterized by ||3]| is much smaller. Furthermore, we are primarily interested in correlated
designs, but their study is mostly focused on iid Gaussian designs.

For correlated designs, Liu and Rigollet (2019) gave sufficient and necessary conditions
on X such that knockoff has a full power, but they did not provide an explicit trade-
off diagram. Moreover, their analysis does not apply to the orthodox knockoff but only
to a variant of knockoff that uses de-biased Lasso as the ranking algorithm. Beyond linear
sparsity, Fan et al. (2019) studied the power of model-X knockoff for arbitrary sparsity, under
a stronger signal strength: we assume |§;| < \/log(p), while they assumed |3;| > /log(p).
In a similar setting, Javanmard and Javadi (2019) studied the power of using de-biased Lasso
for FDR control. Our paper differs from these works because we study the regime of weaker
signals and also derive the explicit FDR-TPR trade-off diagrams and phase diagrams.

Wang and Janson (2022) and Spector and Janson (2022) studied the power of model-
X knockoff and conditional randomization tests. They considered linear sparsity and iid
Gaussian designs, and found a disadvantage of power by constructing augmented design as
in the orthodox knockoff (with least-squares as the ranking algorithm). This qualitatively
agrees with some of our conclusions in Section 5, but it is for a different setting with
uncorrelated variables and linear sparsity. We also study more variants of knockoff than
those considered in aforementioned works. Recently, Li and Fithian (2021) recast the fix-X
knockoff as a conditional post-selection inference method and studied its power.

In a sequel of papers (Ji and Jin, 2012; Jin et al., 2014; Ke et al., 2014), the Rare/Weak
signal model was used to study variable selection. They focused on the class of Screen-
and-Clean methods for variable selection and proved its optimality under various design
classes. We borrowed the notion of phase diagram from these works. However, they did not
consider any FDR control method and their methods do not apply to knockoff. Different
from the proof techniques employed by the aforementioned work, our proof is based on a
geometric approach, where the key is studying the geometric properties of the “rejection
region” induced by knockoff (see Section 7 for details).

1.4 Organization

The remainder of this paper is organized as follows. Section 2 reviews the idea of knockoff.
Section 3 introduces the Rare/Weak signal model and explains how to use it as a theoretical
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platform to study and compare the power of FDR control methods. Sections 4-6 contain
the main results, where we study the impact of symmetric statistic, augmented design, and
ranking algorithm, respectively. Section 7 sketches the proof and explains the geometrical
insight behind the proof. Section 8 contains simulation results. Section 9 concludes with a
short discussion. Detailed proofs are relegated to the Appendix.

2 The knockoff filter, its variants and prototypes

Let us first review the orthodox knockoff filter (Barber and Candes, 2015). Write G = X'X
and let diag(s), with s € RP, be a nonnegative diagonal matrix (to be chosen by the user)
such that diag(s) < 2G. The knockof! first creates a design matrix X € R"*P such that

X'X=G, X'X=0G - diag(s). (2.1)

Let x; and Z; be the jth column of X and X, respectively, 1 < j < p. Here, ; is called a
knockoff of variable j. For any A > 0, let B()) € R?? be the solution of Lasso (Tibshirani,
1996) on the expanded design matrix [X, X| with a tuning parameter A:

B(N) = argmin, {|ly — [X, X]bl|*/2 + Alb]l1 }- (2.2)

For each 1 < j < p, let Z; = sup{\ > 0: B;(\) # 0} and Z; = sup{A > 0 : B, ;(\) # 0}.
The importance of variable j is measured by a symmetric statistic

W; = f(Z;,Z;), (2.3)

where f(-,-) is a bivariate function satisfying f(v,u) = —f(u,v). Here {Wj}gzl are (signed)
importance metrics for variables. Under some regularity conditions, it can be shown that
W; has a symmetric distribution when 3; = 0 and that W is positive with high probability
when 3; # 0. Given a threshold ¢ > 0, the number of false discoveries is equal to

#{j:ﬂjZO,Wj>t} =~ #{j:BjZO,Wj<—t} ~ #{j:Wj<—t},

where the first approximation is based on the symmetry of the distribution of W; for null
variables and the second approximation comes from the sparsity of 5. The right hand side
gives an estimate of the number of false discoveries. Hence, a data-driven threshold to
control FDR at ¢ is

oy Wy <t}
T(q)mln{t>0.#{j:wj>t}v1§q}. (2.4)

The set of selected variables is S(q) = {j : W; > T(¢)}. As long as X in (2.1) exists, it can
be shown that the FDR associated with S(q) is guaranteed to be < q.
2.1 Variants of knockoff

The idea of knockoff provides a general framework for FDR control. It consists of three key
components, as summarized below:
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Figure 1: An illustration of the knockoff and its prototype.

(a) A ranking algorithm, which takes y and an arbitrary design and assigns an importance
metric Z; to each variable in the design. In (2.2), it uses a particular ranking algorithm
based on the solution path of Lasso.

(b) An augmented design, which is the n x (2p) matrix [X, X], where a knockoff #; is
created for each original ;. We supply the augmented design to the ranking algorithm
to get importance metrics Z; and Z; for each variable j and its knockoff.

(c) A symmetric statistic f(-,-), which combines the two importance metrics Z; and Z;
to an ultimate importance metric W; for variable j.

The choice of each component is non-unique. For (c), f can be any anti-symmetric function.
Two popular choices are the signed mazimum statistic and the difference statistic:

8 (u,v) = sgn(u — v) - max{u, v}, and U (u,v) = u — v, (2.5)

For (b), the freedom comes from choosing diag(s) and constructing X. In fact, once diag(s)
is given, it can be shown that any X satisfying (2.1) yields the same asymptotic performance
for knockoff. Hence, the choice of the augmented design boils down to choosing diag(s). A
popular option is the SDP-knockoff, which solves diag(s) from a semi-definite programming:

min Z(l - 55), subject to 0 <s; <1, diag(s) < 2G. (2.6)
J

Another option is the CI-knockoff (Liu and Rigollet, 2019):
diag(s) = ¢ - [diag(G™1)] 71, where ¢ =sup{0 < &< 1: cldiag(G™1)]7! < 2G}. (2.7)

For (a), Lasso is currently used as the ranking algorithm (see (2.2)), but it can be replaced
by other linear regression methods. Take the least-squares °° = (X’ X))~ X'y for example.
We can define a ranking algorithm that outputs | quls | as the importance metric. If we supply

the augmented design [X, X] to this ranking algorithm, then we have
6= (1X, X)[x, X)X, X'y (2.8)

We can set Z; = |3;] and Z; = |B;1,| and plug them into (2.3).

In summary, the flexibility of the three components gives rise to many different variants
of knockoff. For example, we can use (2.2) or (2.8) as the ranking algorithm, (2.6) or (2.7)
as the augmented design, and either one in (2.5) as the symmetric statistic; this already
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gives 2 x 2 x 2 = 8 variants of knockoff. By the theory in Barber and Candes (2015), each
variant guarantees the finite-sample FDR control. When the FDR is under control, the
user always wants to select as many true signals as possible, i.e., to maximize the power.
In this paper, one of our goals is to understand and compare the power of different variants
of knockoff.

To this end, we start from the default choices of the three components in the orthodox
knockoff, where the ranking algorithm is Lasso as in (2.2), the augmented design is the
SDP-knockoff as in (2.6), and the symmetric statistic is the signed maximum in (2.5). In
Sections 4-6, we successively alter each component and study its impact on the power.

2.2 Prototypes of knockoff

Given a variant of knockoff (where a specific choice of the ranking algorithm is applied to the
augmented design [X, X]), we define the corresponding prototype method as follows: It runs

the same ranking algorithm on the original design matrix X, and outputs Wy, Wy, ..., W}
as importance metrics. The method selects variables by thresholding Wj at Ty, where
#{j:8; =0,W] >t}
T =mindt>0:E J <qy. 2.9
‘ mm{ [ #{ W > vl }—q} (2.9)

Compared with knockoff, the prototype ranks variables by W;‘, whose induced ranking may
be different from the one by W;. Additionally, the prototype has access to an ideal threshold
T, that guarantees an exact FDR control but is practically infeasible. In contrast, knockoff
has to find a data-driven threshold from (2.4). See Figure 1.

We look at two examples. Consider the orthodox knockoff, where the ranking algorithm
is Lasso (see (2.2)). Its prototype runs Lasso on X to get f125°(\) = argmin, {||y— Xb||%/2+
Al|b|l1} and assigns an importance metric to variable j as

W7 =sup{\ > 0: f°()) £ 0}. (2.10)

It then selects variables by thresholding W using the ideal threshold in (2.9). We call this
method the Lasso-path. It is the prototype of all the variants of knockoff that use Lasso
as ranking algorithm. For all variants of knockoff that use least-squares (see (2.8)) as the
ranking algorithm, they share the same prototype, which computes BOIS = (X'X)"' X'y and
assigns an importance metric to variable j as

Wr =855 = ;G Xy|. (2.11)

It then selects variables by thresholding W using the ideal threshold in (2.9). We call this
method the least-squares.

In this paper, besides comparing different variants of knockoff, we also aim to compare
each variant with its prototype. Here is the motivation: FDR control splits into two tasks:
(1) ranking the importance of variables and (2) finding a data-driven threshold. When the
FDR is under control, the power depends on how well Task 1 is performed. Importantly,
in knockoff, although the augmented design and the ranking algorithm are meant to carry
Task 2 only, they do affect the final ranking of variables because the ranking by W;’s is
usually different from the ranking by W:’s. This yields a potential power loss compared
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with its prototype — a price we pay for finding a data-driven threshold. Hence, a power
comparison between knockoff and its prototype helps us understand how large this price is.

Remark 1. In this paper, we focus on two ranking algorithms, Lasso-path and least-
squares. They are both tuning-free. When the ranking algorithm has tuning parameters, we
should not set the tuning parameters in the prototype the same as in the original knockoff.
For example, we can use | B}asso(/\)] to rank variables, treating A as a tuning parameter. The
prototype runs lasso on the original design with p variables, while knockoff runs lasso on the
augmented design with 2p variables. The optimal A\ that minimizes the expected Hamming
error is different in the two scenarios. A reasonable approach of comparing knockoff and
its prototype is to use their respective optimal A. This will require computing the expected
Hamming error of lasso for an arbitrary A (Ji and Jin, 2012; Ke and Wang, 2021).

3 Rare/Weak signal model and criteria of power comparison

We introduce our theoretical framework of power comparison. Recall that we consider a
linear model y = X3 +e, where y € R, X = [X1, Xa,..., X, € R"*P_and e ~ N(0,0%1,).
Without loss of generality, fix o0 = 1. Given p, we allow n to be any integer such that n > 2p.
This is from the requirement of knockoff (it needs n > 2p to guarantee the existence of X
in (2.1)) and should not be viewed as a limitation of our theory. Our results are extendable
to n < 2p, provided that knockoff is replaced by its extension in this case (see Section 9 for
a discussion). The Gram matrix is

G:=X'X € RP*P, where we assume Gj; = 1, for all 1 < j <p. (3.1)

We adopt the Rare/Weak signal model (Donoho and Jin, 2004) to assume that ( satisfies:

B & (1 —ewo+ews, 1<j<p, (3.2)
where v, denotes a point mass at a. Here, €, € (0, 1) is the expected fraction of signals, and
Tp > 0 is the signal strength. We let p be the driving asymptotic parameter and tie (ep, 7p)
with p through fixed constants ¥ € (0,1) and r > 0:

=p"7, T, = /2rlog(p). (3.3)

The parameters, ¥ and r, characterize the signal rarity and the signal strength, respectively.
Here, n does not appear in the order of nonzero 3;, because we have already re-parameterized
(X, B) such that the diagonals of G are 1 (see Footnote 1).

Under the Rare/Weak signal model (3.2)-(3.3), we define two diagrams for characterizing
the power of knockoff. Let W; be the ultimate importance metric (2.3) assigned to variable
Jj, and consider the set of selected variables at a threshold +/2ulog(p):

Su) = {1<j<p:W;>/2ulog(p)}.

Let S = {1 <j <p:pB;# 0} Define FP,(u) = E(|S(u)\S]), FNp(u) = E(|S\S(u)]), and
TPp(u) = E(|S N S(u)|), where the expectation is taken with respect to the randomness of
both 3 and y. Write s, = pe,, and define

Hammy,(u) = FP,(u) + FN,(u), FDR,(u) = FP,(u) + TP, (u)’ Sp
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Figure 2: Left: the FDR-TPR trade-off diagram for a few values of (9, 7). Right: the phase
diagram. The design is orthogonal, and the importance metric is as in (3.6). Each
FDR-TPR trade-off diagram corresponds to one point in the phase diagram.

The first quantity is the expected Hamming error. The last two quantities are proxies of
the false discovery rate and true positive rate, respectively.?

The following definition is conventional in the study of Rare/Weak signal models (Gen-
ovese et al., 2012; Ji and Jin, 2012) and will be used frequently in our theoretical results:

Definition 3.1 (Multi-log(p) term) Consider a sequence {a,};2,. If for any fived 6 > 0,
app5 — 00 and app*‘S — 0, we call a,, a multi-log(p) term and write ap = Ly, (L, is a generic
notion for all multi-log(p) terms). If there is a constant by € R such that a,p= = L,,, we

write a, = Lppbo, which means for any fized § > 0, app*b(’*‘S — 00 and appfboﬂﬁ 0.

In the Rare/Weak signal model, for many classes of designs of interest, FDR,(u) and
TPR,,(u) satisfy a property: There exist two fixed functions grpr(u; ¥, 7) and grpr(u; 9, )
such that, for any (¢,r,u), as p — oo,

FDR,(u) = Lyp 9ForR9r) 1 TPR,(u) = Lyp 9tPr(dr), (3.4)

The two functions grpr and grpr depend on the choice of the three components in knockoff
and the design class. We propose the FDR-TPR trade-off diagram as follows:

Definition 3.2 (FDR-TPR trade-off diagram) Given a variant of knockoff and a se-
quence of designs indexed by p, if FDR,(u) and TPR,(u) satisfy (3.4), the FDR-TPR trade-
off diagram associated with (9,r) is the plot with gepr(u; ¥, r) in the y-axis and grpr (u; 9, 1)
i the z-axis, as u varies.

An FDR-TPR trade-off diagram depends on (¢, ). To compare the performance of two
variants of knockoff, we have to draw many curves for different values of (J,7). Hence, we
introduce another diagram, which characterizes the power simultaneously at all (¢,r). De-

fine Hammy, = min, {FPy(u) + FNp(u)}. This is the minimum expected Hamming selection

2. The FDR,(u) we consider here is the ratio of expectations of false positives and total discoveries (called
mFDR in some literature), not the original definition of FDR, which is the expectation of ratios of false
positives and total discoveries. According to Javanmard and Montanari (2018), mFDR and FDR can be
different in situations with high variability, but it is not the case here. In our setting, the expectation of
total discoveries grows to infinity as a power of p, hence, mFDR and FDR have a negligible difference.
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error when the threshold u is chosen optimally. For each variant of knockoff and each class
of designs of interest, there exists a bivariate function fjj,...(9,7) € [0,1] such that

Hamm, = Lppféamm(ﬂ’r). (3.5)
The phase diagram is defined as follows:

Definition 3.3 (Phase diagram) When Hammy, satisfies (3.5), the phase diagram is de-
fined to the partition of the two-dimensional space (¥,r) into three regions:

e Region of Exact Recovery (ER): {(V,7) : fiiamm (¥, 7) < 0}.
e Region of Almost Full Recovery (AFR): {(¥,7) : 0 < fiamm(¥,7) <1 =19}
e Region of No Recovery (NR): {(0,7) : fiiamm (¥, 7) > 1 —0}.

The curves separating different regions are called phase curves. We use hapr(9) to denote
the curve between NR and AFR, and hgr (V) the curve between AFR and ER.

In the ER region, the expected Hamming error, Hammy,, tends to zero. Therefore, with
high probability, the support of 3 is exactly recovered. In the AFR region, Hammj does not
tend to zero but is much smaller than pe, (which is the expected number of signals). As a
result, with high probability, the majority of signals are correctly recovered. In the region
of NR, Hammj, is comparable with the number of signals, and variable selection fails. The
phase diagram was introduced in the literature (Genovese et al., 2012; Ji and Jin, 2012) but
has never been used to study FDR control methods.

We illustrate these definitions with an example. Both the FDR-TPR trade-off diagram
and phase diagram only depend on the importance metrics assigned to variables. Therefore,
they are also well-defined for the prototypes in Section 2.2. We consider a special class of
designs, where X'X = I,,, and a prototype that assigns the importance metrics

Wi =lziyl, 1<j<p (3.6)

The next proposition is adapted from literature (Donoho and Jin, 2004; Ji and Jin, 2012)
and proved in the Appendix. We use a4 to denote max{a, 0}, for any a € R.

Proposition 3.1 Suppose X'X = I, and consider the importance metric in (3.6). When
r > ¥, the FDR-TPR trade-off diagram is given by grpr (u; 9,7) = (u—39)+ and grpr(u; ¥, r) =
(v/r = Vu)2.. The phase diagram is given by harpr(¥) =9 and hgr(9) = (1 + V1 —9)?.

These diagrams are visualized in Figure 2.

As we have mentioned in Section 2.2, FDR control is composed of the task of ranking
variables and the task of finding a data-driven threshold. It is the variable ranking that
determines the power of an FDR control method simultaneously at all FDR levels q. The
two diagrams in Definitions 3.2-3.3 only depend on the importance metrics assigned to
variables, hence, they measure the quality of variable ranking, which is fundamental for
power comparison of different FDR control methods when they all control FDR at the
same level.

10
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4 Impact of the symmetric statistic

We fix the choice of ranking algorithm and augmented design in the orthodox knockoff
and compare using the two symmetric statistics in (2.5). For simplicity, we consider the
orthogonal design where X'X = I,. In this special case, the ranking algorithm in (2.2)
reduces to calculating marginal regression coefficients and the output Z; and Zj reduce to

Zj=lahyl, and  Z;=|iyl, 1<j<p. (4.1)

In the augmented design, the choice of diag(s) in (2.6) reduces to diag(s) = I,. We consider
a slightly more general form:

diag(s) = (1 — a)lp, where —1 < a <1 is a fixed constant. (4.2)

Given diag(s), the construction of X is not unique, but all constructions lead to exactly the
same FDR-TPR trade-off diagram and the same phase diagram. For this reason, we only
specify diag(s) as in (4.2), but not the actual X. Fixing the above choices (4.1)-(4.2), we
consider the two symmetric statistics in (2.5), which lead to the importance metrics of

. 1, if Z; > Z; . .
{+’ A, and Wi =27;-Z,. (4.3)

WE™ = (Z; V Z;) - -
J (2 v 2;) —1, if Z; < Z,

We call the two variants of knockoff knockoff-sgm and knockoff-diff, respectively. The next
theorem gives the explicit forms of FP,(u) and FN,(u) associated with these two variants.
Its proof can be found in the Appendix.

Theorem 4.1 Consider a linear regression model where (3.1)-(3.3) hold. Suppose n > 2p
and G = I,. We construct X in knockoff as in (4.2), for a constant a € (—1,1), and let
Zj and Zj be as in (4.1). For any constant u > 0, let FP,(u) and FN,(u) be the expected
numbers of false positives and false negatives, by selecting variables with W; > \/2ulog(p).
When W; is the signed maximum statistic in (4.3), as p — 00,

o A=lapr
FP,(u) = Lyp'™,  FNy(u) = Ll min{ S5 (viva ),

)

When W; is the difference statistic in (4.3), as p — oo,
FP,(u) = Lyp' ™",  FN,(u) = Lyp' 0~ "2 (Vi—vai

Here, L, is the generic multi-log(p) notion in Definition 3.1. For Theorem 4.1, using Mills’
ration, we actually know that L, =< 1/4/log(p). For other theorems, we do not always know
the exact order of L,, but we can intuitively regard it as a polynomial of log(p).

Given Theorem 4.1 and Definitions 3.2-3.3, we can derive the explicit FDR-TPR tradeoff
diagrams and the phase diagrams:

Corollary 4.1 In the setting of Theorem 4.1, whenr > 19, the FDR-TPR trade-off diagram
s given by
min{ S (- a2}, i Wy = W

grpr(u; 9, 7) = (u — )4, grpr(u) = { 1 |a|)(\[ Vi) if Wi = Wit

11
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Figure 3: Power comparison of knockoff with different symmetric statistics (orthogonal de-
sign; ranking algorithm is Lasso, and augmented design is such that diag(s) = I,).
The left two panels are the phase diagrams of knockoff-diff (left) and knockoff-sgm
(middle), where the dashed lines are the phase curves of their common prototype.
The right panel is the FDR-TPR trade-off diagram of knockoff-sgm, where each
trade-off curve corresponds to one point in the phase diagram.

The phase diagram is given by

max{2:7219, (1+m)2}’ if W :W,Sgn’

harr(9) =9,  hep(9) = gaa S
Arr(Y) =9, Er(V) = (1+ 2_219)2 if Wj:Wdif
) J

1—faf

For both knockoff-sgm and knockoff-diff, by Corollary 4.1, the best choice of a is a = 0.

In the remaining of this section, we fix a = 0. Figure 3 gives visualizations of the FDR-TPR

trade-off diagrams and phase diagrams. The prototype is Lasso-path (see (2.10)). In the

orthogonal design X’ X = I,,, Lasso-path reduces to the prototype in (3.6), whose FDR-TPR
trade-off diagram and phase diagram are given in Figure 2.

Comparison of two symmetric statistics: First, we compare the phase diagrams in
Figures 2-3 and find that (i) knockoff-sgm has a strictly better phase diagram than knockoff-
diff, and (ii) knockoff-sgm has the same phase diagram as the prototype. It suggests that
signed maximum is a better choice of symmetric statistic. It also suggests that knockoff-sgm
yields a negligible power loss relative to its prototype.

We also point out that knockoff-sgm is already “optimal” among all symmetric statistics,
in this orthogonal design. The reason is that, when X’X = I,,, the Hamming error (Hammy)
has an information-theoretical lower bound (Genovese et al., 2012; Ji and Jin, 2012), whose
induced phase diagram coincides with the phase diagram of the prototype, which is also the
phase diagram of knockoff-sgm. This is the optimal phase diagram any method can achieve
(including all variants of knockoff with other symmetric statistics).

Next, we compare the FDR-TPR trade-off diagrams of knockoff and the prototype. We
focus on knockoff-sgm, whose trade-off diagram is in Figure 3 (right panel). The trade-off
diagram of the prototype is in Figure 2 (right panel). We find that the trade-off diagram
of knockoff-sgm is slightly different from the one of the prototype. By Theorem 4.1, (1 —
TPR,) = FN,/s, > Lyp~"/%; hence, the FDR-TRP trade-off curve is truncated at r/2 in
the x-axis. For large 9, the curve hits zero before the x-axis reaches /2, and the truncation

12
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Figure 4: The rejection region of the symmetric statistics (orthogonal design, a = 0 in the
construction of knockoff variables). Left: the signed maximum statistic. Middle:
the difference statistic. Right: the prototype.

has no impact. However, for small ¢, the curve has changed due to the truncation (Figure 3,
right panel, all but the blue curve).

Some geometric insights, especially why signed maximum is “optimal”. By (4.1)
and (4.3), the importance metrics produced by knockoff can be written as W; = I (a:;y, ic;-y),
where x; and Z; are the jth variable and its knockoff, and I(-,-) is a bivariate function
depending on the choice of symmetric statistic. Define the “rejection region” as

R = {(hl,hg) eR?: I(hl\/Zlog(p), hor/2 log(p)> > \/2ulog(p)}.

Figure 4 shows the rejection region induced by knockoff-sgm, knockoff-diff, and their pro-

totype. Write hy = zy/+/2log(p) and hy = &%y/+/2log(p). The random vector (hy, hy)'

follows the bivariate normal distribution with covariance matrix @IQ. Its mean vector

s (0,0)" when g; = 0 and (y/r,0)" when 3; = 7,. By Lemma 7.1 (to be introduced in
Section 7), the exponent in FP, is determined by the Euclidean distance from (0,0)" to
R and the exponent in FN,, is determined by the Euclidean distance from (1/r,0) to R°.
From Figure 4, it is clear that the difference statistic is inferior to the signed maximum
statistic because the distance from (1/7,0)" to R€ is strictly smaller in the former.

As we have mentioned earlier, signed maximum is “optimal” among all symmetric statis-
tics, because its phase diagram already matches with the information-theoretic lower bound.
Now, we use Figure 4 to provide a geometric interpretation of why signed maximum is “op-
timal”. We call a subset R an eligible rejection region if there exists a symmetric statistic
f(,+) whose induced rejection region is R. It is not hard to see that any eligible R should
be symmetric with respect to both x-axis and y-axis. In addition, by the anti-symmetry
requirement f(v,u) = — f(u,v), an eligible rejection region also needs to satisfy the follow-
ing necessary condition: R N R+ = 0, where R4 is the reflection of R with respect to the
line y = £x. The prototype has the optimal phase diagram, but its rejection region R
(Figure 4, right panel) does not satisfy this condition. We can see that the rejection region
of knockoff-sgm (left panel) is a minimal modification of R to tailor to this condition. This
partially explains why signed maximum is already the best choice in this setting.

13
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Remark 2. We consider a non-stochastic threshold y/2ulog(p) in Theorem 4.1. For a
data-driven threshold /2w log(p), if there is €, = o(1) such that |4 —u| < €, with probability
1 — o(p~?), then Theorem 4.1 continues to hold.

Remark 3. In this section, we conduct power comparison only on the orthogonal design.
Our rationale is as follows: A good method has to at least perform well in the simplest case.
If a method is inferior to others in the orthogonal design, then we do not expect it to have
a good potential in real applications where the designs can be much more complicated, i.e.,
the results on orthogonal designs help us filter out those methods that have little potential
in practice. Such insights are valuable to users.

Remark 4. Recently, Weinstein et al. (2021) showed a remarkable result: Under linear
sparsity and random Gaussian design, they found that knockoff with the difference sym-
metric statistic has great power. We note that the prototype of their knockoff is thresholded
Lasso, not Lasso, and so the gain of power is primarily from prototype instead of symmetric
statistic. Also, see Ke and Wang (2021) for a comparison of thresholded-Lasso v.s. Lasso.

5 Impact of the augmented design

We fix the choice of ranking algorithm and symmetric statistic as in the orthodox knockoff
and compare using two augmented designs, the SDP-knockoff in (2.6) and the CI-knockoff
in (2.7). We also call the two respective variants of knockoff the SDP-knockoff and CI-
knockoff, so that “SDP-knockoff” (say) has two meanings, an augmented design or a variant
of knockoff, depending on the context.

When X'X = I,,, SDP-knockoff and CI-knockoff are the same and reduce to diag(s) = I,,
S0 it is impossible to tell their difference in power. We must consider non-orthogonal designs.
However, since there is no explicit form of the Lasso solution path, the results for a general
X are difficult to obtain; despite technical challenges, the phase diagrams may be too messy
to provide any useful insight. We hope to find a class of non-orthogonal designs such that (i)
it is mathematically tractable, (ii) it is considerably different from the orthogonal design and
allows G to have some “large” off-diagonal entries, and (iii) it captures some key features of
real applications. We start from a class of row-wise sparse designs, which approximate the
designs in many real applications (e.g., in bioinformatics and in compressed sensing). The
next proposition is adapted from Lemma 1 of Jin et al. (2014), whose proof is omitted.

Proposition 5.1 Consider a linear model where (3.1)-(3.3) hold. Suppose each row of G
has at most L,, nonzero entries, where Ly is a multi-log(p) term as in Definition 3.1. Let S
be the support of 5. There exists a constant integer mo = mo(¥) such that with probability
1—0(1), Ggg is a blockwise diagonal matrixz afte a permutation of indices, and the mazimum
block size is bounded by my.

Proposition 5.1 is a consequence of the interplay between design sparsity and signal sparsity:
Under the Rare/Weak signal model (3.2) and a sparse design, the true signals in S appear in
groups, where each group contains only a small number of variables and distinct groups are
mutually uncorrelated. This motivates us to consider a simpler setting where G is blockwise
diagonal by itself. While these two settings look so different from each other, the asymptotic
behavior of Hamming error is closely related. For example, when G is a tridiagonal matrix
with equal values in the sub-diagonal, the optimal phase diagram is the same as in the case
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where G is blockwise diagonal with 2 x 2 blocks (Ji and Jin, 2012; Jin et al., 2014). Inspired
by these observations, we study a class of blockwise diagonal designs (Jin and Ke, 2016):
For some p € (—1,1) and a p X p permutation matrix 7,

G = Tdiag(B, B, ..., B, B)T, where B = [1 p] , B = {B’ ifpiseven, gy,
p 1 1, if pis odd.
This design serves the aforementioned purposes (i)-(iii): It has only one parameter p, so is
mathematically tractable. The nonzero off-diagonal entries of G are at the constant order,
so this design is sufficiently different from the orthogonal design (in contrast, many literature
consider the independent random Gaussian design, for which the maximum absolute off-
diagonal entry of G is only o(1)). Also, as we have argued above, studying this design helps
us draw useful insights that will likely continue to hold for general sparse designs.

5.1 The prototype, Lasso-path

Before studying SDP-knockoff and ClI-knockoff, we first study their prototype, Lasso-path.
The next theorem characterizes FP,(u) and FN,(u) for Lasso-path and is proved in the
Appendix.

Theorem 5.1 Consider a linear regression model where (3.1)-(3.3) hold. Suppose n > 2p
and G is as in (5.1) with a correlation parameter p € (—1,1). Let W} be as in (2.10). For
any constant u > 0, let FP,(u) and FN,(u) be the expected numbers of false positives and
false negatives, by selecting variables with W > /2u log(p). As p — oo,

FP, (1) = Lyp'~min{u #+(alolvD +Evrnvii ~(vi—vipi }

Lyt~ ==V~ [(A=&)Vr=(=np) Vil ) p>0,
Ny (u) = Lypp' i {0 H VD=6 vi=(=m)Val e}, 2046y Vi), <

where & = /T—p2 and 1, = /(T = [p) /(1 + [o]).

Using Theorem 5.1, we can deduce the FDR-TPR tradeoff diagram and phase diagram.
To save space, we only present the phase diagram:

Corollary 5.1 (Phase diagram of Lasso-path) In the setting of Theorem 5.1, the phase
diagram of Lasso-path is given by

max{hi (%), ha(?)}, when p > 0,

harr (V) =9, her(9) = {max{h1(19)7h2(?9)a h3(0), ha(¥)}, when p <0,

where hy (9) = (1+VI = 0)2, ha(9) = (1+1/15) (1= 0), ha(¥) = b (y/ T2V — 20+

1-[p] (1+p)?
F2VI=0)" {0 < 1/2}, and hy(d) = (L /158 VI 20) . 1{0 < 1/2}.
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Figure 5: The phase diagrams of Lasso-path (block-wise diagonal designs). Left: p = 0.5.
Middle: p = —0.5. Right: zoom-out of the middle panel. In all three panels, the
dashed lines are the phase curves for orthogonal designs (p = 0), as a reference.

A visualization of the phase diagram for p = 0.5 is in Figure 5.

When p = 0, the blockwise diagonal design reduces to the orthogonal design, Lasso-path
reduces to (3.6), and the phase diagram reduces to the one in Proposition 3.1. Comparing
Figure 5 with Figure 2, the phase diagram of Lasso-path is inferior to the one for orthogonal
designs. This suggests that the strength of design correlations can have a significant impact
on the performance of variable selection.

Another observation from Figure 5 is that the sign of p plays a crucial role. This is related
to the “signal cancellation” phenomenon (Ke et al., 2014; Ke and Yang, 2017). Suppose
{j,j+ 1} is a block and both §; and ;41 are signals. It is seen that E[x;yW] = (14 p)7p,
whose absolute value is strictly smaller than 7, for a negative p. Hence, when p is negative,
the signal at j + 1 creates a “cancellation effect” and makes x; marginally less correlated
with y. Lasso is known to be quite vulnerable to “signal cancellation” (Zhao and Yu, 2006).
This is why the phase diagram becomes worse when the sign of p is flipped. We will provide
a more rigorous explanation in Section 7 using geometric properties of the Lasso solution.

5.2 SDP-knockoff

We now study the SDP-knockoff, where diag(s) is as in (2.6). For the block-wise diagonal
design parameterized by p, we have an explicit form of diag(s):

20p| =1, |[p| >1/2,

0, Ip| < 1/2. (5:2)

diag(s) = (1 — a)lp, where a = {
The value of a controls the correlation between x; and z;. SDP-knockoff aims to minimize
this correlation, subject to the eligibility constraints. We first study the case |p| > 1/2.

Theorem 5.2 (The case of |p| > 1/2) Consider a linear model where (3.1)-(3.3) hold.
Suppose n. > 2p and G is as in (5.1), where |p| > 1/2. We construct X in knockoff with
diag(s) as in (5.2). Let Z;, Zj and W; be as in (2.2)-(2.3), where f is the signed maximum
in (2.5). For any constant u > 0, let FPy(u) and FNp(u) be the expected numbers of false
positives and false negatives, by selecting variables with W; > /2ulog(p). As p — oo,

FPp(u) = Lppl—min{u7 19+(\/ﬁ—|0|\/77)2+(§p\/77—77m/a)2+—(\/;—\/ﬂ)i}’

16



PoOwER ANALYSIS OF KNOCKOFF

and for p > 1/2,
FN,(u) = Lpplfﬁf{(\/?f\/ﬂ)+*[(1*£p)x/?*(1*77p)x/ﬂ+f(/\p\/F—np\/a)Jr}2’
and for p < —1/2,

N, (u) = Lyp' i {H{ (v —[0-6)Vi=(n) Vil = pvi-navi: s 20}

where &, = \/1 —p2, 1, = /(1= |p])/(L+ |p]), and X, = /1 — p2 — /1 —|p|.

When |p| < 1/2, listing the separate forms of FP,(u) and FN,(u) is tedious. We instead
present the form of FP,(u) + FNp(u), which is sufficient for deriving the phase diagram.

Theorem 5.3 (The case of |p| < 1/2) Consider a linear model where (3.1)-(3.3) hold.
Suppose n > 2p and G is as in (5.1), where |p| < 1/2. We construct X in knockoff with
diag(s) as in (5.2). Let Z;, Z; and Wj be as in (2.2)-(2.3), where f is the signed mazimum
in (2.5). For any constant v > 0, let FP,(u) and FNp(u) be the expected numbers of false
positives and false negatives, by selecting variables with W; > /2ulog(p). As p — oo,

FPp(u) + FNp(u) =
Lyt~ St 0<p<1/2
21—
Lpplfmi“{ff?mm(“”"ﬁ)’ 20+(&vT-n VDL, 20+ RGN} o o,

where

Flramm(,r0) = min{u, 9+ (Vu— |p|V/r)* + (Ev/r — npv/u)1)? = (V= Vau)+)?,
O+ [(Vr = Va)y = (1= &)V — (L= n,)Vu)4 )},

and &y, 1, are the same as those in Theorem 5.2.

Corollary 5.2 (Phase diagram of SDP-knockoff) Suppose conditions of Theorems 5.2-

lasso

5.5 hold, where p can be any value in (—1,1). Let h1§53%(9) and hi3%5°(9) be the phase curves
in Corollary 5.1. Define

po=V2-1-1/2-+vV2  (note: py~ —0.35).
For SDP-knockoff, harr(9) = h'353%,(9), and hggr(¥) has three cases:
o When p € [po, 1), hgr(¥) = hgE° (V).
o When p € (—0.5,p0), hgr(¥) = max{RhEs°(3), hs(9)}, where hs(Y9) = %.
o When p € (—1,-0.5], hgr(d) = hse(9) if ¥ > 1/2, and hgr(¥) = 0o otherwise.

A visualization of the phase diagram for three values of p is in Figure 6.
Comparing Corollary 5.2 and Corollary 5.1, We have the following observations:
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e When p € [po, 1), SDP-knockoff shares the same phase diagram as Lasso-path, i.e.,
SDP-knockoff yields a negligible power loss compared with its prototype.

e When p € (-1, pg), the phase diagrams of SDP-knockoff is inferior to that of Lasso-
path. Especially, when p € (—1, —0.5], the AFR region of SDP-knockoff is infinite: For
any ¥ < 1/2, no matter how large r is, SDP-knockoff never achieves Exact Recovery.

We give an explanation of the discrepancy of the phase diagram between SDP-knockoff
and Lasso-path for p € (—1,pp). First, consider p € (—0.5,p9). By (5.2), a = 0 and
diag(s) = I,. It follows that the jth knockoff is uncorrelated with the jth original variable.
However, this knockoff is still highly correlated with the (j+ 1)th original variable. Suppose
Jj is a true signal variable. Then, a true signal at (j+ 1) will increase the absolute correlation
between y and Z; but decrease the absolute correlation between y and x; (since p < 0),
making it more difficult for x; to stand out. Next, consider p € (—1,—0.5]. Suppose
{j,7 + 1} has two ‘nested’ signals, i.e., (5;,5j+1) = (7p,7p). By (5.2) and an elementary
calculation,

hen —05<p<0
Elyl8 = (1+p)7  E@yg ={"" v !
[ ]y’ﬁ] ( p) P [ ]y’ﬁ] {_<1+p)7_p’ when — 1 <p§ —0.5.

When p < —0.5, variable j and its knockoff have the same absolute correlation with y. Con-
sequently, there is a non-diminishing probability that the true signal variable fails to dom-
inate its knockoff variable, making it impossible to select j consistently. In the Rare/Weak
signal model, ‘nested’ signals appear with a non-diminishing probability if ¥ < 1/2. This
explains why hggr(¥) = co when p < —0.5 and 9 < 1/2.

The rationale of SDP-knockoff is to minimize the correlation between a variable and its
own knockoff, but this is not necessarily the best strategy for constructing knockoff variables
when the original variables are highly correlated. In the next subsection, we will see that a
proper increase of the correlation between a variable and its knockoff can boost power.

5.3 CI-knockoff

We study the CI-knockoff, where diag(s) is as in (2.7). Liu and Rigollet (2019) showed that
when ¢ = 1 in (2.7), the resulting X satisfies %,(I — P_j)Z; = 0, where P_; is the projection
matrix to the linear span of {zy, : k # j}. It means z; and &; are conditionally uncorrelated,
conditioning on the other (p—1) original variables. For the block-wise diagonal design (5.1),
diag(s) has an explicit form:

diag(s) = (1 — p*)I,,  forall p € (—1,1). (5.3)

Compared with (5.1), the value of a has changed. We recall that a controls the correlation
between an original variable and its knockoff. In SDP-knockoff, a is chosen as the minimum
eligible value, but in Cl-knockoff, a is set at p?.

Theorem 5.4 Consider a linear model where (3.1)-(3.3) hold. Suppose n > 2p and G s

1
as in (5.1), with a correlation parameter p € (—=1,1). We construct X in knockoff with
diag(s) as in (5.3). Let Z;, Z; and W be as in (2.2)-(2.3), where f is the signed mazimum
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Figure 6: The phase diagrams of SDP-knockoff (blockwise diagonal designs; ranking algo-
rithm is Lasso, and symmetric statistic is signed maximum). From left to right,
the correlation parameter in the design is p = —0.3, p = —0.4, and p = —0.5,
respectively. They correspond to the three cases in Corollary 5.2. The shadowed
area is the Almost Full Recovery region for SDP-knockoff but Exact Recovery
region for the prototype Lasso-path. If SDP-knockoff is replaced by Cl-knockoff,
then in each of three cases the phase diagram is the same as that of Lasso-path.

in (2.5). For any constant v > 0, let FP,(u) and FNp(u) be the expected numbers of false
positives and false negatives, by selecting variables with W; > +/2ulog(p). As p — oo,

FP FN Lpp! =it r9), p=0,
p(u) + p(u) - Lpplfmin{f;lramm(u,r,ﬁ), 219+(§p\/77*7h;1\/17)%r}, p < 07

where 4 (u,r,9) is the same as that in Theorem 5.83.

The exponent in Theorem 5.4 is in fact the same as that in Theorem 5.1. We immediately
conclude that Cl-knockoff yields the same phase diagram as its prototype, Lasso-path.

Corollary 5.3 (Phase diagram of CI-knockoff) In the setting of Theorem 5.4, for any
p € (=1,1), the phase curves of CIl-knockoff are the same as those in Corollary 5.1.

The result of CI-knockoff is very encouraging. We now explain how CI-knockoff improves
SDP-knockoff for p € (—1,pp). Comparing (5.3) with (5.2), we find that the correlation
between z; and Z; increases from max{0,2[p| — 1} to p>. We revisit the scenario of two
‘nested’ signals, i.e., (8, Bj+1) = (7, 7p). By direct calculations,

E[zjyl8] = (1 +p)7p,  E[ZjylB] = p(1 + p)7p.

It always holds that [E[2"y|8]| > |E[Z}y|B]|. As long as r is sufficiently large, the original
variable x; can standard out. This resolves the previous issue of SDP-knockoft.

Going beyond the block-wise design, it is an interesting question whether CI-knockoff
still improves SDP-knockoff. We study it numerically in Section 8, where we consider designs
such as Factor models, Exponential decay, and Normalized Wishart; see Experiment 4.

Remark 5. Our theory is focused on the 2 x 2 blockwise design in (5.1). Using similar
techniques, we can study other blockwise designs, such as k x k blocks or varying-size blocks.
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Take k x k blocks for example. In knockoff, solving Lasso in (2.2) reduces to solving many
2k-dimensional problems separately. Let J = {j,j+1,...,j+k-1} be a block. The sufficient
statistic for Wj is § = (X7, X'y € R?%. By Lemma 7.1, the Hamming error at j depends
on the interplay between probability contour of § and geometry of the 2k-dimensional Lasso
problem. We make such analysis for £ = 2 in the proofs of Theorems 5.2-5.4, which can be
extended to a general k.

6 Impact of the ranking algorithm

We consider two options of the ranking algorithm, Lasso and least-squares. As the rank-
ing algorithm changes, the prototype is different. In Section 6.1, we first compare two
prototypes. In Section 6.2, we further compare the associated versions of knockoff.

In the orthodox knockoff, ranking algorithm is Lasso, augmented design is SDP-knockoff,
and symmetric statistic is signed maximum. We re-name it SDP-knockoff-Lasso. If ranking
algorithm is changed to least-squares (with the other two components unchanged), we call it
SDP-knockoff-OLS. In each method, if augmented design is changed to CI-knockoff (with the
other two components unchanged), we call them CIl-knockoff-Lasso and CI-knockoff-OLS,
respectively. SDP-knockoff-Lasso, CI-knockoff-Lasso, and their prototype, Lasso-path, have
been studied in Section 5. In this section, we study SDP-knockoff-OLS, CI-knockoff-OLS,
and their prototype, least-squares, and compare the results with those in Section 5.

We consider the general design, where G = X’X can be any positive definite matrix.
We then restrict ourselves to the special case of 2 x 2 blockwise design in (5.1). The reason
we can study general designs is that the least-squares solution has a simple and explicit
form (but the Lasso solution does not).

6.1 The prototype, least-squares

Before studying SDP-knockoff-OLS and CI-knockoff-OLS, we first study their common pro-
totype, the least-squares (see (2.11)).

Theorem 6.1 Consider a linear regression model where (3.1)-(3.3) hold and n > 2p. Let
wj be the j-th diagonal element of G=1. Suppose mini<j<,{w;} < Cy, for a constant Cy > 0.
Let W} be as in (2.11). For any constant u > 0, let FPp(u) and FNy,(u) be the ezpected
numbers of false positives and false negatives, by selecting variables with W7 > \/2u log(p).
Asp— 00, Asp — oo,

V4 P
FP,(u) <L,y p ¥, FNy(u) < Ly ? > pe ViVl
j=1 Jj=1

Corollary 6.1 (Phase diagram of OLS) In the setting of Theorem 6.1, suppose G is as
in (5.1), with a correlation parameter p € (—1,1). Then, w; = (1—p?)~! for1 <j <p. As
p — 00, FPp(u) = Lppl_(l_p2)“, and FN,(u) = Lppl_ﬂ_(l_p%(ﬁ_ﬁ)i. The phase diagram

of least-squares is given by hargr (V) = % and hgr(9) = (1+17 '_1;219)2.

Figure 7 (left panel) shows the phase diagram of least-squares for |p| = 0.5; as a reference,

in the right two panels, we plot again the phase diagrams of Lasso-path for p = £0.5. For
the comparison between least-squares and Lasso-path, we have the following observations:
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Figure 7: The phase diagrams of least-squares (left) and CI-knockoff-OLS (middle left), for
blockwise designs with |p| = 0.5. For reference, we also plot the phase diagrams
of Lasso-path for p = 0.5 (middle right) and p = —0.5 (right), which are also the
phase diagrams of Cl-knockoff-Lasso.

e In terms of harr(¥), Lasso-path is always better than least-squares. To attain Almost
Full Recovery, Lasso-path requires r > 1J, but least-squares requires r > /(1 — p?).

e In terms of hgr(¥), Lasso-path is better than least-squares when ¢ is relatively large
(i.e., f is comparably sparser), and least-squares is better than Lasso-path when ¥ is
relatively small (i.e., 8 is comparably denser).

e The sign of p also matters. For small 1, the advantage of least-squares over Lasso-path
on hgg (1) is much more obvious when p is negative.

We give an intuitive explanation to the above phenomena. We say a signal variable (i.e.,
Bj # 0) is ‘isolated’ if it is the only signal variable in the 2 x 2 block, and we say two signals
are ‘nested’ if they are in the same 2 x 2 block. In the sparser regime (i.e., ¥ is large), least-
squares has a disadvantage because it is inefficient in discovering an ‘isolated’ signal. In the
less sparse regime (i.e., ¥ is small), Lasso-path has a disadvantage because it suffers from
signal cancellation when estimating a pair of ‘nested’ signals (‘signal cancellation’” means
a signal variable has a weak marginal correlation with y due to the effect of other signals
correlated with this one). A more rigorous explanation is given in Section 7, using geometry
of solutions of least-squares and Lasso; see Lemma 7.2, Figure 8, and discussions therein.

6.2 Knockoff-OLS

We now study SDP-knockoff-OLS and CI-knockoff-OLS. The next theorem provides a gen-
eral result that applies to all augmented designs:

Theorem 6.2 Consider a linear model where (3.1)-(3.3) hold. Suppose n > 2p. We con-
struct X in knockoff as in (2.1), with some choice of diag(s). Write G* = [X, X]'[X, X] €
R2PX2P Suppose diag(s) is chosen such that G* is non-singular. Let A; € R**2 be the sub-
matriz of (G*)~! restricted to the jth and (j+p)th rows and columns. Denote wy; = A;(1,1)
and wyj = A;(1,2). Suppose maxi<j<p{wij} < Cy, for a constanat Co > 0. Let Z;, Zj and
W; be as in (2.8) and (2.3), where f is the signed maximum in (2.5). For any constant
u >0, let FP,(u) and FN,(u) be the expected numbers of false positives and false negatives,
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by selecting variables with W; > /2ulog(p). As p — oo,

. - P T mi —Ju)2, —“5 1
FP,(u) < Lpzp—wljlu7 PN () < Lp~® S p min{ (Vi-v}, oo 2r}'
J=1 j=1

The phase diagram of knockoff-OLS is governed by the quantities {w1;}1<j<p. We now
consider the special case of the 2 x 2 blockwise design in (5.1), where the augmented design
is such that diag(s) = (1 — a)I,, where a = max{0, 2|p| — 1} in SDP-knockoff and a = p? in
CI-knockoff. We note that in SDP-knockoff, the matrix G* is singular when |p| > 1/2. In
other words, SDP-knockoff-OLS is well defined only for |p| < 1/2.

Corollary 6.2 (Phase diagram of knockoff-OLS) In the same setting of Theorem 6.2,
suppose G is as in (5.1), with a correlation parameter p € (—1,1).

o SDP-knockoff-OLS (only defined for |p| < 1/2): wij = (1—4p*) 71 (1=2p?) for 1 < j <

_9,2 —9\2(1_9.2
— 19(11742;2) and hg (9) = Y1 ﬁpgl 207)

p. The phase diagram is given by hapr ()

o Cl-knockoff-OLS: wij = (1 — p?2)~2 for 1 < j < p. The phase diagram is given by

/1—9)2
hAFR(ﬂ) = (1_% and hER(ﬂ) = %

Figure 7 (second left panel) shows the phase diagram of CI-knockoff-OLS for |p| = 0.5. In
this figure, the right two panels are the phase diagrams of Cl-knockoff-Lasso for p = 40.5.

From Corollary 6.2 and Figure 7, we draw two conclusions: First, for both SDP-knockoft-
OLS and and Cl-knockoff-OLS, whenever p # 0, their phase diagrams are strictly inferior to
the phase diagram of the least-squares (prototype). This is different from the case of using
Lasso as ranking algorithm, where the phase diagrams of Cl-knockoff-Lasso and Lasso-path
(prototype) are the same in the blockwise design for all p € (—1,1). Second, the comparison
of Cl-knockoff-OLS and CI-knockoff-Lasso is largely similar to the comparison between the
least-squares and Lasso-path (see Section 6.1).

Remark 6. When we use the least-squares as the ranking algorithm, such a gap between
knockoff and its prototype always exists, for a general design. To see this, note that by
Theorem 6.1 and Theorem 6.2, the phase diagrams of knockoff-OLS and its prototype are
governed by the quantities {w1;}1<j<p and {w;}1<;<p, respectively. Since wy; and w; are the
jth diagonal elements of G~ and (G*)~!, respectively, and G is a principal submatrix of
G*, it follows by elementary linear algebra that w; < wy; is always true (and this inequality
is often strict). Unfortunately, it is impossible to mitigate this gap by using the augmented
design in (2.1), no matter how we choose diag(s). Xing et al. (2023) proposed a new idea
of constructing an augmented design, called the Gaussian mirror, which is tailored to using
the least-squares as the ranking algorithm. In a companion paper (Ke et al., 2022), we show
that the Gaussian mirror attains the same phase diagram as the least-squares.

Remark 7. Besides Lasso and least-squares, we may consider other ranking algorithms,
such as the thresholded Lasso, non-convex penalization methods, and the forward-backward
selection. See Ke and Wang (2021) about the phase diagrams of these methods.

22



PoOwER ANALYSIS OF KNOCKOFF

AL/

u — = 0 (U, —/u
% (\/F,‘NF) E\ijm &\/

(1 \0) ¢ (L X P)VT)

% % ; ;
(o7, V) (v
/ /\ \ (o)
L k g
V/u
\\/

Figure 8: Rejection regions and ‘most-likely’ cases in block-wise diagonal designs (x-axis:
zhy/+/2log(p); y-axis: @7 ,y/\/2log(p)). From left to right: (i) positive p and
large ¢, (ii) positive p and small ¥, (iii) negative p and large ¥, (iv) negative p and
small 9. In each plot, the blue solid lines define rejection region of Lasso-path,
and the red solid lines define rejection region of least-squares. For each method,
FP, is determined by the largest FP-ellipsoid in R¢, and FN,, is determined by
the largest FN-ellipsoid in R, where the centers of these ellipsoids are determined
by (84, Bj+1) in the ‘most-likely’ case. In each plot, the largest FP-ellipsoid is con-
trolled to be the same for both Lasso-path and least-squares, and so the method
with a larger FN-ellipsoid is better.

7 The proof ideas and some geometric insights

A key technical tool in the proof is the following lemma, which is proved in the Appendix.
Recall that L, is a generic notation of multi-log(p) terms; see Definition 3.1. For a vector
v, ||v]| denotes the £2-norm; for a matrix M, ||M|| denotes the spectral norm.

Lemma 7.1 Fiz an integer d > 1, a vector p € R?, a covariance matriz ¥ € R and an
open set S C R? such that u ¢ S. The quantities (d, u, %, S) do not change with p. Suppose
b = infees{(z — p)/S7 Yz — p)} < co. Consider a sequence of random vectors X, € R%,
indexed by p, satisfying that

1
Xp‘(ﬂmzp) ~ Nd(ﬂm mzp)v

where p, € R? is a random vector and Xp € R4 s a random covariance matriz. As
p — 00, suppose for any fized v >0 and L > 0, P(||pp — pll > ) <p~F and P(|S, — || >
v) < p~ L. Then, as p — oo,

P(X, € S) =Ly,
or equivalently, p*TOP(X, € S) — oo and pP*°P(X, € S) — 0 for any constant § > 0.
This lemma connects the rate of convergence of P(X, € S) with the geometric property of

the set S. The exponent b is the “radius” of the largest ellipsoid that centers at p and is
fully contained in the complement of S.
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Proof sketch. We illustrate how to use Lemma 7.1 to prove the theorems in Sections 4-6.
Take the proof of Theorem 5.1 for example. Consider the block-wise design in (5.1). Under
this design, the objective of Lasso is separable, and it reduces to solving many 2-dimensional
Lasso problems separably. Fix j and suppose {j,j + 1} is a block. Let W} be as in (2.10).

Write
h = (2y, :1;;-+1y)//\/210g(p) c R (7.1)

Since the Lasso objective is separable, (W* W 1) are purely determined by h. Particularly,

there exists R, C R2, such that Wi > /2u log(p) if and only if h € R,. We call R, the
“rejection region” of Lasso-path. The probabilities of a false positive and a false negative
occurring at j are respectively

P(he Ry, Bj=0) and P(heRS, Bj=1,).
Conditioning on S, the random vector h has a bivariate normal distribution, whose mean
is a constant vector and whose covariance matrix is ﬁg(p)B, where B is the same as in
(5.1). Applying Lemma 7.1, we reduce the proof into two steps: In Step 1, we derive the

rejection region R,. In Step 2, for each possible realization of § with 3; = 0, we calculate
b(B) = infrer, {(x—u(B))' B~ (x—u(B))}, and for each possible realization of 3 with Bj #0,

we calculate b(8) = infyere {(z—p(B8)) B~ (z—u(B))}, where pu(8) = E[h|A]. Both steps can
be carried out by direct calculations. We use a similar strategy to prove other theorems. The
proof is sometimes complicated. For example, to analyze knockoff for block-wise dlagonal
designs, we have to consider the random vector h = (:/c Y, ]Hy,:c]y, ]_Hy "/\/21og(p)

R*. The proof requires deriving a 4-dimensional rejection region and calculating b(3), for
an arbitrary p € (—1,1). The calculations are very tedious.

The geometric insight about two prototypes. We use the geometric interpretation of
our proofs to give more insights about Lasso-path versus least-squares (see Corollary 5.1 and
Corollary 6.1). Under the blockwise design (5.1), for each method, the objective is separable,
so that the event W} > /2u log(p) can be described via a 2-dimensional rejection region.
The next lemma gives the rejection regions of Lasso-path and least-squares:

Lemma 7.2 Consider a linear model, where the Gram matriz satisfies (5.1), with a corre-
lation parameter p € (—1,1). Let W;’path and W;’Old be as in (2.10) and (2.11), respectively.

Suppose {j,j + 1} is a block. Write h = (2}y, 2% 1y)'/\/21log(p). Define

RE*™ (p) = {(h1, h2) - ha = pha > (1 = p)v/u, by > Vu}
U{(h1,h2) : b1 — pha > (1 + p)v/u}
U{(h1,h2) : b1 — phy < —(1 — p)V/u, b1 < —/u}
U{(h1,h2) :z—py < —(1+ p)u}, forp>0,

REM(p) = {(h1,ha) : (h1, —h2) € RE*M(=p)},  for p <0,

R (p) = {(hn, ha) : by — pha > (1= p*)v/u}
U {(h1, hg) hy — phy < —(1 = p*)Vu}.
Then, for Lasso-path, W;’p “th > /2u log(p) if and only if h € Rﬂath(p); for least-squares,

W > \/2ulog(p) if and only if h € RYS(p).
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These rejection regions are shown in Figure 8. Their geometric properties are different
for positive and negative p. Fix j. Let h be as in (7.1), and write u(8) = E[h|5].

e The rate of convergence of FP,(u) is determined by the largest ellipsoid that centers
at u(B) and is contained in RS. We call this ellipsoid the FP-ellipsoid.

e The rate of convergence of FN,(u) is determined by the largest ellipsoid that centers
at u(B) and is contained in R,,. We call this ellipsoid the FN-ellipsoid.

By direct calculations, u(8) = (8; + pBj+1, pB; + Bj+1)//\/210g(p). Under our model,
(Bj, Bj+1) has 4 possible values {(0,0), (0,7), (7, 0), (7, 7p) }, where the first two correspond
to a null at j and the last two correspond to a non-null at j. The probability of having a
selection error at j thus splits into 4 terms, and which term is dominating depends on the
values of ¥ and p. The realization of (8}, 5;+1) that plays a dominating role is called the
‘most-likely’ case. For example, when ¥ is large (i.e., 8 is sparser), the most-likely case of a
false positive occuring at j is when (8}, 8j4+1) = (0,0); when ¢ is small (i.e., § is less sparse),
the most-likely case of a false positive is when (5, 8j+1) = (0,7,). Table 1 summarizes the
‘most-likely’ cases. We also visualize the ‘most-likely’ cases for different (p,?) in Figure 8.
In each plot of Figure 8, we have coordinated the thresholds u in two methods so that the
FP-ellipsoid is exactly the same. It suffices to compare the FN-ellipsoid: The method with
a larger FIN-ellipsoid has a faster rate of convergence on the Hamming error. It is clear that,
when ¢ is large, the FN-ellipsoid of Lasso-path is larger; when 4 is small, the FN-ellipsoid of
least-squares is larger. This explains the different performances of two methods. Moreover,
when 9 is small, comparing the case of a positive p with the case of a negative p, we find
that the difference between FN-ellipsoids of two methods are much more prominent in the
case of a negative p. This explains why the sign of p matters.

Sparsity Correlation Error type  Most-likely case Center of ellipsoid
. . FP Bi =0, Bj+1=0 (0,0)
large ¥  positive/negative S ’
& P /neg r FN Bi = 1p, Bi+1 =0 (VT pVT)
s Fp Bi =0, Bj4y1 =1, (pv/r, V/T)
small 1 ositive J P p
ey FN =7 B =0 (V7. pv7)
small ¥ negative p Fp Bi =0, B = (pv/r, V/7)

FN Bj = Tp; ﬁj+1 =Tp ((1 + ,0)\/;7 (1 + p)\/F)

Table 1: The ‘most-likely’ cases and the corresponding ellipsoid center p(/3)

8 Simulations

We use numerical experiments to support and exemplify the theoretical results in Sections 4-
6. In Experiments 1 and 2, we consider orthogonal designs and block-wise diagonal designs,
respectively. In Experiments 3 and 4, we consider other design classes, including block-
wise diagonal designs with larger blocks, factor models, exponentially decaying designs,
and normalized Wishart designs. We consider four methods, Lasso-path (Lasso), least-
squares (OLS), knockoff with Lasso-path ranking (KF.Lasso) and with least-squares ranking
(KF.OLS). We use either the signed maximum or the difference as the symmetric statistic,
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Figure 9: Experiment 1 (orthogonal designs). The y-axis is log,(Hy/p), where H, is the
average Hamming error over 200 repetitions.

and for KF we choose diag(s) = min{1, 2Amin(G)}- I, unless specified otherwise. It is called
the equi-correlated knockoff (EC-KF), and is the same as the SDP-knockoff for orthogonal
designs and the 2 x 2 block-wise diagonal designs. In Experiments 1-3, this is the only
diag(s) we use, and so we write EC-KF as KF for short. In Experiments 4, we also consider
the conditional independence knockoff (CI-KF). For most experiments, fixing a parameter
setting, we generate 200 data sets and record the averaged Hamming selection error among
these 200 repetitions.

Experiment 1. We investigate the performance of different methods for orthogonal
designs. Given (n,p) = (2000, 1000), ¢ € {0.3,0.5} and r ranging on a grid from 0 to 6
with step size 0.2, we generate data y from N (X, I,) where X is an n X p matrix with
unit length columns that are orthogonal to each other and f is generated from (3.2). We
implemented Lasso and KF.Lasso using both the signed maximum and the difference as the
symmetric statistic. Under the orthogonal design, Lasso and OLS yield the same importance
metric thus OLS and KF.OLS are neglected in this experiment. Each method outputs p
importance statistics, and we threshold these importance statistics at /2u*log(p) where
u* minimizes FN,(u) + FN,(u) in theory. The results are in Figure 9, where the y-axis is
log,,(H,/ p), and H, is the averaged Hamming selection error over 200 repetitions.

The theory in Sections 4-5 suggests the following for orthogonal designs: (i) Regarding
the choice of symmetric statistic for KF, the signed maximum outperforms the difference.
(ii) With signed maximum as the symmetric statistic, KF.Lasso has a similar performance
as Lasso. These theoretical results are perfectly validated by simulations (see Figure 9).

Experiment 2. We consider the block-wise diagonal design with 2 x 2 blocks, where
we take p = 0.5 and p = 0.7. In the data generation, we fix an n X p matrix X such that
X'X has the desirable form. We then generate (3,y) in the same way as before. For each
p, we fix (n,p,9) = (2000, 1000,0.2), and let r range on a grid from 0 to 8 with a step size
0.2. For KF.Lasso and KF.OLS, we now fix the symmetric statistic as signed maximum and
the default choice of diag(s) yields that diag(s) = (1 — a)I, with a = 2p — 1. In this case,
G* = [X, X]'[X, X] is degenerated, thus an ¢ = 105 was subtracted from each elements of
diag(s) to ensure KF.OLS is applicable. The results are in the first two panels of Figure 10.
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Figure 10: Experiments 2 and 3 (block-wise diagonal designs, d: block size, p: off-diagonal
entries). The y-axis is log,(H, /p), where H), is the average Hamming error. The
parameter a controls the construction of knockoff.

The theory in Section 5 suggests that since the two values of p considered here are
in (po,1), KF.Lasso has a similar performance as its prototype, Lasso. While according
to Section 6, KF.OLS has a inferior performance comparing to its prototype, OLS. The
simulation results are consistent with these theoretical predictions. Moreover, we can see
that, for the current ¥ value, OLS has a smaller Hamming error than that of Lasso when r
is large, and the opposite is true when r is small. These also agree with our theory.

Experiment 3. We further consider blockwise diagonal designs with larger-size blocks.
Given d > 2 and p that is a multiple of d, we generate X € R"™*P such that X'X is
block-wise diagonal with d x d diagonal blocks, where the off-diagonal elements of each
block are all equal to p. Other steps of the data generation are the same as in Experiment
2. We consider (d,p) = (4,0.4) and (d,p) = (5,0.3). For each choice of (d,p), we set
(n,p,9¥) = (2000, 1000, 0.3) and let r range on a grid from 0 to 6 with a step size 0.2. We
use signed maximum as symmetric statistic in KF and use the equi-correlated knockoff
described above. The results are in the last two panels of Figure 10.

One noteworthy observation is that KF.Lasso still has a similar performance as its own
prototype. Meanwhile, KF.OLS can get close to its prototype in the case where p is close to
0. Another observation is that OLS outperforms Lasso when r is large, and Lasso slightly
outperforms OLS when 7 is small. While our theory is only derived for d = 2, the simulations
suggest that similar insight continues to apply when the block size gets larger.

Experiment 4. In Section 5, we studied variants of knockoff with different augmented
designs. The theory for 2 x 2 block-wise designs suggests that using CI-knockoff to construct
X yields a higher power than using EC-knockoff (for 2 x 2 block-wise design, EC-knockoff is
the same as SDP-knockoff). In this experiment, we investigate whether using CI-knockoff
still yields a power boost for other design classes. We consider 4 types of designs:

e Factor models: X'X = (BB’ + I,)/2, where B is a p x 2 matrix whose j-th row is
equal to [cos(a;),sin(a;)] with {a;};=1,... p 4id drawn from Uniform|0, 27];
e Block diagonal: Same as in Experiment 2, where p = 0.5.

e Ezponential decay: The (i, j)-th element of X’X is 0.6/°~7| for 1 <4i,5 <p.
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e Normalized Wishart: X'X is the sample correlation matrix of n iid samples of N (0, I,).

In the normalized Wishart design, the Cl-knockoff in (2.7) may not satisfy diag(s) < 2G.
We modify it to diag(s) = a[diag(G~1)]~!, where a is the maximum value in [0, 1] such that
diag(s) < 2@G. For each design, we fix (n,p) = (1000, 300), let ¥ take values in {0.2,0.4} and

let r range on a grid from 0 to 6 with a step size 0.2. Different from previous experiments, we

generate 3 from f3; id (1—ep)ro+ %epyTp + %epu,Tp, for 1 < j < p. The motivation of using

this model is to allow for negative entries in 3. Even when X’X contains only nonnegative
elements, this signal model can still reveal the effect of having negative correlations in the
design. We compare two versions of knockoff, EC-knockoff and CI-knockoff, along with the
prototype, Lasso. The results are in Figure 11.

For the 2 x 2 block-wise diagonal design, the simulations suggest that CI-KF significantly
outperforms EC-KF, and that CI-KF has a similar performance as the prototype, Lasso.
This is consistent with the theory in Section 5.2 and Section 5.3. CI-KF also yields a
significant improvement over EC-KF in the factor design, and the two methods perform
similarly in the exponentially decaying design and the normalized Wishart design. We
notice that the Gram matrix of the normalized Wishart design has uniformly small off-
diagonal entries for the current (n,p), which is similar to the orthogonal design and explains
why EC-KF and CI-KF do not have much difference. Combining these simulation results,
we recommend CI-KF for practical use. Additionally, in some settings (e.g., factor design,
¥ = 0.4; exponentially decaying design, ¥ = 0.2), CI-KF even outperforms its prototype
Lasso. Omne possible reason is that the ideal threshold we use is derived by ignoring the
multi-log(p) term, but this term can have a non-negligible effect for a moderately large p,
so the Hamming error of Lasso presented here may be larger than the actual optimal one.

9 Discussions

How to maximize the power when controlling FDR at a targeted level is a problem of great
interest. We focus on the FDR control method, knockoff, and point out that it has three
key components: ranking algorithm, augmented design, and symmetric statistic. Since each
component admits multiple choices, knockoff has many different variants. All the variants
guarantee finite-sample FDR control. Our goal is to understand which variants enjoy good
power. In a Rare/Weak signal model, for each variant of knockoff under consideration, we
derive explicit forms of false positive rate and false negative rate, and obtain the theoretical
phase diagram. The results provide useful guidelines of choosing the version of knockoff to
use in practice. We also define the prototype of knockoff, which uses only one component,
ranking algorithm, and has access to an ideal threshold. We compare the phase diagram
of knockoff with the phase diagram of prototype. The results help us understand the extra
price we pay for finding a data-driven threshold to control FDR.

We have several notable discoveries: (i) For the choice of symmetric statistic, signed
maximum is better than difference, because the latter has an inferior phase diagram in the
orthogonal design. (ii) For the choice of augmented design, CI-knockoff is better than SDP-
knockoff, because the latter has an inferior phase diagram in a simple blockwise diagonal
design. (ii) For the choice of ranking algorithm, roughly, Lasso is better than least-squares
when the signals are extremely sparse and the design correlations are moderate; and least-
squares is better than Lasso when the signals are only moderately sparse and the design
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Factor model design, § = 0.2 Block diagonal design, § = 0.2 Exponential decay design, 9 =0.2 Normalized Wishart design, § = 0.2
s, —=- Lasso 027 —=- Lasso —-0.201 y —=- Lasso —0.21 —=- Lasso
oo —=: ECKF \ —=- EC-KF \ —=: EC-KF \ —=: ECKF
\Ss - cn - cn - Cn - Cn
N CI-KF o3l A CI-KF —o2s] \ CI-KF Cosl CI-KF
N T meeeaooooo- \ \ : \
N\ ‘ \ \
N AN \ Ky
N -0.4 ‘ -0.30 N 0.4 "\
) N, N \
N . . \
. -0.5 \: . —0.35 DN -0.5 b
\ RN W .
N, 0.6 AN PN —0.40 NN 0N
N -o. N ~- 5N -0.6 S
\ ~., NS X
\ . O S
A N —0.45 S0 AT
. -0.7 N NN 0.7 N
A} =, Sea AP
. _os \ ~0.50 =N Selina
‘\ AN oy -0.8 AN
- (e >
-0.55
0 2 a 6 0 2 4 6 0 2 4 6 0 2 a 6
Factor model design, 9 =0.4 Block diagonal design, 9 =0.4 Exponential decay design, 8 =0.4 Normalized Wishart design, § = 0.4
~ ——- Lasso —0.41 «, ——- Lasso —0.4]{ A —— Lasso ~0.41 ~ ——- Lasso
AN —=: ECKF N —=- EC-KF \ —=: EC-KF \ —=: ECKF
0N ——=: CI-KF \ ——- CIKF \ ——=- CIKF AN ——: CIKF
LN 3, \ -0.6 )
N N- 0.6 N\ 0.5 \ A
W TN . \ . \ N
“ Sesme-o 3, \ -0.8 ®
N Y \ N
IR \ \ N
R\ “ 06 \, ,
\1\\ -0.8 AN \ -1.0 ‘Q‘
AR Y N, N,
AS &\ ., \,
N - “u >
RN S S -0.7 N, 12 )
A P -1.0 Se==s N, Y
BN . a, pl
\ AN S .
— ~ -1.4
i Nes, “"Q\* e
A \ -0.8 Ny
-1.2 -\ \\‘
~/ ~ -16

Figure 11: Experiment 4 (general designs). The y-axis is log,(H,/p), where H), is the
average Hamming error. We focus on comparing two constructions of knockoff’s,
EC-KF and CI-KF, and include Lasso as the benchmark.

correlations are more severe. (iv) In a simple blockwise diagonal design, when knockoff uses
Lasso as ranking algorithm, with proper choices of two other components, knockoff has the
same phase diagram as its prototype (i.e., we pay a negligible price for finding a data-driven
threshold). This is however not true when knockoff uses least-squares as ranking algorithm.

There are several directions to extend our current results. First, we focus on the regime
where FDR and TPR converge to either 0 or 1 and characterize the rates of convergence.
The more subtle regime where FDR and TPR converge to constants between 0 and 1 is not
studied. We leave it to future work. Second, the study of knockoff here is only for block-
wise diagonal designs. For general designs, it is very tedious to derive the precise phase
diagram, but some cruder results may be less tedious to derive, such as an upper bound for
the Hamming error. This kind of results will help shed more insights on how to construct
the knockoff variables (e.g., how to choose diag(s)). Third, we only investigate Lasso-path
or the least-squares as options of the ranking algorithm. It is interesting to study the power
of FDR control methods based on other ranking algorithms, such as the marginal screening
and iterative sure screening (Fan and Lv, 2008) and the covariance assisted screening (Ke
et al., 2014; Ke and Yang, 2017). The covariance assisted screening was shown to yield
optimal phase diagrams for a broad class of sparse designs; whether it can be developed
into an FDR control method with “optimal” power remains unknown and is worth future
study. Last, some FDR control methods may not fit exactly the unified framework here. For
instance, the multiple data splits (Dai et al., 2022) is a method that controls FDR through
data splitting. We can similarly assess its power using the Rare/Weak signal model and
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phase diagram, except that we need to assume the rows of X are i.i.d. generated. We leave
such study to future work.
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Appendix A. Proof of Lemma 7.1

By definition of the multi-log(p) term, it suffices to show that, for every € > 0, as p — oo,
p P P(X, € S) =0, and  p“P P(X, € S) = oco. (A.1)
We introduce two sets S and S such that
ScSchs.

Define m(z) = (z — p)’S 7 (z — p) for any x € R%. By definition, b = inf,cs m(z). As a
result, m(z) > b for all x € S. Define

S ={z €RP:m(z) > b} (A.2)

Then, S C S. Furthermore, since m(z) is a quadratic function and b = inf,cg m(z), given
any € > 0, there exists zg € S such that

m(zg) < b+ €/8. (A.3)
Note that (A.3) guarantees that ||xg — u|| is bounded. For any x € S and ||z — zo|| < 1,

|m(x) — m(zo)| < 2/(x — pu)'S7 (z — 20)| + |(z — 20)'S7 (2 — 20)]
<2/l = =7 -l = 2ol + 127 [l — ol
< Cillz — @ol| + Collz — ao|1%,

where C and C9 are positive constants that only depend on (u, 3, b,¢€). It follows that
there exists a constant d; > 0 such that

zeS, |lr—zol<dh = |m(z)—m(zo)| <¢/8. (A.4)
Additionally, since S is an open set and xg € S, there exists do > 0, such that
{z eRY: ||z — x| < 6} CS.

Define
S={zeR?: ||z — x| <}, where 0 = min{dy, da}. (A.5)

It is easy to see that S C S. Additionally, in light of (A.3) and (A.4),
m(x) < b+ €/4, forall x € S. (A.6)
Since S € S C S, to show (A.1), it suffices to show that
PP P(X, € S) = o0 (A7)

and
p T P(X,eS) —o0. (A.8)
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First, we show (A.7). Let f,(z) denote the density of Ny,
(= pp)' %, Y@ — pp). Tt is seen that

#g(p)ilp). Write m,(x) =

[2log(p)] ¥/ my ()

fp(x) = (27r)d/2|det(2d)|1/2 D

(A.9)
By direct calculations,

P(X, €S| pp, S

) _ [2 log(p)]d/Q / pfmp(:c)dx
P (2m) 2] det ()2 Jres

[log(p)]%/?
= 72| det(5,)[1/2

- Volume(S) - p~SWP=es{mn(@)} (A 10)

The assumptions on (4p, X,) imply that, for any constant v > 0,

lim B(lly — ull > 7 or [, — X > 7) =o.

Let E be the event that ||, — p|| < v« and [|3, — X|| < v, for some 7, to be decided. On
this event, for any z € S,

Im(z) —myp()| < |(z — p)'S "o — p) — (2 — p)'S, (@ - p)
(=)' S, e — ) — (2 — ) S, (@ = pp)|
<o —p)(E7 =S ) (@ — w420z — 1) S, (1 — )]
+ (= )5 (1 — )
<z = plPIZHIE - 1S = S+ 202 — wlll12, 1) - e — pl
A5 Ml =
< Cavs + C12,

where C3 and Cy are positive constants that do not depend on ~,, and in the last line we
have used the fact that S is a bounded set so that ||z — ul| is bounded. It follows that we
can choose an appropriately small v, such that

Im(x) —my(x)| < €/4, for all z € S. (A.11)
Combining (A.11) with (A.6) gives

supmy(z) < b+¢€/2, on the event E.
z€eS

Moreover, since S is a ball with radius 9,
Volume(S) = §¢ - Volume(By),

where By is the unit ball in R?, whose volume is a constant. We plug the above results into
(A.10) and notice that |det(X,)| > |det(X)| — C50 on the event E, for a constant Cs > 0.
It yields that, when (p,, X)) satisfies the event E,

]P(Xp €5 | iy, Ep) 2 CO[IOg(p)]d/Z cp(Hel2), (A.12)
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for some constant cg > 0. It follows that
P(X, € S) > P(E) - collog(p)]/2p~ /2.

We plug it into the left hand side of (A.7) and note that P(F) — 1 as p — oo. This gives
the desirable claim in (A.7).
Next, we show (A.8). We define a counterpart of the set S by

S, = {x € R my,(z) > b}.
Define Y, = \/21og(p) - & "/*(X,, — 11,). Then, Y, ~ N(0,1,) and
X,eS, ifandonlyif || > 2blog(p).
The distribution of ||Y,]|? is a x2 distribution, which does not depend on (1, $,). We have

P(Xp € Sp) =E[P(Xp € Sp | pp, Xp)]
=E[P(|Y,[* = 2blog(p))]
=P(x3 > 2blog(p)). (A.13)

For chi-square distribution, the tail probability has an explicit form:

d/2, blog(p))
r(d/2)

P(x3 > 2blog(p)) = I

where I'(s,z) = [>°t5 ! exp(—t)dt is the upper incomplete gamma function and I'(s) =
I'(s,0) is the ordinary gamma function. By property of the upper incomplete gamma
function, T'(s,z)/(z* Lexp(—z)) — 1 as * — oo. It follows that

I(d/2, blog(p))
Blog(p)|72-1pt

In particular, when p is sufficiently large, the left hand side is > 1/2. We plug these results
into (A.13) to get

as p— oo.

blog®]**t

TR ‘
P(X, € Sp) > 2T(d/2) (A.14)
It remains to study the difference caused by replacing S, by S. Let
Up = (S\Sp) U (Sp\S9).
Then, B B
|P(X, €S) —P(X, €5,)| <P(X, € Up). (A.15)
Similar to (A.10), we have
[210g(p)] /2 [
P(X, € Up | pp, Xp) = p @ dy
% € U L1 %0) = Gyl der(S 7 Jyes,
d/2 ,
[log(p)] - Volume(U,) - p~ Mleevp {ma(@} (A 16)

= 702] det(3,)[ 172
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For a constant v > 0 to be decided, let F' be the event that
lp = pll <, and 5, = X <. (A.17)
On this event, we study both Volume(U,) and inf ey, mp(x). Re-write
U, = (?C\S,C,) U (?;\gc).
By definition, S° = {z € R : m(z) < b} = {z € R? : |~ %(z — p)|| < Vb}, and
?; = {r cR?%: ||Z;1/2(l' — up)|| < V/b}. On the event F, for any = € g;,
127 2@ = )l < VO + 572 (@ = ) = 5,12 (@ — 11p)|

<Vh+ STy — )| + I(E2 = 22 (@ — )|

S VOS2l — pll + 225,12 = L)) - 15,2 (2 — )|

<VO+ 572 Iy — pll + Vo |25 — 1

<Vb+ Csn,

for a constant C5 > 0 that does not depend on . Choosing v < C5 *v/b, we have || S~1/2(z—
)| < 2vb for all x € ?;. Additionally, by definition, ||S~12(x — p)|| < v/b for all z € S°.
Combining the above gives

Up € (S°US,) ¢ {zeR |72 (2 — p)|| < 2vb}.
Recall that By is the unit ball in R?. It follows immediately that
Volume(U,) < (2vb)? - Volume(By), on the event F. (A.18)
At the same time, for any z € S, on the event F,

12512 =)l = 1572 = )| = 11352 = pp) = 72 = )|
> ([ (@ = @) = 12,2y — )| = 1(E7Y2 = 2, (@ = )|
> =72 @ = | = 1220 - Dl — pll = 12222 — Lol - [ 272 (2 = )
(z = p)
(z = n)

8

= [1=72(@ = w)ll(L = 1=, 1222 = Lall) = (=721 - Ny —
> 972 (@ — p)ll(1 = Cer) — 72|y
> Vb(1 - Cey) — [|Z712|1,

where Cs > 0 is a constant that does not depend on 7 and in the last line we have used
the fact that || Z~1/2(z — p)|| > Vb for z € S. We choose 7 properly small so that v/b(1 —

Cey) — |57 2|y = /b — €¢/2. Tt follows that
mp(z) = |5, (@ — p)|I> > b—¢/2, forallzeS. (A.19)

Additionally, the definition of S, already guarantees that m,(z) > b for all z € S,. Conse-
quently,
inf my(z) > inf {m,(x)} >b—¢€/2, on the event F. (A.20)

zeUp z€SUS),
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We plug (A.18) and (A.20) into (A.16). It yields that, on the event F,
P(X, € Uy | fp,S,) < Crllog(p)] /2 - p==/2), (A.21)
for a constant Cy > 0. Then,
P(X, € Uy) < P(F) - Cr[log(p)]? - p~ =2 + P(F).

By our assumption, for any v > 0 and L > 0, P(||u, — p|| > ) < p~ L and P(|%, — 2| >
v) < p~ L. In particular, we can choose L = b. It gives

P(F) <p~".
We combine the above results and plug them into (A.15). It follows that
IP(X, €S) —P(X, €S,)| < Crllog(p)]¥/? - p~ /2 4 p~t. (A.22)
Combining (A.14) and (A.22) gives
P(X,/ € §) < [1+0(1)] - Crllog(p)]*/* - p~ /2.
This gives the claim in (A.8). The proof of this lemma is complete.

Appendix B. Proof of Lemma 7.2

First, we study the least-squares. Note that ﬁ has an explicit solution: ﬁ =G 1XTy. Since
G is a block-wise diagonal matrix, we immediately have

5 -1
210 A e A
Bit+1 p 1 Tit1 1—p? iy — Pw;"rﬂy
Recall that § = X'y/+/21log(p). Then, |3;| > v/2ulog(p) if and only if

IR _
1—7,02'% — pPj+1l > V.

It immediately gives the rejection region for least-squares.
Next, we study the Lasso-path. We write W;’p ath as W for notation simplicity. The

~

lasso estimate () minimizes the objective
1 2 Lo T L7
Q) = 41y — X0l + Mbll = 1yl — y7Xb -+ 57+ Al

When G is a block-wise diagonal matrix, the objective Q(b) is separable, and we can optimize
over each pair of (bj,bj41) separately. It reduces to solving many bi-variate problems:

R . 1
(Bi (), 1 ()T = axgming{ {1y = [z 251 16/13 + Allbl]1 }. (B.1)
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Write b = (6;(\), B;11(A\)T and let

T
B:F ”] and h:[?’y]
p 1 Tit1Y
Then, the optimization (B.1) can be written as
b = argmin, { —h7b + b" Bb/2 + A||b]|1 }. (B.2)

Recall that W} is the value of A at which by becomes nonzero for the first time. Our goal
is to find a region of (h1, h2) such that W} > t,(u) = \/2ulog(p).

It suffices to consider the case of p > 0. To see this, we consider changing p to —p in
the matrix B. The objective remains unchanged if we also change by to —by and hgy to —ho.
Note that the change of by to —by has no impact on W} this means W7 is unchanged if we
simultaneously flip the sign of p and ho. Consequently, once we know the rejection region
for p > 0, we can immediately obtain that for p < 0 by a reflection of the region with
respect to the x-axis.

Below, we fix p > 0. We first derive the explicit form of the whole solution path and
then use it to decide the rejection region. Taking sub-gradients of (B.1), we find that b has
to satisfy

b R Bl =] "

where sgn(x) = 1if x > 0, sgn(z) = —1 if x < 0, and sgn(z) can be equal to any value in
[—1,1] if x = 0. Let Ay > A2 > 0 be the values at which variables enter the solution path.
When A € (A, 00), by = 0 and by = 0. Plugging them into (B.3) gives sgn(lA)l) = A"1hy.
The definition of sgn(by) implies that |ki| < A, for any A > A;. We then have |h1] < A;.
Similarly, it is true that |ha| < A1. It gives

A1 = max{|h], |ha|}. (B.4)

We first assume |hi| > |he|. By (B.3) and continuity of solution path, there exists a
sufficiently small constant § > 0 such that, for A € (A2 — §, A2), the following equation

holds. . )
L op bl()\)} [Sgn(bl)] [M]
~ + A\ ~ = . B.5
| ] R s R ®
The sign vector of b for A € (Ay — 8, A2) has four different cases: (1, })T, (1, -7, (=1,1)7T,

(=1, —1)T. For these four different cases, we can use (B.5) to solve b. The solutions in four
cases are respectively

o [( — pha) — (1 - p)ﬂ 1 {(hl pha) — (1 + p)ﬂ
2 [(ha = ph1) = (1 = p)A]’ 1—p? [(ha = ph1) + (1 + p)A)’

1 [( pha) + (1 + p)A} 1 [(hl — pha) + (1 - p)A}
2 |(hg — ph1) (I+p)A|° 1—p2 [(he —ph1) + (1 —p)A|~

The solution b has to match the sign assumption on b. For each of the four cases, the
requirement becomes
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e Case 1: (hy —ph2) — (1 —=p)A >0, (ha—ph1)—(1—pA>0
o Case 2: (hy —ph2) — (1+p)A >0, (ha—phi)+(1+pA<O0
e Case 3: (hy —ph2)+ (14+p)A <0, (ha—phi)—(1+pA>0
e Case 4: (hy —ph2)+ (1 —p)A <0, (ha—ph1)+ (1 —p)A<O.

Note that we have assumed |h1| > |ha|. Then, Case k is possible only in the region Ay,
where

Ay ={(h1,h2) : by >0, phy <hy <hi}, Ay ={(h1,h2):h1 >0, —hi <hy < phi},
./43 = {(hl,hg) : hl < 0, phl < h2 < —hl}, ./44 = {(hl,hg) : hl < 0, hl < h2 < phl}.

In each case, A| = |hi|. To get the value of A2, we use the continuity of the solution path.
It implies that ba(\) = 0 at A = Aa. As a result, the value of Ay in Case k is

)\21) _ha— Ph1, )\§2) _ P~ h27 )\53) _ha— Ph1’ )\gx) _ pha— h2‘
1—0p 1+p I+p
It is easy to verify that Ay < A1 in each case. We also need to check that in the region Ay,

the KKT condition (B.3) can be satisfied with by = 0 for all A ()\gk), A1). For example, in
Case 1, (B.3) becomes

1 P I;l 1 h1
= <
[p J [0] +A [C} L@] , for some |c| < 1.

We can solve the equations to get by = h; — X and A\e = hy — pl;1 = (hg —ph1) — A. It can be
verified that |(ha — ph1) — A| < A for (h1,ho) € A1 and A € (AS”, A1). The verification for
other cases is similar and thus omitted. We then assume |ha| > |h1|. By symmetry, we will
have the same result, except that (hi, ha) are switched in the expression of A and (A1, \2).
This gives the other four cases:

As = {(h1,h2) : hg >0, phy < hy < ha}, Ag={(h1,h2):hy >0, —hy <hy < pha},
A7 = {(hl,hg) thy < 0, ph2 <h < —hg}, .Ag = {(hl,hg) thy < 0, ho < h1 < phg}.

In these four cases, we similarly have \; = |hg| and

A _mzphe ) phamh Mz pha e phamh g g
1—0p 1+p I+p L—p

These eight regions are shown in Figure 12.
We then compute W and the associated rejection region. Note that W' = A in Case
1-Case 4, and W = Ay in Case 5-Case 8. Tt follows directly that

|1, if (h1,h2) € A1 U A2 U A3 U Ay,
W7 =< |hy — pha|/(1 = p), if (h1,h2) € As U As, (B.8)
|h1—ph2|/(1+p), if (hl,hg) e Ag U A7.
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= phy =_\/;

1-p2

Lap

Figure 12: The rejection region of least-squares (left) and Lasso-path (right). On the right
panel, the regions A;i-Ag are the same as those defined in the proof. In the
regions Aj-Ay, W) = [h1], and the rejection region is colored by yellow. In the
regions As and As, W} = |h1 — pha|/(1 — p), and the rejection region is colored
by purple. In the regiions Ag and Az, W = |hy — pha|/(1+p), and the rejection
region is colored by green.

As aresult, the region W} > /2ulog(p) if and only if the vector (x;*-Fy, xf+1y)/\/210g(p) is
in the following set:

R = [(A1UAU A3 UA) N {[h1] > Vu}]
U [(As U Ag) N {|h1 — pha| > (1 — p)v/u}]
N [(As U A7) N {|h1 — pha| > (1 + p)v/u}].

In Figure 12, the 3 subsets are colored by yellow, purple, and green, respectively. This gives
the rejection region for Lasso-path.

Appendix C. Proof of Theorem 4.1

By definition of (FP,, FN,) and the Rare/Weak signal model (3.2)-(3.3), we have

p p

FPy = Z(l - GP)P(WJ > tp(u)‘ﬂj =0), FN,= Z €p P(Wj < tp(u)‘ﬂj =Tp)s (C.1)
J=1 j=1

where ¢, = p~¥, 7, = \/2rlog(p), and t,(u) = \/2ulog(p). Therefore, it suffices to study
P(Wj > tp(u)|B; = 0) and P(W; < t,(u)|B; = 7p).
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Fix 1 < j < p. The knockof filter applies Lasso to the design matrix [X, X'] This
design is belongs to the block-wise diagonal design (5.1) with a dimension 2p and p = a.
The variable j and its own knockoff are in one block. Fix j and write

hy = 2y /~/210g(p), and hg = Zy/+/210g(p). (C.2)

It is easy to see that (z}y,Z}y)’ follows a distribution N5(0g, %) when ; = 0, and it follows
a distribution Na(p+/21log(p), ), when 3; = 7, where

v 1 a
r= [a\/? ’ =1, 1
Let R be the region of (hi, ha) corresponding to the event that {W; > t,(u)}. It follows
from Lemma 7.1 that

P(W; > ty(u)|B; = 0) = Lyp~ nirer{’="1h),
P(W; < ty(u)|Bj = 7p) = Lyp~ Mherelli=p) =7 =)} (C.3)

Below, we first derive the rejection region R, and then compute the exponents in (C.3).
Recall that Z; and Zj are the same as in (4.3). They are indeed the values of X\ at
which the variable j and its knockoff enter the solution path of a bivariate lasso as in (B.1).
We can apply the solution path derived in the proof of Lemma 7.2, with p = a. Before we
proceed to the proof, we argue that it suffices to consider the case of ¢ > 0. If a < 0, we can
simultaneously flip the signs of a and hgo, so that the objective (B.1) remains unchanged;
as a result, the values of (Zj, Zj) remain unchanged, so does the symmetric statistic ;.
It implies that, if we flip the sign of a, the rejection region is reflected with respect to the
x-axis. At the same time, in light of the exponents in (C.3), we consider two ellipsoids

Erp(t) = {h e R? : W'Y 'h < t}, Eent) ={h eR*: (h—p)S Y h—p) <t}. (C4)

Similarly, if we simultaneously flip the signs of a and hg, these ellipsoids remain unchanged.
It implies that, if we flip the sign of a, these ellipsoids are reflected with respect to the x-axis.
Combining the above observations, we know that the exponents in (C.3) are unchanged with
a sign flip of a, i.e., they only depend on |a|. We assume a > 0 without loss of generality.

Fix a > 0. Write z = Z;/+/2log(p) and 2 = Z;/+/21log(p). The symmetric statistics in
(4.3) can be re-written as

sem N +1, ifz> 72 N 3
Wi :(z\/z)\/Zlog(p).{ W = (2 — 2)y/21og(p).

—1, ifz<z’

Recall that h; and hy are as in (C.2). Let Ay > Ao > 0 be the values of A at which variables
enter the solution path of a bivariate lasso. In the proof of Lemma 7.2, we have derived the
formula of (A1, A2); see (B.6) and (B.7) (with p replaced by a). It follows that

(2.7) = (A1, A2), in the regions A;-Ay,
’ (A2, A1), in the regions As-Ag,

where regions A;-Ag are the same as those on the right panel of Figure 12 (with p replaced
by a). Plugging in (B.6) and (B.7) gives the following results:
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Figure 13: The rejection region of knockoff in the orthogonal design, where the symmetric
statistic is signed maximum (left) and difference (right). The rate of convergence
of FP, is captured by an ellipsoid centered at (0,0), and the rate of convergence
of FN,, is captured by an ellipsoid centered at (v/r, a\/r).

Region Aj: z=hy, 2=1228M W = py/2log(p), W = =2, /2log(p).
Region As:  z=hy, z= phllJ:ahQ, stgm = h1/210g(p), W]dif = %m
Region Ag: 2= —hy, =220 W™ — _p, /2log(p), W = —the, Hlog(p).
Region Ay: z= —hy, Z2= %, stgm = —hl\/m, VV;iif = %m

e Regions As-Ag:  |Z;] < |Zj|’ Wngm <0, Wjdif <0.

The event that W;gm > /2ulog(p) corresponds to that (h1, k) is in the region of

REEM = (A U Ay U A3 U Ay) N {|ha]| > Vau}
— (Al > Ihal, [ha] > V). (€9

The event that I/V]dif > /2ulog(p) corresponds to that (hi, ha) is in the region of

Rgif = (.A1 N{h1—hy>(1— a)\/ﬂ}) U (AQ N{h1+ha > (1+ a)\/ﬂ})
U (.Ag N {hl + hy < —(1 + a)\/ﬂ}) U (.A4 N {hl — hy < —(1 — a)\/ﬂ}) (Cﬁ)

These two regions are shown in Figure 13.
We are now ready to compute the exponents in (C.3). First, we compute infzer {h'S " h}.
Let Epp(t) be the same as in (C.4). Then,

gg%{h’ﬁflh} =sup{t > 0:&p(t)NR #0}.

When the rejection region is R:, from Figure 13, we can increase t until Epp(t) intersects
with the line of hy = 4++/u. For any h on the surface of this ellipsoid, the perpendicular
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vector of its tangent plane is proportional to ‘Y ~'h. When the ellipsoid intersects with the
line of hy = +1/u, the perpendicular vector should be proportional to (1,0)". Therefore, we
need to find h such that

hi=4vu, WYX 'h=t and Y 'ho(1,0).

The second equation requires that ho = ah;. Combining it with the first equation gives
h = (£+v/u, £a\/u). We then plug it into the second equation to obtain ¢ = u. This gives

inf {WS7'h} =w. (C.7)
heRE™

When the rejection region is RYf, there are 3 possible cases:

(i) The ellipsoid intersects with the line hy — he = (1 — a)\/u,
(ii) The ellipsoid intersects with the line hy + ho = (1 + a)+/u,
(iii) The ellipsoid intersects with the point h = (y/u, a\/u).

In Case (i), we can compute the intersection point by solving h for hy — he = (1 — a)y/u
and ¥7'h o (1,—1)". The second relationship gives hy = —h;. Together with the first
relationship, we have h = (15%/u, 35%/u). It is not in REL. Similarly, for Case (ii), we
can show that the intersection point is h = (3£%/u, 1£2%,/u), which is not in R3F either.
The only possible case is Case (iii), where the intersection point is (y/u,a/u) and the
associated t = h'Y 7't = u. We have proved that

inf {27 1h) = . C.8
hel%gif{ J=u (C.8)

Next, we compute infpere{(h — 1)’ S~ (h — p)}. Let Epn(t) be the same as in (C.4). Then,

hiengc{(h — )’ (h — )} =sup{t > 0: Epn(t) NRE £ 0}
Note that the center of the ellipsoid is = (v/7,a\/r). When either R = R:™ or R = RI,
¢ R€if and only if r > u. In other words, the above is well defined only if r > u. We now
fix 7 > u. When the rejection region is Ry, the ellipsoid intersects with either the line of
h1 = y/u or the line of hy = hy. Since the perpendicular vector of the tangent plane of the
ellipsoid at h is proportional to 'Y ~!(h — 1), we can solve the intersection points from

h1 = \/u, and h1 = ha,
S~ (h —p) o (1,0), SN h—p) o (1,-1).

By calculations, the two intersection points are h = (v/u, ay/u) and h = (32/r, 132 /r).
The associated value of (h—p)’ Y~ (h—p) ist = (/7 —+/u)? and t = (1—a)r/2, respectively.
When we increase the ellipsoid until it interacts with (R )¢, the corresponding ¢ is the
smaller of the above two values. This gives

it {0 — 'S (= )} = min{ (V7 - ViR, S0 (©9)

he(RFE™)
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When the rejection region is RI, the ellipsoid intersects with either the line of hy — hy =
(1 — a)y/u or the line of hy + he = (1 4 a)y/u. We can solve the intersection points from

hl—hgz(l—a)\/ﬂ, and h1+h2:(1—|—a)\/ﬂ,
Y Hh - p) o (1,-1), Y Hh - p) o (1,1)".

Solving these equations gives the two intersection points: h = (3¢/r + 15 /u, e\ /r —
50 /u) and h = (352/r + 32 /u, —15%/r + 139, /u). The corresponding value of (h —
p)E7Hh = p) is t = 52(/r — u)? and t = H2(/r — \/u)?, respectively. The smaller of
these two values is 15%(,/r — \/u)?. We have proved that

1—a

. . Iv—1 o —
he(lggif)c{(h pE (= p)} = —

(Vr—vu)i. (C.10)

We plug (C.7)-(C.10) into (C.3), and we further plug it into (C.1). This gives the claim for
a > 0. As we have argued, the results for a < 0 only requires replacing a by |a|.

Appendix D. Proof of Theorem 5.1

Without loss of generality, we assume p is even. Then, for block-wise diagonal designs as
n (5.1), the Lasso objective is separable. Therefore, for each W, it is not affected by any
By outside the block. Additionally, by symmetry, the distribution of W7 is the same for all
1 <5 <p. It follows that
FP,(u) = Lyp - P{W} > t,(u) | (8;, Bj+1) = (0,0)}
+ Lppliﬁ ’ ]P){Wj* > tp(u) ‘ (/ijﬂj-‘rl) = (Ova)}v (Dl)

where j can be odd index. Similarly, we can derive that
FNp(U) = L]opl_7L9 : P{W; < tp(u) } (Bja 5j+1) = (Tpa 0)}
+ Lppl_gﬂ ' P{W]* < tp(u) ‘ (Bjaﬁj+1) = (Tpan)}' (D2)
Fix variables {j,j + 1}, and consider the random vector h = (z5y,25119)'/+/1og(p). Then,

“ 1 1 op
hNNg(,u, MZ), where X = [p 1].

The vector 1 is equal to
L) = [8] e {P\g] O [p\\//é ] - {((11 N ,f)))\/\/%} . (D3)

in the four cases where (3;,841)" is (0,0), (0,7,)’, (75,0), and (75, 7p)’, respectively. Let
R. be the rejection region induced by Lasso-path, given explicitly in Lemma 7.2. By
Lemma 7.1, the probabilities in (D.1) and (D.2) are related to the following quantities:

inf infyer, {(h — p®YS=1(h — )}, k=12,
(8% =
"7 \infrere {(h — p®YS=Lh— u®)}, k=34
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and plug it into (D.1) and (D.2). It gives
FPp(u) _ Lppl—min{al, 19—1—012}7 FNp(u) _ Lppl—min{ﬂ—&-oag, 219+a4}. (D.4)

It remains to compute the exponents aq-ay.
First, we consider the case that p > 0. The rejection region in Figure 12 is defined by
the following lines:

e Line 1: hy — phe = (1 — p)/u.
e Line 2: hy = /u.
e Line 3: hy — phy = (14 p)y/u.
o Line 4: hy — phs = —(1 — p) /.
e Line 5: hy = —/u.
e Line 6: hy — phy = —(1 + p)/u.
Consider a general ellipsoid:
Etip) ={h eR?: (h— )T~ (b — p) < t}.

Given any line h1 4+ bhy = ¢, as t increases, this ellipsoid eventually intersects with this line.
The intersection point is computed by the following equations:

hi + bha = c, Y7k — p) o (1,b).

The second equation (it is indeed a linear equation on h) says that the perpendicular
vector of the tangent plane is orthogonal to the line. Solving the above equations gives the
intersection point and the value of ¢: As long as b? # 1, we have

h*=pu+

¢ — (p1 + bus) {1 + bp} L e [c — (1 + b/t2)]2. (D.5)

1+02+2bp |b+p 1402+ 2bp

Using the expressions of lines 1-6, we can obtain the corresponding t* for 6 lines:

[(1 = p)v/u — (1 — pp2))? = (i m) = [(1 + p)v/u — (1 — pp2))?

=

1 1 _pg ) 1 _,02 )
1- + (1 — pp2)]? 1+ + (1 — ppa))?

- [( p)\/Ti _i)/;l pp2)] R N R T [( p)\/ﬂ1 _(ngl pra)*

We first look at the ellipsoid &(¢; u(M)) and study when it intersects with R,. Note that
1) = (0,0)". The above t* values become

U u

Therefore, as we increase t, this ellipsoid first intersects with line 1 and line 4. For line 1,
the intersection point is ((1—p)y/u,0)’, but it is outside the rejection region (see Figure 12);
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the situation for line 4 is similar. We then further increase ¢, and the ellipsoid intersects
with line 2 and line 5, where the intersection point is (y/u, pv/u)’; this point is indeed on
the boundary of the rejection region. We thus conclude that
nf {(h—p®YST(h - a0} = (D.6)
ERu
We then look at the the ellipsoid £(t; 1)), with ) = (p\/r,/r)". The t* values for 6 lines
are:

* * l_p * * *
=1 = rp ; ty = (Vu— pyr)?, I3 =tg =

pu’ t5 = (\/’lj—l—p\/;)z

The smallest ¢* is among {t,#3,%;}. Since u(? is in the positive orthant, the intersection
point of the ellipsoid with line 4 must be outside the rejection region, so we further restrict
to t7 and t5. The ellipsoid intersects with line 1 at (pv/7 + (1 — p)y/u, +/r)’. This point
is on the boundary of R, if and only if its second coordinate is > \/u (see Figure 12),
i.e., u < r. The ellipsoid intersects with line 2 at (v/u, py/u + (1 — p?)y/r)’. This point is
on the boundary of R, if and only if its second coordinate is < \/u (see Figure 12), i.e
u > (1 + p)%r. In the range of r < u < (1 + p)?r, the ellipsoid intersects with R, at the
corner point (1/u, /u)’, with the corresponding

[ (- v
u—2yru =12 1t°
! {(\/ﬂ—p\/?) HE (V- (14 V)’

This ¢t* has two equivalent expressions. Comparing them with ¢] and ¢3, we can see that
the smallest t* is a continuous function of u, given (p,r). It follows that

hggu{(h p@ysH(h - p2)}
= Pt (Va— )k - +p(\/ﬁ—(1+p)ﬁ)i. (D.7)

We plug (D.6) and (D.7) into (D.4). It gives the expression of FP,(u) for p > 0.

We then look at the ellipsoid £(t; u(®)), with u® = (\/r, py/r)’. Note that we now
investigate its distance to the complement of R,. In order for x® to outside RE (i.e., in
the interior of R,,), we require that u < r; furthermore, when u < r, the ellipsoid can only
intersect with lines 1-2 (see Figure 12). Using the formula of t* in the equation below (D.5),
we have

tr =

1+p

T+ VT =V 8 = (V= VP,

By (D.5), the ellipsoid intersects with line 1 at (v/r — (1 — p)[(1+ p)/7 — V/u], ,0\/17)/. To
guarantee that this point is on the boundary of R,, we need its second coordinate to be

> /u (see Figure 12), i.e., u < p?r; furthermore, when u > p?r, it can be easily seen from
Figure 12 that the ellipsoid must have already crossed line 2. By (D.5) again, the ellipsoid
intersects with line 2 at (y/u, py/u)’. This point is always on the boundary of R,,. It follows
that

inf {(h— u®)'s -1<h—n<3>>}=min{1‘2(<1+p>f—¢a)2, (Wr—vak} (Ds)

heRe 1+

th =

44



PoOwER ANALYSIS OF KNOCKOFF

We then look at the ellipsoid &(t; u®), with ) = ((1+ p)/7, (1 +p) \/77)/ It follows from
figure 12 that u® is in the interior of the ellipsoid if and only if (1 + p)/r > /u. We
restrict to (14 p)/7 > y/u. Then, this ellipsoid can only touch lines 1-2 first. The ¢* values
are

= 1;2«1 FOVE— V) 5= ((1+ )V — Vi)’

Since t} < t5, the ellipsoid touches line 1 first, at the intersection point ((1 — p)y/u+ p(1 +
p)Vr, (1+ p)\/f)l. In order for this point to be on the boundary of R,,, we need that its
second coordinate is > \/u, which translates to \/u < (1 + p)y/r. This is always true when
r > wu and p > 0. It follows that

1—
it {(h = p@YSH(h — @)y = rZ(u + )V =) (D.9)
We plug (D.8) and (D.9) into (D.4). It gives the expression of FN,(u) for p > 0.

Next, we consider the case that p < 0. By Lemma 7.2, R, (p) is a reflection of R, (|p|)
with respect to the x-axis. As a result, if we re-define h = (x;y, —a:;-+1y)/\/2log(p), then
the rejection region becomes R, (|p|), which has the same shape as that in Figure 12. At
the same time, the distribution of & becomes

; 1 1 pl
B~ L here ¥ = .
NQ(M’ log(p) ) where [|P| 1]

The vector p is equal to

O R ) P A P A

when (53, 8j+1)" is (0,0), (0,7)", (7p,0)’, and (73, 7p)’, respectively. Therefore, the calcula-
tions are similar, except that the expressions of 1) to (¥ have changed to (D.10).

Below, for a negative p, we calculate the exponents in (D.4) as follows: We pretend that
p > 0 and calculate the exponents using the same R, and ¥ as before, with ,u(l) to ,u(4)
replaced by those in (D.10). Finally, we replace p by |p| in all four exponents.

We now pretend that p > 0. Then, for each ellipsoid £(¢; u(k)), its intersection point
with a line hy + bhy = c still obeys the formula in (D.5), and the corresponding t, values
associated with line 1-line 6 are still the same as those in the equation below (D.5) (but
the vector u has changed). Comparing (D.10) with (D.3), we notice that ™) and x®) are
unchanged. Therefore, the expressions of exponents in (D.6) and (D.8) are still correct. The
current ;(?) is a sign flip (on both x-axis and y-axis) of the x(?) in (D.3); also, it can be seen
from Figure 12 that the rejection region remains unchanged subject to a sign flip. Therefore,
the expression in (D.8) is also valid. We only need to re-calculate the exponent in (D.9).
The current p(* is in the 4-th orthant. It is in the interior of R, only if (1 — p)/r > \/u,
ie., u < (1 —p)>r. As we increase t, the ellipsoid &(t; u¥) will first intersect with either
line 2 or line 3. Using the formula of ¢t* in the equation below (D.5), we have

= (Va=(=pVi)' = 2(1=pVi - Va)®
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While t5 is the smaller one, the intersection point of the ellipsoid with line 2 is (y/u, —(1 —
p)v/r)', which by Figure 12 is in the interior of R,,. Hence, the ellipsoid hits line 3 first. We
conclude that
. _ 1+p 2
OV — O = TP _

Jnf (= uOYET b = ) = 2 (1= p)E - Vi) (D.11)
Finally, we plug (D.6), (D.7), (D.8) and (D.11) into (D.4), and then change p to |p|. This
gives the expressions of FPp(u) and FNy(u) for a negative p.

Appendix E. Proof of Theorem 5.2

We assume p > 1/2 throughout the proof. The calculation for the case where p < —1/2
is similar. By the design of the gram matrix X7 X and the construction of the knockoff
variables, we know Lasso regression problem with 2p variables can be reduced to (p/2)
independent four-variate Lasso regression problems:

(Bjs Bit1s Bijps Bivpr1)(N) = argmlnb{§\|y — (5, @41, &5, Tj41)b| |5 + )\||b\|1} (E.1)

for j =13, ,p—-1 By taking the sub-gradients of the objective function in (E.1), we
know (Bj, Bj+1, Bj+ps Bj+p+1) should satisfy:

(B Bit1: Bips Bi+pt1)G + A(sgn(5;), sgn(Bj+1), sgn(Bj1p), sgn(Bj4p+1)) (£2)

= (" 25,y 2541,9" 5,y Bja)
where G = ((17 P 2:0_17 p)Tv (pv 1a P 2p—1)T7 (2p—17 P, 17 p)Tv (IO’ 20_1, P 1)T) and Sgn(x) =
1if x > 0; =1 if x < 0; any value in [—1,1] if x = 0. We have choose the correlation
between a true variable and its knockoff to be 2p — 1, which is the smallest value such
that (X, X)7 (X, X) is semi-positive definite. In this case, G is degenerated and has rank
3. As )\ is decreasing from infinity, we recognize that the first two variables (assume these
two features are linear independent) entering the model will not leave before the third
variable enters the model, which is obviously true from the close form solution of the bi-
variate Lasso problem. We then show that the first two variables enter the Lasso path,
individually. Furthermore, if the first two variables are a true variable and its knockoff
variable, then the third and fourth variable enter the Lasso path simultaneously.

Since (yXzj, y w1, y7 %5, y7 7j41)T ~ N(G(Bj, Bj+1,0,0)T, G) is a degenerated normal
random variable, we reparametrize it as (m +dy, m+da, m —dy, m —da) with (m,dy, d2)” ~
N((pBj + pBj+1, (1 = p)Bj, (1 — p)Bi+1)T, diag(p, 1 — p,1 — p)). We intend to give the Lasso
solution path (or Zj, Zj) as a function of m,d; and d2. We only present the result in the
case where d; > dy > 0. Results from other cases are immediate by permuting the rows
in equation set (E.2) and transforming to the d; > do > 0 case. Lasso solution path are
obtained by the KKT condition (E.2) and summarized in the table below.

Here we explain the third row of the table as an example, by = (¢,0,0,0)7 is a solution
of the KKT condition (E.2) when A\ = m + d; — € for € € (0, %], so sign; is expressed as
(07,0,0,0). By property of the Lasso solution, if by and bs are both Lasso solutions, then
G(bl — bg) = 0 and ||blH1 = Hb2||1 G(b1 — bg) =0 implies b1 - bg = X (1,—1,1,—1)T
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range of m A1 sign, A2 signgy A3 signs
( 00, T2 p(dg - dl)) —m + dq (0,0707,0) —-m — 7d1 + 1= pdg (0,0,—,07)
( 2 (dg*dl) ) —m+d; (0,0,0_,O) p”erdl (0+, ,7,0) dsy (+,O+,*,0_)
(0, 1”p(d1 d)) | m+dy  (0%,0,0,0) ”plm+d1 (+,0,07,0) do (4,0%,—,07)
(125(di —ds),00) | m+di (0%,0,0,0) m—s2di+d2  (+,01,0,0)

Table 2: Summary of solution path of the Lasso problem (E.1). \; record the critical value
of XA where a new variable enters the model and sign; records the sign and the
limiting behavior of (Bj, Bj+p) as A — A, . Value of A3 is omitted in row 1 and 4
since it will not affect the value of W; and W ;.

for some & # 0. Therefore, by = (¢ — 6,8, —9,0)T and ||b2||1 > ||b1]|1 + 2|6|. This means
the Lasso solution is unique with A = m + dy — € and variable 1 is the only one entering
the model when A gets below A\;. When \ = & 1m +dy — e for e € (0,2 =l 4 dy — ds],

by = (& >+ 272[), 0,— 272p, 0)” is a solution of the KKT conditions. If there is another Lasso

solution by, then by = (} + 55, — 6,0, — —6,6)T and ||b2||1 > [|b1]|1 + 2/6]. So by does
not exist and variable 3 is the only one enterlng the model when A gets below A2. When
A = do — € for sufficient small positive €, by = ( + 5= 2p, 5 62p, ;’; 2E12p’ —2f2p)T satisfies

the KKT condition, thus variable 2 and 4 enters the model simultaneously. At this point,
the Lasso solution is not unique and all solutions can be expressed as by —d x (1, —1,1, —1)T

with 6 € [—55% S0 T Zp] Other rows from the table can be analyzed similarly.

Table E implicitly expresses Z;, Zj41, Zj and ZjH as a function of dy,ds and m. By
examining all possible ordinal relationship of d;, do and 0, we record the region in the space
of (dy,dz,m) such that @(u) > 0 and denote it as R(u). R(u) is the union of 4 disjoint
sub-regions {R;(u)}i=1,.. 4, defined as following:

Ri(u) ={(z,y,2) x>0,y >0,z >y,z>0,x+2>T}

1
U§{(x,y,z) x>0y>0r<y,2<0,z>z—y,x>T}

1
UQ{(x,y,z) cx>0y>0,r<y,z2>0,2< %(y—x},x>T}

), T+ " !

p
U x>0,y >0 < >0,z >
{(z,9,2) 12 >0,y > 0,2 <y,2>0,2 maX(l_p(y YT,

Ry(u) = {(x,y,2) : (—z,y,—2) € Ri(u)}, R3(u) = {(z,y,2) : (z,—y,2) € Ri(u)} and
Ry(u) = {(z,9,2) : (—z,—y,—2) € Ri(u)}, where T = \/2ulog(p) and the 1 ahead of
a certain region means when (di,ds,m) is in this region, B](u) > 0 happens with 1/2
probability. Let the four disjoint regions that composes Ri(u) in (E.3) be denoted by
Ry j(u) for j =1,---,4. We can similarly define R; j(u) for i = 2,3,4. By Lemma 1, as
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D — 9,

P(B; = 0, 8j(u) # 0) =P(Bj(u) # 0|8; = 0, Bj11 = 0) x P(3; = 0, Bj+1 = 0)

+ P(Bj(w) # 018, = 0,141 = 1) X P(8; = 0, Bj11 = 73)
=L,p~ R (2 /pta®/(1=p)+y?/(1-0))/ (2 1og(@))]

- Ly (o) o (1= p) (=) (1) 21os(o)]
(E.4)

P(B; # 0, Bj(u) = 0) =P(B;(u) = 0|8; = 7, Bj41 = 0) x P(8; = 7, Bj41 = 0)
+P(B5(u) = 01Bj = 7p, Bj41 = 1) X P(Bj = 7, Bj41 = 1)
=Lyp M rwe [((z=pmp)?/p+(z—(1=p)7p)?/(1=p)+y?/(1—p))/ (2log(p))]
_Qﬁ—infR(u)c[((Z—QPTP)2/P+(1‘—(1—P)Tp)2/(1—P)+(y—(1—P)Tp)2/(1—P))/(2105(19))]_

(E.5)

+ Lyp

Define the p-distance function of two sets A and B in R? as

dp(4A, B) = QELI}EEB[(M —01)*/(1 = p) + (a2 — b2)*/(1 = p) + (a3 — b3)?/p]

where ag, b denote the k-th coordinate of vector a and b. An immediate property of the
p-distance function would be

dp(Ui=1,. M Ai, Uj=1,.. NBj) = Hilijn dp(A;, Bj).

Utilizing the symmetry of the regions, we can compute the region distances involved
in (E.4) and (E.5) explicitly. Take the second exponent in (E.4) as an example, it can be
simplified as

—ﬁ—dp(R(u), {0, (1 — P)Tpv pr)})/(2 log(p))
= —0—dy(R1(u) U Ra(u) U R3(u) U Ra(u), {(0, (1 = p)7p, p7p) })/ (2 l0g(p))
= —=dy(R1,1(u) U Ry 3(u) U Ry 4(u) U Ry 2(u), {(0, (1 — p)mp, p7p) })) /(2 10g(p)).

Define Ryo(u) = {(z,4,2) : © > 0,y > 0,2 > 0,z < yx>Tz<y-—uz} Ri3(u) =
{(xyy,2) r 2 >0,y > 0,2 >0,z <y,z>T} and Ria(u) = {(z,y,2) : @ >0,y > 0,2 >
O, <y,x<T,z>T+ fppy - 1i—pac} Then Ri2(u) C Riz(u) and Ry 3(u) U Rya(u) =

Ry 3(u) U Ry 4(u). Since Ry 9(u) and Ry o(u) are symmetric about the plane z = 0, we know

dp(Ra2(u), {(0, (1 = p)7p, p7)}) = dp(R12(w), {(0, (1 = p)7p, p7)})-
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Therefore,

dp(R(w), {(0, (1 = p)7p, p7p)})

= min{d (11 (0), {0, (1~ )7, 7))y (B (0, (0, (1 = p)7307)))
(I 4(0), 40, (1~ p)7, )

—min {102 x4 KU = (U /D = 15 (T = (1 )P
T T (T - (=l Tl X T (- 7))

= (T_pr)Q + (ngp - in)?f— - (Tp - T)a—v

where £, = /1 — p? and 1, = \/(1 — p)/(1 + p).
Let 7, = 0, we know d,(R(u),{(0,0,0)}) = T?. By (E.4) we immediately have

P(/Bj :O’BJ(U) 7&0) L p—mln{u I+ (Vu—py/r)? +(&pvr— np\f).;_ (Vr— \f) } (Eﬁ)

We can see the false positive rate is exactly the same when using the Lasso filter and the
Knockoff filter when p > 0. For p > 1/2, we can similarly compute d,(R(u)%, {((1 —

P)7p; 0, p7p)}) to be
[(rp = T)4 = (1 = &)mp = (L= 1p)T) - = (M7 = 1p T)+4 1%,
and d,(R(w)%, {((1 = p)7p, (1 = p)7p, 2p7)}) to be
[(&o 70 = 1oT)+ = (Mo — 0 T) 4%,

where §, = /1 —p%, n,=+/(1—p)/(1+p), and A\, = /1 —p? — /T —p.

Plug these results in to (E.5), we have
]P)(/BJ ;é O’ B](u) = 0) = Lpp_ﬁ_{(\/;_\/a)+_[(1_511)\/;_(1_7]9)\/6]-&-_()‘p\/;_np\/a)-&-}2_ (E7)

From here we have prove the result for p > 1/2 case.

In the case where p < —1/2, the exponent of false negative rate is additionally lower
bounded by —2¢. One can verify the rate given in the theorem through similar calcula-
tions. This is somehow more straight forwards since in the case where 3; = Bj411 = 7,
(yTaj,yTxjn, v 35,y 3500)T ~ N((1+ p)7- (1,1, -1,-1)T, G), meaning there is no way
to distinguish the true variable from its knockoff variable.

Appendix F. Proof of Theorem 5.3

In the following proofs, we only consider p > 0 case, since p < 0 case can be transformed
to the positive |p| case by flipping the sign of either 5; or ;41 for j =1,3,--- ,p—1. By
the block diagonal structure of the gram matrix, the Lasso problem with 2p features can
be reduced to (p/2) independent four-variate Lasso regression problems:

s .oyl -
b(\) = avgming{ 31y — (g, 41, 5, 251)b113 + Aol } (F.1)
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for j = 1,3,--- ,p — 1. Before we turn to the proof of the theorem, we first analysis the
solution path of the following four-variate Lasso problem:

b = argmin, { —hTb +bT Bb/2 + A||b]1 }. (F.2)

with B = ((1,p,a,p)", (p,1,p,a)", (a,p,1,p)7, (p,a, p,1)T) and a € [2|p| — 1,1]. By taking
the sub-gradients, we know b should satisfy

B b+ A sgn(b) = h. (F.3)

Let 131 and h; denotes the i-th coordinate of b and h. Let A1 > Ao > A3 > Mg be the
values at which variables enter the solution path. As discussed in the proof of Lemma 7.2,
A1 = max{|h1], |h2|, |h3|, |ha|}. Without loss of generality, assume A\ = |h;| and variable
1 is the first variable entering the model in solution path. We know for one variate Lasso
problem, the only feature will not leave the model after its entry as A is decreasing. So
in the four-variate Lasso (F.2), variable 1 will stay in the model until the second variable
enters the model. Consider three bi-variate Lasso problems (k = 2, 3,4):

b = argming {—(A™)T6® 1 (4T BRHE) /2 1 X|p*)||; } (F.4)

with

B® _ B<4):[1 P] and B<3>:[1 a]’
p 1 a 1

b2 = (hy,hg), B® = (h1,hs) and h® = (hy,hs). Now, we claim Ay = max,{Al}
where )\;k) is the value at which the second variables enter the solution path in the k-th
bi-variate Lasso problems. Suppose )\(;) > )\(Qk) for i # k € {2,3,4}, when X\ € [/\éi),)\l],
we know the KKT condition (F.3) is satisfied with hy = hg = hy = 0 by looking at the
KKT conditions of the bi-variate Lasso problems. When A € [)\g) — e,)\gi)), a second
variable ¢ must have entered the four-variate Lasso path, since the objective function of
(F.2) is smaller when including variable 1 and 4 than including variable 1 alone (this is
because the second variable have entered the model in the ¢-th bi-variate Lasso path when
A€ [)\;i) — €, )\g))). We are ready to prove the theorem now, using what we have shown
regarding A; and As. We next compute the false positive rate and false negative rate given
(Bj, Bj+1) = (0,0),(0,7p), (7,0), (1p, Tp), (—Tp, 7p) by deriving upper and lower bounds for
those rates.

We first establish some noatations. For the four-variate Lasso problem (F.1), let A;
denotes the event that variable i is the first one entering the model, A;, ;, denotes the event
that variable i; and iy are the first two entering the model (ignoring the order between i; and
i9) and A;,_,;, denotes the event that variable 7; is the first one and variable is is the second
one entering the model. Let L;, ;, denote the bi-variate Lasso problem with y as the response
and m;,, x;, as the variables. Let h = (yzj, yTzj41,y7%;,y7%j11), then h ~ N(p, G) with
wo= G(ﬁj? /8j+17 0, O)T and G = ((17 p,0, p)T7 (pa L, p, O)T’ (07 p, 1, IO)T7 (pa 0,p, I)T) When
not causing any confusing, we write ¢, in place of t,(u) for simplicity.

e When (85, 8j+1) = (0,0),
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P{W; > t,|(8;, Bj+1) = (0,0)} = Lyp™. (F.5)

To derive a lower bound for P{W; > t,|(8;, 8j+1) = (0,0)}, we look for a point in the
region (or on the boundary of the region) that choose variable j as a signal and apply
Lemma 7.1. The point we choose is p; = (tp, ptp, 0, ptp)T where t, = \/2ulog(p).
It’s obvious that when h = p;p, variable j is the first one entering the Lasso path.
Though h = p; is in the rejection region, it is also on the boundary of the region that
choose variable j as a signal because slight increasing the first coordinate will result
in variable j being selected. Since h ~ N (u1,G) with pp = 0, by Lemma 7.1,

[P{Wj > tp}(ﬁjvﬁj+1) — (0,0)} > Lpp—(Pl—ul)TG—l(Pl—,ul)/2log(p) _ Lpp_u.

The upper bound is straight forward by considering the first variable-i entering the
model and notice that W; ~ N(0,1):

P{W; > t,|(8;, Bj+1) = (0,0)} :ZP{WJ' > tp, Ai|(Bj, Bj+1) = (0,0)}

(F.6)
<D B{Wi > 1[(8, Bi1) = (0,0)} = Lyp™.

When (ﬁj7ﬁj+1) = (Ova)7
P{W; > t,|(B), Bjs1) = (0,7,)} > Lyp~ VamrVD =Evimn i+ (Vi=Vil - (p.7)

P{WJ > tI”A‘(Bj?Bj-i-l) = (077—]7)} S Lpp_u (FS)

for A= Ajip15, Aj+1,j4p+1 and
]p{Wj > tp7A|(/Bja,Bj+1) — (Oij)} < Lpp*(\/ﬂfp\/?)Q7(£p\/?*nm/ﬂ)i+(\/?ﬂ/ﬂ)i (F.9)

for A= Ajji1, Ajjips Ajsjiptr:
This time we choose

(tzn ptp + (1 - p2)7p7 PTp, Pty — PZTp)v (1 + p)Tp < tp,
Py =1 (tptp, ﬁpptp’ ﬁpptp)v T < tp < (L4 p)7p,
(tp + p(mp — tp)7 Tp, P(Tp - tp) + ﬁtm ﬁtp)v tp < Tp.

When h = ps and t, > 7,, variable j is the first variable entering the four-variate
Lasso path with W; = t,,; when h = py and ¢, < 7, variable j + 1 is the first and j is
the second variable entering the Lasso path with W; =t, and W11 = 7,. h = pa is
on the boundary of the region that chooses variable j as a signal. Since h ~ N (u2, G)
with ps = (p7p, 7, p7,0)7, by Lemma 7.1,

P{W; > t,](8;, 8j+1) = (0,7)} > Lyp~ P2 #2)" G (i) 2lox(y)
= Ly VE eV G Fomp DR (VT Vi
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When A, 1 jypy1 occurs, since by our argument on A; and Ao, Z;41 and Zj4,41 are
the A value at which the variables enter the solution path in the bi-variate Lasso
problem Lji1 jipt1. Therefore, Zji1 = [y zji1|, Zj1pr1 = [yT Zj41]. We notice that
Zitpt1 > Zj > t, and marginally y 7,1 ~ N(0,1), so

P{W; > tp, Aji11p+1| (85, Bir1) = (0,7) }
< P{|?JT*%J'+1| > tp}(ﬁjaﬁjﬂ) = (O>Tp)} = Lpp_u-

Above inequality also holds for A, ,1-,; since if variable j+p+-1 is the first entering
the Lasso path, then we must have |y 3; 11| = Zjip1 > Z; > ).

When any one of Aj 1,4 +p, Aj—jtp+1 occurs, it implies in the bi-variate Lasso
problem L; ;1, the largest A such that variable 1 enters the model for the first time is
equal to W, thus larger than ¢,. In other words, if variable j is a false positive using
Knockoff for variable selection, then it is also a false positive when using bi-variate
Lasso L; j+1. This means P{Wj > 1, A}(Bj, Bi+1) = (0, Tp)} is upper bounded by the
corresponding false positive rate of Lasso, which is Lpp_(\/a_p\/;)g_(gp‘/;_”f’ﬂ)?ﬁ(‘/;_\/a)i,
for A= Ajji1, Ajjips Ajsjiptr-

Since Aji1 j4+p and Ajip j1p+1 can never occur when W; > 0, (F.8) and (F.9) implies

P{W; > t,|(B}, Bj1) = (0,7) } < Lyp~ ™ (Ve 4 (Evmmp it (V=V},
(F.10)
Further coupled with (F.5) and (F.7), we have

]P’{Wj > t,, B = 0} = L,p~ min{u,d+(v/u—py/r)? +(Epv/r—pV/u) L —(Vi—vi)i} (F.11)

When (8;, Bj+1) = (73, 0),

P{W; < t,|(8;, Bj+1) = (7, 0)} > Lyp~ VIV, (F.12)

and
IP){VVJ < tp‘(ﬁjvﬁjﬂ) = (7, 0)} < Lppﬂifﬁamm(umﬁ)‘ (F.13)

Let p3 = (tp, ptp, 0, ptp)T. when h = ps, variable j is the first variable entering the
Lasso path and ps is in the region of rejecting variable j as a signal. Since h ~ N (us, G)

with ps = (75, p7p, 0, p7) T, by Lemma 7.1,
P{Wj < tp‘(ﬁijjJrl) — (Tp70)} > Lpp—(p3—u3)TG71(P3—u3)/2108}(10)
— Lpp—[(\/?—\/ﬁh]z.

Before we prove (F.13), we first analysis f;famm(u,r,ﬁ). By simply calculation, we
find the optimal value of v that maximize fgamm(u, r, ) given r, ¢ is

At . 9< 20
e R A T
= 2%
¢ o W S U<
197 r < 19
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This implies u* > @%r regardless of the relationship of ¥ and r. Consider

r, ¥ as fixed, fgamm(r, u, 1) as a function of u is monotonically non-decreasing in [0, u*|
and monotonically non-increasing in [u*,00). fi. . (r,9) =9+ [(v7 — Vu)+ — (1 —
E)VT — (1 —m,)v/u)4+)? if and only if u > w*. Since (1 — &,)v/7 — (1 — n,)Vu* <0,
(1—¢&,)vr — (1 —mp)y/u <0 for all u > u*, which implies f, (r,d) =9+ [(Vr —
Vu)4+]? when u > u*. Therefore,

fgamm(rvuaﬁ) = min{uv’ﬂ + (\/ﬂ - |p|\/;)2 + ((gp\f - 77,0\/&)'5-)2 - ((\[ - \/ﬂ)+)2)
O+ [(Vr = Vu) 4]}
Now, we show that (F.13) holds for v > u*. This would implies (F.13) for all u > 0,
since the false negative rate P{W; < tp(u)}(ﬂj,ﬁj+1) = (7p,0)} is monotone non-
decreasing with u, so for u < u*, IP’{Wj < tp(u>}(6j,ﬁj+1) = (Tp,O)} < ]P’{Wj <
+ * +
tp(U*)K/ijﬁjJrl) = (7p, 0)} < Lppﬂ_fHam"‘(T’u W) < Lppﬁ_fHamm(T’u’ﬂ)-

Assume u > u*, s0 u > ——2_ and
= = (V1+p+V/1-p)?

AV 2 (D ) e VA e

TtV p SR
(F.14)

We next prove (F.13) by showing that
P{W, < tp, A|(8}, Bj11) = (1, 0)} < Lyp~ [(Vi=vi):]? (F.15)

holds for A = Aj, Aj11, Ajip, Ajypy1 and u > u*. Respectively,

P{W; < tp, A;](Bj, Bj+1) = (1,0)} < P{|y" 25| < t,[(B;, Bj+1) = (75,0)}
N Vo

and by symmetry and (F.14),

P{W; < tp, Aj11|(B), Bj1) = (1, 0)} = P{W; < tp, Ajipi1| (B, Bj+1) = (75,0)}
1—
< P{ly x| < [y jip1l|(B). Bis1) = (15,0)} < Lyp™ 27 < Lyp VIVl

P{W; < tp, Ajip|(B), Bi1) = (15,0)} < P{ly" )| < [y zj55|[ (B, Bi+1) = (75,0)}
< Lyp 3" < Lyp V=Vl

(F.13) is immediate by [(v/7 — V) +]? > fitmm (7w, 9) — 0.
o When (8;, Bj+1) = (7p: ),
P{Wj < tp‘(ﬁmﬁj—i-l) = (1, Tp)} < Lppﬁ_fg‘"‘mm(u’mg)- (F.16)

More precisely, we will prove that

P{W; < t,|(8). Bjx1) = (7, 7p) } < Lpp~ (V= VO (F.17)
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holds for w > u*, thus implies (F.16). We prove (F.17) by showing
P{Wj < tp’A‘(/BﬁBJ‘H) = (Tpﬂ'p)} < Lppi[(ﬁiﬁﬂp (F.18)

holds for A = AjaAj+1—>j7Aj+1—>j+p7Aj+1—>j+p+17Aj+p7Aj+p+1 and u Z u*, which
cover all possibilities. Respectively,

P{Wj < tpaAj‘(BﬁBjH) = (TINTP)} < P{]yij| < tp‘(ﬁjvﬁj-kl) = (Tvap)}
< Lpp*[((HP)\/F*\/E)H2 < Lpp*[(\/?*\/ﬂﬁr]z’

P{W; < tp, Ajrp|(Bj, Bj1) = (1p, 1p) } < P{Iy" x| < |y 251|(B), Bj1) = (15 1) }
< Lpp_%r < Lpp—[(ﬁ—ﬁ)+]2’

P{W; < tp, Ajspr| By, Bj+1) = (7, 1) } < P{ly" 251 < ly" 21011 (By, Bjn1) = (7, 7) }

< Lppfaa%am < Lyp V=V,
When A;y1,; occurs, the bi-variate Lasso problem L; ;i1 shares the same \; and
A2 with the four-variate Lasso problem. So variable j is a false negative when doing
variable selection using the bi-variate Lasso L; ;1 given W; < t,, which implies
IP’{VVJ < tp,AjH_,j’(ﬁj,ﬁjH) = (Tp,Tp)} is upper bounded by the corresponding
false negative rate of Lasso, which is Lpp_(gp‘/;_”f’ﬁ)i < Lpp_[(ﬁ_\/a)+]2. The last
inequality is equivalent to

- Vi—@r< (- E)va

1+p

By (F.14), the right hand side is no smaller than /r, thus no smaller than the left
hand side.

When Aj 14, occurs, we know variable j + p instead of variable j is the second one
entering the Lasso path. This means the A2 (the A value when the second variable
entering Lasso path) of the bi-variate Lasso problem L1 j1, is larger than the Ay of
the bi-variate Lasso problem L; ;1. Since we have derived the explicit expression of
Ao in bi-variate Lasso problems, when yT:I:jH > 0, we must have

vyl —pyTzji1 y oy — pyTaj
1—p -

Tz, —pyTojm yT'a; — PyTJUjH}

Y
} < max{ - , p—

max{

Therefore, A; 11,4, implies one the three following events must occur:

T

T y'xj —py e y'E —pyri ye - pyTein  yTE -yt
yl‘j+1<07 1 < ’ <

The probability of these three events given (5}, 5j+1) = (7p, 7p) are Lpp—(1+p)2T, Lppfg
_(1+420)%(1-p)

and L,p 20%p) " all of which are upper bounded by Lpp_[(\/;"_\/’E”]2 when u > u*.
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When Aj11p+1 occurs, the Ay of the bi-variate Lasso problem Lj 1 ;1,41 is larger
than the A9 of the bi-variate Lasso problem L; ;1. When yT$j+1 > 0, we must have
Taj —py"aje y oy — pylawing

max{ Y

Therefore, A; 1, j4p+1 implies one the three following events must occur:

y aj — py"asy

1—p

y aj — py"asy
1—p

T 1 T ~ 1 T ~
Yz <0, <Y Tjyr, < =Y Zjta.

_ (1+2P>2(1*P)T

Respectively, the probability of these three events are Lpp*(lﬂLp)Q”7 Lpp_% and L,p  20+0)

all of which are upper bounded by Lpp_[(\/’j_‘/a)ﬂLP when u > u*. From here we have
verified (F.18), thus implies (F.16).

From (F.11) and (F.12), we have
P{W, > t,, 85 = 0} + P{W; < t, B; = 7} > Lyp ™ Hamm (00, (F.19)

P{Wj < by, B = Tp} :p_l9 X P{VVJ < tp‘(ﬁjvﬁjﬂ) = (Tpvo)}
+p 7 x P{Wj < tp|(B), Bj1) = (Tvap)} (F.20)
SLpp_fgamm (T7u719)

Since (F.11) also implies P{Wj >y, B = 0} < Lpp_fgamm(r7“’ﬂ), we know
P{W, > t,, 8; = 0} + P{W; < t, B; = 7} = Lyp™ Hamm ("9, (F.21)
When (8, Bj+1) = (=7p, ),

P{W; < t,| (8}, Bj+1) = (=7p, ) } > Lpp_((gpﬁ_";l‘/a)+)2, (F.22)

2
(1=2p)"(+p) .

P{W; < tp|(Bj, Bj+1) = (=Tp, 7p) } = Lpp~ 200 ", (F.23)
and

2p)

o2
P{W; < tp|(Bj, Bj+1) = (—=Tp:7p) } < Lpp~ min ((€pv7 =y ')+ )2 ESE G O S (w0}

(F.24)
Let
pT _ (_(1 - p)Tpv (1 - p)Tpapr7 _pr)v ) (1 - p)TP < tpv
! (p(1 = p)mp = (L + p)tp, (1 = p)7p, p(1 = p)7p + ﬁﬁtp’ _ﬁtp)a (1= p)7p > tp.

When h = py and (1 — p)7, < tp, variable j is the first variable entering the Lasso
path with W; = (1 — p)7, < tp; when h = py and (1 — p)7, > tp, j + 1 is the first
and j is the second variable entering the Lasso path with W; = ¢,,. Regardless of the
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relationship between 7, and t,, h = p4 is always in the region of rejecting j as a signal.
Since h ~ N (s, G) with py = (—(1 — p)7p, (1 = p)7p, pTp, —p7p) T, by Lemma 7.1,

P{Wj < tp‘(ﬁj,ﬁjJrl) — (_Tp’Tp)} > Lpp—(p4—u4)TG*1(p4—u4)/2log(p)
_ (v Vi ?,

2(1-p)
is the first one entering the Lasso path with W11 = (1 — p)7,, if we slightly increase
the value of the third coordinate of ps, then it falls in the region of rejecting j as a
signal since variable j + p is the second variable entering the Lasso path. This implies
h = ps in on the boundary of the region that rejects j as a signal, by Lemma 7.1,

Let p = (WTP, (1—p)7p, WTP, —%Tp>. When h = ps, variable j +1

P{W; < t,|(B;, Bj11) = (=Tp, 7p)} > Lpp~ Ps=#a) "G (b5 —pa)/2los(r)
(1-20)?(14p) .

= Lpp_ 2(1-p)

Next, we show that

002

P{W; < tp, A|(Bj, Bjz1) = (—=Tps 7p) } < Lypp~ min{ (67— Vi) )2 O i (070}
(F.25)

holds for A = Aj, AjJrl*)j’ AjJrl*)jer, Aj+1%j+p+17 A]er, Aj+p+17 which cover all pos-

sibilities.

When A = A; or Aj;1-,; occurs, as previously discussed, variable j is a false negative

when doing variable selection using the bi-variate Lasso Lj ;1 given W; < t,,, which

implies P{Wj < tp, A‘([B’j, Bj+1) = (—p, Tp)} is upper bounded by the corresponding

false negative rate of Lasso, which is Lpp_((gp\/’j_nglﬁ)ﬂ“y.

When Aj; 1,4, occurs, the A2 of the bi-variate Lasso problem L1 j, is larger than
the A2 of the bi-variate Lasso problem L; ;1. When yTa:j+1 > 0, we must have

yTo; — pyTajr yTo; — pyT o
1—p U

y' & — oy ai y"E =y \

max{ )
1—p —1-—p

} < max{

Therefore, A1 j4+p implies one of the three following events must occur:

yiap = pytwie _yTE = ey wie vl —pytain Yl = pywin

~1-p 1—p ’ ~1-p —1-p

yT'Ij+1 < 07

_0=2p%04p)

The probability of these three events are Lpp_(l_f’)2r, Lyp~ 209 and Lpp_%, all

_ 2
- mll’l{ %ﬁ*ﬁ‘ngamm (uzrvﬁ)} .

of which are upper bounded by L,p

When A1 1ps1 occurs, the Ag of the bi-variate Lasso problem L1 jip41 is larger
than the Ay of the bi-variate Lasso problem L; ;1. When yT:Uj+1 > 0, we must have

y'z; —pyTain vl —pytain

max{
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Therefore, A; 1 j4p+1 implies one of the three following events must occur:

y aj — py"asy

y 'z — pyTwin

1 T ~
< =Y Tjy1.
1, Y Tji+1

T~
<Y Tjt1,

yij—i-l <0,

2
(1=2p)"(1+p) .

The probability of these three events are Lpp*(lfp)%, Lpp_% and Lyp  20=0 " all

_ 2
- min{ ¢ 22(/)1)7;1)+p> T’_ﬁ—"—fljl_amm (U’T’ﬂ)} .

of which are upper bounded by L,p
When A, occurs, then |yT3;| > |yTx;| and |yTa;| > |[yTxjpq]. If yT3; > 0, we
further have (y7'%; — yTx;41) + 2pﬁ(yT:Ej +yTz;) > 0; if yT'7; <0, we further have
yTan + yT:I:j+1 < 0. Therefore,
P{W; < tp, Ajip|(B), Bjzr1) = (=7, 7p) }
<P{(y"T; —y" xj41) + 21 1 (25 +yzj) > 0[(By, B+1) = (=7, )}
+P{y 7 +y wjn <O0(B), 1) = (=7, 1) }

—2p)2 2
Sty min{ S0 g L (ur0)}

<Lyp 3—4p2 + Lpp—% < Lyp~ 2(1-p)

For A = A 11, (F.25) is immediate due to the symmetry between variable j 4 p and
J+p+1

Now consider the case where (3; takes value in {0, —7;,} and 3,1 takes value in {0, 7, },
this corresponds to the p < 0 case (we flipped the sign of p and §; simultaneously).
By (F.5), (F.7), (F.12), (F.22) and (F.23), we know

P{W; > t,,8; =0} + P{W; < tp, 8; = —7}

> Lp S (0570) 20+ (€T V) )220+ O Crtlel (F.26)
Meanwhile, (F.5), (F.8), (F.9), (F.13) and (F.24) gives
P{W, > t,,8; =0} + P{W; < tp,B8; = —7p}
<Lp S (070) 20+ (€T V) )220+ O Crtleld vy (F.27)
Therefore,
P{W, > t,,8; =0} + P{W; < tp,B8; = —7p}
(F.28)

_ 2
— Lppi min{f;ILamm (U:Tﬂ)7219+((5p\/77*77;1\/ﬂ)+)2:219+ a 22\(pl|)7|(pl‘;|—\l?\) T} X

(F.21) and (F.28) complete the proof for Theorem 5.3.

Appendix G. Proof of Theorem 5.4

The only difference of the conditional knockoff from the Equal-correlated knockoff construc-

tion is that m]Tan is changed from 0 to p? for j = 1,--- , p. Therefore, G = ((1, p, p*, p)T, (p, 1, p, p*)T,
(0%, 0,1, 0T, (p, p?, p, 1)T) is the new gram matrix for the four-variate Lassos (F.1). We fol-

low the same notations and workflow from the previous proof.
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e When (ﬁjw@j—l-l) = (070)7
P{W; > t,[(B), Bj+1) = (0,0)} = Lyp™™. (G.1)

Let p1 = (tp, ptp, p*tp, pty)T where t, = \/2ulog(p). When h = py, variable j is the
first one entering the Lasso path. Though h = p; is in the rejection region, it is also
on the boundary of the region that choose variable j as a signal. Since h ~ N (u1, G)
with p; = 0, by Lemma 7.1,

BW; > 15](8).8141) = (0,0)} 2 Lyp (167 (rp/2ioste) —
The upper bound is derived exactly the same as (F.6).

o When (8, Bj+1) = (0,7),
P{W; > t,|(8). Bj+1) = (0,7p) } = Lyp~ VeroVD =EVrmp il +(Vi=Vil - (G.2)

This time we choose

(tps ptp + (L= p*)7p, p*tp + p(1 — p*)7p, ptp) ", (14 p)7p < 1,
Py =9 (tpstp, ptp, ptp)7, T < tp < (1+p)7p,

(X = p)tp + pTp, Tps pTp, p(1 — p)tp + PQTp)T7 tp < Tp.
When h = py and t, > 7,, variable j is the first variable entering the four-variate
Lasso path with W; = t,,; when h = ps and ¢, < 7, variable j + 1 is the first and j is
the second variable entering the Lasso path with W; =t, and W11 = 7,. h = pa is
on the boundary of the region that chooses variable j as a signal. Since h ~ N (uz2, G)
with ps = (p7p, T, pTp, p?7) T, by Lemma 7.1,

P{W; > t,[(B). Bj41) = (0,7) } > Lyp~P2#2)" G (pa=p) 2108(®) a3
_ L VoV oo iR (Vi (G-3)

Next we show that
]P’{Wj > tvaKﬂjvﬂjH) _ (Oij)} < Lpp*(\/ﬂ*p\/?)Q*(£p\/?*npx/ﬂ)i+(x/le/ﬂ)i (G.4)

holds for A = Aj,j+1a Aj,jera Aj%j+p+1, AjJ,»pJ,»l*)j, Aj+1,j+p+la which covers all pOSSi—
bilities.

When any one of A; i1, A4, j+p, Aj—jtps1 occurs, same as for EC-knockoft, it implies
if variable j is a false positive using Knockoff for variable selection, then it is also
a false positive when using bi-variate Lasso L; 1. So IP’{W]- > tp,A|(Bj,Bj+1) =

(0, Tp)} is upper bounded by the corresponding false positive rate of Lasso, which is

Lyp~ ViV oV Tme R VIR for A = Aj i1, Ajjip Ajojipis
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When A = A 1,11, j +p+1is the first variable entering the model in the four-
variate Lasso problem, thus it’s also the first variable entering the model in the bi-
variate Lasso problem L;i1 141 and Lj jy,11. Variable j +p + 1 gets picked up as
a signal in L1 j4py1 implies

P{W; > ty, Ajipi1-] (B, Bis1) = (0,75)} < Lyp~ VeIV €2V i (Vi
< L (VA bV~ + (V-V}

when u > (1 + p)%r or u < (14 p?)?r

Now consider bi-variate Lasso problem Lj j4,+1 given (14 p%)?r < u < (1+p)?r. Vari-
able j, j+p+1 both get picked up as signals with j+p-+1 entering the model first given
W; > t,. This implies (yTa:j, yTi'j+1) falls in the purple or green region of the right
panel of Figure 12. Marginally, (y"z;,y"Z;41) ~ N ((p7p, p?1) T, [(1, p), (p, 1)]). The
point in purple or green region that has the smallest ellipsoid distance to (pr, p Tp)T
is (tp,tp) when (1+ p?)?r < u < (14 p)?r, thus by Lemma 7.1,

—(Vu—py/r)2—1=2y
P{W; > tp, Ajips1os|(Bj. Bj1) = (0,7,)} < Lyp™ V¥ V70
< Lppfr+2\/7'7u7?u

I N G AV S Vi

for u € (1 + p?)?r, (1 + p)?r), which completes the proof of (G.4) for A= Aj4,41-;.

When Aj41 j4+p+1 occurs, consider the bi-variate Lasso problem Lji1 j4p+1. In this bi-
variate Lasso problem, {\i, Ao} = {Zj41, Zj4p+1}, both of which are larger than W;.
Thus in this bi-variate Lasso problem, both variables will be picked up as signals given
W; > t,. So (yTzji1,y :TCJ_H /\/210g ) falls in one of the four regions in the right
panel of Figure 12 (with £E p1 L1 = p? instead of p): the purple region, the mirror of
purple region against xr = y, the green region and the mirror of green region against
z = —y. Since (y'zj11,y7%j41) ~ N((1, p?m) 1, [(1, p%), (p%,1)]). By Lemma 7.1,
we need to find the point in those regions that has the smallest ellipsoid distance
to the center-(1,, p>7,)T. When 7, < t,, this critical point is (y'zj41,y7%j41) =
(tp,tp); when 7, > t,,, this critical point is (y?zj41,y7%j41) = (Tp, tp + p(1p — tp)). So
Lemma 7.1 gives the probability for Ay and A2 in L;j1 j4p4+1 to be both larger than
ty is

Lyp” VEVORmmmt o e (Vi lpVeP = ovrnoy D+ (ViV}
Since Aji1 j4p+1 N{W; > tp} implies {A\ >t} N { A2 > t,} in Ljiq jypr1, we know
PAW; > by, Ay gt (B A1) = (0.7)} € Lyp™ (VD =G Tmmn iRV,
Now, we have verified (G.4). Further coupled with (G.3), we have (G.2).

e When (8}, Bj+1) = (7,0),
P{W; < t,|(B), Bjs1) = (7,0)} > Lyp~ (Vr=vidsl?, (G.5)
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and
]P){VI/J < tp|(16]7/8J+1) Tp7 } < L pﬂ fHamm(urﬁ) (GG)

Let ps = (tp, ptp, ,02tp, ptp)T. when h = ps, variable j is the first variable entering
the Lasso path and ps3 is in the region of rejecting variable j as a signal. Since
h ~ N (us, G) with us = (1, p1p, p?7p, p7p) 1, by Lemma 7.1,

]P’{Wj < tp‘(ﬂgﬁﬁj-ﬁ-l) — (Tp,O)} > Lpp*(pafm)TG*l(Ps*Ms)/?log(P)
— Lpp*[(\ﬁ*\/ﬂ)-s-]z_

Now, we show that (G.6) holds for v > u*, which implies (G.6) for all u > 0 as
discussed in the proof of EC-knockoff. We prove (G.6) by showing that

P{W; < ty, A[ (8. Bj1) = (75, 0)} < Lyp (VYT (G.7)
holds for A = A, Aj11, Ajip, Ajypr1 given u > u*. Respectively,

P{W; < tp, Aj|(B5, Bi+1) = (7,00} < P{ly" ;] < t,|(85, Bjz1) = (75,0) }
_ (vl

and by symmetry and (F.14),

P{W; < tp, Aj11|(Bj, Bj+1) = (15,0)} = P{W; < tp, y+p+1\ Bj,Bj+1) = (1,0)}
1 Y RE
< P{ly"2;| < |y 2j1p1l[(Bj, Bis1) = (1,0)} S Lpp™ 2 " < Lyp~ (Vr=vu)

P{W; < tp, Ajip|(B), Bi1) = (15,0)} < P{ly" )| < |y zj55|[ (B, Bi+1) = (75,0)}
< Lpp—#r < Lyp ViV,

(G.6) is immediate by [(v/7 — vu)4+]? > fitum (7w, 9) — 0.
When (8, Bj+1) = (7, 7)),

- + u,”r
P{W; < tp|(B), Bjs1) = (7p, 7p) } < Lpp” ~itammm (1m0 (G.8)
We prove (G.8) by showing
P{W; < tp, A|(B}, Bj41) = (7, 7p)} < Lpp~ (V= VIL (G.9)

holds for A = Aj,Aj+1_>j,Aj+1_>j+p, Aj+1_>j+p+1,Aj+p, Aj+p+1 given u > u*, which
cover all possibilities. Respectively,

P{W; <ty Aj|(Bj, Bit1) = (75, ) } < B{ly" ;] < tp|(B;, Bj+1) = (7, 7p) }
< Lyp MO+ < [ o lW/F—v P,

P{W < tp, J+P‘ B, Bj+1) = (Tps Tp } < P{\y i <y mJH (Bj; Bj+1) = (Tpﬁp)}
< Lppfl_Tr < Lpp*[(\ﬁ“*\/ﬂ)-s-]z,
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P{W; < tp, Ajipi1|(85, Bi+1) = (7 m) } < P{ly" x| < ly" &1l | (8, Bi1) = (7 7p) }
S Lpp_(lfp)(Qler)QT S Lpp_[(ﬁ_\/a)+]2.

When Aj1_,; occurs, the bi-variate Lasso problem L; ;11 has variable j is a false neg-
ative given W; < t,, which implies P{Wj <, Ajﬂﬁ\j’(ﬁj, Bis1) = (Tp,Tp)} is upper
bounded by the corresponding false negative rate of Lasso, which is Lppf(gp‘/’jfnp\/a)i <
Lpp_[(\/;_\/a)‘F]Q fOI‘ U Z u*‘

When A;1j4p occurs, we know variable j + p instead of variable j is the second one
entering the Lasso path. This means the A2 (the A value when the second variable
entering Lasso path) of the bi-variate Lasso problem L; i j4, is larger than the Ay of
the bi-variate Lasso problem L; j;1. When yij+1 > 0, we must have

ylzj — pylzj yla; — pyT o

f@_%%ﬁlf@_w%ﬂw
1-p ' —1- '

1—p ' —1-p

max{ } < max{

Therefore, A;i1-j4+p implies one the three following events must occur:

f%—w%m¢<f@—w%ﬂ1f%—w%%1<f@—w%ﬂ1

1—p 1—p ’ 1—p ~1-p

yT'Ij+1 < 07

The probability of these three events given (8j,5j4+1) = (7p,7p) are Lpp*(Hp)zr,
2 _(+p)3(-p)

Lpp_kTpT and Lpp  20+0%) T, all of which are upper bounded by ijzf[(\/’j*\/a”]2
when u > u*.

When A1 j4p4+1 occurs, the A\p of the bi-variate Lasso problem L;41 j4p+1 is larger
than the Ay of the bi-variate Lasso problem L; ;1. When yT-Tj+1 > 0, we must have

yla; — pylai yle; — pyla;g
1—p  —1-

T 2, T T 2, T
LTi+1 — P Y Tj+1 Y Tj+1 — PY l”j+1}

)
} < max{ =2 , e

max{

Therefore, A; 1 j4p+1 implies one the three following events must occur:

T yia;—pyTein v 30 -0y e y ey — oy e y T — PPy i
Y Tir1 < 0, < 5 s < - B
1-p 1—-0p 1—-0p —-1-p
1— 2
Respectively, the probability of these three events are LMD_(IJFP)Q"7 Lyp~ 5" and

_+p)30-p) .
L,p 20+% " all of which are upper bounded by Lpp_[(\/;_\/a)”2 when u > u*.

From here we have verified (G.9), thus implies (G.8).
From (G.1), (G.2), (G.5), (G.6) and (G.8), we have

P{W; > tp, 8; = 0} + P{W; < t,, B; = 7} = Lpp ™ Hamm(0:0), (G.10)
which completes the proof for positive p.
o When (8, Bj+1) = (=7p; ),

P{W; < t,|(8;,Bi+1) = (=7, 7,)} > L p*((fpx/?*m?l\/17)+)2 G.11
i = Up|\Bj, 5 psTp i
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and

— min r—nTlu) )2 mr
P{W] < tp‘(ﬁmﬁ]—i—l) = (_Tpan)} < Lpp {(&vr e v+, 2(1+p2) } (G12)

Let

ol = { (=1 = p)7p, (L = p)7p, p(1 = p)7p, —p(1 — P)Tp) (L= p)1p < tp,
4 (p(1 = p)7p = (1 + ptp, (1 = p)7p, p(1 = p)7p, p*(1 = p)7p — p(L+ p)tp), (1= p)7p > 1.

When h = py and (1 — p)7, < tp, variable j is the first variable entering the Lasso

path with W; = (1 — p)7, < tp; when h = py and (1 — p)7, > tp, j + 1 is the first

and j is the second variable entering the Lasso path with W; = t,,. Regardless of the

relationship between 7, and ¢, h = p4 is always in the region of rejecting j as a signal.

Since i ~ N (ps, G) with pa = (—=(1 = p)7p, (1 = p)7p, p(1 = )7, —p(1 — p)7)", by
Lemma 7.1,
P{Wj < tp‘(ﬂj,ﬁj—i—l) — (—Tp,Tp)} > Lpp*(P4*u4)TG_l(p4*u4)/2log(P)
— Lpp—((ﬁp\ﬁ—ﬂ;lx/a)Jr)Q‘

Next, we show that

— min{((€,v/r—1; V) +)2, (1-p)3(1+p)
P{Wj < tva‘(ﬂjaﬁjH) = (_Tpﬂ'p)} < Lyp {(Enrns " 20407 }

(G.13)
holds for A = Aj, Aj_|_1_>j, Aj+1_>j+p, Aj+1_>j+p+1, Aj+p, Aj+p+1, which cover all Ppos-
sibilities.
When A = A; or Aj;1_,; occurs, as previously discussed, variable j is a false negative
in the bi-variate Lasso L; ;41 given W; < t,,, which implies IP’{VVJ <tp, A‘(ﬁj, Bjt+1) =
(—Tp, Tp)} is upper bounded by the corresponding false negative rate of Lasso, which
is Lpp—((ﬁpﬁ—ﬁp_l\/ﬂ)HQ.

When Aj; 1,4, occurs, the Ag of the bi-variate Lasso problem L1 j, is larger than
the Ao of the bi-variate Lasso problem L; ;1. When yT$j+1 > 0, we must have

y a; —pyTei y e — py” xm} m { —py zj1 Y & — pyT:vm}
, .

1—p ’ -1- —p ~1-0p

Therefore, A; 11,4, implies one of the three following events must occur:

max{

yTz; — pyTaj _ Iz —pyTajer ylo; —pyTajng _ yTi; — pylaj

)

y xj+y & <0,

—l=p L—p —1-p —1—p
. (1+p)(1—p)2 ,M 1-p2
The probability of these three events are Lpp_fr, pp 20+ and Lyp~ 2 7,
_0=p)?0tp),

all of which are upper bounded by L,p 20+
When A;1,j4p41 occurs, the A2 of the bi-variate Lasso problem Lj41 jip41 is larger
than the Ay of the bi-variate Lasso problem L; ;1. When yTa:j+1 > 0, we must have

yla; —pyTaj yl ey — pylain
1—p —1-

T 2. T T 2. T
Y Tjp1l — PTY Tjr1 Y Tjp1 — P7Y Hfj+1}

} < max{ 2 , B

max{
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Therefore, A; 1 j4p+1 implies one of the three following events must occur:

y'xj — py ajn < Y Zi = 0y iyl — pyTaga < y Tj1 — PPy w4

T T ~,
. <07 ,
Y ETy S —1—p 1—p? —1-p —1—p?

oy (1+p)(1=p)? 1-p2 _0-=p30+p)
The probability of these three events are Lppffﬂ Lyp~ 2 ", Lyp 20+0%
_(=p)?Utp),

all of which are upper bounded by L,p 20+
When A, occurs, if yTi'j 0, then y* Tjy1 + yTi’j < 0, which happens with prob-
- (14+p)(1=p)? M T T~ 17
ability Lyp~ 2 " < Lpp 20+ . If yI'3; > 0, then y77; + Ly x; —
2(1-p)3 (1 p>3<1+p)

1+py xj41 > 0, which happens with probability L,p 3+ "< L pp  20H0)
Therefore, (G.13) holds for A;,, and also for Aj;,+1 due to symmetry. We thus
complete the proof for (G.13).

Now consider the case where (3; takes value in {0, —7;,} and 3,1 takes value in {0, 7, },
this corresponds to the p < 0 case (we flipped the sign of p and §; simultaneously).
By (G.1), (G.2), (G.5) and (G.11), we know

{1V > ty, 8 = 0} + B{W; <t 8; = -7}

> Lpp_ min{fgamm(u,r,ﬂ),219+((§p\ﬁ—”7p_l\/17)+)2}. (G14)
Meanwhile, (G.1), (G.2), (G.6) and (G.12) gives
]P’{Wj > tp,,Bj = O} —I—P{W' < tp,,Bj = — }
G.15
<Ly i fi (0759204 (€075 /) )2, 204+ ULEL2CD 3 (G.15)
The proof is complete once we show that
: - 1—|p])*(1 +
i i 7,0):20-+ (07 — 1, V)7 < 20+ T UL, )
Otherwise, there exists a tuple of (¢,r, p,u,r) such that
(L —1pD*(A +1pl) 1 2
29 + 2t <204 ((Epv/r —m, Vu)y) (G.17)
and
1—|p|)3(1 +
20+ LA U 0t (= oA+ (o = )20 = (VF = V) )?
(G.18)

are satisfied simultaneously.

By (G.17), £p0/1 — 77;1\/& > 0, which implies (1 — |p|)y/r > v/u. Therefore, the right

hand side of (G.18) simplifies to 9 + h}p:u By (G.18), we know

(1~ oD + Jol) A o)At 1o 1]
T R T ) R W P
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Plug this into the right hand side of (G.17), we have

_ 3
29 + (]- ‘g)l’)+(;;)_ ’p|)7‘ < 29 + ((fp\/;_ngl\/a)+)2

o0+ (VI \/1—rp| ”""))r,

2(1 4 p?)

(G.19)

which can only be true when p? > 1. By reduction, we proved (G.16).

Appendix H. Proof of Theorem 6.1

The least-squares estimator satisfies that § ~ N, (3,G~1). Tt gives Bj ~ N (Bj,w;). Apply-
ing Lemma 7.1 to X, = §; and S = {z € R: z > \/u}, we have

P(1B;] > ty(w)|B; = 0) = Lyp™7 “,  B(|Bj] < tp(u)|B; = ) = Lyp™i V7~V

It follows that

p

p
—w
FPy(u) =Y (1—¢) BW} > t,(w)[B; =0) =L, Y p s ",
i=1 =
D » B 2
FNp(w) = 36 - PWF < t,(w)|8; = 1) = Lyp 3 ps VTV,

Jj=1

<
Il
—

For the block-wise diagonal design (5.1), wj = (1 —p?)~L forall 1 <j <p—1.

Appendix I. Proof of Theorem 6.2

By the property of least-square coefficients,
(Blv e Hép)Bla e ’Bp) ~ NQp((Bla e >ﬁp70a e 70)’ (G*)_l)

Consider the joint distribution of Bj and B]- which are the regression coefficient of x; and
Zj, we know that (3;, 3;) ~ NQ((B]',O),A]') where A; has wy; as its diagonal element and
wo; as its off-diagonal elements. Then theorem 6.2 is immediate from the following lemma:

Lemma 1.1 If (Z;, Z;) follows N ((ﬁj,O)T, E) with ¥ = ((01,02), (02,01)), then
P(1Z;] > /2ulog(p), |Z;] = 1Z;1]; = 0) = Lyp~/* (L1)

and

P(1Z;] < \/2ulog(p) or |Zj] < |Z;l[8; = \/2rlog(p))

1.2
—Lp MWV} four/@max{oitoz,o1-02])} )
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Next, we prove Lemma I.1. To compute the left hand side of (I.1), we only need to find
the ¢ such that ellipsoid (z,y)X 7! (x,y)T = 2 is tangent with x = ++/2ulog(p). This is
because when we increase the radius of the ellipsoid, it must intersect with x = ++/2ulog(p)
first amongst the boundaries of the region that pick variable j as a signal. When they
intersect,

2

1 1 1 2 o 2ulo
2 = ﬁ(ale — 2091y + 01y2) =5 <0’1 (y — ﬁx) + (O’l — —2):62) > ﬂ
o1 — 03 of — 05 o1 o1 o1

When 2 = %ﬁ(p), the tangent points are (£./2ulog(p), £721/2ulog(p)). By Lemma 7.1,
we verified (I.1).

For (I1.2), when r < u, the center of the bi-variate normal is in the region of rejecting
variable j as a signal thus the false positive rate is L,. When r > u, we need to find the ¢
such that ellipsoid (z — 8;,y)E 7 (x — B;,y)T = t? is tangent with either z = £./2ulog(p)
or y = +x. When the ellipsoid intersects with = ++/2ulog(p),

t? = %(m (y - %(w - /Bj))Q + <0'1 - f)(m - ,Bj)Q) > 20 \/?)2log(p)7

0| — 05 01

therefore, they are tangent at (+/2ulog(p), 22 (£+/2ulog(p)—p3;)) when 12 = w.
Meanwhile, since the long/short shaft of the ellipsoid are paralleled with y = :l::z the

tangent points of ellipsoid with y = 2 must be (8;/2, 5;/2) and (8;/2, —;/2), which gives

42 — rlog(p) o q rlog)
o1+02 g1—02

the normal distribution and the region that reject variable j as a signal is

2(y/r — v/u)? log(p) rlog(p) rlog(p)

) )
o1 01+ 09 01— 02

. From here we can conclude the ”distance” between the center of

min{

}.
By Lemma 7.1, we know

P(|Zj] < /2ulog(p)|8; = /2rlog(p)) = Lyp™ "™V /orr/Gmaxiortosai=aah)),
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