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Abstract. We develop multilevel methods for interface-driven multiphysics problems that can be
coupled across dimensions and where complexity and strength of the interface coupling deteriorates
the performance of standard methods. We focus on aggregation-based algebraic multigrid methods
with custom smoothers that preserve the coupling information on each coarse level. We prove
that, with the proper choice of subspace splitting, we obtain uniform convergence in discretization
and physical parameters in the two-level setting. Additionally, we show parameter robustness and
scalability with regard to the number of the degrees of freedom of the system on several numerical
examples related to the biophysical processes in the brain, namely, the electric signaling in excitable
tissue modeled by bidomain, the extracellular-membrane-intracellular (EMI) model, and reduced
EMI equations.

Key words. algebraic multigrid method, preconditioning, iterative
method, coupled problems, graph Laplacian

MSC codes. 65F08, 65N55, 65S05

DOI. 10.1137/23M1572076
See reproducibility of
computational results
at end of the article.

1. Introduction. In this paper, we consider multilevel methods for a family of
coupled problems of the following form: Find u⌦ 2 V (⌦), u⌥ 2 V (⌥) such that
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Here, A◆ : V (⌦◆) ! V (⌦◆)0, ◆ = ⌦,⌥ are elliptic and decoupled operators, while the
coupling on the common interface �=⌦\⌥ is represented by the interface operator
R = (��⌦ �⌥) : V (⌦)⇥ V (⌥) ! V (�)0. We refer to the coupling term R

0
R as the

metric term since, by assumption, the coupling is a symmetric and semidefinite opera-
tor. In fact, R is typically either an identity or a projection operator which in the limit
� !1 enforces a coupling between u⌦ and u⌥ either in the whole domain or on parts
of it. As A⌦ and A⌥ are elliptic, multilevel methods for these operators are readily
available as solvers, but performance is typically lost for large �. The topic of this
paper is to adapt the multilevel algorithms such that they are robust with respect to �.
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A1462 BUDIŠA, HU, KUCHTA, MARDAL, AND ZIKATANOV

The abstract problem arises in many multicompartment, multiphysics, and mul-
tiscale applications. For multicompartment problems, a common approach is to con-
sider the system in terms of its blocks and adapt appropriate block precondition-
ers. Examples are the bidomain equations [51, 42] in cardiac modeling and multiple-
network poroelasticity problems [23, 24, 10, 46, 45] in porous media modeling. The
block approach has been quite successful, and in most situations, parameter-robust
solution algorithms have been found. Arguably, a more challenging family of prob-
lems are the multiphysics problems coupled through a common interface, which is a
manifold of codimension one. For some but not all of these problems, metric terms at
the interface arise. Examples are the so-called extracellular-membrane-intracellular
(EMI) model of excitable tissue [1, 50, 55] and the Biot–Stokes coupled problems [3].
Finally, certain multiscale problems are interface coupled problems in which dimen-
sionality of one of the subproblems is reduced by model reduction techniques. Here,
the examples are the three-dimensional/one-dimensional problem of tissue perfusion
[13] or well-block pressure in reservoir simulations [43]. In particular, for tissue perfu-
sion modeling of whole-brain vasculature corresponding to tens of millions vessels in
mice and tens of billions vessels in humans [38], simulations are a major challenge, and
one-dimensional representation of the vascular networks is a reasonable assumption.

Multigrid methods for singularly perturbed problems have been considered in
several settings. Examples include discretizations of the linear elasticity equations
in primal form [48] or H(div) and H(curl) problems [2]. Furthermore, the methods
were generalized to algebraic multilevel methods (AMG) in [35, 36, 37]. A crucial
observation is that the kernel or the near kernel must be carefully treated, or else the
performance of the method deteriorates when the coupling parameter � increases. We
apply this observation to the abstract problem (1.1). In our setting, we study three
cases where (1) ⌦1 =⌦2, (2) ⌦1 and ⌦2 share a common interface of codimension one,
and (3) ⌦2 is a lower-dimensional manifold of codimension two embedded in ⌦1. We
also consider the case where the meshes of ⌦1, ⌦2 and their interface are not nested.

The paper is organized as follows. After section 2, where motivating applications
are presented, we state our main results in section 3. Experimental results showcasing
robustness of the developed multgrid method are given in section 4. We finally draw
conclusions in section 5.

2. Examples. To motivate the computational method developed in this paper,
we first provide several practical examples which fit the template of the abstract
problem (1.1).

2.1. Bidomain model. An example of a multicompartment problem are the
so-called bidomain equations used to model the electrical activity of the heart [54]. It
is a system of nonlinear ODEs and PDEs typically solved using an operator-splitting
approach to solve ODE and PDE parts separately; cf. the overviews [17, 51]. Let
⌦ be the homogenized tissue, and assume that the source terms fe, fi : ⌦ ! R and
conductivities ↵e,↵i > 0 are given, with indices e and i representing extracellular and
intracellular parts, respectively. Then, at each PDE time step, one seeks extracellular
ue :⌦!R and intracellular ui :⌦!R potentials such that

�r · (↵erue) + �(ue � ui) = fe in ⌦,(2.1a)

�r · (↵irui) + �(ui � ue) = fi in ⌦.(2.1b)

Here, � relates inversely to the time step size, and suitable boundary conditions are
assigned. E�cient methods for the formulation of bidomain equations in terms of
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AMG FOR METRIC-PERTURBED COUPLED PROBLEMS A1463

ui or ue and the so-called transmembrane potential ui � ue have been developed by,
e.g., [15, 44, 52, 28, 62]. We focus on the formulation (2.1) with unknown intra- and
extracellular potentials.

To solve the equations (2.1), we discretize the system using the finite element
method (FEM). Denote with L

2 = L
2(⌦) the function space of square-integrable

functions on ⌦ and H
s =H

s(⌦) the Sobolev spaces with s derivatives in L
2. Further-

more, let V ⇢H
1(⌦) be the discretization by continuous linear finite elements (P1).

The discrete variational formulation states to find ue, ui 2 V such that for fe, fi 2 V
0,

✓✓
�↵e�

�↵i�

◆
+ �

✓
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�I I

◆◆✓
ue

ui

◆
=

✓
fe

fi

◆
.(2.2)

We see that for � > 0, the system is symmetric positive definite. However, it contains
a singular strongly weighted lower-order term for which the kernel functions (ve, vi)2
V ⇥ V are such that ve = vi. It is clear that the kernel contains both high- and
low-frequency components, making it critical to handle the kernel with a multilevel
algorithm [35].

2.2. EMI model. The modeling assumption of the coexistence of the intersti-
tium, extracellular space, and the cell membrane, which is at the core of the bidomain
system (2.1), has recently been challenged by the EMI models [1, 55] (also known as
cell-by-cell models [27]). In the EMI model, the geometry of each compartment is
resolved explicitly, which leads to a coupled mixed-dimensional problem posed on
d-dimensional domains ⌦i ⇢ ⌦e separated by the interface � = @⌦i \ @⌦e, which
is a manifold of codimension one. Following the operator-splitting approach as in
subsection 2.1, the PDE step now solves

�r · (↵erue) = 0 in ⌦e,(2.3a)

�r · (↵irui) = 0 in ⌦i,(2.3b)

↵irui · ⌫i + ↵erue · ⌫e = 0 on �,(2.3c)

�(ui � ue) + ↵irui · ⌫i = f on �.(2.3d)

Here, f is the source term coming from the ODE part, and ⌫◆ is the normal vector on �
pointing outward with respect to ⌦◆, ◆2 {i, e}. The system is typically equipped with
homogeneous Neumann conditions on @⌦e. We remark that in (2.3), we assumed, for
simplicity, that ⌦e contains only a single cell/intracellular domain.

Variational formulation of (2.3) posed in Ve ⇥ Vi with Ve =H
1(⌦e), Vi =H

1(⌦i)
gives rise to a problem,
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,(2.4)

where the perturbation involves trace operators ⌧◆ such that ⌧◆v◆ = v◆|� for ◆ 2 {i, e}
and v◆ is a continuous function on the respective domain. We observe that the EMI
model (2.3) formulated in terms of intra- and extracellular potentials takes the form
of the abstract problem (1.1), where, in particular, the perturbation operator induces
(ue, ui) 7!

R
�(ui � ue)2. Robust domain decomposition solvers for (2.4) have recently

been developed in [27].

2.3. Reduced three-dimensional/one-dimensional EMI model. In a num-
ber of applications in geoscience (e.g., resorvoir simulations) and biomechanics (e.g.,
microcirculation), the EMI model (2.3) is applied in a geometrical setup where the do-
main ⌦i is large but slender such that its resolution as a three-dimensional structure
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A1464 BUDIŠA, HU, KUCHTA, MARDAL, AND ZIKATANOV

by a computational mesh is impractical. This issue is addressed by model reduc-
tion which results in a one-dimensional representation of ⌦i by a smooth (centerline)
curve �. In [13], a mathematical formulation of a three-dimensional/one-dimensional
coupled problem with application to tissue perfusion was analyzed. The numerical
approximation of the problem has been a topic of many subsequent works; see, e.g.,
[18, 22, 34, 30, 32]. It includes, in particular, the challenge of traces of codimension
two for standard elliptic problems which are not well-defined on H

1(⌦), ⌦=⌦i [⌦e.
Relatively few works have considered preconditioners for such problems [25, 33, 9].

To fit into the abstract setting of (1.1), we consider here a reduced EMI problem
[34]: Find ue 2H

1(⌦), ui 2H
1(�) such that

✓✓
�↵e�

�↵i�

◆
+ �

✓
⇧0

⇢⇧⇢ �⇧0
⇢

�⇧⇢ I

◆◆✓
ue

ui

◆
=

✓
fe

fi

◆
.(2.5)

Here, ⇧⇢ is the averaging operator reducing u 2H
1(⌦) to � by computing the func-

tion’s average over a virtual cylinder with radius ⇢ which approximates the domain
⌦i. More precisely, we let

(⇧⇢u) (x) =
1

|C⌫
⇢ (x)|

Z

C⌫
⇢ (x)

u, u2H
1(⌦),(2.6)

where x 2 �, C⌫
⇢ (x) is a circle of radius ⇢(x) in the plane with a normal ⌫ = d�

ds (x),
and s is the arc-length coordinate of �. Furthermore, for a smooth function v on �,
we define �v= d2v

ds2 .
We remark that the perturbation operator in (2.5) is symmetric, while the formu-

lations [18, 13] utilize a standard trace operator in the coupling (in addition to ⇧⇢),
leading to a nonsymmetric coupling term. Let us finally stress that (2.5) is typically
only a component in advanced models that include convection and other processes;
cf. [19, 21].

3. Two-level AMG for metric-perturbed coupled problems. In this sec-
tion, we first reformulate the example systems of PDEs into a more general setting.
This allows us to introduce aggregation-based AMG methods to solve our examples,
as they are a general class of methods that can be used to solve a wide variety of PDE
systems. We then prove the uniform convergence of the two-level AMG method under
certain assumptions on the underlying subspace decomposition. These assumptions
are shown to be su�cient and suitable for the problems we consider.

3.1. Preliminaries. In the following, we slightly change the notation introduced
in (1.1) by collecting all elliptic terms in a common bilinear form a1, while another
bilinear form a0 contains the metric terms. Specifically, let ⌦ ⇢ Rd⌦ , ⌥ ⇢ Rd⌥ , and
�⇢Rd� such that 0< d�  d⌦, d⌥  3, ⌦\⌥ 6= ;, and �⇢⌥. On each of the domains,
we introduce quasi-uniform triangulation and a corresponding finite element space Vi,
i 2 {⌦,⌥,�} with V� ✓ V⌥. For V = V⌦ ⇥ V⌥, we then consider bilinear forms
a0(·, ·), a1(·, ·) : V ⇥ V !R defined as

a0((u⌦, u⌥), (v⌦, v⌥)) =m�(R(u⌦, u⌥),R(v⌦, v⌥)),(3.1a)

a1((u⌦, u⌥), (v⌦, v⌥)) = a⌦(u⌦, v⌦) + a⌥(u⌥\�, v⌥\�) + a�(u�, v�)(3.1b)

for v⌥ = (v⌥\�, v�) and v� 2 V�. Here, a⌦(·, ·), a⌥(·, ·), and a�(·, ·) are bilinear forms
corresponding to the elliptic equations, such as d⌦-, d⌥-, and d�-Laplacians on their
respective domains. The bilinear form m�(·, ·) is a lower-order (mass) term in V�.
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AMG FOR METRIC-PERTURBED COUPLED PROBLEMS A1465

The interface operator R : V ! V
0
� defines a metric on the interface; that is, for

v= (v⌦, v⌥)2 V ,

Rv= v� � �(v⌦),(3.2)

where � : V⌦ ! V
0
� is a linear restriction operator. In particular, we assume that � is

surjective and bounded, i.e., k�(v⌦)kL2(�) . kv⌦kV⌦
. The main problem we want to

solve is to find u2 V such that

a(u, v) = �a0(u, v) + a1(u, v) = f(v) 8v 2 V,(3.3)

where f 2 V
0 and � � 1 is a coupling parameter.

Finally, we can define operators representing the bilinear forms in (3.1). Let
A,A0,A1 : V ! V

0 such that hA0u, vi= a0(u, v), hA1u, vi= a1(u, v), and A= �A0+A1

for u, v 2 V . Here, h·, ·i is the duality pairing between V and its dual V 0. Additionally,
let kvk2

Ã
= hÃv, vi denote the Ã-norm of v for any symmetric positive definite operator

Ã on V and v 2 V . If Ã is only positive semidefinite, |v|2
Ã
= hÃv, vi defines the Ã-

seminorm. Equivalently to (3.3), we want to find u2 V such that

hAu,vi= �hA0u, vi+ hA1u, vi= hf, vi 8v 2 V.(3.4)

We refer to this system as the metric-perturbed coupled problem since it is perturbed
by a lower-order term A0 that can dominate the system when � � 1.

Remark 3.1. In general, the interface operator (3.2) can be represented as R =�
��⌦ �⌥

�
, where �⌦ and �⌥ are linear restriction operators (trace or averaging)

on � = ⌦ \ ⌥. This generality would represent the case of nonconforming meshes
between each subdomain ⌦ and ⌥ and their interface �. For example, in the EMI
model (2.3), �i are the respective trace operators �◆(v) = v◆|�, ◆ 2 {⌦,⌥}. However,
we assume that at least one of the triangulations of subdomains, namely, ⌥, conforms
to the interface (such that V� ✓ V⌥) and that the restriction operator becomes of form
�⌥ =

�
I� 0⌥\�

�
.

That implied, we see that the subdomain part ⌥\� does not contribute to the
metric coupling term a0(·, ·). Therefore, the component of functions in V⌥ defined
only on ⌥\� will not influence the convergence of the AMG method with regard to
parameter � and can be smoothed using standard methods, such as the Gauss–Seidel
or the Jacobi method.

Hence, to simplify the exposition of the convergence theory, we will consider only
the case when V� = V⌥ further in this paper. For example, in the reduced three-
dimensional/one-dimensional EMI model (2.5), we have that ⌥ = � is a curve in
⌦⇢R3, �⌦ is the averaging operator (2.6), and �⌥ is the identity map. Note that for
the bidomain model (2.1), we have ⌦=⌥= � and that the restriction operators are
simply identities.

Remark 3.2. By assumptions of ellipticity of A1 and boundedness of the restriction
operators in the A1-induced norm on V , the equivalence

kvk2A1
 hAv, vi. �kvk2A1

8v 2 V

holds, and we observe that the upper bound depends on �. That is, precondition-
ing strategies based on the block-diagonal operator A1 (e.g., AMG with pointwise
smoothers) cannot be robust in the coupling parameter.
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A1466 BUDIŠA, HU, KUCHTA, MARDAL, AND ZIKATANOV

In the following, we slightly abuse the notation and consider A, A1, and A0 to be
matrices and u⌦ and u� to be vectors that we obtain from a choice of an FEM basis,
such as the linear continuous finite elements (P1 elements). We present theoretical
results based on reformulating the problem in terms of graph Laplacians.

To do so, we introduce the undirected graph G(A) associated with the sparsity
pattern of the symmetric positive definite matrix A. The vertices of G(A) are labeled
as V = {1,2, . . . ,N}, where N represents the number of degrees of freedom (DOFs) of
V . We use E to denote the collection of edges e= (i, j) if (A)ij 6= 0, with an intrinsic
ordering. Specifically, we order any graph edge e = (i, j) with j < i for i, j 2 V . It is
worth noting that the following equivalences are well known:

1. In the context of FEMs, mass matrices represent the matrix form of the L
2-

inner product on a portion or the entirety of the domain and are equivalent to
diagonal matrices, as shown in [58]. For instance, this equivalence holds for
Pk elements, where the constants depend only on the polynomial order k. On
the other hand, sti↵ness matrices, which correspond to second-order elliptic
operators such as A1, are spectrally equivalent to weighted graph Laplacians.
We provide a sketch of the proof in Appendix A using results from [61, Lemma
14.1].

2. If eA : V ! V
0 is any positive semidefinite matrix and eD its diagonal, then we

have

kvk2eA . kvk2eD v 2 V.(3.5)

The constants hidden in this estimate depend on the number of nonzeros per
row in eA. The estimate is easily derived using the Schwarz inequality.

3. In particular, for any graph Laplacian on V , the following Poincaré inequality

holds:

inf
c2R

kv� c1k2eD . kvk2eA v 2 V.(3.6)

The constants are determined by the weights in eA and are proportional to
the square of the number of vertices in the graph divided by the square of the
size of the minimal cut in the graph. The complete proof can be found, for
example, in [49]. This result is used only locally for small size graphs, namely,
on each aggregate that represents the coarse scale DOF in the two-level AMG
method.

Consequently, the bilinear forms from (3.1) can be replaced by their equivalent
graph forms. Let V = V⌦ [ V� be the division of graph vertices into two subsets with
regard to discretizations of ⌦ and �, respectively. Similarly, let E = E⌦ [ E�. Then,
for u= (u⌦, u�)2 V and v= (v⌦, v�)2 V , we get

a⌦(u⌦, v⌦)h
X

e2E⌦

!e �eu⌦ �ev⌦,(3.7a)

a�(u�, v�)h
X

e2E�

!e �eu� �ev�,(3.7b)

a0(u, v)h
N�X

k=1

mk (u�,k � (�(u⌦))k) (v�,k � (�(v⌦))k) ,(3.7c)

�ev= vi � vj , e= (i, j), !e = !ij > 0, j < i,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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AMG FOR METRIC-PERTURBED COUPLED PROBLEMS A1467

where N◆ = dimV◆, ◆ 2 {⌦,�}. The weights !e depend on the shape regularity of the
mesh, and their behavior is as hd�2 if they correspond to a d-homogeneous simplicial
complex, where h is the mesh size parameter. The elements mk behave like h

d�

if � corresponds to a d�-homogeneous simplicial complex. In the following section,
we design aggregation-based AMG methods with special Schwarz smoothers to solve
(3.4). For that, we use the above equivalences for the bilinear forms to prove that
this AMG method satisfies the kernel and stability conditions that guarantee uniform
convergence. The basic algorithms for constructing AMG hierarchies via unsmoothed
and smoothed aggregation are introduced in [56, section 5.1]. Later, the adaptive
versions of such methods were developed in [5]. Details about aggregation AMG
based on matching in graphs also used in our algorithms are found in [11, 12, 29, 39].

3.2. Convergence of the two-level AMG. The main idea of any algebraic
multigrid method is to construct a hierarchy of nested vector spaces, each of which
targets di↵erent error components for the solution of (3.4). In the case of aggregation-
based AMG methods, such as unsmoothed aggregation AMG (UA-AMG) and
smoothed aggregation AMG (SA-AMG), there is an added advantage in that mul-
tiple approximations of near-kernel components of the matrix describing the linear
system can be retained as elements of each subspace in the hierarchy. To illustrate
this, we first introduce the necessary ingredients of AMG in the context of subspace
correction methods [36, 59, 60].

Let us introduce the decomposition V = Vc+
PJ

j=1 Vj , where Vc ⇢ V and Vj ⇢ V ,
j = 1, . . . , J . Then the AMG preconditioner associated with such subspace splitting
for the system (3.4) is defined as

B = Pc + S, S =
JX

j=1

Pj , where(3.8a)

⌦
S
�1

w,w
↵
= inf

8
<

:

JX

j=1

kwjk2A :w=
JX

j=1

wj and wj 2 Vj , j = 1, . . . , J

9
=

; ,

(3.8b)

⌦
B

�1
v, v
↵
= inf

8
<

:kvck2A +
JX

j=1

kvjk2A : v= vc +
JX

j=1

vj and vc 2 Vc, vj 2 Vj , 1, . . . , J

9
=

; ,

(3.8c)

where Pj are the A-orthogonal projections on Vj for j = 1, . . . , J . Here, Vc accounts
for the correction on a coarse (sub)space, while Vj for j � 1 define a Schwarz-type
smoother on the fine grid.

Choosing the appropriate subspace decomposition is the essence of a robust and
e�cient preconditioner for the system (3.4). Therefore, we want to show that, within
certain assumptions, B is a uniform preconditioner for A with regard to coupling
parameter � and mesh parameter h. The assumptions required in the convergence
analysis are as follows:

(I) Kernel decomposition condition: Find the subspace decomposition Vj

for j = 1, . . . , J such that

Ker(A0) =Ker(A0)\ Vc +
JX

j=1

Ker(A0)\ Vj .(3.9)
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A1468 BUDIŠA, HU, KUCHTA, MARDAL, AND ZIKATANOV

(II) Stable decomposition condition: For a given v 2 V , there exist a splitting
{vc}[ {vj}Jj=1, vc 2 Vc, and vj 2 Vj such that

kvck2A1
+

JX

j=1

kvjk2A1
. kvk2A1

, |vc|2A0
+

JX

j=1

|vj |2A0
. |v|2A0

.(3.10)

Specifically, the subspace splitting of V defines a Schwarz preconditioner that uni-
formly bounds the condition number of the preconditioned system in � if the kernel
condition (3.9) is satisfied. Additionally, the uniform bound in h is guaranteed if for
any v 2 V , we construct an aggregate decomposition (coarse grid) stable in k · kA1

that is also stable in | · |A0
.

Remark 3.3. The kernel decomposition condition (3.9) usually fails for pointwise
smoothers in the presence of metric terms. As illustration, we consider the bidomain
equations where the kernel consists of functions of the form ue(x) = ui(x), x 2 ⌦.
If ej is the jth coordinate vector, then a pointwise smoother only corrects in the
one-dimensional space span{ej}. Clearly, Ker(A0) \ span{ej} = {0}, as Ker (A0) =
Range{( II )}. This shows that the condition (3.9) does not hold, and, as seen from
the numerical tests presented later, the method with a pointwise smoother is far from
optimal with respect to the magnitude of the coupling parameter �.

Assuming that these two conditions hold, we first show the main results on the
condition number estimate of the system (3.4) preconditioned with B (3.8). More pre-
cisely, we show that the condition number (BA) of the preconditioned system (3.4)
is bounded uniformly with respect to � and h. Note that the orthogonal complement
of Ker(A0) can be defined as

Ker(A0)
? = {y 2 V : hAy, zi= 0, 8z 2Ker(A0)}
= {y 2 V : hA1y, zi= 0, 8z 2Ker(A0)},(3.11)

and, similarly, we can define local kernels Ker(A0) \ Vj and kernel complements
Ker(A0)? \ Vj for j = c,1,2, . . . , J . Furthermore, we define projections to local sub-
spaces; that is, for any v 2 V , let Pj : V ! Vj , P1,j : V ! Vj , and P0,j : V !
Ker(A0)? \ Vj such that for all wj 2 Vj ,

hA(Pjv),wji= hAv,wji,
hA1(P1,jv),wji= hA1v,wji,(3.12)

hA0(P0,jv),wji= hA0v,wji

for j = c,1,2, . . . , J . These projections are referred to as elliptic projections. Since
both A and A1 are nonsingular, the definitions of the elliptic projections Pj and P1,j

are standard, and their roles in practical domain decomposition and multigrid methods
are discussed at length in classical references such as [4, 53]. Regarding the definition
of P0,j , for any v 2 V , we have that P0,jv is a unique element in Ker(A0)? \ Vj

satisfying the third equation in (3.12) (see [36, 37] for more details).
With that defined, we can easily derive that for v 2 V and v= y+ z, z 2Ker(A0)

and y 2Ker(A0)?, it follows that

kvk2A = kyk2A + kzk2A1
.(3.13)

The next lemma shows a triangle inequality for the projections defined in (3.12).
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AMG FOR METRIC-PERTURBED COUPLED PROBLEMS A1469

Lemma 3.4. The following inequality holds for all v 2 V and j = c,1,2, . . . , J :

kPjvk2  � |P0,jv|2A0
+ kP1,jvk2A1

.(3.14)

Proof. Since Pjv 2 Vj , by the definitions of the projections, we have

kPjvk2A = hAPjv,Pjvi= hAv,Pjvi= �hA0v,Pjvi+ hA1v,Pjvi
= �hA0P0,jv,Pjvi+ hA1P1,jv,Pjvi

 �

2
(hA0P0,jv,P0,jvi+ hA0Pjv,Pjvi) +

1

2
(hA1P1,jv,P1,jvi+ hA1Pjv,Pjvi)

=
�

2
|P0,jv|2A0

+
1

2
kP1,jvk2A1

+
1

2
kPjvk2A.

Moving the last term on the right to the left-hand side finishes the proof.

Using the previous lemma and definitions, we are ready to present the condition
number estimate in the following theorem.

Theorem 3.5. Let v= y+ z 2 V such that z 2Ker(A0) and y 2Ker(A0)?, which
is the orthogonal complement with regard to the A1-inner product. Assuming that the

conditions (3.9) and (3.10) hold, we get the estimate

C1 
⌦
B

�1
v, v
↵

kvk2A
C2 := 2 [C?(v) +C0(v)] ,(3.15)

where the constant C1 only depends on the maximum over the number of intersections

between the subspaces Vj, j = 1, . . . , J , and the constants C?(v) and C0(v) are

C?(v) = inf
yc+

PJ
j=1

yj=y

 
|yc|2A0

+
PJ

j=1 |yj |2A0

|y|2A0

+
kyck2A1

+
PJ

j=1 kyjk2A1

kyk2A1

!
,

C0(v) = inf
zc+

PJ
j=1

zj=z

kzck2A1
+
PJ

j=1 kzjk2A1

kzk2A1

.

This implies that the condition number estimate is (BA)C2/C1.

Proof. From the definition of B�1 in (3.8c), if v 2 V and v = y + z with y 2
Ker(A0)?, z 2Ker(A0), we have that

⌦
B

�1
v, v
↵

= inf
vc+

PJ
j=1

vj=v

0

@kvck2A +
JX

j=1

kvjk2A

1

A

 inf
yc+

PJ
j=1

yj=y; zc+
PJ

j=1
zj=z

0

@kyc + zck2A +
JX

j=1

kyj + zjk2A

1

A

 2 inf
yc+

PJ
j=1

yj=y; zc+
PJ

j=1
zj=z

0

@kyck2A + kzck2A +
JX

j=1

�
kyjk2A + kzjk2A

�
1

A

= 2 inf
yc+

PJ
j=1

yj=y

0

@kyck2A +
JX

j=1

kyjk2A

1

A+ 2 inf
zc+

PJ
j=1

zj=z

0

@kzck2A1
+

JX

j=1

kzjk2A1

1

A .
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A1470 BUDIŠA, HU, KUCHTA, MARDAL, AND ZIKATANOV

The first inequality above is a crucial inequality, as it follows from (1) the fact that the
set of decompositions of v= y+ z is larger than the set of decompositions of y and z

(because any decomposition of y and z gives a decomposition of v) and (2) the kernel
decomposition assumption (3.9), without which we cannot have a decomposition of
z = zc +

PJ
j=1 zj with zj 2Ker(A0) \ Vj , j = c,1,2, . . . , J . Then, by using (3.13), we

see that

⌦
B

�1
v, v
↵

kvk2A
=

⌦
B

�1
v, v
↵

kyk2A + kzk2A1

 2

inf
zc+

PJ
j=1

zj=z

0

@kzck2A1
+

JX

j=1

kzjk2A1

1

A

kyk2A + kzk2A1

+ 2

inf
yc+

PJ
j=1

yj=y

0

@kyck2A +
JX

j=1

kyjk2A

1

A

kyk2A + kzk2A1

 2

inf
zc+

PJ
j=1

zj=z

0

@kzck2A1
+

JX

j=1

kzjk2A1

1

A

kzk2A1

+ 2

inf
yc+

PJ
j=1

yj=y

0

@kyck2A +
JX

j=1

kyjk2A

1

A

�|y|2A0
+ kyk2A1

 2C0(v) + 2 inf
yc+

PJ
j=1

yj=y

kyck2A +
JP

j=1
kyjk2A

�|y|2A0
+ kyk2A1

.

Notice that, since yj 2 Vj , we have yj = Pjyj = P1,jyj . We now introduce the following
elementary inequality for t1, t2 > 0 and s1, s2 > 0:

�t1 + s1

�t2 + s2
=

�t1

�t2 + s2
+

s1

�t2 + s2
 t1

t2
+

s1

s2
.

With this in hand, it follows from Lemma 3.4 that

kyck2A +
PJ

j=1 kyjk2A
�|y|2A0

+ kyk2A1

=
kPcyck2A +

PJ
j=1 kPjyjk2A

�|y|2A0
+ kyk2A1


�

⇣
|P0,cyc|2A0

+
PJ

j=1 |P0,jyj |2A0

⌘
+
⇣
kP1,cyck2A1

+
PJ

j=1 kP1,jyjk2A1

⌘

�|y|2A0
+ kyk2A1


|P0,cyc|2A0

+
PJ

j=1 |P0,jyj |2A0

|y|2A0

+
kyck2A1

+
PJ

j=1 kyjk2A1

kyk2A1


|yc|2A0

+
PJ

j=1 |yj |2A0

|y|2A0

+
kyck2A1

+
PJ

j=1 kyjk2A1

kyk2A1

.
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AMG FOR METRIC-PERTURBED COUPLED PROBLEMS A1471

The upper bound in (3.15) is obtained by taking infimum over all decompositions of
y 2 Ker(A0)? on the right-hand side. To show the lower bound in (3.15), note that
for any decomposition, we have

kvk2A = kvc +
JX

j=1

vjk2A  2kvck2A + 2k
JX

j=1

vjk2A  2kvck2A + 2
JX

j=1

kvjk2A.

Therefore, taking the infimum over all possible decompositions, we can obtain the
lower bound and conclude the proof.

Now we have results on our preconditioning method’s uniform condition number
estimation. In the following two subsections, we show that the assumptions (3.9) and
(3.10) are valid in the context of the algebraic systems that we are considering.

3.3. Kernel decomposition condition. We continue with defining the sub-
space splitting that will satisfy the kernel condition in (3.9). At the same time, we
bear in mind to choose a decomposition that intuitively follows (3.10) as well.

Consider characterizing the kernel of the matrix A0 as

Ker(A0) = {v= (v⌦, v�)2 V : a0(v, v) =m�(Rv,Rv) = 0}
= {v= (v⌦, v�)2 V : v� = �(v⌦)}

=

⇢✓
I⌦

�

◆
v⌦ : v⌦ 2 V⌦

�
.(3.16)

Therefore, we can fully represent Ker(A0) with the vectors from the subspace V⌦. We
take this into account when constructing the subspaces Vj ⇢ V, Vc +

PJ
j=1 Vj = V .

Descriptively, we should find a partition of V so that each part contains at least one
spanning vector of Ker(A0) with a minimal overlap between the subspaces. Note that
we first start with the subspaces Vj , j � 1, which define the Schwarz preconditioner
S, and then we construct the coarse space Vc via vertex aggregation since we consider
aggregation-based AMG.

For each graph vertex j 2 V⌦, define the neighborhood of j in terms of the sparsity
pattern of the operator R, that is,

Nj = {i2 V� :
�
�
�
e
⌦
j

��
i
6= 0, e⌦j 2 V⌦}, where

�
e
⌦
j

�
k
=

(
1, k= j,

0, k 6= j,
j 2 V⌦.

(3.17)

Specifically, the neighborhoods Nj are the subsets of all the vertices in V� that the
vertex j 2 V⌦ restricts to by the action of restriction operator �. Note that Nj = ; if
�(e⌦j ) = 0, which means that vertex j 2 V⌦ does not connect to any vertex in V� via
operator �. Since � is surjective, we have that

N⌦[

j=1

Nj = V� and
N⌦[

j=1

(Nj [ {j}) = V� [ V⌦ = V.(3.18)

Hence, we have constructed a partition of the vertices of the graph in overlapping
subsets, and we use this below to define the partition of unity needed in the analysis
of the Schwarz smoother.

We now consider the subspaces Vj ⇢ V defined as

Vj = span

✓⇢✓
e
⌦
j

0

◆�
[
⇢✓

0
e
�
i

◆
, i2Nj

�◆
⇢ V, j 2 V⌦,(3.19)
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A1472 BUDIŠA, HU, KUCHTA, MARDAL, AND ZIKATANOV

with e
�
i 2 V� the unit vector in vertex i 2 Nj . Since

SN⌦

j=1(Nj [ {j}) = V, it is

straightforward to see that
PJ

j=1 Vj = V . It also follows that the number of subspaces

is J N⌦ + 1, and if any Nj = ;, then Vj = span{( e⌦j
0
)}. More precisely, that means

that outside the domain of influence of the restriction operator �, the subspaces are
defined only on the support of the local finite element function of that DOF. In turn,
that means that “around” �, we have an overlapping Schwarz method as the smoother,
while in the rest of the domain, the subspaces define a standard pointwise smoother
(Jacobi or Gauss–Seidel method).

Next, we define the coarse space Vc given by the UA-AMG method. Other con-
structions of coarse spaces are also possible, but we choose UA-AMG because the
analysis in this case is more transparent and concise. The aggregates are constructed
from the set of vertices V = {1,2, . . . ,N} as follows:

Splitting: {1, . . . ,N}=
nagg[

k=1

ak, al \ ak = ;, when l 6= k, |ak|Cagg, k= 1, . . . , nagg,

(3.20a)

Approximation: for v 2 V, v⇡ vc =

naggX

k=1

vak , where vak =
h1ak , vi`2

|ak|
1ak ,

(3.20b)

where 1ak 2RN is the indicator vector on every ak, |ak| is the size of each aggregate,
nagg is the total number of aggregates (number of coarse grid DOFs), and Cagg is the
maximal number of fine grid vertices in any aggregate.

Associated with the splitting of the vertices given in (3.18), we now introduce a
partition of unity. Consider the following matrices, each associated with the support
of the vector from the frame of Ker(A0):

�j =D
�1
⌦ diag(1Nj[{j}), where D⌦ =

JX

j=1

diag(1Nj[{j}), j = 1, . . . , J,(3.21)

where 1Nj[{j} are the indicator vectors on a subset of vertices Nj [ {j}⇢ V. Clearly,
the matrices �j 2 RN⇥N and

PJ
j=1 �j = I. The latter identity just means that

{�j}Jj=1 form a partition of unity. In addition, we have that �j�k =D⌦�j(�j�k) and
D⌦�j(�j � �k)�k is positive semidefinite.

Finally, the full subspace decomposition is given as follows: For v 2 V ,

v= vc +
JX

j=1

vj , where vc =

naggX

k=1

vak and vj = �j(v� vc), j = 1, · · · , J.(3.22)

Based on the definitions of the kernel Ker(A0) and the subspaces, we can verify
that the space decomposition (3.19) satisfies the kernel decomposition condition (3.9),
which is summarized in the following proposition.

Proposition 3.6. Let Vj , j = c,1,2, . . . , J , be the subspaces of V defined in (3.19)
and (3.20). Then {Vc}[ {Vj}Jj=0 satisfy the kernel decomposition condition (3.9).

Proof. By definition, we have that Ker(A0) \ Vc ✓Ker(A0) and
PJ

j=1Ker(A0) \
Vj ✓Ker(A0). On the other hand, for any v 2Ker(A0), we know that v = ( I⌦� )v⌦ for
some v⌦ 2 V⌦. Equivalently, the column vectors {1Nj[{j}}N⌦

j=1 span Ker(A0), which
can be expanded as follows:
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AMG FOR METRIC-PERTURBED COUPLED PROBLEMS A1473

v=
N⌦X

j=1

(v⌦)j 1Nj[{j}| {z }
2Ker(A0)

(3.23)

=
N⌦X

j=1

(v⌦)j

2

4
✓
e
⌦
j

0

◆
+
X

i2Nj

✓
0
e
�
i

◆3

5

| {z }
2Vj| {z }

2Ker(A0)\Vj

2
N⌦X

j=1

Ker(A0)\ Vj ✓
JX

j=1

Ker(A0)\ Vj .

3.4. Stable decomposition condition. Now that we have shown the kernel
decomposition condition, we prove that the same subspace decomposition is also stable
in both A0- and A1-inner products.

3.4.1. Stability condition in A1. We first focus on the positive definite op-
erator A1 and the coarse space estimates, and we present the following immediate
result on the stability estimates of the coarse space Vc.

Lemma 3.7. For v 2 V and its coarse grid approximation vc =
Pnagg

k=1 vak , we have

kv� vck2D1
. kvk2A1

and kvck2A1
. kvk2A1

,(3.24)

with D1 being the diagonal of A1.

Proof. The first estimate follows from Poincaré inequality (3.6) on each aggregate
ak, k= 1, . . . , nagg, i.e.,

kv� vck2D1
=

naggX

k=1

kv� vakk2D1,ak
.
X

ak

cakkvk2A1,ak
.
✓
max
ak

cak

◆
kvk2A1

,(3.25)

where cak are the Poincaré constants on each aggregate ak; cf. [49], [61]. In addition,
k · kD1,ak and k · kA1,ak denote the D1- and A1-norms restricted to the aggregate ak,
respectively.

The second estimate follows from the triangle inequality, (3.5), and (3.25), namely,

kvck2A1
. kvk2A1

+ kv� vck2A1
. kvk2A1

+ kv� vck2D1
. kvk2A1

.

Next, we consider estimates on the specific subspaces used for the Schwarz
smoother (3.8b) (with using A1 instead of A), which is defined by taking the infi-
mum over all possible decompositions of any fine scale function v 2 V based on the
space decomposition V = Vc +

PJ
j=1 Vj . We want to show the stability condition in

the A1-norm; that is, choosing the decomposition (3.22), we achieve a uniform bound
on that infimum.

Proposition 3.8. For any v 2 V , let {vc}[{vj}Jj=1 be the subspace decomposition

defined in (3.22). Then

kvck2A1
+

JX

j=1

kvjk2A1
. kvk2A1

.(3.26)

The stability constants hidden in “.” depend on the maximal number of nonzeros

per row in A1; the maximum of the local Poincaré constants of each aggregate ak,
k = 1, . . . , nagg; and the maximum over the number of intersections between the sub-

spaces Vj, j = 1, . . . , J .
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Proof. Using (3.5), the definition of �j , and Lemma 3.7, we obtain that

kvck2A1
+

JX

j=1

kvjk2A1
= kvck2A1

+
JX

j=1

k�j(v� vc)k2A1

. kvck2A1
+

JX

j=1

k�j(v� vc)k2D1
(from (3.5))

. kvck2A1
+ kv� vck2D1

(by the definition of �j)

. kvk2A1
(from Lemma 3.7).

3.4.2. Stability condition in A0. Finally, to prove the stability of the de-
composition in the A0-seminorm, it is necessary to specify some properties of the
lower-order term a0(·, ·). While it slightly limits the applicability of our approach, the
example problems we are considering in section 4 adhere to the required assumptions.

Let L : V� ! V⌦ be a metric function on the vertices of the graph such that

L(i) = argmin{dist(i, j), j 2 V⌦}, i2 V�.(3.27)

The metric dist(·, ·) can be any metric between the graph vertices in V� and V⌦.
For example, in the reduced EMI example, it can be dist(i, j) := kpi � pjk, where pi

and pj are the spatial locations of the vertex i 2 V� and j 2 V⌦, respectively. The
function L(·) is single-valued, but its pseudoinverse is possibly set-valued and can
be extended to the whole V. More specifically, the inverse L

�1 : V⌦ ! V� and its
extension L̃ : V⌦ ! V are defined as

L
�1(j) = {i2 V� : L(i) = j}, L̃(j) = {j}[L

�1(j), j 2 V⌦.(3.28)

Note that if for j1, j2 2 V⌦, j1 6= j2, then L
�1(j1) \ L

�1(j2) = ;, and consequently
L̃(j1) \ L̃(j2) = ;. Also, it is possible to have L

�1(j) = ;, and that holds for j 2 V⌦,
which do not interpolate any i 2 V�. For example, in the reduced EMI equations,
that applies to the “interior” DOFs of the three-dimensional subdomain that have no
contribution in the averaging operator �. On the other hand, note that L̃(j) 6= ; and
is surjective for all j 2 V . This motivates us to redefine the lower-order term a0(·, ·)
from (3.7c) to

a0(u, v) =
X

i2V�

mi(u�,i � uL(i))(v�,i � vL(i)),(3.29)

and the seminorm becomes

|v|2A0
=
X

j2V⌦

X

i2L�1(j)

mi(v�,i � v⌦,j)
2
, v= (v⌦, v�)2 V.(3.30)

In this setting, we can easily represent the kernel of the matrix A0, that is,

Ker(A0) = span{1L̃(j), j 2 V⌦};(3.31)

thus, the size of Ker(A0) can be as large as the number of vertices in V⌦. Notice,
however, that Ker(A0) is not equal to V⌦, as it also involves the coupling between
elements of V� and V⌦. By definition, the aggregates ak, k = 1, . . . , nagg, are disjoint
subsets of V, and hence for every i 2 V, there exists a unique k 2 {1, . . . , nagg} such

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

8/
24

 to
 1

30
.6

4.
64

.3
6 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



AMG FOR METRIC-PERTURBED COUPLED PROBLEMS A1475

that i2 ak, and we denote a(i) := ak. In accordance with this, we make an assumption
that the aggregates are constructed as follows:

a(j) = L̃(j), j 2 V⌦ such that L
�1(j) 6= ;.(3.32)

Such an assumption is not restricting our approach, as the sets L�1(j) are well-defined,
and for j1 6= j2, where j1, j2 2 V⌦, these sets are disjoint. The aggregation can be
constructed by first choosing L̃(j) as aggregates as long as L�1(j) 6= ;. In such a case,
for a given v 2 V and vc =

Pnagg

k=1 vak 2 Vc, we have that a0(vc, vc) = 0; that is, the
form a0(·, ·) vanishes on the coarse space. As a consequence, we have the stability of
the decomposition (3.22) in A0.

Proposition 3.9. For any v 2 V , let {vc}[{vj}Jj=1 be the subspace decomposition

defined in (3.22). Then

|vc|2A0
+

JX

j=1

|vj |2A0
. |v|2A0

;(3.33)

that is, the decomposition is stable in the A0-seminorm. The stability constants de-

pend on the maximal number of nonzeros per row in A0; the maximum of Poincaré

constants of each aggregate ak, k = 1, . . . , nagg; and the maximum the number of

nontrivial intersections between the subspaces Vj, j = 1, . . . , J .

Proof. The proof follows analogously to the proof of Proposition 3.8 by replacing
A1 with A0 and D1 with the diagonal of A0 and noting that |vc|A0

= 0 for the coarse
space functions vc =

Pnagg

k=1 vak 2 Vc.

3.5. On the multiplicative version of the preconditioner. As is well known
[59, 20], additive and multiplicative versions of a two-level AMG preconditioner, in-
cluding the preconditioner described in this paper, are closely related. Starting
with the smoother, the multiplicative smoother Smult is defined as I � SmultA :=QJ

j=1(I � Pj) and, based on the well-known result in many references (see, e.g., [59],
[20], [57], [63, Lemma 3.3]), is equivalent to the additive smoother S in (3.8). In
particular, the following inequality holds for w 2 V :

1

4
kwk2S�1 . kwk2

S�1

mult
. kwk2S�1 .(3.34)

The upper bound only depends on the maximal degree in the graph of subspaces
{Vj}Jj=1 with vertices {1, . . . , J} and edges given by pairs of indices (i, j) for which
Vj \ Vi 6= {0}. That is the maximal number of intersections of any subspace Vj

with other subspaces Vi, i 6= j. Similarly, we define the multiplicative version of the
two-level AMG preconditioner Bmult as I � BmultA := (I � PcA)(I � SmultA). An
inequality in the same form of (3.34) with S and Smult replaced by B and Bmult,
respectively, can be established based on the same arguments. Such an inequality
shows the equivalence between B and Bmult. The theoretical estimate regarding the
convergence of Bmult is basically similar to the result of [36, Theorem 4.2] and thus is
omitted here. We comment that such a result is an analogue of the condition number
estimate of B given in Theorem 3.5.

Using the techniques which we have employed in showing stability for the subspace
decomposition in the A1-norm, we can show the “weak” approximation property,
which is a necessary and su�cient condition for uniform two-level AMG convergence
[26], [63, Theorem 3.5]. The approximation result reads as follows: For any v 2 V ,
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A1476 BUDIŠA, HU, KUCHTA, MARDAL, AND ZIKATANOV

there exists vc 2 Vc such that the following estimates hold independently of parameters
h and �:

kv� vck2S�1

mult
. kvk2A◆

, ◆2 {0,1},(3.35)

where we can take v 2 Ker(A0)?A1 for ◆ = 0. This estimate, which follows from the
results we have shown for the additive preconditioner, gives the uniform convergence
of the multiplicative method.

4. Implementation. We dedicate this section to explaining what the conver-
gence conditions mean and how they can be utilized to construct uniformly convergent
multilevel methods in di↵erent applications, namely, with regard to example problems
in section 2. Moreover, we confirm the theory with numerical results1 that are ob-
tained using software components HAZniCS [8]. Unless stated otherwise, the finite
element problems are assembled using FEniCS [40] and FEniCSii [31].

4.1. Bidomain model. Consider A and M to be the matrix representations
of the Laplacian �� : V ! V

0 and the L
2-inner product on V , respectively. With

V̄ = V ⇥V , let K̄ = (Ā+ �M̄) : V̄ ! V̄
0 represent the system operator in (2.2), where

Ā=

✓
↵eA

↵iA

◆
and M̄ =

✓
M �M

�M M

◆
.

Furthermore, denote a coarse space Vc ⇢ V and the corresponding (surjective) pro-
longation operator P : Vc ! V , and combine V̄c = Vc ⇥ Vc and P̄ : V̄c ! V̄ . As
mentioned in subsection 3.5, the necessary and su�cient condition for convergence of
the two-level AMG method for solving (2.2) is the weak approximation property. If
S̄ : V̄ 0 ! V̄ is the smoother for the two-level AMG method on K̄, then we want that
for any y 2 V̄ , there exists y0 2 V̄c such that

ky� P̄ yck2S̄�1 Ckyk2K̄(4.1)

for some C > 0. This is satisfied for standard (pointwise) smoothers such as the Jacobi
or the Gauss–Seidel method, but they do not guarantee that the bound is independent
of �. On the other hand, following the theory derived in section 3, we can show that
the smoother

S̄
�1 =

✓
↵eDA + �DM ��DM

��DM ↵iDA + �DM

◆
(4.2)

satisfies the stability and kernel conditions, with DM and DA being diagonals of ma-
trices M and A, respectively. Actually, we can directly prove the weak approximation
property in this case by relying on two results from (3.5): For v 2 V , there exists
vc 2 Vc such that

kv� Pvck2DA
CAkvk2A and kv� Pvck2DM

CMkvk2M ,(4.3)

with CA,CM > 0 depending only on the number of nonzeros per row in A and M ,
respectively. Take y= ( vevi )2 V̄ . Define w

+ = 1
2 (ve + vi) and w

� = 1
2 (ve � vi) so that

y=

✓
w

�

�w
�

◆
+

✓
w

+

w
+

◆

| {z }
2Ker(M̄)

.(4.4)

1Source codes for all the examples are available at https://github.com/anabudisa/metric-amg-
examples.
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We know that w
+
,w

� 2 V , so there exist w
+
c ,w

�
c 2 Vc that satisfy (4.3). Taking

yc 2 V̄c as yc = ( w�
c

�w�
c
) + (w

+

c

w+

c
), it follows that

ky� P̄ yck2S̄�1 = k
✓

w
� � Pw

�
c

�(w� � Pw
�
c )

◆
k2S̄�1 + k

✓
w

+ � Pw
+
c

w
+ � Pw

+
c

◆
k2S̄�1

= (↵e + ↵i)
�
kw� � Pw

�
c k2DA

+ kw+ � Pw
+
c k2DA

�
+ 2�kw� � Pw

�
c k2DM

max{CA,CM}
�
(↵e + ↵i)

�
kw�k2A + kw+k2A

�
+ 2�kw�k2M

�

=max{CA,CM}kyk2K̄ .

It is possible to notice where a pointwise smoother would fail to control (with regard
to �) functions y 2 V , where the kernel part in (4.4) is nonzero. For example, for a
Jacobi smoother given as the diagonal of the system matrix K̄ (which only contains
DA), we are left with an extra term 2�kw�k2M in the third line in the above proof
which is unbounded in �.

Interestingly, the UA-AMG method for K̄ handles the near-kernel functions nat-
urally. Due to the two-by-two block structure of M̄ and the fact that M is a mass
matrix, we can obtain a special prolongation operator:

P̄ =

✓
IV

IV

◆
: V̄c ! V̄ and V̄c = V.(4.5)

That is, in the two-level method, each coarse space DOF is constructed by combining
two fine scale DOFs that are coupled with M̄ , and the total number of DOFs in the
coarse space is half of the fine scale space. Note that Range(P̄ ) is exactly the near
kernel of K̄, which implies that the coarse grid correction will handle this type of
function and simultaneously preserve stability.

This kind of construction is possible since the coupling is present in the whole
domain and the DOFs in each subdomain align with each other. The more interest-
ing case of lower-dimensional interface coupling is given in the following subsections,
where both a special prolongation and a Schwarz smoother are needed for uniform
convergence, even though the aim of this example is to show in a simple context
what the conditions derived in subsection 3.2 mean and how uniform convergence
can be obtained in any multilevel setting. Indeed, on grids obtained by a successful
refinement, the UA-AMG discussed in this section resolves completely the near-kernel
components of the error on the first coarse grid and, as a consequence, allows for the
use of geometric multigrid hierarchies on coarser levels.

This is also numerically confirmed in the following results. First, we consider
the problem (2.2) on a shape regular triangulation of a unit square domain ⌦ =
(0,1)2 and discretized with the continuous linear finite elements P1. To solve the
problem, we use a conjugate gradient (CG) method preconditioned with di↵erent
configurations of the AMG method, and we test the solver performance against mesh
refinement and coupling strength. The common settings in all configurations are a
two-level aggregation-based AMG method, one W-cycle per iteration, and a direct
solver (UMFPACK [14]) on the coarse grid. We compare the performance of the
UA-AMG and SA-AMG with or without the special prolongation (4.5) and with the
kernel-aware Schwarz smoother (3.8b) or a pointwise (Gauss–Seidel) smoother. Both
smoothers are applied in a symmetric multiplicative way.

The results are given in Figure 1. As expected, the regular AMG method (AMG
in Figure 1) is fairly stable with regard to mesh refinement, but using a smoother
that does not satisfy kernel conditions (3.9), we obtain a significant increase in the
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Fig. 1. Number of iterations and estimated condition number of the CG method preconditioned
with aggregation-based AMG to solve the bidomain problem (2.2) in ⌦= (0,1)2. We show the perfor-
mance of the AMG preconditioner without regular prolongation and pointwise smoother operators,
with using the Schwarz smoother (3.8b) satisfying the kernel conditions, with special prolongation in
(4.5), and with using both the Schwarz smoother and special prolongation, which are, respectively,
shown in the first, second, third, and fourth columns. Hollow marks indicate using the UA-AMG
method and full marks using the SA-AMG method. The color of the lines indicates the magnitude
of the coupling parameter � ranging from 1 (blue) to 1010 (red).

number of iterations and condition number with increasing �. Replacing Gauss–
Seidel with a kernel-aware Schwarz smoother (4.2) (AMG + Schwarz), we see a more
robust performance with regard to the coupling parameters �. However, the Schwarz
smoother may influence the stability conditions (3.33), resulting in the increase of
number of iterations for finer meshes in the case of UA-AMG. This behavior is stabi-
lized using the prolongation operator (4.5) (AMG + P with only prolongation (4.5) and
AMG + Schwarz+P with both smoother (4.2) and prolongation (4.5)), which confirms
the theory that both kernel and stability conditions are necessary for the uniform
convergence. Moreover, the AMG preconditioner with the prolongation operator P̄

performs similarly when using the kernel-aware smoother S̄ or not. As mentioned,
Range(P̄ ) is exactly the near kernel of K̄, so both convergence conditions are already
satisfied. Thus, in this specific example, it is most e�cient to use the method AMG + P.
If Range(P̄ ) did not contain the near kernel of the system operator, we would need to
use the method with an additional kernel-aware Schwarz smoother (AMG + Schwarz+P)
to retain uniform convergence.

Additional performance results of the AMG-preconditioned CG method are shown
in a three-dimensional setting in Figure 2. We consider again a shape regular simpli-
cial mesh of the unit cube domain ⌦= (0,1)3 and P1 finite element discretization. We
study the number of CG iterations, condition number, and CPU time consumption
with regard to mesh refinement and coupling parameter magnitude. The computa-
tions for this example are performed on a workstation with a 3.9GHz Intel Core
i7-1065G7 CPU and 32GB of RAM. We can conclude that while the AMG precon-
ditioner, both with and without using the prolongation operator (4.5), performs uni-
formly with regard to the system size, the prolongation operator is definitely needed
to achieve stable performance for larger values of �.

Remark 4.1 (geometric multrigrid). The bidomain smoother (4.2) can be viewed
as a Schwarz smoother for DOFs located at a “star”-patch/macroelement of each
vertex. To show robustness of our approach in the geometric multigrid setting, we
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Fig. 2. Number of iterations, estimated condition number, and total solving CPU time of the
CG method preconditioned with UA-AMG to solve the bidomain problem (2.2) in ⌦= (0,1)3, shown
in the first, second, and third columns, respectively. We compare the performance of the standard
AMG preconditioner (marked with dashed lines) and AMG with using the special prolongation in
(4.5) (marked with full lines). The color of the lines indicates the magnitude of the coupling param-
eter � ranging from 1 (blue) to 1010 (red).

Table 1
Number of preconditioned CG iterations using a geometric multigrid and smoother (2.1) for

bidomain equation (2.2) with ⌦= (0,1)2 and discretization by P1-elements.

#DOFs
�

1 102 104 106 108 1010

2178 19 19 18 19 19 20
8450 19 19 18 18 19 19
33282 19 19 17 17 19 19
132098 19 19 17 17 17 18
526338 19 19 17 17 17 17

implemented a multigrid preconditioner for (2.2) using the PCPATCH framework
[16] for the required space decompositions. The finite element discretization was done
with the Firedrake [47] library, which provides a convenient interface to PCPATCH
preconditioners. Using the two-dimensional geometry from subsection 4.1, we show in
Table 1 the number of CG iterations required for convergence with relative error toler-
ance of 10�10. The preconditioner applied a single V -cycle per CG iteration. We ob-
serve that the iteration counts are bounded in mesh size and the coupling parameter �.

4.2. EMI model. We next investigate the performance of the proposed AMG
method for solving the EMI model (2.3) in both two-dimensional and three-dimensional
settings. In the former case, we let ⌦i = (0,1)⇥ (0, 12 ), ⌦e = (0,1)⇥ ( 12 ,1), while in
three dimensions, ⌦i = (0,1)2 ⇥ (0, 12 ), ⌦e = (0,1)2 ⇥ ( 12 ,1). In both cases, Dirichlet
conditions are prescribed on boundary surfaces parallel with the interface �. Neu-
mann conditions are set on the remaining parts of the boundary. The systems (2.4)
are then discretized by P1 elements and solved by the preconditioned CG method.
Following subsection 4.1, the preconditioner uses UA-AMG with a maximum of 10
levels and a Schwarz smoother (3.8b). With this setup, the number of iterations
required for reducing the initial preconditioned residual norm by 1010 is given in
Table 2. In both two-dimensional and three-dimensional cases, the iterations are
bounded in the coupling strength.

4.3. Reduced one-dimensional EMI model. In the case of mixed-dimensional
modeling, the interface coupling is usually supported on and in a close neighborhood
of the lower-dimensional subdomain, where the higher-dimensional quantity is pro-
jected using a trace or an averaging operator ⇧⇢. Hence, the representation of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 2
Number of preconditioned CG iterations required for solving the EMI model (2.3) with AMG

using smoother (3.8b).

⌦i [ ⌦e = (0, 1)2 ⌦i [ ⌦e = (0, 1)3

#DOFs
�

1 102 104 106 108 1010
#DOFs

�
1 102 104 106 108 1010

4290 16 15 15 15 15 15 150 3 3 3 3 3 3
16770 18 18 18 18 18 18 810 5 6 6 6 6 6
66306 19 19 19 19 19 19 5202 8 9 9 9 9 9
263682 20 21 20 20 20 20 37026 13 13 13 13 13 13
1051650 21 22 20 20 20 20 278850 17 17 16 16 16 16

kernel of the coupling term is tightly linked to the representation of the operator ⇧⇢.
In the following, we show how the choice of the operator ⇧⇢ influences the choice
of Schwarz subspaces and how the algebraic kernel and stability conditions induce a
geometric multigrid method to solve the three-dimensional/one-dimensional coupled
problem (2.5).

Assume that we are given simplicial meshes of ⌦ and �, i.e., T �
h and T ⌦

h , which
do not necessarily match. Additionally, assume that V = V⌦ ⇥ V� is a nodal-based
FEM approximation, e.g., V⌦ = P1(⌦) and V� = P1(�). We can define the interface
(metric) operator similarly to (3.2) as R =

�
�⇧⇢ I�

�
. Denote also n⌦ = dimV⌦,

n� = dimV�, and n = dimV = n⌦ + n�. Then we describe the kernel of coupling
operator A0 =R

T
M�R as

Ker(A0) =

⇢✓
v⌦

v�

◆
2 V :⇧⇢v⌦ = v�

�
=

⇢✓
v⌦

⇧⇢v⌦

◆
, v⌦ 2 V⌦

�
.(4.6)

We can decompose the whole space as V = Ker(A0) � Ker(A0)?, where ? regards
the orthogonality in the A-norm, with A = A1 + �A0 and A1 = diag{A⌦,A�}. We
closely follow the derivation in subsection 3.3 to find a Schwarz decomposition of V
that satisfies the kernel condition (3.9).

Assume some ordering of DOFs in V⌦ and V�. Motivated by the kernel charac-
terization in (4.6), we can say that for every i2 {1, . . . , n⌦}, we define

N�(i) = {k 2 {1, . . . , n�} : (R)ki 6= 0},(4.7)

where (R)ij is the element in R in ith row and jth column. Therefore, for each
i2 {1, . . . , n⌦}, we define

T i
h = {⌧ 2 T ⌦

h :xi 2 ⌧}[ {⌧ 2 T �
h :xk 2 ⌧, k 2N�(i)},(4.8)

⌦i
h = int

⇣[
T i
h

⌘
,(4.9)

where xj are the coordinates of the node j. Then the Schwarz subspaces are given by

Vi =

⇢
v=

✓
v⌦

v�

◆
2 V : supp(v)⇢ ⌦̄i

h

�
, i2 {1, . . . , n⌦}, and V =

n⌦X

i=1

Vi.(4.10)

Using this definition and with simple computation, it follows that Ker(A0) =Pn⌦

i=1Ker(A0)\ Vi.
This construction of Schwarz subspaces is used in the following numerical ex-

ample. The problem is defined by the geometry illustrated in the right part of
Figure 3. The neuron geometry is obtained from the NeuroMorpho.Org inventory
of digitally reconstructed neurons and glia [41]. The neuron from a mouse’s brain
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Fig. 3. (Left) Illustration of overlapping Schwarz subspaces for an example of nonfitted mesh
for the coupled three-dimensional/one-dimensional problem (2.5). Assuming nodal finite element
discretization, each Schwarz subspace (in blue and yellow) is local and contains the support of
functions (three dimensions and one dimension) defined in DOFs that are coupled via the operator
⇧⇢. Here, the radius of coupling ⇢ contains only the closest three-dimensional nodes (in light blue).
The overlap is marked in green. (Right) Domain geometry of the three-dimensional/one-dimensional
problem (2.5) The one-dimensional domain is the neuron and the network of neuronal dendrites,
while the three-dimensional domain (a shallow clip) represents extracellular space. The outline of
the three-dimensional domain is marked with black lines.

includes only dendrites (no axon or soma) and a total of 25 branches. It is embedded
in a rectangular box of approximate dimensions of 222 µm ⇥ 369 µm ⇥ 65 µm. Then
the mixed-dimensional geometry is discretized with an unstructured tetrahedron mesh
fitted to �; i.e., line segments in the mesh of � are also edges of the three-dimensional
mesh of ⌦. We use P1 finite elements for discretization of both the three-dimensional
and the one-dimensional function spaces. In total, we have 3391127 DOFs for the
three-dimensional problem and 7281 DOFs for the one-dimensional problem. Addi-
tionally, we enforce homogeneous Neumann conditions on the outer boundary of both
subdomains.

To obtain the numerical solution, we use the CG method preconditioned with the
AMG method described in section 3. The convergence is considered reached if the l2

relative residual norm is less than 10�6. We choose the SA-AMG that uses the block
Schwarz smoother (symmetric multiplicative) defined by the kernel decomposition
(4.10) for the DOFs that couple with regard to ⇧⇢ and the symmetrized Gauss–
Seidel smoother on the three-dimensional interior DOFs. We study the performance
of our solver with regard to parameters � that, resulting from the coupled membrane
ODE from the full EMI model, relates to the inverse of the time step size �t, the
coupling/dendrite radius ⇢, and the membrane capacitance Cm [7]. That said, the
intra- and extracellular conductivities and membrane capacitance parameters remain
constant and fixed throughout their respective domains to ↵e =3 mS cm�1, ↵i =7 mS
cm�1, and Cm =1 µF cm�2 [6], while we vary the time step size and coupling radius.

The results given in Table 3. The first three rows use the averaging operator (2.6)
as the coupling operator between three-dimensional and one-dimensional DOFs with
the radius ⇢ as the coupling radius. Thus, the Schwarz subspaces (4.10) are larger
with larger ⇢, and evaluating the Schwarz smoother may become expensive. On the
other hand, using a weighted average and defining the value of the one-dimensional
DOF by averaging of the values of the three-dimensional DOFs at the same element
(at a distance at most h from the one-dimensional DOF) results in Schwarz subspaces
of a smaller dimension. Hence, even though the number of iterations is slightly larger,
the application of the Schwarz smoother in this case is computationally cheaper than
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Table 3
Number of preconditioned CG iterations required for solving the reduced EMI model (2.5) with

AMG using smoother (3.8b). (*) denotes that we are using the three-dimensional-to-one-dimensional
trace operator as the coupling operator.

⇢ [µm]
(�t)�1 [s�1]

1 102 104 106 108 1010

5.0* 2 2 2 3 3 4
1.0* 2 2 2 3 3 4
0.2* 2 2 2 3 4 4
0.0* 5 5 6 8 10 10

the case when the averaging is done using the prescribed physical radius. Note that
we still need to scale the physical parameters for intracellular space and membrane
due to dimension reduction, and we use ⇢=1 µm. Additionally, we note that this
type of averaging corresponds to an implementation of the three-dimensional-to-one-
dimensional trace operator, but such problem formulation is not well-posed in stan-
dard norms and can cause issues with h-refinement [18]. In summation, we observe a
stable number of CG iterations in all cases considered; that is, the method is robust
with regard to the problem parameters.

5. Conclusions. We have developed an AMGmethod to solve coupled interface-
driven multiphysics problems. The method is aggregation based and introduces a
custom Schwarz smoother that specifically handles the strongly weighted lower-order
term on the interface. We state two conditions, the kernel and the stability conditions,
required for the Schwarz decomposition and the aggregation to ensure uniform con-
vergence of the two-level method. The conditions are constructive, and the method
is purely algebraic, only requiring information on the coupling of the interface DOFs.
This means that the solver can be easily implemented and applied to a variety of
PDE systems. Additionally, the solver can also be realized in a geometric multigrid
way, allowing for direct grid refinement around lower-dimensional inclusions. We have
highlighted the e↵ectiveness of the proposed solver to solve problems arising in models
of electrical activity of excitable cells, specifically the bidomain equations, the EMI
equations, and the three-dimensional/one-dimensional coupled EMI equations.

Appendix A. Finite element matrices and graph Laplacians. We now
show that a finite element discretization of an elliptic PDE is spectrally equivalent
to a weighted graph Laplacian problem. The constants of the spectral equivalence
depend on the polynomial degree used for the discretization.

Lemma A.1. Let Th be a simplicial mesh in Rd
and Ah 2 RN⇥N

be the sti↵ness

matrix corresponding to the discretization of an elliptic operator Lu := �div (ru)
with piecewise polynomial space of N DOFs. Then Ah is spectrally equivalent to a

weighted graph Laplacian,

hAhv, vi`2 h hAv, vi`2 , hAv,wi`2 :=
X

e

!e�ev �ew, v,w 2RN
,(A.1)

where, for DOFs i, j 2 {1,2, . . . ,N} and graph edge e = (i, j), �ev = vi � vj are edge

di↵erences and !e = !ij > 0, j < i are edge weights.

Proof. Let us consider a simplex T 2 Th. Let nT be the number of DOFs in T ,
and define
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|v|21, :=

Z

T
rv ·rv= |T |

Z

bT
b
h
��1

T
brbv
i
·
h
��1

T
brbv
i
,

|v|2A := |T |
X

e2ET

|e|�2
!e(�ev)

2
, !e > 0, e2 ET ,

(A.2)

where ET ⇢ {1, . . . , nT } ⇥ {1, . . . , nT }, |e| is the length of the edge e, and !e are to
be specified soon. On a shape regular mesh, this can be taken to be the diameter of
T . The only requirement on ET is that these edges (pairs of DOFs) contain all DOFs
and that the corresponding graph with vertices {1, . . . , nT } and edges ET is connected.
Thebdenotes the standard mapping to the reference simplex in Rd:

bx2 bT 7!�T bx+ x0 2 T, �T = (x1 � x0, . . . , xd � x0) .(A.3)

Notice that
����1

T

�� h |e|�1, with equivalence constants depending on the shape reg-
ularity of the mesh. Then, for any choice of !e > 0, we have that |v|A is a norm
on RN

/R, and, similarly, |v|1, is also a norm on the same finite-dimensional space.
These norms are equivalent, with constants of equivalence depending on the shape
regularity of the mesh and the variations in  in each element [61, Lemma 14.1]. The
weights !e can be chosen so as to minimize the constants in the spectral equivalence.
Choosing !e = 1

T

R
T  for all e 2 ET works in all cases when  is piecewise smooth.

The proof is then concluded as follows (with v 2RN ):

hAhv, vi`2 =
X

T

|v|21, h
X

T

|T |
X

e2ET

|e|�2
!e(�ev)

2 h |v|2A.(A.4)

An instructive example of the spectral equivalence from Lemma A.1 is to consider
the piecewise linear continuous elements on a shape regular mesh. Then we can choose
A as follows:

hAv, vi=
X

e2E
|e|d�2

!e(�ev)
2
, !e =

X

T�e

1

T

Z

T
.(A.5)

With such choice, the constants in Lemma A.1 only depend on the shape regularity
of the mesh.

Reproducibility of computational results. This paper has been awarded
the “SIAM Reproducibility Badge: Code and data available” as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/anabudisa/metric-amg-examples and
in the supplementary materials (metric-amg-examples-master.zip [local/web 30KB]).
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[48] J. Schöberl, Multigrid methods for a parameter dependent problem in primal variables, Nu-
mer. Math., 84 (1999), pp. 97–119.

[49] A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing
Markov chains, Inform. and Comput., 82 (1989), pp. 93–133, https://doi.org/10.1016/
0890-5401(89)90067-9.

[50] J. G. Stinstra, C. Henriquez, and R. MacLeod, Comparison of microscopic and bidomain
models of anisotropic conduction, in 2009 36th Annual Computers in Cardiology Confer-
ence (CinC), IEEE, New York, 2009, pp. 657–660.

[51] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, and A. Tveito, Computing
the Electrical Activity in the Heart, Monogr. Comput. Sci. Engrg. 1, Springer Science &
Business Media, New York, 2007.

[52] J. Sundnes, B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines, and A. Tveito, On the com-
putational complexity of the bidomain and the monodomain models of electrophysiology,
Ann. Biomed. Eng., 34 (2006), pp. 1088–1097.

[53] A. Toselli and O. Widlund, Domain Decomposition Methods—Algorithms and Theory,
Springer Series in Computational Mathematics 34, Springer-Verlag, Berlin, 2005.

[54] L. Tung, A Bi-domain Model for Describing Ischemic Myocardial D-C Potentials, Ph.D. thesis,
Massachusetts Institute of Technology, 1978.

[55] A. Tveito, K. H. Jæger, M. Kuchta, K.-A. Mardal, and M. E. Rognes, A cell-based
framework for numerical modeling of electrical conduction in cardiac tissue, Front. Phys.,
5 (2017), 48.
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