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Directly imaging spin polarons in a 
kinetically frustrated Hubbard system

Max L. Prichard1,6, Benjamin M. Spar1,6, Ivan Morera2,3,4, Eugene Demler4, Zoe Z. Yan1,5 & 
Waseem S. Bakr1 ✉

The emergence of quasiparticles in quantum many-body systems underlies the rich 
phenomenology in many strongly interacting materials. In the context of doped Mott 
insulators, magnetic polarons are quasiparticles that usually arise from an interplay 
between the kinetic energy of doped charge carriers and superexchange spin 
interactions1–8. However, in kinetically frustrated lattices, itinerant spin polarons—
bound states of a dopant and a spin flip—have been theoretically predicted even in the 
absence of superexchange coupling9–14. Despite their important role in the theory of 
kinetic magnetism, a microscopic observation of these polarons is lacking. Here we 
directly image itinerant spin polarons in a triangular-lattice Hubbard system realized 
with ultracold atoms, revealing enhanced antiferromagnetic correlations in the  
local environment of a hole dopant. In contrast, around a charge dopant, we find 
ferromagnetic correlations, a manifestation of the elusive Nagaoka effect15,16. We 
study the evolution of these correlations with interactions and doping, and use 
higher-order correlation functions to further elucidate the relative contributions of 
superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at 
high temperature paves the way for exploring potential mechanisms for hole pairing 
and superconductivity in frustrated systems10,11. Furthermore, our work provides 
microscopic insights into related phenomena in triangular-lattice moiré materials17–20.

One of the key questions in quantum condensed-matter physics is how 
doped Mott insulators give rise to exotic metallic and superconducting 
phases. Understanding this problem is crucial for explaining the emer-
gence of the unusual physical properties of many families of strongly 
correlated electron systems, including the high-critical-temperature 
(Tc) cuprates21, organic charge transfer salts22 and moiré materials23,24. 
An important aspect of this problem is the interplay between spin order 
and the quantum dynamics of mobile dopants. So far, most studies 
have focused on Mott insulators on a square lattice where the motion 
of charge carriers disturbs spin correlations, resulting in an adversarial 
relationship between doping and spin order1,3–8. This explains why 
many theoretical studies of doped high-Tc cuprates are usually done 
from the perspective of Mott states in which spin order has been sup-
pressed by fluctuations25–27.

Recently, experiments on moiré materials have provided a strong 
motivation for understanding doped Mott insulators in triangular lat-
tices24. Here we explore this problem microscopically using a cold-atom 
triangular Fermi–Hubbard system28,29. One surprise of our experiments 
is that in contrast to square-lattice systems, there is a symbiotic rela-
tion between mobile holes and antiferromagnetism. This manifests 
in the formation of antiferromagnetic (AFM) itinerant spin polarons 
in the hole-doped system, which we directly image by measuring spin 
correlations around mobile holes. In striking contrast, we find that 
particle doping favours the formation of ferromagnetic (FM) polarons 

similar to those discussed previously for the square-lattice Fermi– 
Hubbard model15,16.

Some of the most important implications of our results are for sys-
tems in which the local interaction U is much larger than the single 
electron tunnelling t, in which case the magnetic superexchange J is 
strongly suppressed. Indeed, this is the relevant regime for most moiré 
systems (neglecting nearest-neighbour interactions). Intuition based 
on earlier studies would suggest that at temperatures higher than the 
superexchange scale, the regime we explore here, one can not expect 
coherent propagation of quasiparticles1. Our results demonstrate that 
this does not have to be the case in triangular lattices. Formation of 
polarons around mobile dopants facilitates their propagation and 
makes their dynamics more coherent. This robustness of the quasi-
particle can also be understood as the result of effective magnetic 
interactions with energy scale t induced by the motion of dopants in 
the frustrated system9.

Itinerant spin polaron
At the heart of the mechanism responsible for the formation of polarons 
in our experiment is the phenomenon of kinetic frustration, which has 
received much recent theoretical attention10–14,30–33. This describes the 
reduction of the mobility of dopants owing to the destructive inter-
ference of different propagation paths in certain lattice geometries, 

https://doi.org/10.1038/s41586-024-07356-6

Received: 23 August 2023

Accepted: 26 March 2024

Published online: 8 May 2024

 Check for updates

1Department of Physics, Princeton University, Princeton, NJ, USA. 2Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Barcelona, Spain. 3Institut de 
Ciències del Cosmos, Universitat de Barcelona, ICCUB, Barcelona, Spain. 4Institute for Theoretical Physics, ETH Zürich, Zürich, Switzerland. 5James Franck Institute and Department of Physics, 
The University of Chicago, Chicago, IL, USA. 6These authors contributed equally: Max L. Prichard, Benjamin M. Spar. ✉e-mail: wbakr@princeton.edu

https://doi.org/10.1038/s41586-024-07356-6
mailto:wbakr@princeton.edu


324  |  Nature  |  Vol 629  |  9 May 2024

Article

including the triangular one. To release this frustration and lower the 
kinetic energy of the dopants, the system develops magnetic cor-
relations. The resulting magnetism, known as kinetic magnetism, is 
closely related to that studied by Nagaoka is his seminal work15, but 
is more robust in that it is predicted to survive for finite interactions 
and doping.

Indeed, signatures of kinetic magnetism above half-filling have been 
observed recently in doped van der Waals heterostructures through 
measurements of the spin susceptibility17,19, while separate measure-
ments of magnetization plateaus attributed to kinetic effects below 
half-filling have also been measured in these materials20. Our experi-
mental results provide a microscopic picture underlying these obser-
vations. More broadly, our results motivate studying the properties 
of doped Mott insulating states in triangular lattices, including super-
conductivity, from the perspective of self-organization of itinerant 
spin polarons11,27,34,35.

Our system consists of a two-dimensional degenerate gas of 6Li that 
is an equal mixture of two spin species corresponding to the first ( ↑⟩∣ ) 
and third ( ↓⟩∣ ) lowest hyperfine states of the atom. The gas is loaded 
adiabatically into an optical lattice realizing the triangular-lattice  
Hubbard model
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where ciσ
†  (ciσ ) creates (destroys) a fermion of spin σ at lattice site i, the 

number operator  n c c=iσ iσ iσ
†  measures site occupation and ⟨i, j⟩ denotes 

nearest-neighbour sites. In the model, particles hop with t > 0. With 
this sign of the tunnelling, a particle in an empty lattice can lower its 
energy by delocalizing on each lattice bond in a symmetric spatial 
orbital (Fig. 1a). The corresponding band structure is particle–hole 
asymmetric, and the particle attains its minimal energy of −6t at zero 
quasi-momentum. Kinetic frustration can be understood by consider-
ing the opposite scenario of a single hole moving in a spin-polarized 
background. In this case, the Hamiltonian is better expressed in terms 
of hole operators with 

h c=i i
†
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i j j i
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Crucially, the change in the sign of the tunnelling resulting from 
the anticommutation of fermionic hole operators in the Hamiltonian 
favours antisymmetric spatial orbitals for the hole on each bond. 
Indeed, this is manifested in the band structure of the hole, which is 
mirrored about zero energy relative to the particle. The hole kinetic 
energy is thus minimized at a value of −3t, larger than in the unfrus-
trated system.

A simplified picture explaining the emergence of the itinerant spin 
polaron in the doped interacting system can be obtained by consider-
ing a triangular plaquette with two fermions. In the limit of strong 
interactions, double occupancies are energetically forbidden and the 
motion of the hole on a closed loop on the plaquette will exchange 
the two spins. In the spin singlet sector, this produces a spin Berry 
phase of π, whereas the phase is zero in the spin-symmetric triplet 
sector (Fig. 1b)36. The phase acquired by the hole in the singlet sec-
tor returns the tunnelling to a positive value, thereby releasing the 
kinetic frustration and allowing the hole to reach a lower ground-state  
energy.

The resulting object, a singlet bond bound to a hole with a binding 
energy of order t, is predicted to persist in the many-body setting for 
light hole doping (Fig. 1c). This corresponds to a polaron with AFM 
spin correlations in the vicinity of a hole. The situation is reversed for 
particle doping, favouring FM correlations in the vicinity of a doublon. 
We directly detect the itinerant spin polaron in our system using a 
connected three-point correlation function, which probes the spin 
correlations in the environment of a hole or doublon. Such correla-
tors have been previously used to identify magnetic polarons in the 
square lattice, although, in that case, the mechanism that leads to  
the formation of the polaron is different and the binding energy is on 
the superexchange scale6,8,37.

To realize a lattice with triangular connectivity28,29,38–42, we super-
impose two non-interfering lattices, a strong one-dimensional (1D) 
optical lattice with spacing a = 532 nm and depth V532 = 6.7(2) ER,532 and 
a weak square optical lattice with larger spacing a = 752 nm and depth 
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Fig. 1 | Itinerant spin polaron. a, A single particle in a triangular lattice with 
t > 0 minimizes its energy by occupying symmetric orbitals on each bond. Its 
band structure E(k) exhibits a minimum energy of E = −6t. In a spin-polarized 
background, a single hole has a negative effective tunnelling and tries to 
occupy asymmetric orbitals on each bond, but is unable to do so (kinetic 
frustration). Its minimum energy is E = −3t. b, Once spins of the background 
Mott insulator are considered, the motion of a hole in a closed loop on a 
plaquette exchanges the spins. If the neighbouring spins are in the singlet 
(S = 0) sector, the final state ∣ψ ⟩f  picks up a spin Berry phase, that is, ψ ψ⟩ = e ⟩f

iπ
i∣ ∣ . 

This phase is absent in the triplet (S = 1) sector. c, The relative sign flip for hole 

(particle) dopants means that a spin singlet (triplet) configuration is favoured, 
manifesting as an AFM (FM) polaron. d, An optical lattice with triangular 
connectivity is formed by superimposing non-interfering square and 1D lattice 
potentials. The nearest-neighbour tunnelling matrix elements are indicated  
as tx, ty and td. e, A single fluorescence image gives the spatial distribution of 
both spin states. The reconstructed image contains hole (grey) and particle 
(light blue) dopants in a Mott insulator surrounded by either ferromagnetically 
or antiferromagnetically correlated spins. Spatial distances in the highlighted 
region of the lattice have been transformed to reflect the connectivity of  
the lattice.
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V752 = 2.9(1) ER,752, where one recoil energy is defined as ER,a ≡ h2/8ma2 
with m the mass of the atom and h is Planck’s constant41 (Fig. 1d). The 
frequency detuning between the two lattices is used to tune their rela-
tive alignment to obtain a triangular geometry. Their relative depths 
are chosen to produce an isotropic triangular lattice by equalizing 
the tunnelling strength along the original square lattices axes and 
one diagonal. The gas is prepared at a magnetic field near a Fesh-
bach resonance at 690 G, allowing us to freely tune the scattering 
length. In this way, we tune the coupling strength U/t to explore the 
evolution of the correlations from the metallic to the Mott insulating  
regime.

We use a quantum gas microscope to measure site-resolved correla-
tions associated with the polaron in the many-body system43. We further 
implement a bilayer imaging technique44–47, wherein a magnetic field 
gradient is first used to separate the two spin states into different layers 
before imaging them simultaneously (Fig. 1e). From the reconstructed 
images, we can calculate arbitrary n-point correlation functions involv-
ing both spin and density operators averaged over experimental cycles. 
In the strongly interacting regime, the atoms order in a Mott insulator 
and show short-range 120° spiral AFM correlations that have been 
observed in previous experiments28,29. We use the two-point spin cor-
relations for thermometry by comparison with determinant quantum 
Monte Carlo (DQMC) calculations48 (Methods). The typical peak density 
of the clouds in the lattice is n = n↑ + n↓ = 1.2, allowing us to study a range 
of dopings δ = n − 1 on either side of half-filling of the Hubbard system 
in each experimental snapshot due to the harmonic confinement of 
the lattice beams.

Spin polaron correlations
To detect the polaron, we evaluate connected three-point charge–
spin–spin correlation functions. For a hole dopant, the relevant cor-
relation function, d d1 2C ( , )h

(3)  is computed as:

d d r r r r r r 

   C n S S n S S( , ) ≡ ⟨ ⟩ − ⟨ ⟩⟨ ⟩, (3)d
z
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where we have assumed a spin-balanced system S⟨ ⟩ = 0
z
r
 . Here d1 and 

d2 are displacement vectors relative to a site at position r0 in units of 
the square lattice spacing a,  



r r rS n n= −
z

↑ ↓ is the projection of the spin 
on site r along the quantization axis and nh

r is the hole number operator 
r rn n(1 − )(1 − )↑ ↓  . We average the correlation function over sites r0 with 

similar doping. The doublon correlation function Cd
(3) is constructed 

in an analogous way by replacing the hole number operator rn
h with the 

doublon number operator r r r  n n n=d
↑ ↓. For the range of dopings we 

consider, the two-point spin correlator is always negative due to  
the dominant superexchange aniferromagnetism. The second term of 
the connected three-point correlators defined in equation (3) removes 
any uncorrelated charge–spin–spin signal associated with this back-
ground AFM signal.

We start by studying the doping dependence of C(3) above and below 
half-filling, shown in Fig. 2a. Correlations Ch

(3) (Cd
(3)) in the vicinity of 

holes (doublons) are shown for a strongly interacting sample at 
U/t =11.8(4). For δ < 0, Ch

(3) shows negative correlations for = (1, 0),d1   
= (1/2, 3 /2)d 2  indicating an enhancement of AFM order in the imme-

diate vicinity of a hole. In contrast, for δ > 0, the doublon correlation 
function Cd

(3) is positive for the same bond, revealing a preference for 
FM order around doublon dopants. We then examine correlations out 
to further distances to explore the structure of the polaron at a few 
different dopings in Fig. 2b. In particular, we emphasize the structure 
of the correlations in the limit of vanishing doping in the right column 
of this panel. This doping regime is the closest to capturing the behav-
iour associated with the idealized case of a single dopant9,15 where 
polaron–polaron interactions are absent. Around a hole (Fig. 2b,c), we 
find that although at the shortest distance Ch

(3) is negative, the next 
furthest ring (distances 1.32 and 1.5) shows positive correlations. The 
structure of the AFM hole polaron can be understood using a picture 
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Fig. 2 | Polaron internal structure versus doping. a, Three-point correlations 
C(3) ((1, 0), (1/2, 3 /2)) and C(3) ((1, 0), (3/2, 3 /2)) for holes (blue and red bonds 
shown on inset) and doublons (green and orange bonds shown on inset) versus 
doping δ. Theory curves (grey bands) are from DQMC with U/t = 11.8(4) and 
T/t = 0.94(4). b, Spatial map of correlations C h

(3) at δ = −0.10(2) and δ = −0.04(2) 
(top) and C d

(3) at δ = 0.15(2) and δ = 0.02(2) (bottom). The second column 
highlights the spatial structure of the polarons as close as we can get 
experimentally to the ideal single dopant limit. c, Correlations C h

(3) and C d
(3) 

versus distance at dopings of δ = −0.04(2) and δ = 0.02(2), respectively. 

Correlation distance is defined as the distance from the dopant to the bond 
midpoint, shown as the inset black arrow. Bonds are unity length, implying the 
closest correlation is at a distance 3 /2. d, Dopant propagation coherently 
re-orders the surrounding 120° order, resulting in an alternating pattern of 
correlations, as imaged in the experiment. e, Nearest-neighbour three-point 
correlators normalized by the dopant density, where red and green points  
are measured hole and doublon correlators. DQMC theory is shown for the 
interacting systems (grey bands) and in the non-interacting limit (dotted red 
and green lines). Error bars represent 1 s.e.m.
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of a mobile hole dopant that coherently modifies the surrounding 120° 
Néel order to facilitate lowering the kinetic energy, as illustrated in 
Fig. 2d. Strikingly, this is a different structure than on the doublon side, 
where predominantly positive correlations exist up a distance d ≈ 1.8 
away from the doublon. This indicates an energetic preference towards 
a locally FM environment, as for a particle dopant the motion is unfrus-
trated in a background of polarized spins. We interpret these 
short-range polaronic correlations we observe as the precursors to 
Haerter–Shastry AFM and Nagaoka FM expected at lower temperatures 
on the hole- and particle-doped sides, respectively.

We also note from Fig. 2a the approximate linear dependence of 
the correlators with relevant dopant density δ for ∣δ∣ ≲ 0.1. This indi-
cates that in this regime, the description of the system in terms of 
weakly interacting polarons is valid. Polaron interactions become 
important for larger dopant densities. These observations motivate 
introducing a normalized version of the correlators by dividing out 
the relevant dopant density δ, where C C δ≡ /norm

(3) (3)  (Fig. 2e). While the 
non-normalized correlations close to zero doping appear reduced in 
magnitude, the normalized spin correlation emphasizes the fact that 
the spin correlations per dopant are in fact strongest close to 
half-filling.

The itinerant spin polaron picture we have presented so far is in the 
regime of strong interactions, but it is also interesting to explore how 
the three-point correlations evolve with U/t. Figure 3 shows these cor-
relations in the metallic (U/t = 4.4), Mott insulating (U/t = 11.8) and 
intermediate (U/t = 8.0) regimes in the temperature range T/t ≈ 0.7–0.9. 
Surprisingly, many of the qualitative features of the correlations are 
similar, including the minimum in the AFM correlations around a hole 
at δ ≈ −0.3. This can again be understood from a single plaquette in the 
alternative limit of vanishing interactions, which predicts correlations 
of the same sign as the itinerant spin polaron49 (Methods). For all inter-
actions, the measured correlations shows reasonable agreement  
with DQMC calculations with a systematic deviation in Cd

(3) and Ch
(3) for  

larger fillings, possibly owing to an increase in reconstruction errors  
(Methods). The correlations differ significantly from those expected 
for the non-interacting gas, especially for the two stronger interactions. 

As U/t increases, the onset of the correlation moves closer to half-filling 
as contributions from virtual doublon–hole fluctuations are increas-
ingly suppressed. The characteristic linear growth of the correlations, 
expected in the polaronic regime and observed for U/t = 11.8, is, how-
ever, present for only the strongest interactions. Additional evidence 
for an experimental observation of the itinerant spin polaron at the 
largest interaction strength comes by combining the observed 
three-point correlators with a measurement of the singles fraction 
ns = n − nd at half-filling, which ensures that the system is in the strongly 
interacting regime. For U/t = 4.4, U/t = 8.0 and U/t = 11.8, this is 0.71(1), 
0.85(1) and 0.93(1), respectively.

Kinetic versus superexchange correlations
As superexchange-induced AFM correlations are present in the system 
for any finite interaction strength, it is illuminating to quantify their 
strength compared with kinetic magnetism around dopants. This can 
be done using four-point correlation functions. For any two nearest-
neighbour sites j and k, there are two additional sites i and l (which we 
call conditioning sites) coupled to both of them (Fig. 4, inset). As a 
dopant on either conditioning site may affect the correlation strength 
between j and k, a four-point correlation function is required to deter-
mine the influence of the background on the j–k bond. We define  
a conditional four-point correlator as the spin correlator on the shared 
bond, conditioned on the occupancy observables n n,a b

   on sites  
i and l

 
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where the labels a, b ∈ {h, s}. Figure 4 shows the four-point correlator 
at U/t = 11.8 for three different occupancies of the conditioning sites. 
Below half-filling, we find that C C C< <hh

(4)
hs
(4)

ss
(4), directly indicating the 

enhancement of AFM correlations on a given bond by the presence 
of holes on the conditioning sites. Kinetic magnetism, therefore, 
strengthens the existing AFM correlations below zero doping that 

a c
Hole
Doublon

b

–0.8 –0.6 –0.4 –0.2 0 0.2

–10

–5

0

5

–0.8 –0.6 –0.4 –0.2 0 0.2

–10

–5

0

5

–0.8 –0.6 –0.4 –0.2 0 0.2

–10

–5

0

5

Doping Doping Doping

C
(3

) c
or

re
la

tio
n 

(×
10

–3
)

C
(3

) c
or

re
la

tio
n 

(×
10

–3
)

C
(3

) c
or

re
la

tio
n 

(×
10

–3
)

Hole
Doublon

Hole
Doublon

Fig. 3 | Evolution of three-point correlations with doping and interactions. 
C h

(3) and C d
(3) connected correlations versus doping in the metallic and Mott 

insulating regimes for = (1, 0), = (1/2, 3 /2)d d1 2 . Data are shown for U/t = 4.4(1), 
T/t = 0.68(2) (a), U/t = 8.0(2), T/t = 0.84(3) (b) and U/t = 11.8(4), T/t = 0.94(4) (c). 
For all interactions, we observe the largest negative C h

(3) correlator at a doping 
of around −0.3. For increasing U/t, the C h

(3) and C d
(3) correlators become more 

linear near zero doping, indicating a region where there are weakly interacting 
polarons. The blue dashed line in c, which is fit to the DQMC in the doping  
range −0.09 < δ < 0.06, illustrates this region. DQMC theory is shown for the 
interacting systems (grey bands) and in the non-interacting limit (dotted red 
and green lines). Error bars represent 1 s.e.m.
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arise due to superexchange, which is the only mechanism at play on 
the level of the four-site plaquette when the conditioning sites are 
singly occupied. Above zero doping, where holes are due to virtual 
fluctuations, there is no enhancement of AFM correlations from kinetic 
magnetism and all three correlators are similar in value (Extended 
Data Table 1).

Outlook
In this work, we have directly imaged itinerant spin polarons in a tri-
angular Hubbard system by measuring three- and four-point correla-
tion functions. We have characterized their evolution with doping and 
interactions, and compared the strength of correlations induced by 
superexchange and kinetic effects. In future work, it would be inter-
esting to study the polaron spectroscopically50, which would allow 
direct characterization of its binding energy as well as its dispersion 
and effective mass. While the polarons we have focused on here are 
part of the physics of the doped triangular Hubbard model at high 
temperatures, pushing to lower temperatures would shed light on its 
rich ground-state phase diagram. Theoretical work suggests that this 
may include magnetically ordered phases as well as a quantum spin 
liquid with fractionalized excitations at intermediate interactions51,52. 
Higher-order connected correlations may be useful in identifying more 
complex multi-particle bound states in the system11, which can lead 
to hole-pairing mechanisms and superconductivity at high tempera-
tures10,11,51,53–55.

Note added in proof: During completion of the paper, we became 
aware of related work studying three-point correlations in a triangular 
Fermi–Hubbard system56.
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Methods

State preparation
We use a degenerate mixture of hyperfine states 1⟩∣  and 3⟩∣ , where i⟩∣  
represents the ith lowest energy level of the ground hyperfine manifold 
of atomic 6Li, to simulate the two-component Fermi–Hubbard model 
on a triangular lattice. State preparation of a degenerate Fermi gas 
before loading the science lattice largely proceeds as detailed in previ-
ous work57. After the final stage of evaporation, we are left with a 
spin-balanced sample of approximately 400 atoms in each spin state. 
At this stage, the atoms are confined in a single layer of an accordion 
lattice, created with 532-nm light, with spacing az = 3.6(3) μm and trap 
frequency ωz = 2π × 16.4(2) kHz in the vertical (z) direction. The com-
bined in-plane two-dimensional lattices (see below) are then ramped 
to their final depths following a cubic spline trajectory in 100 ms. An 
additional 1,070-nm optical dipole trap propagating along z with waist 
w0 = 100 μm is used to provide variable confinement in the x–y plane 
in the final science configuration. In particular, for strongly interacting 
samples, the reduced compressiblity necessitates greater confinement 
to achieve comparable densities. We worked at magnetic fields ranging 
from 587(1) G to 612(1) G, where the scattering length varies between 
330(15) and 945(30) Bohr radii, respectively.

Triangular optical lattice
The triangular lattice is formed as in ref. 41 by combining two non- 
interfering lattices of different polarizations and detunings (Extended 
Data Fig. 1, inset). Both lattices are created using light of wavelength 
1,064 nm. The first is a square lattice with a spacing of 752 nm, created 
by retroreflecting a single vertically polarized laser beam in a bowtie 
geometry. The depth of this lattice is calibrated using amplitude modu-
lation spectroscopy. Both losses of laser power as the beam traverses 
the vacuum chamber and and non-orthogonal beam alignments can 
cause a significant tunnelling imbalance along the axes of the square 
lattice. In our system, we specifically tune the angle between the lat-
tice beams to 90.7(1)° (measured using atomic fluorescence images), 
which approximately cancels the imbalance due to power losses. AFM 
correlations along the two axes of the square lattice show a system-
atic difference of 4(3)%, indicating a difference in the tunnellings of 
approximately 1(1)%.

The second lattice is a 1D optical lattice with a spacing of 532 nm 
and wavevector aligned with a diagonal of the 752-nm square lattice.  
The light for this lattice is horizontally polarized and detuned by about 
330 MHz with respect to the square lattice, preventing any electric 
field interference. Both lattices share a common retroreflecting 
mirror, avoiding the need for active phase stabilization as in other  
schemes29,58.

The frequency detuning between the two lattices introduces a rela-
tive spatial phase between the two potentials at the atoms which is given 
by ϕ = 4πLΔ/c, where Δ is the relative detuning, L is the distance from 
the atoms to the retroreflecting mirror and c is the speed of light. The 
triangular-lattice configuration is obtained for the case of constructive 
interference, that is, ϕ = 0, which we calibrate using in situ measure-
ments. The superlattice depth is set to a weak value (V532 = 0.49(1) ER,532) 
relative to the dominant square lattice (V752 = 40.2(3) ER,752) and then 
modulated at the frequency of the square-lattice p-band resonance. 
As this is an odd-parity transition, excitation should be maximized 
when ϕ = π/2 or ϕ = 3π/2, which induces a sloshing motion. The two 
corresponding prominent resonance peaks versus superlattice 
detuning at a constant modulation frequency are shown in Extended  
Data Fig. 1.

We perform two identical measurements separated by 1 week (red 
and blue data) to assess the long-term stability of the set-up. The 
agreement of the resonance peaks between the two datasets is at or 
below the uncertainty (about 1 MHz) of the spectroscopic measure-
ment, indicating phase stability at or below 0.02π radians. Explicit 

band-structure calculations show that such a phase drift results in a 
negligible change of the tunnelling values of less than 0.2 Hz on top 
of a tunnelling strength of 400 Hz.

We note that the ϕ = 0 (triangular) and ϕ = π (honeycomb) condi-
tions are indistinguishable from spectroscopic measurements alone 
as they both produce an even-parity drive. To distinguish these two 
phases, a dense Mott insulator is prepared and subsequently allowed to 
expand in the combined superlattice potential with V752 = 42.0(3) ER,752 
and V532 = 3.7(1) ER,532 for 1 second. The constructive interference in 
the triangular lattice results in a deeper potential compared with the 
destructive interference present in the honeycomb lattice, resulting 
in a much denser cloud following the same period of expansion. The 
combination of these in situ measurements uniquely determines the 
superlattice phase.

In principle, each lattice may be independently calibrated to give a 
full reconstruction of the potential in the plane of the atoms. However, 
owing to limited power available in the 1D lattice, independent calibra-
tion with modulation spectroscopy is difficult as the band transitions 
are not truly resolved. Instead, precise knowledge of the depth of the 
square lattice, V752, combined with knowledge of the relative tunnel-
lings (obtained from correlation maps of the system), can be used to 
obtain the 1D lattice depth. We empirically find the depth of the 1D 
lattice that equalizes tx, ty with the diagonal tunnelling td. This is done 
by experimentally equalizing the nearest-neighbour two-point spin 
correlations in the triangular lattice. The depth of the square lattice 
used in the experiment is measured to be V752 = 2.9(1) ER,752. At the point 
where we obtain an isotropic triangular-lattice connectivity, we infer 
the depth of the 1D lattice using the computed band structure to be 
V532 = 6.7(2) ER,532. This corresponds to absolute tunnelling strengths 
of tx = ty = td = h × 400(20) Hz.

Full spin-charge readout in a bilayer imaging scheme
Simultaneous imaging of charge and spin information is performed 
using a bilayer imaging scheme using Raman sideband cooling, similar 
to the method discussed in a previous publication47. Minor differences 
from the previous scheme are discussed here.

Imaging consists of four steps:
(1) �Tunnelling is quenched by deepening the 2D lattice depth to 

56.3(4) ER,752 in 170 μs. The axial confinement lattice is turned off in 
20 ms. Atoms in the ground hyperfine state 1⟩∣  are transferred to 
hyperfine state ∣2⟩  using a radiofrequency Landau–Zener sweep 
lasting 50 ms. In this state, the magnetic moment is of opposite sign 
to state ∣3⟩. The magnetic Feshbach field is turned off in 10 ms.

(2) �A magnetic field gradient of 336 G cm−1 is applied to separate the 
two spin components 2⟩∣  and 3⟩∣  along the z axis. For this step,  
the two-dimensional lattice is increased to 160(1) ER,752.

(3) �Each spin component is trapped by a light sheet potential with verti-
cal waist wz ≈ 5 μm, which is turned on in 20 ms. The two potentials 
are moved further apart in the z direction using a minimum-jerk 
trajectory in 4 ms to a final separation of 16 μm.

(4) �Both layers are imaged simultaneously using Raman sideband cool-
ing over a 2-s duration. The fluorescence photons are collected 
by a microscope objective and focused on two separate areas of a 
complementary metal–oxide–semiconductor camera.

Imaging fidelity
During the imaging procedure described above, various types of error 
can accumulate that will affect imaging fidelities. Radiofrequency 
spin-flip fidelities exceed 99%, and these errors have a negligible role 
compared with other infidelities.

Transport fidelity encompasses various errors that occur during the 
vertical motion of the atoms. First, we observe some atom loss that 
could be due to off-resonant scattering or background gas collisions. A 
surviving atom may hop to other sites of the same layer, which disturbs 
magnetic correlations or, if the final site is already occupied, leads to 
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atom loss due to parity imaging. Finally, atoms may be transported 
into the wrong layer, so that they are assigned to the wrong spin state.

These effects are difficult to isolate and characterize independently. 
We instead benchmark a related quantity: by preparing an almost 
unity-filled Mott insulator, we observe the proportion of singly occu-
pied sites with and without the transport step. We prepare Mott insulat-
ing states with 97.1(4)% singles fraction, verified by imaging both spin 
states in a single layer. Any sites with zero atoms or two atoms appear 
dark from parity imaging. The transport step is tested by adding the 
Stern–Gerlach and optical transport (steps 2 and 3), and then revers-
ing those steps to transport both spin states back into a single layer. 
Then, the visible singles fraction drops to 95.4(5)%. We assume that 
transport hopping errors populate randomly distributed sites and are 
irreversible. A hopping event will create a hole and a double occupancy. 
Therefore, this test indicates a transport infidelity of at most 0.9(3)%.

In addition, errors may accrue during the Raman sideband cooling, 
appearing as loss (3.9%), interlayer hopping (0.5%) and intralayer hop-
ping (negligible).

Finally, errors can be introduced during image processing when 
we digitize the images into an occupancy matrix. Compared with the 
bilayer readout of a sparse tweezer array of fewer than 50 atoms47, 
our current bilayer imaging scheme must reliably reconstruct atomic 
distributions of hundreds of atoms with high filling. Each layer adds an 
out-of-focus background on the image of the opposite layer, decreasing 
our signal to noise. We choose a 2-s Raman imaging time as a compro-
mise between increasing the ratio between the desired signal and the 
background layer noise and minimizing hopping and loss errors. The 
problem of the out-of-focus background ultimately limits the peak 
densities that we can reliably probe. Empirically, we find that beyond 
dopings of 0.2, distinguishing between empty and occupied sites 
becomes difficult. We include a representative image of the occupation 
histograms for both imaging layers and the corresponding Gaussian 
fits to the zero and single atom peaks in Extended Data Fig. 2.

Calculation of correlation functions
The experimental correlation functions presented in the text are 
computed as the fully connected three-point correlation function of 
a three-observable operator:
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In particular, we do not a priori assume a perfectly spin-balanced gas, 
compared with the simplified definition in equation (3).

As we equalize the tunnellings in all three directions and the same 
lattice depths are used for all datasets, we average over all 120° and 
reflection symmetric higher-order correlators for plots versus doping. 
In addition, all DQMC calculations are done with the assumption that 
tx = ty = td. For completeness, in Extended Data Figs. 5 and 6, the same 
data as in Fig. 2a are shown without symmetrization. There appear to 
be no major systematic differences between correlators of different ori-
entations. This feature holds for all datasets and three- and four-point 
correlators shown in the main text.

Bootstrapping error analysis
We use a bootstrapping analysis technique to obtain vertical error bars 
for the U/t = 11.8 (1,146 experimental runs), U/t = 8.0 (535 experimental 
runs) and U/t = 4.4 (360 experimental runs) datasets for all correlators. 
The experimental runs are randomly separated into 80 groups, and 
the relevant three- and four-point correlations are calculated for each 
group. We sample from these 80 groups with replacement 10,000 times 
to obtain 10,000 bootsamples. We average over all lattice symmetries 
before taking the standard deviation of the bootsamples.

Effects of spatial gradients
To create strongly interacting samples with a high central density, 
additional radial confinement is provided by an external dipole trap-
ping beam at 1,070 nm propagating approximately orthogonal to the 
atom plane. For the most strongly interacting datasets at U/t ≈ 12, the 
radial trap frequency ωr is approximately 2π × 370 Hz. Although the 
gradient near the centre of the trap (regions of highest density) remains 
small, gradients away from the centre of the lattice have the potential 
to impact resonant tunnelling and affect correlations, particularly 
long-range and multi-point correlations. We empirically test for such 
by comparing two datasets with different global chemical potentials 
(different total atom number) but otherwise identical science param-
eters7. A global chemical potential shift will displace a bin of given 
density to a different radial position and hence cause it to sample a 
different spatial gradient. Disagreement between the two sets, par-
ticularly at low densities where the gradient is largest, would therefore 
indicate an effect due to the spatial gradient. In Extended Data Fig. 3, 
we show measured three- and four-point correlations versus doping 
for two datasets with different total atom number. We find no signifi-
cant systematic deviations between these two datasets, from which 
we conclude that the gradient at the level present in the experiment 
does not affect measured correlation functions within experimental  
error bars.

Four-point correlations interaction dependence
The four-point correlations shown in Fig. 4 are for the strongest inter-
acting sample. In Extended Data Fig. 4, we compare these measure-
ments with the more weakly interacting dataset at U/t = 8 to probe the 
evolution with interaction strength. Close to half-filling, we do not 
measure a significant difference in the strongest correlation Chh

(4), 
whereas the two correlations with singlon nearest neighbours Chs

(4) and 
Css

(4) are reduced in magnitude with increasing interactions. This is con-
sistent with kinetic magnetism being enhanced relative to superex-
change. Nonetheless, the variable temperature between datasets makes 
quantitative comparison difficult.

Solution of the Hubbard model on a single plaquette
In this section, we present the ground-state wavefunctions and correla-
tion functions on a three-site triangular plaquette. This toy example 
shows many of the important features that are present in the larger 
lattice system and is therefore instructive to consider in detail. The 
ground state of the triangular plaquette above zero doping with N = 4 
spin has energy EN=4 = −2t + U in all magnetization sectors Sz ∈ {−1, 0, 1} 
for U > 0, with ground-state wavefunctions given by49:
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The spin wavefunction is in the symmetric (triplet) configuration 
with the doublon delocalized across the triangular plaquette. The 
basis independent spin–spin correlation function ⟨ ⋅ ⟩ = 1/3i j

 S S  indi-
cates FM alignment in all bases, with the fermionic spin operators 
defined as:

σσc c= , (7)i iα αβ iβ
†S  



where α, β ∈ {↑, ↓} and σ = (σ x, σ y, σ z) are the Pauli matrices.



Below half-filling, that is, N = 2, magnetization sectors are no longer 
degenerate at any value of U and the ground state has Sz = 0. In this case, 
the ground state is:

ψ α

β

⟩ = [( , ↑, ↓⟩ − , ↓, ↑⟩) + ( ↑, , ↓⟩ − ↓, , ↑⟩)

+ ( ↑, ↓, ⟩ − ↓, ↑, ⟩)]
− ( ↑↓, , ⟩ + , ↑↓, ⟩ + , , ↑↓⟩),

(8)
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∣ ∘ ∘ ∣∘ ∘ ∣∘ ∘

with energy

E
t U t tU U

=
−2 + − 36 + 4 +

2
, (9)

N =2
0

2 2

where α μ μ= / 6(1 + )2 , β μ= 1/ 3(1 + )2  and

μ
t tU U t U

t
= −

36 + 4 + + 2 +
4 2

. (10)
2 2

In particular, the limiting cases of infinite and vanishing interac-
tions are straightforward: β → 0 and α → 1/ 6 as U → ∞, and α, β → 1/3 
as U → 0. We may therefore compute relevant experimental correla-
tions functions for this simple example in all cases.

The theoretical correlations shown in Extended Data Table 1 
assume equal weights over all degenerate ground states for δ = +1/3, 
as although global magnetization in the lattice is conserved, local 
magnetization on a single plaquette may fluctuate as the bulk acts 
as a particle bath.

Theory comparison with DQMC
We used the QUEST package48 to calculate the theoretical correlations 
in the triangular Fermi–Hubbard model implemented in this work. 
QUEST is a Fortran-based package using DQMC to study many-body 
problems with unbiased numerical methods. We point out that 
DQMC can fail to converge at low temperatures and large interac-
tions strengths, but in the parameter regimes probed by this study 
(T/t > 0.5, U/t < 12), the fermion sign problem does not prevent results 
from reliably converging.

The simulations are run on an 8 × 8 isotropic triangular lattice with 
the inverse temperature split into L = 80 imaginary time slices of 
spacing δτ, where the inverse temperature β = Lδτ. We perform 5,000 
warm-up sweeps, 20,000 measurement sweeps and 200 bins for sta-
tistics using Princeton University’s Della cluster.

Three- and four-point correlators in DQMC
For completeness, we detail how the three- and four-point correla-
tors are numerically obtained in DQMC. The single-particle Green’s 
function determines the DQMC dynamics and is used to compute 
observables. Using Wick’s theorem, arbitrary correlations can be  
computed59.

For example, a bare three-point correlator   n n n⟨ ⟩i j k
s t u  of densities on 

three distinct sites (i, j, k), hosting spin labels (s, t, u ∈ {↑, ↓}) respec-
tively, can be written as the determinant

G i i G i j δ G i k δ

G j i δ G j j G j k δ

G k i δ G k j δ G k k

1 − ( , ) − ( , ) − ( , )

− ( , ) 1 − ( , ) − ( , )

− ( , ) − ( , ) 1 − ( , )

s t s,t u s,u

s s,t t u t,u

s s,u t t,u u

where  G i j c c( , ) = ⟨ ⟩σ i
σ

j
σ†  is the single-particle Green’s function. Exten

sions to four-, five- and six- point density correlators can easily be  
written. Thus, data involving the hole–spin–spin correlators were com-
pared with DQMC numerical results by first defining this operator as

C i j k n n n n n n n n( , , ) = ⟨(1 − − + )( − )( − )⟩i i i i j j k kh,bare
(3) ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

       

and using a symbolic algebra system to enumerate the Wick contrac-
tions and automatically generate measurement code for this observ-
able. The correlator Ch

(3) involves up to eight fermion operators, whereas 
correlators such as Chh

(4) involve up to 12.

Fitting temperatures and interaction strengths
To determine U/t and T/t for each dataset, we do a least-squares fit 
using the measured densities (nh, ns, nd) and the nearest-neighbour 
single-spin two-point correlation C n n n n= ⟨ ⟩ − ⟨ ⟩⟨ ⟩i j i j↑

↑ ↑ ↑ ↑
     as a function 

of doping to interpolated DQMC functions. Lattice sites are grouped 
by doping such that each data point represents approximately the 
same number of lattice sites. Groupings are approximately radial but 
reflect the slight ellipticity and asymmetry of the atom distribution in 
the lattice. Error bars on the doping come from the standard deviation 
of the average doping for each lattice site within a given grouping. Error 
bars for U/t and T/t come directly from the least-squares fits. In addi-
tion, we make the overall imaging fidelity a free parameter in the 
least-squares fit. For the U/t = 4.4, U/t = 8.0 and U/t = 11.8 datasets, we 
fit imaging fidelities of 0.957(4), 0.954(3) and 0.951(3), respectively, 
consistent with the typical bilayer fidelity. The experimental doping 
in all plots is the measured value scaled by the loss imaging fidelity of 
0.96. All theory curves for three- and four-point correlators are DQMC 
results corrected for the loss imaging fidelity. For example, for an imag-
ing fidelity 1 − ϵ, the appropriate connected three-point correlator, 
corrected for imaging fidelity, is

C ϵ C ϵ ϵC= (1 − ) + (1 − ) , (11)h
(3) 2

h,DQMC
(3) 2

s,DQMC
(3)

where Ch,DQMC
(3)  is the uncorrected DQMC output for the connected 

three-point hole–spin–spin correlator and Cs,DQMC
(3)  is the connected 

three-point singlon–spin–spin correlator. The (1 − ϵ)2 in the first term 
corrects for the potential loss of the spins during imaging and the sec-
ond term corrects the possibility that the measured hole was owing to 
a single atom that was lost during imaging. Higher-order corrections 
are much smaller at these interactions, temperatures and dopings for 
ϵ = 0.04. For Cd

(3), the correction is

C ϵ C= (1 − ) . (12)d
(3) 4

d,DQMC
(3)

The DQMC theory fits the data well except for densities above 
half-filling, where we systematically overestimate the number of dou-
bles and holes and underestimate the number of singles for a given 
doping in all datasets (Extended Data Fig. 7). We attribute this deviation 
to the onset of an increase in reconstruction errors with increasing 
particle doping, where we probably identify false-positive atoms in 
a given imaging layer due to the background signal from the other 
imaging layer. This systematic error is not taken into account directly 
in any imaging fidelity or error bar in the main text.

Theoretical three-point correlators versus interaction strength 
and temperature
In Fig. 3, we plot C(3) evaluated at the closest bond to the dopant ver-
sus doping for three different U/t. Although all three datasets are at 
slightly different temperatures, this does not change the qualitative 
trends that exist with increasing interaction strength. To emphasize 
this, in Extended Data Fig. 8, we plot C(3) on the triangular plaquette 
for multiple temperatures at a fixed interaction, and qualitatively all 
curves are similar to the main quantitative difference being that lower 
temperatures lead to larger-magnitude C(3) peaks. This is also confirmed 
in Extended Data Fig. 9, where spatial correlations plotted as a function 
of temperature close to half-filling do not show variations in the struc-
ture, rather a general decrease in correlator amplitude. To illustrate 
that the key qualitative trends depend on U/t, we furthermore plot C(3) 
evaluated at the closest bond to the dopant for multiple interactions 
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at fixed temperature in Extended Data Fig. 10. Here, we see all of the 
same trends shown in Fig. 3.

Data availability
Source data are provided with this paper and can be found in the  
Harvard Dataverse60. All other supporting data are available from the 
corresponding author upon request.

Code availability
The code used in this paper is available from the corresponding author 
upon request.
 

57.	 Brown, P. T. et al. Spin-imbalance in a 2D Fermi–Hubbard system. Science 357, 1385–1388 
(2017).

58.	 Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging 
Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 
(2012).

59.	 Assaad, F. F. et al. The ALF (Algorithms for Lattice Fermions) project release 2.0. 
Documentation for the auxiliary-field quantum Monte Carlo code. SciPost Phys. 
Codebases 1 https://doi.org/10.21468/SciPostPhysCodeb.1 (2022).

60.	 Prichard, M. et al. Replication data for: Directly imaging spin polarons in a kinetically 
frustrated Hubbard system. Harvard Dataverse https://doi.org/10.7910/DVN/ATI1FG (2023).

Acknowledgements We acknowledge M. Greiner, D. Huse, R. Samajdar, L. Cheuk, E.-A. Kim,  
D. Khomskii, A. Bohrdt, F. Grusdt, H. Schlömer and G. Refael for discussions. We thank  
S. Dandavate for early assistance in performing the DQMC simulations. The experimental  
work was supported by the NSF (grant no. 2110475), the David and Lucile Packard Foundation 
(grant no. 2016-65128) and the ONR (grant no. N00014-21-1-2646). M.L.P. acknowledges support 
from the NSF Graduate Research Fellowship Program. E.D. acknowledges support from the 
ARO (grant no. W911NF-20-1-0163) and the SNSF (project 200021_212899). I.M. acknowledges 
support from grant no. PID2020-114626GB-I00 from the MICIN/AEI/10.13039/501100011033 and 
Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat 
de Catalunya, co-funded by the European Union Regional Development Fund within the ERDF 
Operational Program of Catalunya (project no. QuantumCat, Ref. 001-P-001644). I.M. and E.D. 
acknowledge support by the NCCR SPIN of the Swiss NSF.

Author contributions E.D., I.M. and W.S.B. conceived the study and supervised the experiment. 
M.L.P., B.M.S. and Z.Z.Y. performed the experiments and analysed the data. All authors 
contributed to writing the paper.

Competing interests The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Waseem S. Bakr.
Peer review information Nature thanks Georg Bruun, Jae-yoon Choi and Zheng Zhu for their 
contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.21468/SciPostPhysCodeb.1
https://doi.org/10.7910/DVN/ATI1FG
http://www.nature.com/reprints


280 290 300 310 320 330 340 350 360 370
Superlattice detuning (MHz)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fi
llin

g 
(n

or
m

.)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

E532

→

E752

→

Extended Data Fig. 1 | Superlattice Phase Calibration. P-band spectroscopy 
used to calibrate the superlattice phase and stability. The dips at 292 MHz and 
340 MHz superlattice detuning correspond to ϕ = 3π/2 and ϕ = π/2. Fitted peaks 
(solid lines) are at [292.4(6) MHz, 339.8(8) MHz] and [292.6(8) MHz, 341.0(8) MHz] 

for the red and blue data respectively. Callout fluoresence images show the 
expansion of a Mott insulator after 1 second for superlattice phase ϕ = π (top) 
and ϕ = 0 (bottom) at V752 = 42.0(3)ER,752 and V532 = 3.7(1)ER,532. Inset: Experimental 
setup used for realizing the optical superlattice.
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Extended Data Fig. 2 | Bilayer Image Reconstruction. Sample deconvolved 
experimental images and occupation histograms for state ∣3⟩ (top, red) and 
state 2⟩∣  (bottom, blue) atoms. We use the Lucy-Richardson algorithm with five 
iterations for the deconvolution.
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Extended Data Fig. 3 | Multi-point Correlations at Different Global Chemical 
Potentials. a, C h

(3) (red data) and C d
(3) (green data) evaluated at the bond closest 

to the dopant, and b, C(4) for two different datasets with distinct global chemical 
potentials. As these two datasets track each other well, particularly at low 

filling, we conclude spatial gradients do not appreciably suppress resonant 
tunneling to affect measured correlations. Filled data points have mean atom 
number 799(35) while empty data points have mean atom number 622(27).



Article

-0.6 -0.4 -0.2 0 0.2

-12

-8

-4

0

Doping

x10-2

C
(4

)  C
or

re
la

tio
n

C(4) 
ss

C(4) 
hs

C(4) 
hh

Extended Data Fig. 4 | Interaction Dependence of Four-point Correlations. 
Four-point correlations vs. doping for different interaction strengths U/t = 8.0(2) 
(open circles) and U/t = 11.8(4) (filled circles).
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Extended Data Fig. 5 | Unsymmetrised Correlations versus Distance. C h
(3) for 

δ = −0.10(2) and C d
(3) for δ = 0.15(2) out to d = (2, 0) without averaging over the 

120 degree rotational symmetry.
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Extended Data Fig. 6 | Unsymmetrised Correlations versus Doping. C h
(3) and C d

(3) for different dopings at a U/t = 11.8 without averaging over all six individual 
plaquettes. We see that unsymmetrised correlations are largely consistent between different orientations. Error bars are 1 s.e.m.
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Extended Data Fig. 7 | Doublon Density versus Doping. Number of measured 
doubles (red points) and theoretical expected number of doubles from  
DQMC (red band) with imaging fidelity of 0.96 accounted for at U/t = 11.8(4), 
T/t = 0.94(4). The highest doping bin (δ = 0.15) has around 20 percent more,  
the second highest doping bin (δ = 0.12 has around 10 percent more, and the 
third highest doping bin (δ = 0.08) has around 5 percent more doubles than 
predicted. We believe this is caused by image reconstruction errors and leads 
to a systematic underestimate of certain three and four point correlators above 
zero doping. This qualitative trend appears for all three interaction strengths. 
Error bars are 1 s.e.m.
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Extended Data Fig. 8 | Three-point Correlations Temperature Dependence. 
DQMC results for C(3) evaluated at the closest bond to the dopant versus doping 
at a fixed U/t = 12 and different temperatures. All temperature curves have the 
same qualitative trend with the C h

(3) minimum at a doping of ~ −0.3 and the C d
(3) 

maximum at a doping of ~0.15 with a linear region near zero doping. Decreasing 
T/t of the gas from 0.95 to 0.65 causes the magnitude of the peak values of C(3) to 
increase by roughly fifty percent. An imaging fidelity of 0.96 is assumed.
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Extended Data Fig. 9 | Doublon Correlations versus Temperature. C d
(3) 

calculated at δ = 0.02 for U/t = 12 at three different temperatures using DQMC. 
As the temperature decreases, the magnitude of the farther correlations 

increases slightly while there are no major qualitative differences in the 
structure of the correlations; the size of the polaron does not have a strong 
dependence on the temperature.
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Extended Data Fig. 10 | Three-point Correlations Interaction Dependence. 
DQMC results for C(3) evaluated at the closed bond to the dopant versus doping 
at fixed T/t = 0.85 and different interaction strengths. We see that for all 
interaction strengths the C h

(3) minimum is at a doping of ~ −0.3 and the C d
(3) 

maximum is at a doping of ~0.15 for the two higher interaction strengths,  
while for U/t = 4 the peak appears slightly closer to zero doping. The two higher 
doping curves have roughly the same peak C(3) magnitudes, while for U/t = 4  
the peaks are roughly 10 percent lower. However, we see that qualitatively the 
curves are quite different close to half filling, where as U/t increases the onset 
of C h

(3) and C d
(3) with doping becomes sharper, leading to a region where the C h

(3) is 
linear below zero doping and C d

(3) is linear above zero doping. An imaging 
fidelity of 0.96 is assumed.



Extended Data Table 1 | Single plaquette correlation functions
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