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Abstract— This paper introduces an algorithm for solving
robust optimal controllers for nonlinear systems using the
homotopy shooting method. Robustness is ensured by penalizing
the sensitivity states of the models during the transition and at
the final time. In two examples, the cost is represented by the
tracking error and terminal residual energy for a rest-to-rest
maneuver. The proposed approach is illustrated on a double
mass-spring-damper system and on a Type 1 Diabetes model
where the cost function includes the integral of the tracking
error. Our method can be readily extended for de-sensitization
of multiple states over the whole time interval.

Index Terms— Optimal Control, Numerical Methods, Homo-
topy, Robustness.

I. INTRODUCTION

For many optimal control problems in engineering ap-
plications, it is burdensome to derive analytical or closed
form solutions using Pontryagin’s maximum principle [1].
Explicitly, posing the optimal control problem as a two-point-
boundary-value problem leads to difficulty in obtaining the
optimal solution due to the sensitivity of convergence to the
initial guesses [2][3]. One approach to tackle this problem is
to use iterative/numerical methods, for instance, continuation
methods [4]. Homotopy falls in the category of continuation
methods by tracking a zero-curve [5]. The main motivation is
to start by solving an easy problem and slowly transforming
the system to the complex problem of interest [1]. Thus, the
homotopy parameter is used to blend the convex combination
of the simple and complex system while being iteratively
incremented. The previous homotopy step’s solution is used
as an initial guess for the next homotopy step [1].

The homotopy perturbation method has been used in
conjunction with the Padé approximation to solve the Hamil-
ton—Jacobi—Bellman equation [6], and to maximize the wind
energy capture and reducing the mechanical stress on the
drive train [7]. Work [1] illustrated a numerical example of a
three-dimensional orbit transfer problem for a spacecraft with
a single shooting homotopy method. Their homotopy was
exploited between a linear system and a nonlinear system
and neighboring extremal optimal control where constraints
were applied to the input as well. Work [8] has used
optimal homotopy asymptotic method to find the optimal
solutions of fractional order of fuzzy differential equations.
Work [9] linked convex programming and homotopy for
a fuel-optimal low-thrust trajectory optimization problem.
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They transitioned the homotopic path from the minimum-
energy to the minimum fuel, which can be used in deep-
space cruise, where robustness and convergence are more
important than optimality. Most homotopy approaches are
applied in the aerospace community such as for generating
an optimal open-loop large-angle 3-D maneuver for an
asymmetric spacecraft for the case when one of the nominal
maneuver actuators fails [10], rapid cooperative rendezvous
problem between two spacecraft [11], solving for irregular
asteroid landing [12], etc. In other domains, the homotopy
approach has been used in the medical field for instance in
the optimization in chemotherapy in cancer research [13].
It is well known that for certain problems a continuous
zero-curve which in our case translates the problem from
the linear to nonlinear system might not exist [2]. Recently
approaches such as double-homotopy [2] or fractional homo-
topy [14] have been proposed to address this issue, where
it was concluded that either there is a remaining feasibility
dependent on the initial guess of the states or an immense
computational burden. Another method presented by [15]
involves 4 homotopy strategies for one problem to obtain
multiple local solutions.

For our examples zero-curves exist. We choose two ex-
amples: 1) 2 spring-mass-damper system (floating oscillator)
with a nonlinear spring as a benchmark example and 2) Type
1 Diabetes model. For the floating oscillator, the goal is
to track the desired reference trajectory and simultaneously
ensure robustness towards parameter uncertainties. The Type
1 Diabetes model is bilinear and we provide the optimal
solution for a linearized version. Then, we show that posing
the problem in a robust manner, the blood glucose level
is desensitized towards a single parameter uncertainty. This
paper will proceed as follows: In Section II we illustrate the
methodology of our proposed homotopy shooting algorithm.
In Section III, we describe the numerical results of the
floating oscillator and Type 1 Diabetes model. In Section IV,
we provide a brief conclusion.

II. METHODOLOGY

The proposed approach entails deriving the optimal solu-
tion in closed form for a linear system and transition that to a
solution for the nonlinear system with a blending parameter



A. Consider the optimal control problem:

J=k(e(T),\)+ /OT L(e(t), u(t), \)dt
st: @ =Ax+ Bu+ D(t) z(0) =z
e=(Cx—yq).
Define the Hamiltonian as:
H = L(e(t),u(t),\) + " (Az + Bu + D(t)).

The costates are defined as:
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For a quadratic cost function of a tracking problem, the
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The state and costate derivatives are:
i = Az — BR™'BTy + D(t)
i =—-C"QCz — ATy + C" Qya,
which can be rewritten as:
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The solution to this equation is:

T
m (T) = e “”} (0) + / M= B(7) dr,
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which can be represented as:
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Since the transversality conditions require:

W(T) = CTQs (Cx(T) — ya(T))

we have:
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which leads to the solution:
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which can be used to generate the optimal state, costates and
control which serve as the initial solution for the homotopy
loop. This solution corresponds to the optimal solution for
the homotopy parameter A = 0. The homotopy optimal
control problem is posed as:

T = 5" MQse(T)(1~ X) + Ap(a(T))
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stz =(1-M\) (Az(t) + Bu(t) + D(t)
+A(f(2(t), ut)) = F(x(t), u(t), A). (20)

Define the Hamiltonian as:
1
H = 5(1 — N [e"Qe+u"Ru] + AL+ F,  (21)

which leads to the necessary conditions for optimality:
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where e(t) = Cx(t) — yq(t). The transversality conditions

leads to:

Y(T) = (1= NCTQse(T) + Aga(T),  (23)
and the optimal control is derived from:
0H oL OFT
o _0:>(1—A)Ru+/\%+—au =0, (24
which is solved for u(t) resulting in the equation:
u(t) = g(z(t), (1), A), (25)

which results in the two point boundary value problem with
the coupled state-costate equations:

= (1-X)[Az + B(z,v) + D(¢)]
A2, g(a(D),0(D),))  (26)
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and the boundary constraints are (0) = z and ¢(T) = (1—
NCTQre(T) + A (T). The quasi-linearization approach
to solve the boundary value problem requires the model
being linearized about the nominal trajectory and is used
to increment toward the optimal trajectory. For simplicity
we introduce using the index (.), and (.),, to represent
the first and second derivative with respect to the variable
x, respectively. This notation holds for all other variable
choices. The quasi-linearization approach leads to:

0i = Fyox 4+ F,ou+ F\6A  (28)
0 = —Hyppb2 — Hpuot — Hoy0th — HynSN,  (29)

and the linearized optimality condition leads to the optimal
perturbation control:

Hypbx + Hyy0th + Hydu + HpdA =0 (30)
— du=—H,! [Hubx + Hyydth + Hiz6A . (31)
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The shooting method can now be used to solve for the
perturbations in initial costates to satisfy the transversality
conditions.
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which can be written in a matrix-form as:
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and we know that:
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The solution to this equation takes the form:
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which can be represented as:
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Since A* is time-varying, in order to identify ¢7;, ¢7,,
¢35, and ¢3,, the equation needs to be solved numerically
with A = 0. Therefore, the initial conditions for = (0) and
0(0) will be always unit-vectors starting with “1” at the
first element while the last unit-vector has the “1” placed at
the last element. In order to determine I'j and T, d2(0) and
d1p(0) will be set to 0 and A # 0, where 6\ depends on the
step size of the homotopy parameter. From the matrix form
we can get:

6z(T) = ¢1,0x(0) + ¢126¢(0) + I'15A
§(T) = ¢5,02(0) + $3,6¢(0) + 6.
Since the transversality conditions require:

W(T) +0(T) = CT Qs (Cx(T) — ya(T)) +CT QCo(T),

(40)
(41)

e(T)
(42)
we have:
P(T) + ¢3,62(0) + ¢326¢(0) +T'5 =
CTQre(T) + CTQsC (¢710x(0) + ¢1,0¢(0) +T7) (43)
$3200(0) — CTQC¢150%(0) =
CTQge(T) + CTQyC¢1181(0)
~¢3102(0) + CTQsOT] — T3 — (T, (44)
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Fig. 1: Floating oscillator model.

which leads to the solution:

& 05(0) = (ph — CTQsCHY,) "
((CTQCet, — ¢5y) 62(0)

+CTQsCTT + CTQpe(T) = T3 —(T)),  (45)

so that:

Pk +1) = (k) + 6¢(0). (46)
If the difference between ¢ (7T') from the numerical integra-
tion and ¢(T) = CT Q¢ (Cx(T) — ya(T)) is below a certain
tolerance the homotopy parameter A gets incremented.

III. RESULTS

The two examples in this work are the floating oscillator
and the Type 1 Diabetes model. The sensitivity of the states
to any model parameter is used to augment the state space
model, which is presented in Section II to penalize the
integral of the sensitivity states.

A. Floating Oscillator

Fig. 1 illustrates a double spring-mass-damper system,
where the first and second masses are connected with a spring
of stiffness k and a damper with a damping coefficient c. The
equations of motion for the linear system are:

(47a)
(47b)

di‘l:—k(xl—xg)—c(abl—jsg)+u

To = k(ml —(Eg)-‘rc(i‘l —j;‘g),
while the counterpart nonlinear system is represented as:

i1 = —k(z1 — 22)® — ¢ (1 — d2) + u (48a)

do =k (w1 — 22)® + ¢ (d1 — @2). (48b)
For the simulation we choose the elements m = 1, k =1
(nominal), ¢ = 0.1, Q¢ = diag (100,100, 100,100), Q =
diag (0,10,0,0) and R = 1, where “diag” denotes the
diagonal matrix. The number of increments for A between 0
and 1 is 501 and the error tolerance is set to 0.1. The input
only acts on the first mass while we enforce that the initial
and final conditions are: z1(0) = #1(0) = x2(0) = #2(0) =
.Z'l(tf) = j?l(tf) = .%‘Q(tf) = i’g(tf) = 0 where t; = 2.
Additionally, we require the second mass to track a desired
position of x5 4 = 1 — cos(t). We consider the sensitivity
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Fig. 2: Residual energy and position and velocity of the first
and second mass for A = [0;0.5;1].

states with respect to k as:

diy g (B _dwa  (din diy
dk — P dk — dk dk — dk
(49a)
d."E'Q o dxl dl‘g diﬁl dj?g
P x2+k(dk dk>+<dk dk>
(49b)
whereas the nonlinear sensitivity states are:
di
it
o (dry  dxo di1  dig
—3k (21— ) (dk - dk> - <dk - dk:) (502)
di
e
o (dxy  dxo div  dio
3k (21— ) <dkdk) +C(dk dk>
(50b)

For the simulation with sensitivity states we choose the ele-
ments @y = diag (100, 100, 100, 100, 0.4,0.4,0,0) and Q =
diag (0,10,0,0,0,0,0,0). We refer to the system defined
by Eqs. (47)-(48) as nonrobust and Egs. (49)-(50) as robust
formulations. The residual energy at the final maneuver time
tyis defined as: V (ty) = iy +1do+Lkad+1k (22 — 21)°
After we obtained the optimal control input u for the
nonrobust and robust formulation, we simulate 61 different
scenarios where k is equally spaced between 0.5 and 1.5.
Fig. 2 shows the residual energy for cases of the homotopy
parameter A = [0;0.5;1]. On the lower panel it can be
seen that penalizing the sensitivity states (robust formulation)
is outperforming the nonrobust formulation, except around
the nominal value both residual energies appear to be the
same. The box whisker chart on the upper panel of Fig. 2
shows the quantity of each variable for A\ = [0;0.5;1].
It can be seen that the robust solution brings the states
closer to 0 compared to the nonrobust one. Fig. 3 illustrates
the residual energy as a surface for all different homotopy
stages of A\ and uncertain variables k. This confirms that
the residual energy V' is smaller for the robust formulation
during all homotopy stages compared to the nonrobust one.
However, around the nominal value, the nonrobust solution
is outperforming the robust one. Since putting weights on
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Fig. 3: Residual energy over uncertain k& € [0.5,1.5] with
varying homotopy parameter A € [0, 1].
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Fig. 4: Initial costates 1) over A for the Floating Oscillator.

the sensitivity state is only a soft constraint, by changing
the cost function it is possible that the nonrobust solution
is superior in a close proximity of the nominal value of
k = 1, while for larger perturbations the robust solution
is superior. The curvature plot of the residual energy with
respect to k illustrates that around k& = 1 for all A\ the
nonrobust case has a larger curvature meaning the residual
energy is more sensitive to changes in k. The evolution of
the initial costates can be seen in Fig. 4, where costate 3
does not change a lot over the \ but ¥, 9, and 14 do. The
change of the costates from the linear system to the nonlinear
system is: Yyinear = [—7.7410, —0.7680, —4.5764, —7.8684]
t0 Vnontinear = [—3.9901, —3.3921, —3.5619, —4.6975]. To
evaluate the importance of a good guess for the nonlinear
system in order to ensure good tracking and satisfying the
desired terminal states, we perturb the initial costate 1(0)
as follows: 9(0) = VUnoniinear(0) + €[1,1,1,1], where
e = [—0.5,0.5] as 31 equally spaced increments. With these
initial conditions we will try to derive the optimal solution
while using the same cost as in the homotopy problem. The
homotopy shooting algorithm took 501 iterations to converge
at the optimal solution for A = 1. Therefore, we constrain the
pure shooting algorithm on the nonlinear system to maximal
501 iterations. If the algorithm converges to a solution we
define the feasibility as 1 and O if it doesn’t. The cost is
described by Eqn. (6). Fig. 5 shows the feasibility, number
of iterations and the cost J for a shooting algorithm on all
perturbed initial costates. It can be seen that only for one
case (very small perturbation) the cost is as good as for the
homotopy approach, which shows the importance of good
initial costates for an optimal control problem.
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B. Minimal Bergman Diabetes Model

To illustrate our approach on another benchmark problem,
we pick the Type 1 Diabetes problem. The minimal Bergman
model [16][17], which is well established in the Diabetes
research community is a third order nonlinear model:

G(t) =—(X{#)+p1)GHt)+p1Gy + D‘Et) (51a)
X(t)=-p2X(t)+ps(I(t) = L,)  (5b)
I(t)=—ps(I(t) — L)+ U(t),  (5lo)

where G is the blood glucose level, X is the intermediate
state and I is the insulin concentration. The variable D(¢) is
the meal disturbance term. In our case, the input U is uncon-
strained. The other values are given as follows: p; = 0.0287,
p2 = 0.0283, p3 = 5.035e—5, py = 5/54, and I, = 15.3875,
which is the basal insulin level which is produced by the
pancreas constantly. G, the basal glucose concentration is
assumed to be 119.1858. V; is the distribution volume to
insulin and is set to 128.8237. The goal is to track a desired
blood glucose level Gy over 50 minutes, so that the patient
is not running into hypo- or hyperglycemia, both detrimental
to the human body [18]. The minimal Bergman model is
bilinear. For A = 0 we define variable G(¢) as G} and the
system as:

0 -G, 0 0 D(t)
A= 10 —p2 p3 [;B=|0];C=1I3D= |—-pslp
0 0 —pg 1 paly

(52)

which permits us to exploit the closed form shooting method
on the system (see Eqs. (12)-(18)) and find the initial
costates. I3 is a 3 x 3 identity matrix. Fig. 6 shows that
the blood glucose reference is rising steadily from 92 at 0
mins to 118.19 at 50 mins. Furthermore, the meal disturbance
D(t) over t is shown. During the homotopy we apply a
multiple shooting (one forward and one backward) method
where the optimal control problem is split into two parts.
We set the mid-time at 25 mins. The initial conditions
are given as: [Go, Xo,Io] = [92,0,1,] and the final state
conditions derived from the closed form solution of the
linear system are [118.4247,0.0124,17.8908]. The initial
and final costates are: [—194.9168,91805.4457, 3.7288] and

)
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Fig. 6: Reference for the blood glucose level Gy and meal
disturbance D(t) over time.

[0.3849, —960.4652, 0.2694], respectively. The other param-
eters are given as @y = diag (10,0,0), Q = diag (10,0,0),
and R = 1, and we choose 101 increments for changing A
from 0 to 1. The maximum error tolerance is set 0.1 and
there are a maximum of 50 iterations per homotopy stage
allowed.

We assume an uncertainty in the variable p; and add a
sensitivity state for the blood glucose level to the Type 1
Diabetes model as:

dG dG dG
— ()= —-X({t)— —G(t) —p1— + G,. 53
dpl() ()dp1 (t) P o b (53)

The goal is to derive a control input which minimizes
the p;-sensitivity of the blood glucose level G and track
Greg well enough. To provide a fair comparison we
set the sensitivity state dG/dp:(ty) at final time of the
the robust model to the same value as in the nonro-
bust model. Thus, dG/dp:(ty) varies over A. For the
rest of the time the desired reference for the sensitiv-
ity state is 0 and we set dG/dp;1(0) 0. There-
fore, the initial and final states are: [92,0,1;,0] and
[118.4247,0.0124,17.8908, dG/dp1 (tf, A)]. The initial and
final costates are: [—239.1577,118907.6007,7.1911,6.1970)
and [1.4055, —0.0578,1.4989¢e — 5,0.0059], respectively.
The cost function parameters are )y = diag (10,0, 0,0.001)
and Q = diag (10,0,0,0.005). After deriving the optimal
control input u for the nonrobust (original) and robust system
we perturb p; between 0.0137 and 0.0437 in 31 equally
spaced increments. This perturbation is 52.27% about the
nominal value of p;. To compare the nonrobust and robust we
propose analyzing the expected value (mean) and standard
deviation of the blood glucose level. Fig. 7 illustrates the
blood glucose reference trajectory (black dotted), the mean
and standard deviation of the nonrobust (red) and robust
(blue) solution for A values of 0, 0.5 and 1, respectively.
The mean of G shows that the tracking of the nonrobust
solution is better than the robust one. Gaining robustness
of a system output towards parameter uncertainty comes
at a cost which is in this case tracking error. However, it
can be concluded that the tracking error is small in both
cases. The standard deviation is reduced for the robust
control input compared to the nonrobust one. For A = 0,
it can be seen that there is no standard deviation, which
is due to the absence of the parameter p; for the linear
system (see Eqn. (52)). We compare the tracking error and
standard deviation of the nonrobust and robust solution for all
homotopy parameter stages A and times ¢ for an uncertainty
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Fig. 8: Difference between absolute tracking error (left) and
standard deviation (right) of nonrobust and robust solution.

in p;. Fig. 8 shows on the left the difference between the
absolute tracking error of the nonrobust and robust solution.
If the color is green then the tracking of robust solution
is better than the nonrobust and if the color is red the
tracking is worse. On the right side of Fig. 8, the difference
of the standard deviation between the nonrobust and robust
is shown, and the same color scheme applies. It can be
seen that the tracking is better in certain instances for the
robust formulation, while the nonrobust case delivers better
tracking overall. The better measure to assess the sensitivity
of the G with respect to p; is the standard deviation, where
the robust solution is outperforming the nonrobust over the
entire domain of uncertainty. This confirms that penalizing
the sensitivity state actually desensitizes the controlled output
to model parameter uncertainties.

IV. CONCLUSIONS

The methodology proposed in this study enables the
derivation of an optimal control input for nonlinear systems
while integrating robustness into the modeling process. We
illustrated the applicability of this approach through two
distinct cases: the well-known floating oscillator, serving as a
benchmark, and a Type 1 Diabetes model designed for blood
glucose tracking. Our results demonstrated the method’s
effectiveness with both single and multiple shooting tech-
niques. It is important to note that there exists a trade-off
between robustness and tracking performance. However, this
trade-off minimally impacts tracking performance, and the

consistent reduction of standard deviation persists throughout
the entire topological problem and time domain. Our future
research will focus on imposing constraints on the control
input while implementing the robust algorithm within the
framework of the homotopy shooting method.
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