2406.01792v1 [cs.PL] 3 Jun 2024

arxiv

The SemGuS Toolkit

Keith J.C. Johnson', Andrew Reynolds?, Thomas Reps!, and Loris D’Antoni’
CAV

Artifact
Evaluation

CAvV

Artifact
Evaluation

1 University of Wisconsin-Madison
2 University of Iowa
*

Available

Abstract. Semantics-Guided Synthesis (SemGuS) is a programmable
framework for defining synthesis problems in a domain- and solver-
agnostic way. This paper presents the standardized SemGuS format,
together with an open-source toolkit that provides a parser, a verifier,
and enumerative SemGuS solvers. The paper also describes an initial set
of SemGuS benchmarks, which form the basis for comparing SemGuS
solvers, and presents an evaluation of the baseline enumerative solvers.

* * K

Reusable

1 Introduction

The field of program synthesis aims to create tools that can automatically create
a program from a specification of desired behavior. Synthesis holds the promise
of easing the burden on programmers (e.g., by finding solutions to tricky special
cases automatically), and allowing non-programmers to create programs merely
by indicating the outcome that they want the program to produce.

While program synthesis has seen successes in many industrial applica-
tions [239], these successes have typically been achieved using domain-specific
synthesizers that take advantage of the structure of the specific domain.

To apply synthesis beyond specific domains, synthesis frameworks and tools
should allow one to customize the search space and specifications of a synthesis
problem in a programmable way that is agnostic of a specific domain or synthesis
solver. To address the problem of making synthesis “programmable”, Kim et
al. [I5] proposed the SemGusS framework, which enables one to specify synthesis
problems in a solver-agnostic and domain-agnostic way [7].

The SemGuS framework allows one to specify an arbitrary synthesis prob-
lem by defining a programming language via (i) a grammar (the syntax), and
(ii) a set of Constrained Horn Clauses (CHCs) (the semantics). Once one has
described the language, one can define synthesis problems over that language by
providing a specification as a formula. Solving the synthesis problem means find-
ing a program in the language that satisfies the specification. Building solvers for
general SemGusS problems can be difficult due to the framework’s flexibility [7].

This paper presents the SemGusS toolkit, which provides an open-source im-
plementation of the components needed for researchers to get started building
SemGusS solvers. The toolkit consists of the following components.

SemGuS Format 1.0: The first standardized format for SemGusS, which is built
on top of the SMT-LIB and SyGuS formats [BI21], thus making it expressible,

https://doi.org/10.5281/zenodo.10947134

2 Keith J.C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

extensible, modular, and easy to integrate with existing constraint solvers (e.g.,
to build SemGusS verifiers). We provide an open-source parser (Section .

Baseline Verifier and Solvers: The flexibility of SemGuS makes verifying
whether a term is a solution to a SemGuS problem undecidable. Furthermore,
because the semantics of the user-provided programming language is expressed
declaratively using CHCs, it is even challenging to efficiently execute programs
in the language. Our implementation provides a compiler that, given a term ¢
in the user-specified language, can extract efficiently executable semantics for ¢
from the declarative one provided by the user, as well as an incomplete SMT-
based verifier that can construct constraints for checking whether ¢ matches a
specification ¢. We also provide implementations of top-down and bottom-up
example-based enumerative solvers that are integrated with these verifiers and
can thus produce solutions to SemGuS problems (Section .

Benchmarks: We provide 431 SemGuS benchmarks from different domains.
Our solvers can only solve 161/431 benchmarks, and we hope this toolkit will
energize the community to build solvers for the remaining challenging problems
and to provide additional benchmarks (Section .

2 The SemGuS Format 1.0

We refer the reader to the original SemGusS paper [15] for a more formal definition
of the SemGuS framework, but in this section we show how each component is
expressed in our proposed standard format. The SemGusS parser (https://github.
com/semgus-git /Semgus-Parser) can translate the textual SemGusS format into
two intermediate representations: a JSON format and a declarative S-expression
format, which is then used by solvers and other tools.

Figures |1 and [2] give an example specification of a SemGuS problem, which
we describe in detail in this section. In this example, the goal is to synthesize an
imperative program (with loops) that multiplies two numbers through iterative
addition. We choose this example because it illustrates how SemGuS can de-
scribe synthesis problems involving complex programming constructs and is thus
strictly more expressive than limited synthesis frameworks, such as SyGuS [I].

Term Universe. SemGuS problems define a universe of terms with a modified
SMT datatype declaration using the command declare-term-types (lines
of Figure [1)). This command defines the syntax of the programming language
over which one can specify synthesis problems. The term universe L is inten-
tionally separated from the sub-universe (defined by a grammar) from which the
answer is to be synthesized, and from the constraints on the answer (Figure [2).
The user defines L and its semantics once and for all, and can reuse those defini-
tions for different synthesis problems. This separation enables both (i) building
specialized SemGuS solvers for important languages (e.g., L = SQL), and (ii)
instantiating more restricted synthesis problems by confining the search space
to just the terms generated by a grammar.

https://github.com/semgus-git/Semgus-Parser
https://github.com/semgus-git/Semgus-Parser

© 00 N O W N -

L e S N
o Ul W N - O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

The SemGuS Toolkit

Nonterminals

(declare-term-types ((F 0) (S 0) (E 0) (B 0))
Term Universe (i.e., language syntax)

E

((($function S E)) S F
(($x<- E) ($y<- E) ($r<- E)

($noop) ($seq S S) ($while B S)) ;5 S
(($r) ($0) ($1) ($x) (3y) ($+ E E) ($- E E)) ;; E

(($< E E))))

;; Constrained Horn Clauses (i.e.,
(define-funs-rec
Types of semantic relations

;s B
language semantics)

’ s

((F.Sem ((t F) (x Int) (y Int) (ret Int)) Bool)
(8.8em ((t S) (xi Int) (yi Int) (ri Int) (xo Int)
(yo Int) (ro Imt)) Bool)
(E.Sem ((t E) (xi Int) (yi Int) (ri Int) (out Int)) Bool)
(B.Sem ((t B) (xi Int) (yi Int) (ri Int) (out Bool)) Bool))

H semantic relations

CHCs defining

(;; Semantics of functions
(! (match t (...)) :input (x y) :output (ret))
;3 Semantics of statements
(! (match t
..more S productions...
(($noop) ;; Noop statement
(and (= xi xo0) (= yi yo) (= ri ro)))

(($seq t1 t2) ;3 Sequential composition
(exists ((x1 Int) (y1 Int) (rl1l Int))
(and (S.Sem t1 xi yi ri x1 yi1 ril)
(S.Sem t2 x1 y1 rl xo yo ro))))
(($while tb ts) ;; While statement
(exists ((b Bool) (x1 Int) (y1l Int) (r1l Imnt))
(and (B.Sem tb xi yi ri b) ;; While-true
(= b true)
(5.8em ts xi yi ri x1 yi1 ri)
(S.Sem t x1 y1 rl xo yo ro)))
(exists ((b Bool))
(and (B.Sem tb xi yi ri b) ;;
(= b false)
(= x0 xi) (= yo yi) (= ro ri))))))
:input (xi yi ri) :output (xo yo ro))
Semantics of integer expressions

While-false

3

(! (match t (...)) :input (xi yi ri) :output (out))
;; Semantics of Boolean expressions
(! (match t (...)) :input (xi yi ri) :output (out))))

Fig. 1. Definition of a programming language (i.e., a set of programs) in the SemGuS
format. The syntax of terms is given in lines and their semantics is given in lines@»
[@3] The gray text denotes parts that have been omitted for brevity.

4 Keith J.C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

Semantics as CHCs. The semantics of our term language is given by the
SMT-LIB command define-funs-rec (lines. In a nutshell, this command
defines a set of Constrained Horn Clauses (CHCs) inductively over terms in the
universe. A CHC is a first-order formula of the form:

VZ1,. . T, T OAR1(Z1) Ao A Ry (Z0) = H(Z)

where Ry, ..., R, and H are uninterpreted relations, Z1,...,Z, and Z are (vec-
tors/tuples of)) variables, and ¢ is a quantifier-free constraint over the variables
within some first-order theory. In the specification, one provides the names and
types of the semantic relations used in the semantic definitions (lines ,
and then CHCs that define such relations (lines [L7}[43). To better align with the
fact that CHCs are used to define the semantics of programs inductively (i.e.,
as an interpreter), in the SemGuS format we encode CHCs as a set of mutually-
recursive SMT functions, taking the term to be evaluated, input variables, and
output variables as arguments, and returning a Boolean. A function is provided
for every non-terminal, and match statements are used to dispatch on the term
constructors for which one is defining the semantics. The match statement must
match on all productions for the given term type (i.e., the corresponding non-
terminal). The match statement can also be annotated with which variables are
inputs and outputs in the specific semantics (note that some semantics, e.g., a
term-rewriting system, do not necessarily have inputs and outputs). Each match
on a production starts with an optional exists block, which specifies auxiliary
variables, followed by the CHC body as a conjunction. Some productions, such
as the while production in Figure [1] (lines , have two associated CHCs.
For example, the While-false CHC can be logically written as

B.Sem(tb, xi,yi,ri,b) b= false N\xo=xi Ayo=yiAro=ri

PEE— While-fal
S.Sem(($while b ts), xi, yi, ri, xo, yo, ro) trettaise

The signature at the bottom of the CHC—i.e., the particular variables names
used in this relation instance—is the one defined in Figure [l (line .

As discussed in the original SemGuS paper [I5], many synthesizers have
achieved scalability by exploiting alternative semantics that either underapprox-
imate the actual semantics of the programming language (to speed up evaluation
and enable constraint solving) or overapproximate it (which sometimes makes
it possible to prune the search space of programs). While such previous work
“hardcodes” and takes advantage of such semantics in the solver itself, SemGuS
allows one to write such semantics directly in the SemGusS file. In fact, there is
no limit on how many semantic relations one can define in a SemGusS file. For
example, one might define a semantic relation that associates costs to programs
(but does not evaluate programs) and a semantic relation that captures pro-
gram evaluation. The specification can then require finding a program that (i)
performs a computation correctly, and (ii) has a cost that is less than a specific
constant. The ability of SemGuS to describe multiple semantics enables reusable
solving techniques and interoperability between solvers.

© 00 N O W N -

= e
= O

O W N

The SemGuS Toolkit 5

It should be noted that when one defines multiple semantics, the burden of
showing that they are properly related (e.g., that an abstract semantics is related
to the concrete one by a Galois connection [0]) is in the hands of the user. Doing
so automatically is a research direction enabled by the SemGuS format.

synth-fun Command. SemGusS uses the same syntax as in SyGuS to declare
what type of term we are interested in synthesizing (Figure . Unlike SyGuS, a
solution to a SemGuS problem is a term in the provided syntax, as opposed to
a function in an SMT theory. For instance, the command (synth-fun mul ()
F) in Figure 2| (line [2)) asks for a term named mul, rooted at the non-terminal F.
This command can optionally take a grammar (the second argument) to further
restrict the search space, using the same format for grammars as in the SyGuS
format [2T]. For example, to synthesize programs that have the fewest number
of while-loops [12], one might first solve the SemGuS problem discussed in this
section and obtain a program with one loop, and then create a new SemGuS
problem where the grammar is restricted to disallow loops. The two problems
will share the same language definition despite having different grammars.

Specification. Specification constraints for SemGuS problems are stated using

SMT expressions involving the
;35 Function to synthesize root CHC for the term to be
(synth-fun mul () F) synthesized. The typical form for
;5 Constraints for examples input/output examples is shown in
(constraint (F.Sem mul 0 0 0)) Figure 2| (lines . Note that in

(constraint (F.Sem mul 1 1 1)) . .

(constraint (F.Sem mal 2 2 49) SemGusS, constraints are specified
(constraint (F.Sem mul 3 3 9)) as relations and not functions (as in
(constraint (F.Sem mul 5 3 15)) SyGuS). Relations allow modeling
(constraint (F.Sem mul 3 4 12)) nondeterminism or nonterminating
;; Perform synthesis semantics—e.g., one can state that,
(check-synth) for the specific input pair (5,3), the

answer is a positive value if the

Fig. 2. Constraints for a few example in- .
program terminates: (constraint

put/output pairs, used to synthesize a func-
tion mul that behaves like multiplication. (forall ((x Int)) (=> (F.Sem
mul 5 3 x) (>= x 0)))).

Synthesis Command. The check-synth command instructs the solver to solve
the problem and produce an SMT term. The following term is a solution to the
example presented in this section.

((define-fun mul () F ($function

($while ($< $0 $y) ;5 while (0<y)
($seq ($y<- ($- 8%y $1)) HE y <- y-1
($r<- ($+ $r $x)))) 5 r <- r+x

$r))) ;3 return r

Relationship between SemGuS and SyGuS. Every SyGuS problem can
be automatically converted to an equivalent SemGuS problem, and our parser
implements this transformation. The only technical detail of interest is that
SyGuS synthesizes function SMT terms, whereas SemGuS synthesizes terms in

6 Keith J.C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

a term universe that is interpreted using a relational semantics. For example, if
the predicate ¢ of the SyGuS specification contains invocations of the function
g to be synthesized, e.g., ©(g(i1),...,9(in)), we can create the new SemGuS
specification as Jo1,...,0n. ©(01,...,0,) ASemeg(g,41,01)A...ASemG(g, in, 0n).

Because SemGusS is more expressive than SyGuS, not every SemGuS problem
can be converted to an equivalent SyGusS problem. In general, it is undecidable to
check when such a translation is possible, because SemGuS is Turing complete.
We have implemented a sound (but incomplete) translation of a limited fragment
of statically detectable SemGuS problems into SyGuS. The fragment essentially
captures when the SyGuS-to-SemGusS translation can be inverted.

3 A Baseline SemGuS Solver

In this section, we present KS2, a toolkit for researchers to build SemGusS solvers.
KS2 implements techniques for (efficiently) verifying whether a candidate solu-
tion meets the specification (Section . KS2 also contains implementations of
bottom-up and top-down enumerative synthesizers (Section. KS2 is written
in Common Lisp, which makes it easy to compile code generated at synthesis-
time for speeding up evaluation of candidate solutions. In addition, KS2 is imple-
mented modularly, so new solvers and features can be easily added as plugins.

3.1 Verifying Candidate Solutions

When building synthesizers, one wants two types of verifiers: one that can quickly
tell if a candidate solution is correct on a finite set of input examples E, and
one that can (less quickly) tell if a solution is correct on all inputs, and thus
satisfies a logical specification. When the latter verifier finds a violation of the
specification, it will typically produce a new input example e that can be added
to the set E to restart synthesis with a fresh set of examples. These two verifiers
together form the basis of the counterexample-guided synthesis algorithm. For
SemGusS, building either of these verifiers is generally undecidable as one may
have to deal with an arbitrarily powerful programming language.

In this section, we present two sound (but incomplete) implementations of
such verifiers. These implementations are not the only verifier implementations
that can be built for SemGuS, but just two that were successful in meeting our
needs. Building other verifier implementations based on other technologies, such
as bounded model checkers, symbolic execution, and logic programming, is an
interesting future research direction.

Building Executable Semantics from CHCs. To tell quickly whether a
candidate program is correct on a given input, one needs to “run” the program
on the input according to the semantics. To do so efficiently is nontrivial because
the semantics of a candidate program is expressed declaratively using CHCs.
Ks2 first “operationalizes” the semantics given by CHCs into executable blocks,
which are then compiled. In general, not all CHCs can be transformed into
executable code (for example, non-deterministic CHCs that can map one input

The SemGuS Toolkit 7

to different outputs); therefore, KS2 supports only a fragment of CHCs that is
practically useful (all benchmarks discussed in Section [fall into this fragment).

We illustrate the compilation to native code using the following (recursive)
CHC corresponding to the While-true case in Figure

Semg (t(tp, ts),4,0) <= Semp(tp,i,b) AbA Semg(ts,4,0") A Semg(t,0,0)

KS2 requires each position in each relation to be annotated as an input or output
variableﬂln the example, the first position of Semg and Semp is the term being
executed, which is always assumed to be an input; the second position is the
input on which the term should be executed, and the last position is the output.
To operationalize the CHC, kKS2 performs the following steps to identify an
evaluation order: it analyzes each relation instance in the body of the CHC, and
performs a dataflow analysis to determine an order in which the blocks can be
executed. This step is done by building a dataflow graph and then performing a
topological sort to identify an order in which each relation can be computed. In
the given example, one possible order is to first evaluate Sem g (tp, ¢, b) because i is
readily available, then determine whether b is true, then evaluate Semg (¢, 4, 0),
and finally evaluate Semg(t, 0’,0) (o’ depends on one of the previous relations).
Our implementation of this transformation has some basic requirements. First,
no two relations can output the same variable—otherwise one cannot resolve
which instance to use. Second, every input variable i’ to a relation is either the
output of another relation or appears in the first-order formula of the CHC in
the form ¢’ = f(-)—i.e., the value of ¢’ can be computed without having to call
an SMT solver.

At this point, we generate code for each block. Child CHCs turn into func-
tion calls, guards into conditional statements, and value productions into as-
signments. This generated code is then compiled and turned into an executable
function that implements the CHC’s semantics. To execute a program on an
input/output example, the top-level semantic function is called with the input
state and the child’s semantic functions, and the program returns the output
state. This output state can be checked against the output example.

This implementation of an efficiently executable semantics is one of the main
contributions in Ks2. Identifying additional ways to compile the logical semantics
into an efficiently-executable one is an interesting research direction that can
benefit from techniques in compiler design and logic programming.

A Simple Incomplete Verifier for Logical Specifications. The declarative
nature of SemGuS enables a simple way of building a verifier that can check
a program against a specification and return a counterexample. As we argued,
verification for SemGuS is undecidable, but the declarative nature of SemGuS
allows us to build a simple, but incomplete, procedure for verifying some can-
didates in SemGusS solutions. Given a concrete term ¢ (i.e., the program we are

3 Automatically inferring such annotations (“mode inference”) is a classical analysis
problem in logic programming [6, §10.2.2]. Automatically supplying annotations is
an interesting research direction for SemGusS.

8 Keith J.C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

trying to verify), our verifier performs a pre-order traversal of ¢ and emits a po-
tentially recursive SMT function for each node that corresponds to the CHC (or
CHCs) for that node. Because t is a concrete term, each child term in the CHC
can also be replaced by the concrete function implementing it. For example, the
program ($+ $x $1) would be verified by emitting three SMT functions for $+,
$x, and $1. The function for $+ will call the ones for $x and $1 to perform the
evaluation. Operators like $while require recursive function calls. The specifi-
cation can then be used to define constraints over the root node and verified
with an SMT solver. In the case of recursive semantics, the SMT functions will
potentially be mutually recursive, thus relying on undecidable theories for which
current SMT solvers struggle in practice. This verifier, while incomplete, is “good
enough” for many of our current benchmarks, and extending SMT solvers or our
verifiers to better handle such cases is a challenging research question.

3.2 Baseline Enumerative solvers

KS2 implements standard basic top-down and bottom-up enumeration algo-
rithms as described in the literature [I1]. Because we have a logical verifier that
enables counterexample-guided inductive synthesis (CEGIS), our enumeration
algorithms only check correctness on a set of examples.

For top-down enumeration, candidate programs are enumerated using a pri-
ority queue of potentially partial programs (i.e., with holes). At each iteration a
program is extracted from the queue: if it has no holes, it is verified against the
examples; otherwise, all the programs that can be obtained by expanding the
leftmost hole with all possible child productions are added to the queue. The
standard optimization for top-down enumerators is to check partial programs
against the specification and prune them if possible. Existing optimizations are
domain-specific and identifying ways to extend them to SemGusS problems is an
open research question, which we hope this toolkit will help researchers work on.

For bottom-up enumeration, subterms of increasing size (or height) are enu-
merated and added to a program bank where they are grouped by size (or height).
Enumeration of programs of a certain size or height happens lazily; they are ver-
ified and pushed into the bank of programs one at a time. A typical optimization
used in a bottom-up enumeration is to use some form of equivalence-checking
to deduplicate enumerated programs with the same behavior. One popular tech-
nique, observational equivalence, executes each enumerated program on the in-
put example states and prunes a program if a previously enumerated program
returns the same output state. However, because SemGuS supports impera-
tive semantics, the possible input states for a sub-program are not necessarily
the same as the top-level-program’s input states (i.e., variable values change
throughout the program execution), and thus there is not an easy way to perform
an observational-equivalence check. The development of an appropriate pruning
technique for a bottom-up SemGuS enumerator is an open research question,
which we hope this toolkit will help researchers work on, for example by build-
ing on approaches such as equality saturation [25] and lifting interpretation to
sets of programs [17].

The SemGuS Toolkit 9

3.3 Extensibility

KS2 can be extended by instantiating various interfaces with modules. For exam-
ple, one might want to add a module that implements a technique for pruning
enumerated programs with the bottom-up enumeration. To add this technique,
the module would implement the add-to-bank interface, which is responsible
for adding freshly enumerated programs to the bank of enumerated programs,
and simply decline to add programs that the module can prune. In code, this
implementation might look like:

(defmethod add-to-bank :around ((ext prune) bank prog metric)
"Adds the program PROG to BANK unless it should be pruned"
(unless (%should-prune prog) (call-next-method)))

where prune is the module class and %should-prune implements the predicate
for whether or not a program should be pruned. At this time, among others, we
have interfaces for adding solvers, adding verifiers, and inspecting and updating
the SemGuS problem. We will continue to add more interfaces as the need arises;
the most up-to-date documentation is available with KS2 and its supporting
libraries.

Outside of Ks2, the SemGuS Parser is available as a standalone tool for
parsing SemGuS problems into JSON, as well as a .NET library for direct inte-
gration into solvers. We expect these parsing tools to lower the barrier to entry
for building new SemGuS tooling.

4 Benchmarks and Performance of Baseline Solvers

We present an initial set of SemGuS benchmarks and evaluate the performance
of our baseline solvers on such benchmarks.

Benchmarks. The ability of SemGuS to represent synthesis problems from dis-
parate domains in the same solver-agnostic format is one of its key distinguish-
ing features. We have created 431 SemGuS benchmarks, consisting of synthesis
problems from a variety of domains.

Sample domains: 17 benchmarks of easy synthesis problems (10 for imper-
ative programs with loops, 3 for SMT datatypes, and 4 integer-arithmetic
benchmarks). These benchmarks are designed to help researchers build Sem-
GuS solvers and are basic test of a solver’s support of various features of the
SemGus format. They contain between 1 and 6 input/output examples each.

Regular expressions: 72 benchmarks for synthesizing regular expressions,
which include problems from the original SemGuS paper [15], from the tool
AlphaRegex [16], and CSV formatting problems. These benchmarks have be-
tween 2 and 244 input/output examples each. Benchmarks in this category
may use two different semantics of regular expressions: one based on Boolean
matrices and one based on SMT terms for the theory of regular expressions.

Boolean formulas: 88 benchmarks for synthesizing Boolean formulas, includ-
ing DNF (32), CNF (33), and cube (23) formulas. Each benchmark has
between 4 and 128 input/output examples.

10 Keith J.C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

Table 1. Solved benchmarks by category.

Domain Total | TopDown BottomUp(H) BottomUp(S) | Virtual Best
Sample Domains 17 14 11 13 15
Regular Expressions | 72 52 8 45 54
Boolean 88 45 47 46 49
Bitvectors 100 38 27 36 43
Messy 154 0 0 0 0
Total 431 149 93 140 161

Bitvectors: We provide 100 benchmarks over imperative loop-free bitvector
programs [I0]. In our adaptation of the existing benchmarks, we consider
different bitvector semantics (e.g., one where bitvectors restart at 0 on over-
flow, and one where the values remain at INT_MIN or INT_MAX). The
ability to customize programs semantics is a key feature of SemGuS. These
benchmarks use logical specifications instead of input-output examples.

Messy: 154 benchmarks (15 bitvector, 18 imperative, 121 unrealizable SyGuS
and imperative) from the original SemGuS paper.

We expect this set to be extended. New benchmarks may be submitted to
the Semgus-Benchmarks GitHub repository via pull requests. All submissions are
automatically checked for proper syntax and manually reviewed by maintainers
for appropriateness before being included.

Performance of Baseline Solvers. Benchmark results for our top-down and
bottom-up enumerators by height (H) and size (S) are shown Table [I|as a sum-
mary solved instances and Figure |3| as a cactus plot illustrating the time taken
to solve the benchmarks. All experiments are run on a cluster [4], with each node
having an AMD EPYC 7763 64-Core Processor, of which we requested two cores
and 12 GiB of RAM. We set a timeout value of 2000s and memory limit of 8
GiB. We run each experiment 5 times and report the median of these runs.
For Sample Domains, the solvers per-
formed similarly and cumulatively solved
15/17 benchmarks (Virtual Best). Top-

— TopDown

. . . 1,000} |
down enumeration is a clear winner :%Ziigﬁ%gg))
for Regular Expressions, with height- s00] — Virtual Best | |

based bottom-up enumerator performing
poorly because the solutions are typ-
ically narrow-but-tall. All solvers per-
formed about equivalently on the Boolean
benchmarks, although each solver solves 200/
a slightly different subset of the prob-

lems. For Bitvectors, the bottom-up %050 10 Eﬂﬁﬂ?wf? 3?0 350 10
height-based solver underperformed be- e

cause these benchmarks have grammars Fig. 3. Cactus plot of runtime. (Lower
and to the right is better.)

600 -

Time (seconds)

400 +

with many productions per non-terminal,
thus producing many programs at each

The SemGuS Toolkit 11

height. However, size-based bottom-up enumeration could solve 5 problems that
the top-down enumerator could not solve, and the top-down enumerator solved 7
that the bottom-up, size-based enumerator could not solve. Note that the Bitvec-
tor benchmarks have relational specifications and were solved with CEGIS, but
for 19 benchmarks, the verifier failed to check a candidate program or gener-
ate counterexamples for at least one solver. For the 43 solved benchmarks, the
verifier generated between 1 and 10 counterexamples (average 4.5), in less than
150ms each (average 30ms). The remaining 38 benchmarks generated up to 12
counterexamples before exceeding the timeout or memory limit. Our solver could
not solve any Messy benchmarks: most are unrealizable (i.e., they have no solu-
tion) or use specifications that are hard to verify using ks2’s SMT-based verifier.
The Messy solver is particularly good at proving problems unrealizable, but it
has not been ported to the SemGuS format and we cannot include it in our
baseline.

In terms of enumeration throughput (enumerated programs per second), our
solvers perform similarly, and they can enumerate up to 150,000 programs per
second (average 33,000) for benchmarks for which verification is quick. The ad-
vantage of building and using executable semantics is obvious: if the logical
verifier is instead called on each candidate, the throughput drops to at most
800 programs per second (average 175). On the benchmarks where solving with
executable semantics and the logical verifier are both supported, the use of the
executable semantics is on average 220 times faster than the logical verifier (ge-
omean).

These results provide a baseline rate for future SemGuS solvers to be com-
pared against; the advantage of simple enumerators is their raw speed.

5 Related Work

The syntax-guided-synthesis paradigm [I] has been successfully used in many
applications, including invariant synthesis [I8/8], and synthesis of rewrite rules
and invertibility conditions [20/19]. Several efficient solvers are available for this
format [24I2J13]. This effort has inspired several domain-specific extensions for
domains that cannot be captured by standard SMT-LIB theories [21]. In con-
trast, this work develops a general framework for which these extensions can be
expressed in a uniform way. Moreover, SemGuS allows one to define synthesis
problems—e.g. for imperative programs—that cannot be captured in a natural
way by an SMT theory. The syntax-guided-synthesis paradigm has been ex-
tended to signatures with oracles [I422], or symbols whose semantics are given
by user-provided binaries. In contrast, in SemGuS, the semantics of all symbols
are fully expressed in the problem description.

Acknowledgements

The authors would like to thank Jinwoo Kim, for initial discussions about the
SemGusS format; Wiley Corning, Rahul Krishnan, and Shaan Nagy, for code con-

12 Keith J.C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

tributions to the SemGuS parser; Evan Geng, Jiangyi Liu, and Charlie Murphy
for finding and reporting bugs; and, in addition to everyone previously listed,
Kanghee Park, Anvay Grover, and all future contributors for providing SemGuS
benchmarks.

Supported, in part, by a Microsoft Faculty Fellowship; a gift from Rajiv and
Ritu Batra; and NSF under grants CCF-{1750965, 1918211, 2023222, 2211968,
2212558}. Any opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors, and do not necessarily reflect the
views of the sponsoring entities.

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia,
S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided syn-
thesis. In: 2013 Formal Methods in Computer-Aided Design. pp. 1-8 (2013).
https://doi.org/10.1109/FMCAD.2013.6679385

2. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthe-
sis via divide and conquer. In: Legay, A., Margaria, T. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part 1. Lecture Notes in Computer Science, vol. 10205, pp.
319-336 (2017). https://doi.org/10.1007/978-3-662-54577-5_18, https://doi.org/
10.1007/978-3-662-54577-5_18

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available
at www.SM'T-LIB.org

4. Center for High Throughput Computing: Center for high throughput computing
(2006). |https://doi.org/10.21231/GNT1-HW21, https://chtc.cs.wisc.edu/

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM Sym-
posium on Principles of Programming Languages, Los Angeles, California, USA,
January 1977. pp. 238-252. ACM (1977). https://doi.org/10.1145/512950.512973,
https://doi.org/10.1145/512950.512973

6. Cousot, P., Cousot, R.: Abstract interpretation and application to logic pro-
grams. J. Log. Program. 13(2&3), 103-179 (1992). |https://doi.org/10.1016/0743-
1066(92)90030-7, https://doi.org/10.1016/0743-1066(92)90030-7

7. D’Antoni, L., Hu, Q., Kim, J., Reps, T.: Programmable program synthesis. In:
Computer Aided Verification: 33rd International Conference, CAV 2021, Virtual
Event, July 20-23, 2021, Proceedings, Part I 33. pp. 84-109. Springer (2021)

8. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Veri-
fication - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol.
11561, pp. 259-277. Springer (2019). https://doi.org/10.1007/978-3-030-25540-
414, https://doi.org/10.1007/978-3-030-25540-4_14

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
www.SMT-LIB.org
https://doi.org/10.21231/GNT1-HW21
https://chtc.cs.wisc.edu/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The SemGuS Toolkit 13

Gulwani, S.: Synthesis from examples. In: WAMBSE (Workshop on Advances in
Model-Based Software Engineering) Special Issue, Infosys Labs Briefings. vol. 10.
Citeseer (2012)

Gulwani, S.; Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. p. 62-73. PLDI ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1993498.1993506,
https://doi.org/10.1145/1993498.1993506

Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Founda-
tions and Trends® in Programming Languages 4(1-2), 1-119 (2017).
https://doi.org/10.1561/2500000010, http://dx.doi.org/10.1561/2500000010

Hu, Q., D’Antoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: International Conference on Computer Aided Verification. pp. 386-403.
Springer (2018)

Huang, K., Qiu, X., Shen, P., Wang, Y.: Reconciling enumerative and deduc-
tive program synthesis. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020. pp. 1159-1174.
ACM (2020). https://doi.org/10.1145/3385412.3386027, |https://doi.org/10.1145/
3385412.3386027

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S. (eds.) Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. pp. 215-224.
ACM (2010). https://doi.org/10.1145/1806799.1806833, https://doi.org/10.1145/
1806799.1806833

Kim, J., Hu, Q., D’Antoni, L., Reps, T.: Semantics-guided synthesis. Proceedings
of the ACM on Programming Languages 5(POPL), 1-32 (2021)

Lee, M., So, S., Oh, H.: Synthesizing regular expressions from exam-
ples for introductory automata assignments. SIGPLAN Not. 52(3), 70-80
(oct 2016). https://doi.org/10.1145/3093335.2993244, https://doi.org/10.1145/
3093335.2993244

Li, X., Zhou, X., Dong, R., Zhang, Y., Wang, X.: Efficient bottom-up synthesis for
programs with local variables. Proc. ACM Program. Lang. 8(POPL) (jan 2024).
https://doi.org/10.1145/3632894, https://doi.org/10.1145/3632894

Miltner, A., Padhi, S., Millstein, T.D., Walker, D.: Data-driven inference of rep-
resentation invariants. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language De-
sign and Implementation, PLDI 2020, London, UK, June 15-20, 2020. pp. 1-15.
ACM (2020). https://doi.org/10.1145/3385412.3385967, https://doi.org/10.1145/
3385412.3385967

Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: Solving quan-
tified bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher,
G. (eds.) Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10982, pp. 236-255. Springer (2018). https://doi.org/10.1007/978-3-319-96142-
2_16, https://doi.org/10.1007/978-3-319-96142-2_16

Notzli, A., Reynolds, A., Barbosa, H., Niemetz, A., Preiner, M., Barrett, C.W.,
Tinelli, C.: Syntax-guided rewrite rule enumeration for SMT solvers. In: Jan-
ota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing - SAT

https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3093335.2993244
https://doi.org/10.1145/3632894
https://doi.org/10.1145/3632894
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16

14

21.

22.

23.

24.

25.

Keith J.C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11628, pp. 279-297.
Springer (2019). https://doi.org/10.1007/978-3-030-24258-9_20, https://doi.org/
10.1007/978-3-030-24258-9_20

Padhi, S., Polgreen, E., Raghothaman, M., Reynolds, A., Udupa, A.:
The sygus language standard version 2.1. CoRR abs/2312.06001 (2023).
https://doi.org/10.48550/ ARXIV.2312.06001, https://doi.org/10.48550/arXiv.
2312.06001

Polgreen, E., Reynolds, A., Seshia, S.A.: Satisfiability and synthesis modulo or-
acles. In: Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and Ab-
stract Interpretation - 23rd International Conference, VMCAI 2022, Philadelphia,
PA, USA, January 16-18, 2022, Proceedings. Lecture Notes in Computer Science,
vol. 13182, pp. 263-284. Springer (2022). https://doi.org/10.1007/978-3-030-94583-
1_13} https://doi.org/10.1007/978-3-030-94583-1_-13

Polozov, O., Gulwani, S.: Flashmeta: A framework for inductive program synthesis.
In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. pp. 107-126 (2015)
Reynolds, A., Barbosa, H., Notzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
Computer Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 11562, pp. 74-83. Springer (2019). https://doi.org/10.1007 /978-3-030-
25543-5_5, https://doi.org/10.1007/978-3-030-25543-5_5

Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: Egg:
Fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL) (jan
2021). https://doi.org/10.1145/3434304, https://doi.org/10.1145/3434304

https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.48550/ARXIV.2312.06001
https://doi.org/10.48550/arXiv.2312.06001
https://doi.org/10.48550/arXiv.2312.06001
https://doi.org/10.1007/978-3-030-94583-1_13
https://doi.org/10.1007/978-3-030-94583-1_13
https://doi.org/10.1007/978-3-030-94583-1_13
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

	The SemGuS Toolkit

