

Limits of Short-Term Perceptual Training for Enhancing Seoul-Korean Listeners' Use of **English Lexical Stress in Spoken Word Recognition**

Annie Tremblay¹, Hyoju Kim², Sahyang Kim³, & Taehong Cho⁴

1. The University of Texas at El Paso (USA), 2. University of Iowa (USA), 3. Hongik University (Korea), 4. Hanyang University (Korea)

1pSC23

Korean Listeners

1. Background

- High-Variability Phonetic (perceptual) Training (HVPT) enhances the identification of difficult second-language (L2) sound contrasts more than Single-Talker (perceptual) Training (STT) (e.g., Japanese listeners' lverson et al., 2005; Lively et al., 1993; Logan et al., 1991)
- Unclear whether its benefits extend to the automatic lexical activation and competition processes that underlie spoken word recognition (Melnik & Peperkamp, 2021)
- The present study seeks to answer this question with training on the perception of an understudied linguistic phenomenon, lexical stress
- English (L2): Lexical stress is signaled by vowel quality > duration, pitch (depending on pitch and phrase accents), intensity (e.g., Beckman, 1986; Beckman & Edwards, 1994; Fry, 1955; Gay, 1978; Ladd, 2012; Lieberman, 1960; Lindblom, 1963)
- Seoul Korean (L1): No lexical stress or tonal contrasts; prominence is realized intonationally at the phrase level (e.g., Jun, 1998, 2000)
- Beneficial HVPT effects found for Seoul Korean listeners' encoding of English lexical stress in **short-term phonological memory** (Tremblay et al., 2022)
- Beneficial perceptual training effects found for Seoul Korean listeners' weighting of cues to English lexical stress (Tremblay et al., 2023)
- Do these effects extend to the use of English lexical stress in spoken word recognition?

2. Research Question

 Does HVPT enhance the automatic lexical activation and competition processes that underlie spoken word recognition in Seoul Korean L2 learners of English (more than does STT)?

4. Materials and Procedures

Pre-test:

Visual-world eye-

tracking experiment

8 days of training

sessions

Post-test:

Visual-world eye-

tracking experiment

VR = vowel reduction **Training Overall Protocol** NVR = no vowel reduction

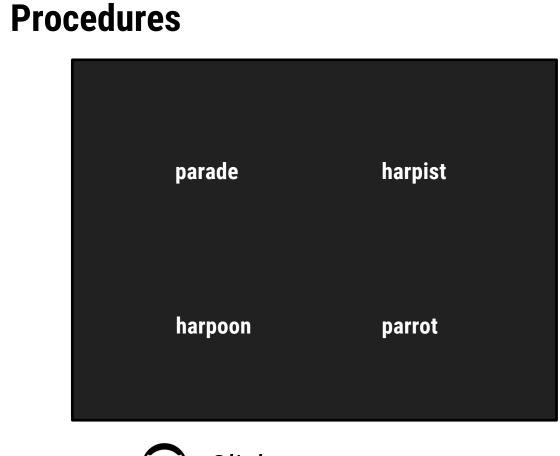
- HVPT Stimuli (41.7% with H*L-, 16.6% with L*H-, 41.7% Recorded by 2M & 2F not in pre-/post-test
 - Session 1~4: 288 tokens: (28 VR + 8 NVR words)b * 2 stress patterns * 2 talkers * 2 repetitions
 - Session 5~8: 288 tokens: (28 VR + 8 NVR words)b * 2 stress patterns * 4 talkers
 - STT Stimuli (41.7% with H*L-, 16.6% with L*H-, 41.7% unaccented)^a Recorded by 1F from HVPT Each session: 288 tokens: (28 VR + 8 NVR)
 - words)b * 2 stress patterns * 4 repetitions
 - Task: Forced-choice word identification with explicit feedback on accuracy (noun-verb minimal pairs) ^aDistribution of pitch accents based on Im et al. (2018) ^bDistribution of VR-NVR words based on Cutler & Carter (1987)

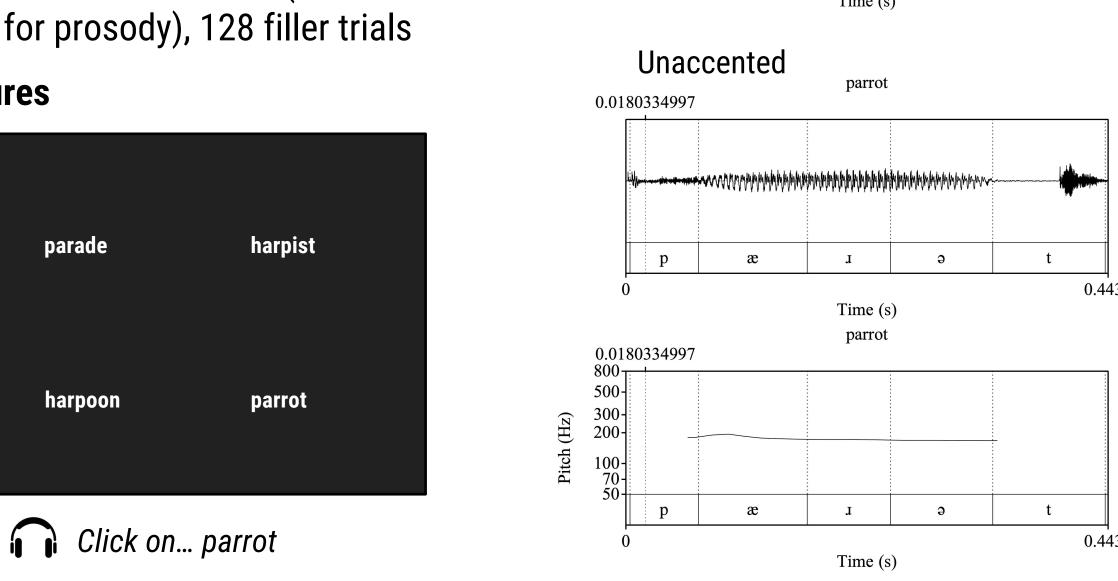
Acoustics

Accented

ı ə

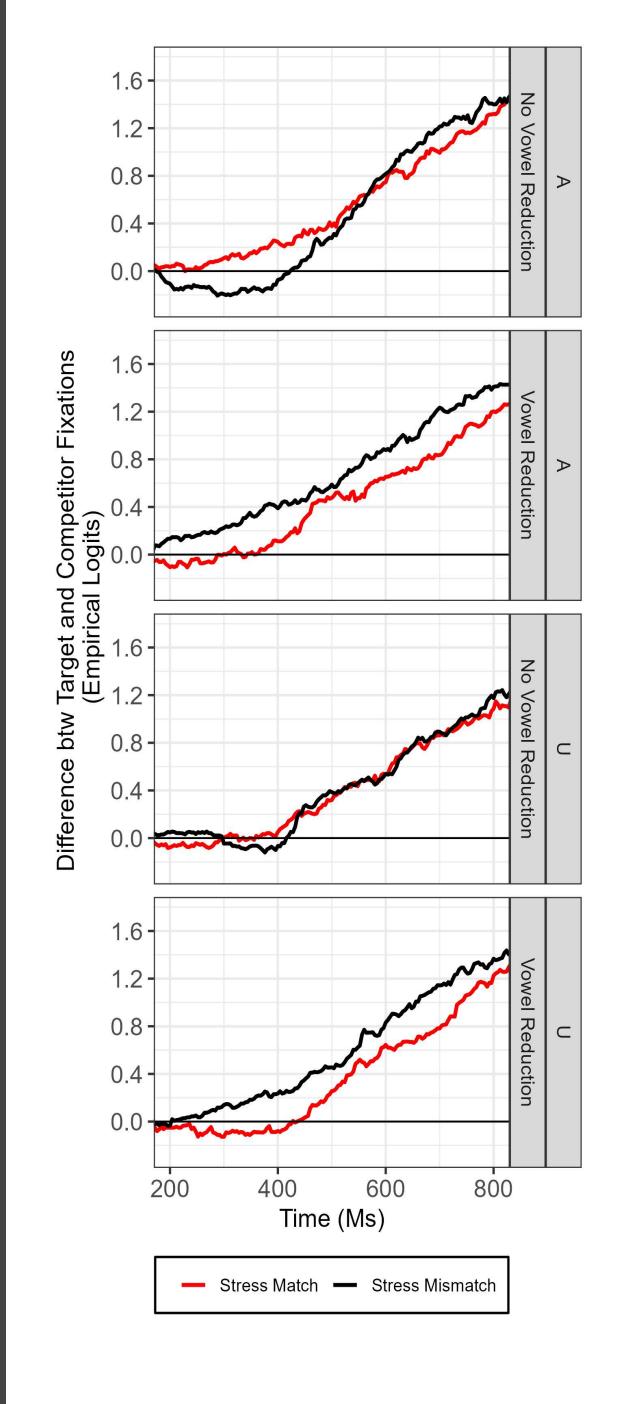
Visual-World Eye-Tracking Experiment (adapted from Connell et al., 2018)

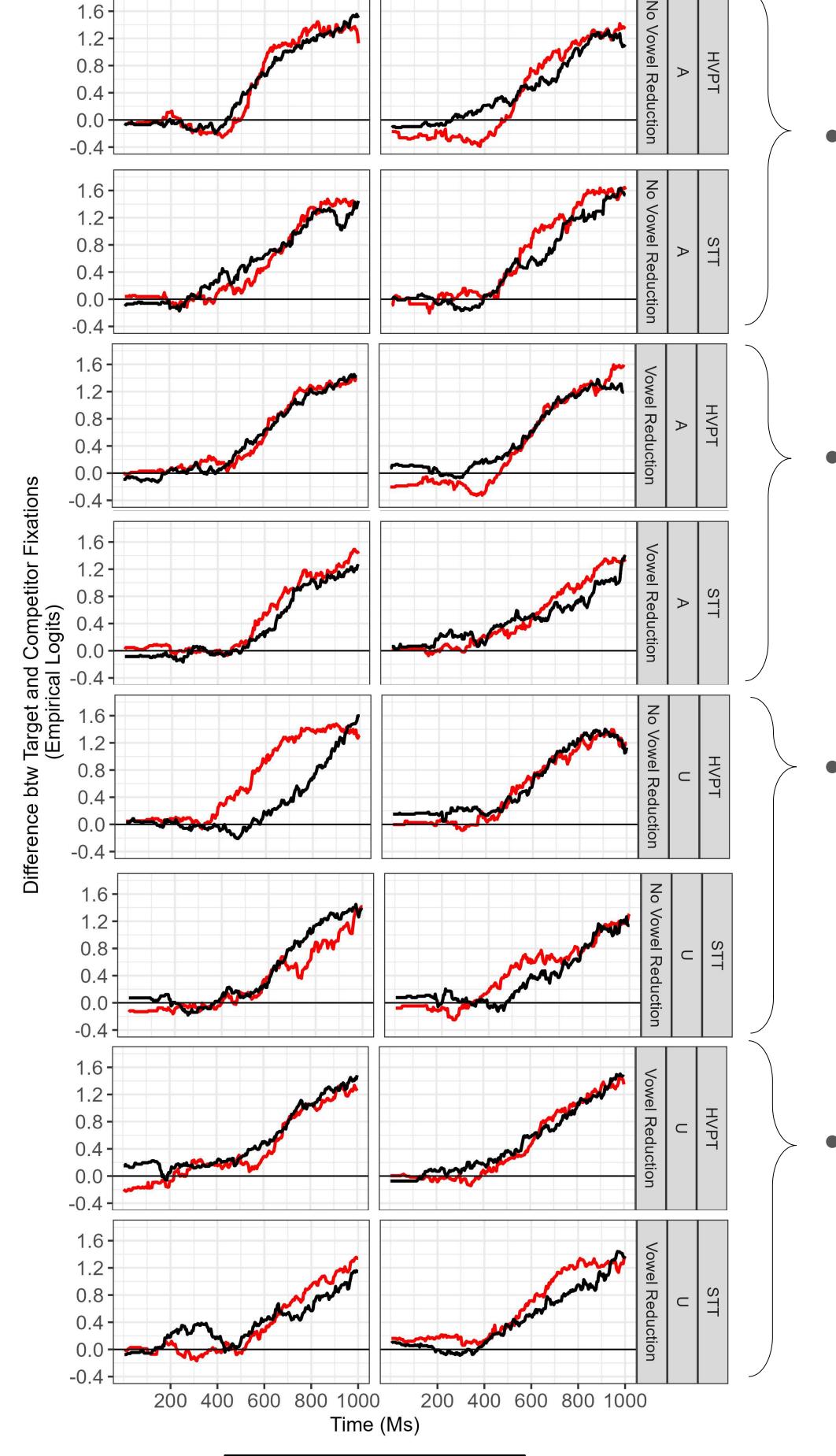

Materials (not used in training)


Day 10

2 (vowel quality) x 2 (stress) x 2 (prosody)

Vowel Quality	Stress	Target Word	Competitor Word	
Reduction	Different	<i>PArrot</i>	paRADE	
	Same	<i>PArrot</i>	PArish	
No Reduction	Different	<i>SURface</i>	<i>surPRISE</i>	
	Same	<i>SURface</i>	SURplus	


- Prosody: Accented (H*) vs. unaccented target words matched in duration
- <u>Items</u>: 64 different experimental word sets distributed in 4 lists (2 for stress and 2 for prosody), 128 filler trials



6. Results

- GCA
- time (quadratic, cubic) x stress x **vowel quality** (p < .013-.021)
- Vowel reduction:
- stress (*p* < .001)
- No vowel reduction: • time (quadratic, cubic) x stress (p < .001-008)

- GCA: accented condition with nonreduced vowel
- No sig. interaction involving stress
- GCA: accented condition with reduced vowel
- time (cubic) x stress x testing session **x training type** (p < .015)
- GCA: unaccented condition with non-reduced vowel
- stress x test session (p < .001),
- \circ stress x test session x training type (p
- time (linear) x stress x test session x training type (p < .03)
- GCA: unaccented condition with reduced vowel
- No sig. interaction involving stress

3. Participants

- 45 native English listeners (mean age: 20.7 SD: 4.1)
- 49 Seoul Korean L2 learners of English
- O 24 in HVPT group (mean age: 24.1, SD: 2.9)
- O 25 in STT group (mean age: 23.9, SD: 3.4)

	Age 1st Exposure	Years of Instr.	Self- prof. (1-5)	Self- Accent (1-10)	LexTALE SCORE (Lemhöfer & Broersma, 2012)
HVPT: mean (SD)	8.6 (1.5)	11.1 (2.5)	2.5 (0.7)	5.9 (1.9)	67.4 % (10.3)
STT: mean (SD)	8.5 (1.9)	13.2 (4.1)	2.4 (0.7)	5.7 (1.9)	69.1% (6.7)

5. Data Analysis

- Fixations to target and competitor words time-locked with the onset of target word
- Growth-curve analysis (GCA) on log-odd-transformed differential proportions of target and competitor fixations from 200-800 ms
- Fixed effects: time polynomials (i), (ii) stress, (iii) vowel quality, and (iv) prosody (both groups), and (v) test session and (vi) training type (Korean listeners)
- Random effect: Participant, with time polynomials as random slope
- Prediction: HVPT > STT \rightarrow Significant interaction between time, stress, test session, and training type, with Korean listeners showing greater target-over-competitor proportions of fixations in the stress mismatch condition after HVPT

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant BCS-2016750.

7. Discussion

• The predicted interactions were found, but the beneficial effect of HVPT seems to be driven primarily by the condition where the target and competitor words match in lexical stress (unexpected)

Stress Match — Stress Mismatch

- Unclear whether HVPT enhances the automatic lexical activation and competition processes that underlie spoken word recognition
- Lack of robust effect of HVPT and/or of training may be due to automatic lexical activation and competition processes needing more time to adapt and become effective
- Further analyses needed to understand this complex data set

References

Beckman, M. E., & Pierrehumbert, J. (1986). Intonational structure in English and Japanese. Phonology Yearbook, 3, 255-310. • Beckman, M. E., & Edwards, J. (1994). Articulatory evidence for differentiating stress categories. In P. A. Keating (Ed.), Phonological structure and phonetic form: Papers in laboratory phonology III (pp. 7-33). Cambridge: Cambridge University Press. • Bradlow, A. R., Pisoni, D. B., Akahane-Yamada, R., & Tohkura, Y. i. (1997). Training Japanese listeners to identify English /r/ and /l/: IV. Some effects of perceptual learning on speech production. J. Acoust. Soc. Am., 101, 2299-2310. • Connell, K., Hüls, S., Martínez-García, M. T., Qin, Z., Shin, S., Yan, H., & Tremblay, A. (2018). English learners' use of segmental and suprasegmental cues to stress in lexical access: An eye-tracking study. Lg. Learning, 68, 635-668. Cutler, A., & Carter, D. M. (1987). The predominance of strong initial syllables in the English vocabulary. Computer Speech and Language, 2, 133-142. Fry, D. B. (1955). Duration and intensity as physical correlates of linguistic stress. J. Acoust. Soc. Am., 27, 765-768. • Gay, T. (1978). Physiological and acoustic correlates of perceived stress. Language and Speech, 21, 347-353. • Huensch, A., & Tremblay, A. (2015). Effects of perception and production of second language syllable structure. J. Phon., 52, 105-120. • Im, S., Cole, J., & Baumann, S (2018). The probabilistic relationshiop between pitch accents and information status in public speech. Proceedings of 9th International Conference on Speech Prosody (pp. 508-511). Poznán, Poland. • Iverson, P., Hazan, V., & Bannister, K. (2005). Phonetic training with acoustic cue manipulations: A comparison of methods for teaching English /r/-/l/ to lapanese adults. J. Acoust. Soc. Am., 118, 3267. Jun, S.-A. (1998). The Accentual Phrase in the Korean prosodic hierarchy. Phonology, 15, 189-226. Jun, S.-A. (2000). K-ToBl (Korean ToBl) labeling conventions. UCLA Working Papers in Phonetics, 99, 149-173. Ladd, D. R. (2012). Intonational Phonology Cambridge: Cambridge University Press. 35, 1173-1181. • Lively, S. E., Logan, J. S., & Pisoni, D. B. (1993). Training Japanese listeners to identify English /r/ and /l/ II: The role of phonetic environment and talker variability in learning new perceptual categories. J. Acoust. Soc. Am., 94, 1242-1255. • Logan, J. S., Lively, S. E., & Pisoni, D. B. (1991). Training Japanese listeners to identify English /r/ and /l/: A first report. J. Acoust. Soc. Am., 89, 874-886. Melnik, G. A., & Peperkamp, S. (2021). High-variability phonetic training enhances Second language lexical processing: Evidence from online training of French learners of English. Bil., Lg, & Cog. 24, 497-506. Tremblay, A., Kim, H., Dobbs, K., Kim, S., & Cho, T. (2022). Perceptual training enhances Second Korean listeners' use of vowel quality and pitch cues to English lexical stress. JASA, 152, A74. • Tremblay, A., Kim, H., Kim, S., & Cho, T. (2023). Perceptual training enhances the use of vowel quality cues to lexical stress: The benefits of intonational variability. Presentation given at the 2023 International Congress for Phonetic Sciences, Prague, Czech Republic