

Perceptual Training Enhances the Use of Vowel Quality Cues to Lexical Stress: The Benefits of Intonational Variability

Annie Tremblay,¹ Hyoju Kim^{2,3} Sahyang Kim,⁴ & Taehong Cho⁵

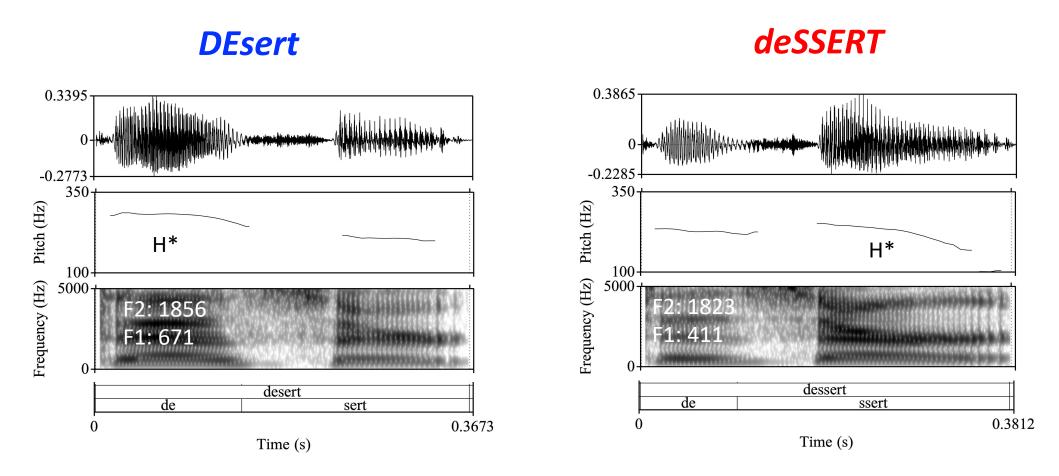
International Congress for Phonetic Sciences August 11th, 2023

Introduction

High-Variability Phonetic Training (HVPT)

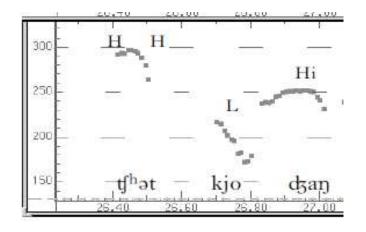
- Multi-talker perceptual training enhances the perception of difficult second-language (L2) sound contrasts more than does single-talker perceptual training
 - Phonetic categories

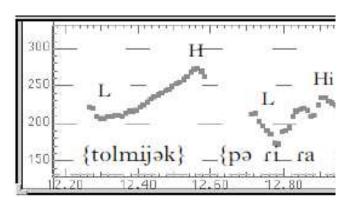
 (e.g., Logan, Lively, & Pisoni, 1991; Lively, Logan, & Pisoni, 1993;
 Iverson, Hazan, & Bannister, 2005)
 - Syllable structure (e.g., Huensch & Tremblay, 2015)
 - Lexical tones (e.g., Wang, Spence, Jongman, & Sereno, 1999)

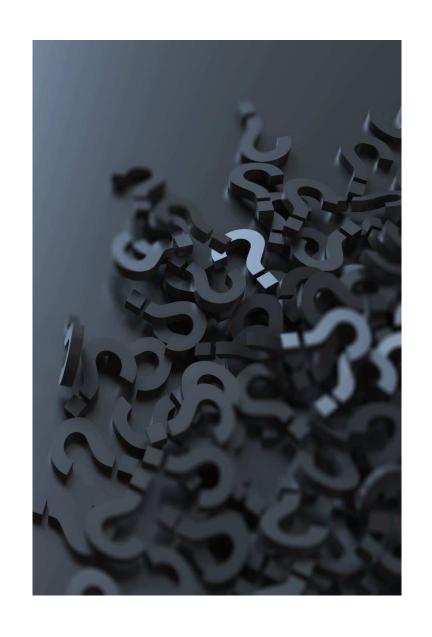


Introduction

- HVPT enables listeners to weight acoustic cues relative to the talker they hear and develop more abstract L2 perceptual representations
- Do the benefits of HVPT extend to the weighting of acoustic cues to *lexical* stress for listeners whose native language (L1) does not have lexical stress?

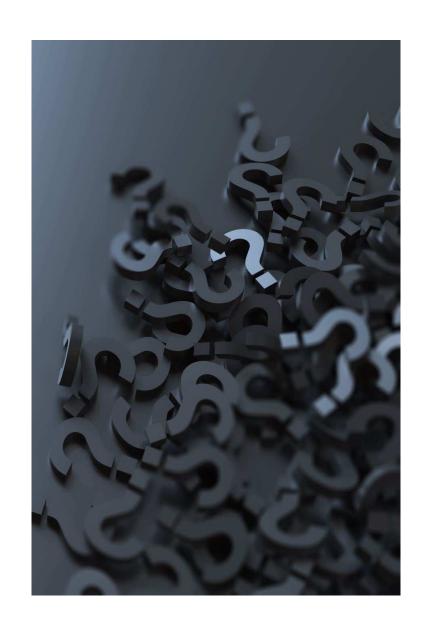

Background: English



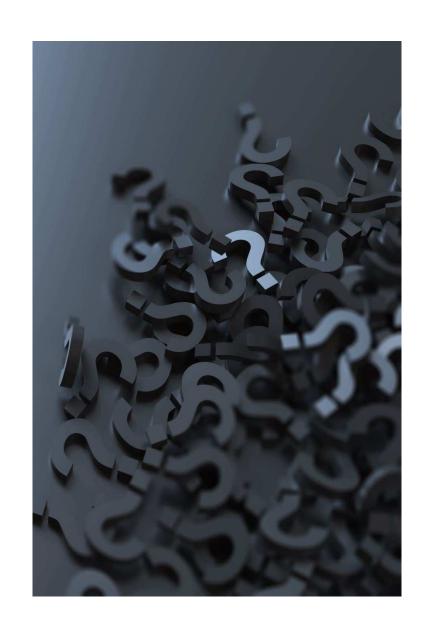

(e.g., Beckman & Edwards, 1994; Gay, 1978; Lehiste, 1970)

Background: Seoul Korean

- Pitch signals intonational prominence at the level of the Accentual Phrase (Jun, 1998; examples: pp. 207-208)
 - LHLH tonal pattern when the initial segment is **lenis**
 - HHLH tonal pattern when the initial segment is fortis or aspirated
 - Consequently, pitch (L vs. H) has become a cue to the lenis-fortis and lenisaspirated laryngeal contrasts



Background: Korean L2 learners of English


- Perception of suprasegmental cues to English lexical stress
 - Korean L2 learners of English have more difficulty recalling English nonwords differing in lexical stress (e.g., ['mipa] vs. [mi'pa]) than English nonwords differing in a consonant (e.g., ['kupi] vs. ['kuti])

(e.g., Lin, Wang, Idsardi, & Xu, 2014)

Background: Korean L2 learners of English

- Perception of segmental cues to English lexical stress
 - Korean L2 learners of English do not reject nonwords whose incorrect stress placement is signaled by vowel quality cues (e.g., *HOrizon ['hauaizən]) more than incorrectly stressed nonwords without vowel quality changes (e.g., *Enough ['InAf]) (e.g., Lin, Wang, Idsardi, & Xu, 2014)

Background: Korean L2 learners of English

- Perception of segmental cues to English lexical stress
 - Korean L2 learners of English show less lexical competition when the target differs segmentally and suprasegmentally from the competitor (e.g., *PArrot* vs. *paRADE*) than when it differs only suprasegmentally from it (e.g., *SURface* vs. *surPRISE*) (e.g., Connell et al., 2018)

Research Question

Does HVPT help Korean L2 learners of English rely less on pitch and more on vowel quality when perceiving English lexical stress?

The Present Study

- Compares the efficiency of HVPT and single-talker training (STT) for enhancing Korean listeners' weighting of acoustic cues to English lexical stress
- Distribution of cues in training that mimics spoken English
- <u>Pre-/post-test</u>: Cue-weighting experiment from Tremblay et al. (2021)

Participants

- 54 native speakers of Seoul Korean (mean age: 24, 32 females) at a high-intermediate proficiency in English (LexTALE: 68.1%; Lemhöfer & Broersma, 2012)
 - 27 completed the HVPT
 - 27 completed the STT

Training Materials

- Lexical items
 - 36 English noun-verb minimal pairs that differed in lexical stress
 - 28 with vowel reduction cues (e.g., *REcall* vs. reCALL)
 - 8 without vowel reduction cues (e.g., *PERmit* vs. *perMIT*)

(distribution based on Cutler & Carter, 1987)

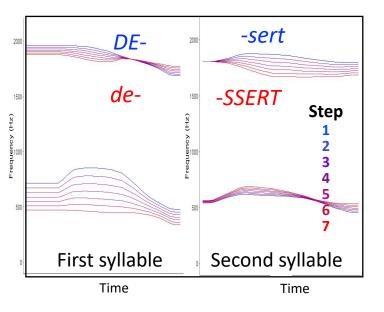
Training Materials

- Intonational contexts
 - H*L- in *Mary said* _____ *before* (41.7%)
 - L*H- in *Mary said* _____ *before?* (16.6%)
 - Deaccented in *MARY said* _____ *before* (41.7%)

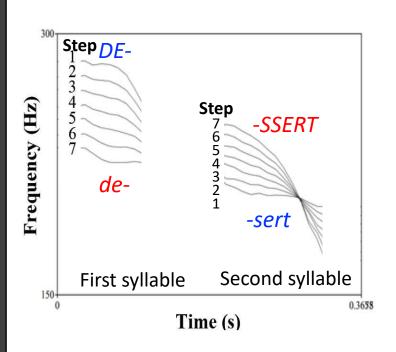
(distribution based on Im, Cole, & Baumann, 2018)

Training Materials

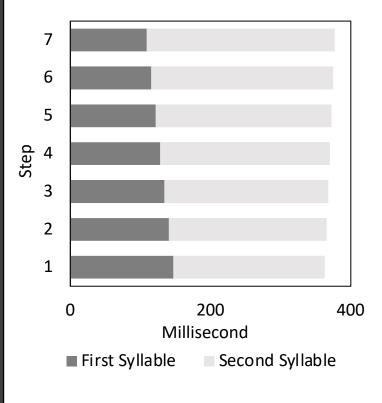
- Audiorecordings
 - HVPT: 4 native speakers of American English (two male and two female)
 - <u>STT</u>: 1 native speaker of American English (female; 4x the number of stimuli produced by each talker in the HVPT)

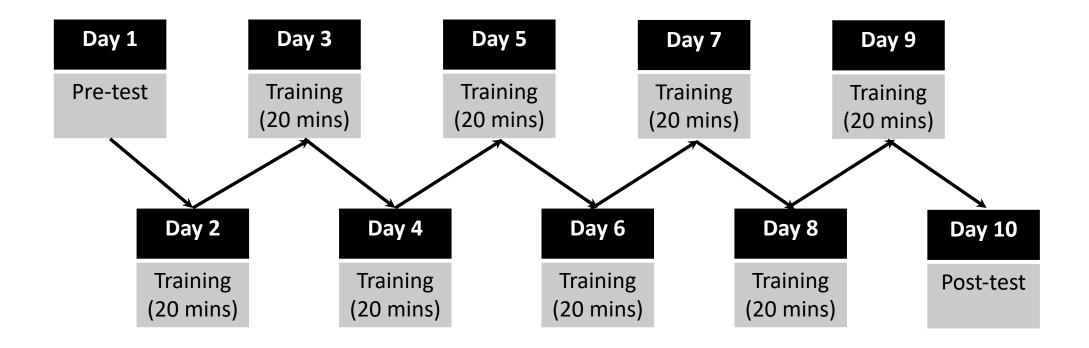


Cue-weighting lexical stress perception ask used in Tremblay et al. (2021) JASA


- Auditory stimuli manipulated in 7
 equidistant steps from word-initial stress
 (Step 1) to word-final stress (Step 7)
- Manipulated dimensions
 - **Vowel quality** and **pitch** (duration and intensity neutralized; 49 stimuli x 3 repetitions)
 - **Vowel quality** and **duration** (pitch and intensity neutralized; 49 stimuli x 3 repetitions)
 - *Pitch* and *duration* (vowel quality and intensity neutralized; 49 stimuli x 3 repetitions)

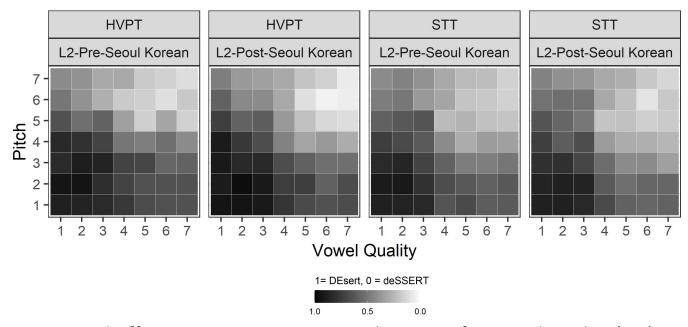
Stimulus Manipulations (Tremblay et al., 2021) JASA


Formants


Pitch

Duration

Procedures

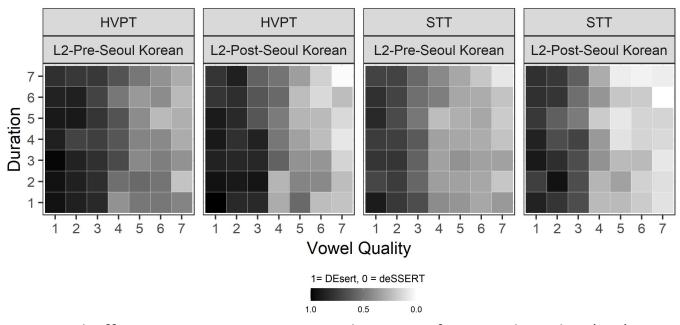


Each training session: 36 word pairs x 4 (288 stimuli)

Pre-/post-test conducted in lab; training conducted remotely

Results

 Use of vowel quality increases with training for both HVPT and STT

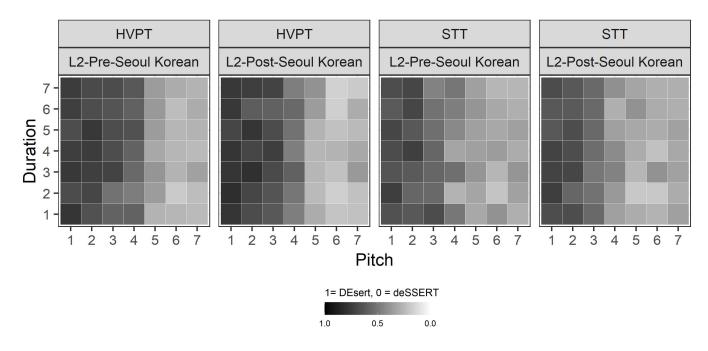


Mixed-effects Logistic Regression with Best Fit for Vowel Quality (VQ) x Pitch Stimuli

	Est.	SE	Z	Pr(> z)
(Intercept)	0.25	0.09	2.77	.006
VQ	-0.39	0.03	-13.02	< .001
Pitch	-0.54	0.03	-18.30	< .001
Test (Post-test)	-0.11	0.04	-3.10	.002
Training (STT)	-0.05	0.10	< 1	>.1
VQ × Test (Post-test)	<mark>-0.06</mark>	<mark>0.02</mark>	<mark>-2.86</mark>	<mark>.004</mark>
Pitch × Test (Post-Test)	-0.03	0.02	-1.34	>.1
VQ × Training (STT)	0.01	0.02	< 1	>.1
Pitch × Training (STT)	0.12	0.02	6.17	< .001

Results

 Use of vowel quality increases with training for both HVPT and STT



Mixed-effects Logistic Regression with Best Fit for Vowel Quality (VQ) x Duration Stimuli

	Est.	SE	Z	Pr(> z)
(Intercept)	0.47	0.14	3.29	.001
VQ	-0.42	0.02	-18.09	< .001
Duration	-0.05	0.02	-2.33	.020
Test (Post-test)	-0.33	0.04	-9.32	< .001
Training (STT)	-0.19	0.20	< 1	>.1
VQ × Test (Post-test)	<mark>-0.08</mark>	<mark>0.02</mark>	<mark>-4.45</mark>	< .001
Duration × Test (Post-test)	-0.02	0.02	-1.26	>.1
VQ × Training (STT)	0.00	0.02	< 1	>.1
Duration × Training (STT)	0.00	0.02	< 1	>.1

Results

 Use of pitch increases with training for both HVPT and STT

Mixed-effects Logistic Regression with Best Fit for Pitch x Duration Stimuli

	Est.	SE	Z	Pr(> z)
(Intercept)	-0.02	0.09	-0.18	>.1
Pitch	-0.44	0.02	-19.95	< .001
Duration	0.04	0.02	2.00	.045
Test (Post-test)	-0.14	0.03	-4.09	< .001
Training (STT)	-0.03	0.12	< 1	>.1
Pitch × Test (Post-test)	<mark>-0.06</mark>	<mark>0.02</mark>	<mark>-3.25</mark>	<mark>.001</mark>
Duration × Test (Post-test)	-0.02	0.02	-1.26	>.1
Pitch × Training (STT)	0.13	0.02	7.43	< .001
Duration × Training (STT)	-0.02	0.02	-1.31	>.1

Discussion and Conclusion

- HVPT and STT yielded comparable effects on the use of vowel quality cues to English lexical stress
 - Intonational variability in both training types may have encouraged the development of robust representations
- The greater occurrence of H* than of L* in training may have led listeners to rely more on this cue after training
 - Future training should make pitch cues to lexical stress unpredictable

Discussion and Conclusion

First study to show beneficial effects of perceptual training on listeners' weighting of acoustic cues to lexical stress

Thank You! Děkuji!