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Figure 1: Neural-PBIR recovers high-fidelity material (b1,2), shape and lighting (b3), enabling realistic re-rendering (c1-3).

Abstract

Reconstructing the shape and spatially varying sur-
face appearances of a physical-world object as well as its
surrounding illumination based on 2D images (e.g., pho-
tographs) of the object has been a long-standing problem
in computer vision and graphics. In this paper, we intro-
duce an accurate and highly efficient object reconstruction
pipeline combining neural based object reconstruction and
physics-based inverse rendering (PBIR). Our pipeline firstly
leverages a neural SDF based shape reconstruction to pro-
duce high-quality but potentially imperfect object shape.
Then, we introduce a neural material and lighting distil-
lation stage to achieve high-quality predictions for mate-
rial and illumination. In the last stage, initialized by the
neural predictions, we perform PBIR to refine the initial
results and obtain the final high-quality reconstruction of
object shape, material, and illumination. Experimental re-
sults demonstrate our pipeline significantly outperforms ex-
isting methods quality-wise and performance-wise. Code:
https://neural-pbir.github.io/

1. Introduction

Reconstructing geometry, material reflectance, and light-
ing from images, also known as inverse rendering, is a long-
standing challenge in computer vision and graphics. Con-
ventionally, the acquisition of the three intrinsic compo-
nents has been mainly studied independently. For instance,
multiview-stereo (MVS) [26, 27, 9] and time-of-flight [44]
methods only focus on recovering object geometry, usually

based on diffuse reflectance assumption. Classical mate-
rial acquisition methods typically assume known or simple
geometries (e.g., a planar surface) with highly controlled il-
luminations [22, 34, 43], usually created with a light stage
or gantry. This significantly limits their practicality when
such capturing conditions are unavailable.

Recently, the advent of novel techniques enables us to
jointly reconstruct shape, material, and lighting from 2D
images of an object. At a high level, these techniques can be
classified into two categories. Neural reconstruction meth-
ods encode the appearance of objects into a multi-layer per-
ceptron (MLP) and optimize the network by minimizing
the rendering errors from different views through differen-
tiable volume ray tracing. NeRF [ 18] reconstructs a density
field-based radiance field that allows high-quality view syn-
thesis but not relighting. A series of methods [31, 35, 24]
compute the density field from the signed distance function
to achieve high-quality geometry reconstruction. Recent
works [40, 41, 3, 4, 20, 11, 42] seek to fully decompose
shapes, materials, and lighting from input images. How-
ever, due to the high computational cost of volume ray trac-
ing and neural rendering, those methods take hours [20, 11]
or a day [3, 42] to run and usually cannot model more com-
plex indirect illumination [40, 41, 3, 4, 20, 11], causing
shadows and color bleeding to be baked into the material re-
flectance. Several new methods [28, 19, 7] significantly re-
duce the computational cost of radiance field reconstruction
using hybrid volume representations and efficient MLPs.
We are among the first that adopt these novel techniques for
efficient joint recovery of geometry, material, and lighting.

On the contrary, physics-based inverse rendering (PBIR)
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Figure 2: Qur pipeline for joint shape, material, and lighting estimation.

[6, 16, 23, 1] optimizes shape, material, and lighting by
computing unbiased gradients of image appearance with
respect to scene parameters. Leveraging physics-based
differentiable renderers [38, 12, 15], state-of-the-art PBIR
pipelines can efficiently handle complex light transport ef-
fects such as soft shadow and interreflection. Such com-
plex light transport effects cannot be easily handled through
volume-based neural rendering. On the other hand, since
PBIR methods rely on gradient-based optimization to refine
intrinsic components, they can be prone to local minima and
overfitting. Therefore, they may require a good initializa-
tion to achieve optimal reconstruction quality.

In this paper, we present a highly efficient and accurate
inverse rendering pipeline with the advantages of both neu-
ral reconstruction and PBIR methods. Our pipeline attempt
to estimate geometry, spatially varying material reflectance,
and an HDR environment map from multiple images of an
object captured under static but arbitrary lighting. As shown
in Fig. 2, our pipeline consists of three stages. In the first
stage, we propose a hybrid neural volume-based method for
fast neural SDF and radiance field reconstruction, which
achieves state-of-the-art geometry accuracy and efficiency.
In the next stage, based on the reconstructed geometry and
radiance field, we design an efficient optimization method
to distill materials and lighting by fitting the surface light
field. Our method relies on a radiance field to handle vis-
ibility and indirect illumination but avoids expensive vol-
ume ray tracing to significant computational cost compared
to some recent works. Finally, we use an advanced PBIR
framework [38, 12] to jointly refine the geometry, materi-
als, and lighting. Note that our PBIR framework models
complex light transport effects such as visibility, occlusion,
soft shadows and interreflection in a physically correct and
unbiased way while still being much faster than recent in-
verse rendering methods.

Concretely, our contributions include the following:

* A hybrid volume representation for fast and accurate ge-
ometry reconstruction.

* A efficient optimization scheme to distill high-quality
initial material and lighting estimation from the recon-
structed geometry and radiance field.

* An advanced PBIR framework that jointly optimizes ma-
terials, lighting and geometry with visibility and inter-
reflection handled in a physically unbiased way.

* A end-to-end pipeline that achieves state-of-the-art geom-
etry, material and lighting estimation that enables realistic
view synthesis and relighting.

2. Related Works

Volumetric surface reconstruction. Recent progress in
volumetric-based surface reconstruction of a static scene
shows high-quality and robust results. NeuS [31] and
VoISDF [35] replace NeRF [18]’s density prediction with
signed distance values and proposes an unbiased and
occlusion-aware volume rendering, achieving promising re-
sults. Subsequent works improve quality by introducing
regularization losses to encourage surface smoothness [39],
multiview consistency [8], and manhattan alignment [10].
These methods use a large MLP as their volumetric rep-
resentation, which is however slow (many hours) to opti-
mize per scene. Recent advances [28, 36, 19, 7] show great
optimization acceleration without loss of quality by using
an explicit grid. Unfortunately, using explicit volume to
model SDF leads to bumpy and noisy surfaces [37]. Super-
visions from SfM sparse point cloud [39, 8] or monocular
depth/normal [37] may mitigate the difficulty but it’s out of
our scope. We propose simple and effective regularization
losses for explicit SDF grid optimization, achieving fast and
high-quality surfaces without using external priors.

Material and lighting estimation. Several neural recon-
struction methods [40, 41, 3, 4, 20, 11, 42] adopt the same
setting as ours to simultaneously reconstruct geometry, ma-
terial, and lighting from multiple images. An earlier work
[41] directly optimizes a low-resolution environment map
and materials from fixed geometry, leading to noisy light-
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ing reconstruction caused by the highly ill-posed nature of
this problem. More recent methods model lighting with a
mixture of spherical Gaussians [40, 3, 42] or pre-filtered ap-
proximation [4, 20], and constrain material reflection with
a spherical Gaussian lobe [40] or a low dimensional latent
code [3, 4, 42] to improve the reconstruction quality. Most
of them only consider direct illumination without occlu-
sion [40, 3, 20] or use a fixed shadow map [41, 4] due to
the high computational cost of MLP-based neural render-
ing. Nvdiffrecmc [11] models shadows using a differen-
tiable ray tracer with a denoiser that significantly reduces
the number of samples but still cannot model interreflec-
tion. MII [42] trains another network to predict visibility
and interreflection from the radiance field, which takes sev-
eral hours. On the contrary, our hybrid, highly optimized
neural SDF framework enables us to efficiently extract ge-
ometry, materials, lighting, visibility, and interreflection in
less than 10 minutes. Our advanced PBIR framework for
the first time allows holistic optimization of lighting, ma-
terial, and geometry with direct and indirect illumination
modeled in a physically unbiased way.

Physics-based inverse rendering. Different from neural-
based methods, several recent works [16, 11, 6] utilize clas-
sic image formulation models developed in the graphics
community and try to inverse this process using gradient-
based optimizations, with the gradients computed using
physics-based differentiable renderers. These approaches
can handle complex light transport effects during optimiza-
tion but are prone to local minima and overfitting. In our
work, instead of optimizing from scratch, we perform PBIR
as a refinement stage for better robustness.

3. Our Method

Provided multi-view images of an opaque object under
fixed unknown illumination (with known camera parame-
ters), our technique reconstructs the shape and reflectance
of the object as well as the illumination condition.

As illustrated in Fig. 2, our pipeline is comprised of three
main stages. The first stage (Sec. 3.1) is a fast and precise
surface reconstruction step that brings direct SDF grid opti-
mization into NeuS [31]. Associated with this surface is an
overfitted radiance field that does not fully model the sur-
face reflectance of the object. Our second stage (Sec. 3.2)
is an efficient neural distillation method that converts the
radiance fields to physics-based reflectance [5] and illumi-
nation models. Lastly, our third stage (Sec. 3.3) utilizes
physics-based inverse rendering (PBIR) to further refine the
object geometry and reflectance reconstructed by the first
two stages. This stage leverages physics-based differen-
tiable rendering that captures global illumination (GI) ef-
fects such as soft shadows and interreflection.

3.1. Neural Surface Reconstruction

Taking as input multiple images of an opaque object un-
der fixed illumination (and with known camera parameters),
the first stage of our method produces a detailed reconstruc-
tion of the object’s surface. To this end, we optimize the
object surface and an outgoing radiance field that best de-
scribes the input images. In this stage, for efficiency and
robustness, we express the object surface as the zero-level
set {x € R3 | S(x) = 0} of a signed distance field (SDF)
S(z), and the radiance field L,(x, —v) (for any position
x € R3 and viewing direction v € S?) as a non-physics-
based general function approximator.

Unbiased volume rendering with SDF. To compute the
color of a pixel, we first sample N query points {x; =
o+ tv}Y, (with0 < t; < ty < ... < ty) along
the corresponding camera ray originated at the camera’s
location o with viewing direction v. We then query the
scene representation for points sign distance S(x;) and ra-
diance L, (x;,v). Following NeuS [31]’s unbiased render-
ing, we activate the queried signed distance into alpha for
alll <7< Nyvia

1)

¢ = mix (o, o(S(@:) - a(su-z-m)) |

o(S(z:))

where o denotes the Sigmoid function. Then, the pixel
color C' is computed by the alpha blending of the queried
alphas and radiance values

N i—1
C=> TioiLo(mi,—v) whereT, = [[(1—0a;). (@
i=1 j=1

Voxel-based scene representation. NeuS uses a large
MLP to model the SDF S and radiance field L,. Unfor-
tunately, since this MLP is expensive to query, NeuS’ opti-
mization processes can be very time-consuming.

For better performance, we adapt the dense-grid-based
scene representation from DVGO [28] by setting

S(z) = interp(z, VD) |

(3)
Lo(x, —v) = MLP (interp(m7 V(fcat))7 v) ,

where interp() indicates trilinear interpolation, V) is a

dense SDF grid, v (feat) g a dense feature grid, and MLP is
a single-hidden-layer MLP with ReLU activation.

In practice, we use two sets of V46 and v (feat) grids
to model the foreground (i.e., the object of interest) and the
background with varying resolutions. Please refer to the
supplement for more details.

Adaptive Huber loss. We incorporate a Huber loss to

reduce the impact of specular highlights which can cause
bumpy artifacts in reconstructed surfaces:

_ (Zlr] = Cr)?, (IZfr] = Clrll < ¥)
2 {2t |Zlr] = Crll - 22,

£ oto
phot - (otherwise)
C)
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where: Z[r] and C[r] denote, respectively, the colors of the
r-th pixels of the target and rendered images; ¢t € Ry is a
hyper-parameter.

Intuitively, the infinity norm of the gradient of Lypoto is
clamped by 2¢ to prevent bright pixels (e.g., those exhibiting
specular highlights) dominating the optimization. In prac-
tice, instead of tuning a constant ¢, we adaptively update ¢
by the running mean of the median of |Z[r] — C[r]| in each
iteration to clamp gradient for about half of the pixels.

Laplacian regularization. To further improve the robust-
ness of our approach and reduce potential artifacts, we reg-
ularize our SDF grid V1) ysing a Laplacian loss:

Liap =3 ( > (V] - vEu)) )2 L)

u u’ €N (u)

where V (549 [y] indicates the SDF value stored at the grid
point u, and N (u) denotes the six direct neighbors of w.

Training. Following DVGO [28], we use progressive grid
scaling for efficiency and more coherent results. Our exper-
iments also indicate that using a per-point RGB loss L, 1gb
improves convergence speed and quality:

£pp,rgb — Z Ti(r)agr)

Lo (2", ~v) - 1]

, (0

where a?) and Ti(r) are computed using Egs. (1) and (2) for
each pixel r. In summary, to train our SDF and feature grids

Y (sdf) gpg v (feat) Eq. (3), we minimize the objective:

Lsurf = ‘Cphoto + Wiap ﬁlap + Wpp.rgb £pp,rgb . (7)

Postprocessing. Optionally, our surface reconstruction
stage generates for each input image an anti-aliased mask
that separates the object from the background using mesh
rasterisation and alpha matting [25]. The generated masks
can be used by our physics-based inverse rendering stage
(Sec. 3.3) to facilitate the refinement of object shapes.

3.2. Neural material and lighting distillation

Provided the optimized object surface and outgoing radi-
ance field from the surface reconstruction stage (Sec. 3.1),
the goal of the second stage of our pipeline is to obtain
an initial estimation of surface reflectance and illumination
condition. To this end, we leverage the radiance field L,
as the teacher model to distill the learned surface color into
physics-based material and illumination models (that can be
rendered to reproduce L,) as follows.

As preprocessing for this stage, we extract a triangle
mesh M () from the optimized SDF S(z) given by Eq. (3)
using (non-differentiable) marching cube. Additionally, for
each mesh vertex v, we compute its normal My,[v] € S?
based on the gradient V.S of the SDF.

Material and illumination models. To model spatially
varying surface reflectance, we use the widely-adopted
Disney microfacet BRDF [14] parameterized by surface
albedo and roughness. In practice, instead of using a
large MLP to model the spatially varying BRDF parame-
ters [40, 41, 20, 42], we store the albedo M,[v] € [0,1)
and roughness M, [v] € Rsq for each vertex v of the ex-
tracted mesh M/ (®) (and interpolate them in the interior of
triangle faces) for better performance. To model environ-
mental illumination, we use mixtures of spherical Gaus-
sians [30, 17, 40, 42] with 256 lobes.

Coarse rendering. For fast training, we opt to use nu-
merical integration on stratified pre-sampled light direc-
tions ) for efficiency (we use 256 samples in practice).
Specifically, for each vertex v of the extracted mesh M/ (?)
and light direction w; € (2, we precompute the visibility
Vis[v, w;] and indirect illumination L™ [v, w;] by tracing
a ray from the vertex in the direction wj. If this ray inter-
sects the object surface at some x, we set Vis[v,w;] = 0
and Li(md) [v,wi] = Lo(x, —w;) [42]. Otherwise, we set
Vis[v,w;] = 1. Then, the incident radiance at each vertex
can be expressed as

Li(w) = Legy (wi) Vislw] + L™ [wi] (1 = Vis[wi)) , (®)
where L5G is the SG-based environmental illumination.

Lastly, the outgoing radiance is computed by

- 1
Lo(wo) = - D Li(ws) f(wi, wo, Mu) (M- wi), (9)
wieN
where Z is a normalization factor, f denotes the BRDF
function parameterized by M, and M.. In Egs. (8) and (9),
we omit dependencies on vertex v for brevity.

Training. In each iteration, we randomly sample a out-
going direction w, (with My[v] - we[v] > 0) for each ver-
tex v and minimize the absolute difference with the teacher
model:

Laistin = g

v

Lo (v, wo[v]) — Lo (U,wo[y])( .o

To encourage smoothness, we apply total variation loss on
the per-vertex albedo M, and roughness M, :

> > IMwn] = Mufwo]] . (1D)

(vy,v2)€edge *€{a,r}

Acv,reg =

SG

Also, we regularize the SG-based illumination L3,

Log= )

wiEN

using

L3S (wi) — (L35 (wi)] (12)

where (L5S)’ indicates the averaged background observa-

tion (see the supplement for more details).

In summary, we optimize per-vertex albedo M,, rough-
ness M,, and the environmental illumination L5$, by mini-
mizing

Edistill,total - Edistill + Wy _reg Ev,reg + Whbg £fbg . (13)
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Postprocessing. With the per-vertex attributes M, and
M, obtained, we UV-parameterize the extracted mesh M ©
and pixelize M, and M,, respectively, into an abledo map
éo) and a roughness map Tr(o). These maps will be refined
by our following inverse-rendering stage (Sec. 3.3).

3.3. Physics-Based Inverse Rendering

Reconstructions produced by our shape reconstruction
and neural material distillation stages (Secs. 3.1 and 3.2)
comprise three components: (i) environmental illumination

Lé?l)v := L35G expressed as spherical Gaussians; (i) object

reflectance parameterized with an albedo map Ta(o) and a
roughness map Tr(o); and (iii) object surface mesh M ().

Despite being high-fidelity, these reconstructions can
still lack sharp details and are not immune to artifacts (see
Fig. 7). To further improve reconstruction quality, we uti-
lize a physics-based inverse rendering stage. Specifically,
initialized our neural reconstructions (i.e., Lé?l)v, T;o) s Tr(o) s
and M(®)), we apply gradient-based optimization to mini-
mize the inverse-rendering loss:

Ligr = [:img + Wmask Lmask + Wreg ['rEgy (14)
where
£img(Lcnw T, Ty, M) = Z ”Ij - Rj(Lan T, Ty, M)”l )
J

15)
is the image loss given by the sum of L1 losses between
the j-th target image Z; and the corresponding rendered
image R;(Leny, Ta, Ty, M). Additionally, L,eg and L ask
in Eq. (14) denote, respectively, the regularization and the
mask losses—which we will discuss in the following.

Environment map optimization. We recall that the ini-
tial illumination L% = LSS is a coarse reconstruction
expressed as a set of spherical Gaussians (SGs). To further
refine it, we employ a two-step process as follows. In the
first step, we directly optimize the SG parameters (i.e., per-
lobe means and variances). In the second step, we pixelize
the optimized SG representation into an environment map
(using the latitude-longitude parameterization) and perform

per-pixel optimization.

SVBRDF optimization.

and Tr(o) are already high-quality, we perform per-texel op-
timization for the albedo and roughness maps 7, and 7.
Further, to make our optimization less prune to Monte Carlo
noises produced by our physics-based renderer (discussed
later), we regularize 7 using a total variation loss:

‘C’reg(TF) = Z Z |Tr[$/7y/} - Tr[mvy] | ) (16)

(z,y) (=",y")

. e g . 0
Since our initializations Té )

where T [z, y| denotes the (z,y)-th texel of the roughness
map T}, and (2/,y’) € {(z + 1,y), (z,y + 1)} are two
direct neighbors of (z,y).

Shape refinement. In all our experiments, object geome-
tries predicted by our neural stages accurately recover ob-
ject topology. Thus, although it is possible to directly op-
timize SDFs in inverse rendering [2, 29], we opt to use ex-
plicit mesh-based representations for the object surface M
in this stage for better efficiency. To make our per-vertex
optimization more robust to Monte Carlo noises, we utilize
Nicolet et al.’s AdamUniform optimizer [21].

To further improve efficiency, we leverage object masks
produced either as input or by our surface reconstruction
(Sec. 3.1) and introduce a mask loss:

Lunasi(M) =Y " ||8; = RF“(M)|1, (17
J

where S; is our predicted mask for the j-th target image
and R}““k the corresponding rendered mask.

Differentiable rendering. To differentiate the image and
the mask losses defined in Eqs. (15) and (17), we develop a
physics-based Monte Carlo differentiable renderer that im-
plements path-space differentiable rendering [38] and uti-
lizes state-of-the-art numerical backend [12].

Most, if not all, previous techniques including MII [42]
and nvdiffrec-mc [11] rely on highly simplified differ-
entiable rendering processes that typically neglect global-
illumination (GI) effects and produce biased gradients with
respect to geometry. On the contrary, our differentiable ren-
derer offers unbiased gradients and the generality of differ-
entiating GI (and anti-aliased masks) with respect to surface
geometries. Consequently, our pipeline is capable of gen-
erating higher-quality reconstructions than state-of-the-art
methods, which we will demonstrate in Sec. 4.

4. Results

To demonstrate the effectiveness of our method, we show
our reconstructions on synthetic input images and captured
photographs in Secs. 4.1 and 4.2, respectively. We com-
pare reconstructions obtained with our technique with two
state-of-the-art baselines: MIl [42] and nvdiffrec-mc [11].
Additionally, we conduct ablation studies to evaluate sev-
eral components of our pipeline in Sec. 4.3. Please refer to
the supplement for more results.

4.1. Synthetic Data

We assess the effectiveness of our proposed method us-
ing the synthetic dataset made available by MIl [42]. This
dataset comprises four virtual scenes—each of which in-
cludes multi-view renderings (with object masks) of an ob-
ject under some natural environmental illumination (with
the ground truth environment map provided). For each
scene, the dataset provides 100 target images accompanied
by camera poses and object masks for training. Addition-
ally, the testing set consists of renderings of ground truth
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Speed Relighting Aligned albedo Albedo Rough.
Method Time/ PSNRT SSIM{ LPIPS| PSNRt SSIMT LPIPS| PSNRT SSIM{ LPIPS| MSE|
nvdiffrec-mc [11] ~2h 2393 0946 0.074 29.72 0959 0.057 1825 0.899 0.103 0.009
MII [42] ~10h 2753 0947 0.087 25.77 0935 0.066 2462 0931 0.064 0.008
Ours - Distilled only <15m 30.26 0961 0.059 27.67 0.933 0.079 2620 0.931 0.093 0.009
Ours - Const. init.  ~37m 3025 0970 0.050 28.55 0940 0.070 25.83 0.940 0.080 0.010
Ours - w/o GI ~45m 30.57 0960 0.050 27.71 0940 0.070 26.38 0.940 0.082 0.009
Ours - w/o shape ref. ~45m  30.61 0965 0.049 28.74 0.944 0.067 26.84 0.941 0.082 0.008
Ours - Full ~1h 3073 0966 0.047 29.06 0.946 0.067 2685 0.944 0.080 0.008

Table 1: Relighting, material reconstruction, and view-interpolation quality on MII dataset [42].

We compare our

method with MII and Nvdiffrec-mc. The highest performing number is presented in bold, while the second best is under-
scored. For “Ours - Distilled only”, we did not run the PBIR stage. For “Ours - Const. init.” and “Ours - w/o GI””, we did not
run the shape refinement. Please refer to Secs. 4.1 and 4.3 for more details.
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Figure 3: Qualitative comparisons on the MII data.

albedo, roughness, and the object under two novel lighting
conditions in 200 poses. We apply our technique and the
baselines to the posed training target images and masks (but
not the GT environment maps).

Tab. 1 presents the quantitative comparisons where we
compare our method’s reconstructions with the baselines
by rendering them in the testing poses and comparing them
with the ground truth images. In line with MIl, we report
PSNR, SSIM, and LPIPS for the relit and albedo images,
and the MSE for the roughness images averaged across all
scenes. MII also reports error metrics on aligned albedo to
reduce the impact of albedo-light ambiguity [42]. Specif-
ically, we compute an RGB scale that minimizes the dif-
ference between the reconstructed albedo images and the
ground truth albedo images, and reconstructed albedo im-
ages are scaled before evaluation. Our method outperforms
the baselines and takes less time.

Novel-view Captured light re-rendering
Methods raw aligned
PSNRt SSIM1 PSNR? SSIMt PSNR{ SSIMt
Nvdiffreeme  30.3 094 21.8 092 28.0 0.94
MII 289 094 275 094 286 094
Ours 316 096 288 095 30.7 0.95

Table 2: Quantitative comparison on Our Real Dataset.
To inspect material quality for relighting, we capture 360
images for our dataset and evaluate the rendering results un-
der the captured lighting.
Mil nvdiffrec-mc

Ours Groundtruth

30.1/0.94 33.0/0.96 33.6/0.96 PSNRT / SSIMT

Figure 5: Rerendering of reconstruction results under
captured (GT) illumination. We rescale all renderings to
match the overall brightness of the GT image.

We show qualitative results in Fig. 3. Since MII im-
poses a sparsity constraint to reconstruct a sparse set of ma-
terials, the results tend to be over-blurred. Despite being
able to produce sharp texture maps, nvdiffrec-mc suffers
from inaccurate illumination reconstructions, causing their
reconstructed albedo maps to be color-shifted. Compared
with these two baselines, our method produces significantly
more accurate material and illumination reconstructions.

4.2. Real Data

To further demonstrate the robustness of our method, we
captured five real scenes under indoor lighting and again
compared the reconstruction quality with Mll and nvdiffrec-
mc. For each scene, we use around 200 measured images
for training and 10-20 for testing. We place a checkerboard
beneath the object for the geometric calibration of camera
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Figure 4: Novel-view interpolation on our real dataset. Our technique produces high-fidelity reconstructions with minimal

Distilling PBIR

parameters. For each object, we manually annotate an ob-
ject 3D bounding box to crop the reconstructed meshes to
focus the comparisons on the object of interest. In addition,
we measure ground truth environment map (which we use
for evaluation only) for each scene using an HDR 360 cam-
era. As there are no ground truth foreground masks while

artrfacts We report the average PSNRT and SSIMT below each image.

Distilling PBIR

Figure 7: Reconstructed albedo before and after PBIR. Despite our neural distilling outperform previous arts by a large
margin, we still observe blurriness and light baking in the reconstructed materials. Our PBIR stage can provide sharper
details and remove light baking efficiently.

our baselines require them, we use masks generated in our
surface reconstruction stage (§3.1).

We compare the qualities of reconstructions produced by
our method and the baselines using novel-view renderings
(since we do not have the GTs). As shown in Fig. 4, our
reconstructions produce detailed renderings that closely re-
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Ml nvdiffrec-mc Ours

Figure 6: Novel-illumination renderings of the recon-
structed models. Our results offer the highest overall qual-
ity with minimal artifacts.

semble the GTs, while MIl and nvdiffrec-mc’s results suffer
from various artifacts (e.g. lacking details and bumpy sur-
faces). In addition, to evaluate the quality of reconstructed
object shape and reflectance, we compare renderings under
captured GT illumination in Fig. 5. The quantitative com-
parison is summarized in Tab. 2 where we achieve the best
novel-view synthesis results under both the reconstructed
and the captured environment maps. We show qualitative
comparison under novel-illumination in Fig. 6.

4.3. Evaluations and Ablations

Surface reconstruction. To evaluate the quality of recon-
structed geometries produced by our surface reconstruction
stage (Sec. 3.1), we use the subsampled 15 scenes of DTU
dataset [13]. Each scene has 49 or 64 images with camera
parameters and masks provided. The quantitative results
are concluded in Tab. 3. Our direct SDF grid optimiza-
tion uses significantly less time than NeuS [31] while still
outperforming NeuS surface accuracy measured in cham-
fer distance (CD). Our simple surface reconstruction with
dense grid also achieves similar performance comparing to

Methods COLMAP NeuS Voxurf NeuS2  Our

Runtime] 1 hrs 5.5hrs 16 mins 5 mins 5 mins
CD (mm)] 1.36 0.77 0.72 0.70 0.66

Table 3: Surface reconstruction quality on DTU
dataset [13]. The results are averaged across the 15 scenes.
We include two recent works, Voxurf [33] and NeuS2 [32],
for reference. See supp. for results breakdown.

Liap v v v v
Lopp_rgb v v v v
ada. huber v v v v
CD (mm)] 150 137 124 1.11 1.03 1.00 0.89 0.68

Table 4: Ablation study of SDF grid regularizations. The
results are averaged over the 15 objects on DTU dataset.

the most recent Voxurf [33] and NeuS2 [32].

We conduct a comprehensive ablation study for the three
losses that help us achieve direct SDF grid optimization.
As shown in Tab. 4, naively adapting DVGO without reg-
ularization leads poor quality. Among the regularization,
Ly,p is the most significant, which enforces the SDF grid to
evolve smoothly during optimization. Adding L g1, and
using adaptive Huber loss also shows good improvement.
Combing all three losses offers the best results.

We also show the 20 - —
chamfer distance (CD) in i:——— full diff. to final Wfo Lo dif. to final

the first 15k iterations .|
with and Loprgb ™1\
here. The solid lines ||

0.50 4

are CD, while the dashed o2/ N
lines are the difference to "7 w10 o s 100w 12000 1000
the final CD. The results are averaged over the 15 DTU
scenes. Using Ly, +gp improves final quality and speeds
up convergence to the final CD in fewer iterations.

Please note that our results on DTU dataset are directly
from the shape reconstruction stage. We skip evaluating the
shape refinement of our physics-based inverse rendering as
DTU exhibit vary light occlusion from robot arms. Please
see the supplement for more results.

Neural material distilling. We now demonstrate the use-
fulness of our neural material distilling stage (Sec. 3.2)—
which provides high-quality material predictions used to
initialize our PBIR stage (Sec. 3.3). Specifically, when
using constant initializations for surface reflectance (with
T, = 0.5, T, = 0.5) and illumination (with a gray environ-
ment map), it takes our PBIR pipeline 37 minutes (see the
row labeled as “Ours - const. init.” in Tab. 1) to generate
reconstructions with a similar level of accuracy as the neu-
ral distilling stage does in less than 15 minutes (see the row
labeled as “Ours - distilled only”).

Importance of PBIR. The distilling method is efficient
by sidestepping ray tracing and approximating global illu-
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w/ GI (27.69 / 0.940)

w/o GI (26.58 /0.934)

Figure 8: Reconstructed albedo with/without GI. We
show the impact of modeling global illumination (GI) on
material reconstruction. The above images are the recon-
structed albedo maps with GI on/off, with their errors listed
below (PSNRT / SSIMT). Without GI, the optimization
tends to ’bake” the indirect lighting into the albedo map.

mination but it sacrifices accuracy and tends to ’bake” inter-
reflection into the materials. We use our physically-based
differentiable renderer to further refine the material. In 7,
we show the albedo maps before and after PBIR on our real
dataset. We achieve much higher fidelity with less baking
after PBIR. The result is consistent with the quantitative re-
sults on synthetic dataset (refer to ”Ours - Distilled only”
versus “Ours - Full”) in 1.

Importance of GI. Our differentiable renderer used in
the PBIR stage (Sec. 3.3) is capable of handling global-
illumination (GI) effects such as interrelfection. To demon-
strate the importance of GI, we run PBIR optimizations with
and without GI and compare the material reconstruction
qualities. As shown in rows labeled as “Ours - w/o GI”
and “Ours - w/o shape ref.” in Tab. 1, enabling GI improves
the accuracy of material and lighting reconstructions.

A main reason for the usefulness of GI is that, without
GI, inverse-rendering optimizations tend to “bake” effects
like interreflections into reflectance (e.g. albdeo) maps, lim-
iting their overall accuracy. We demonstrate this by com-
paring albedo maps optimized with and without GI in Fig. 8
(using the balloons data from the MII dataset).

Shape refinement. Lastly, we demonstrate the usefulness
of shape refinement (by optimizing the vertex positions of
the extracted mesh) using rows labeled as “Ours - w/o shape
ref.” and “Ours - Full” in Tab. 1 and Fig. 9. Please refer to
the supplement for more examples.

5. Discussion and Conclusion

Limitations. Due to the fundamentally under-constrained
nature of inverse rendering, our technique is not immunue
to “baking” artifacts—especially when predictions provided
by our neural stages are far from the groundtruth. Also, al-
though our technique handles global-illumination effects in-
cluding interreflection, it assumes for opaque materials and
does not currently support the reconstruction of transparent
or translucent objects.

Before stage 3

After stage 3

(noyelylie 7 :
Figure 9: An example showcasing the usefulness of our
PBIR shape refinement. Our stage 1 can sometimes lack
geometry details while our PBIR in stage 3 can recover
these details.

Conclusion. We introduced a new method for recon-
structing an object’s shape and reflectance under unknown
environmental illumination. Our technique is comprised of
three stages: (i) a surface reconstruction stage fitting an im-
plicit surface and a radiance field from input images; (ii)
a neural distilling stage decomposing material and lighting
from the radiance field; and (iii) a PBIR stage jointly refin-
ing the geometry, material, and lighting. Broad experiments
show our effectiveness.

Acknowledgement. This project has been partially sup-
ported by NSF grant 1900927.
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