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The emergence of quasiparticles in quantum many-body systems underlies the rich
phenomenology in many strongly interacting materials. In the context of doped Mott
insulators, magnetic polarons are quasiparticles that usually arise from aninterplay

between the kinetic energy of doped charge carriers and superexchange spin
interactions'®. However, in kinetically frustrated lattices, itinerant spin polarons—
bound states of adopant and a spin flip—have been theoretically predicted evenin the
absence of superexchange coupling®™*. Despite theirimportant role in the theory of
kinetic magnetism, a microscopic observation of these polarons is lacking. Here we
directly image itinerant spin polarons in a triangular-lattice Hubbard system realized
with ultracold atoms, revealing enhanced antiferromagnetic correlations in the

local environment of a hole dopant. In contrast, around a charge dopant, we find
ferromagnetic correlations, a manifestation of the elusive Nagaoka effect'>'¢. We
study the evolution of these correlations with interactions and doping, and use
higher-order correlation functions to further elucidate the relative contributions of
superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at
high temperature paves the way for exploring potential mechanisms for hole pairing
and superconductivity in frustrated systems'*, Furthermore, our work provides
microscopic insights into related phenomenain triangular-lattice moiré materials”2°.

One of the key questionsin quantum condensed-matter physicsis how
doped Mottinsulators give rise to exotic metallic and superconducting
phases. Understanding this problemis crucial for explaining the emer-
gence of the unusual physical properties of many families of strongly
correlated electron systems, including the high-critical-temperature
(T.) cuprates®, organic charge transfer salts?? and moiré materials®?*.
Animportantaspectof this problemis theinterplay betweenspinorder
and the quantum dynamics of mobile dopants. So far, most studies
have focused on Mott insulators on a square lattice where the motion
of charge carriers disturbs spin correlations, resulting in an adversarial
relationship between doping and spin order*%, This explains why
many theoretical studies of doped high-T. cuprates are usually done
from the perspective of Mott states in which spin order has been sup-
pressed by fluctuations®?.

Recently, experiments on moiré materials have provided a strong
motivation for understanding doped Mottinsulatorsin triangular lat-
tices*. Here we explore this problem microscopically using a cold-atom
triangular Fermi-Hubbard system??, One surprise of our experiments
is that in contrast to square-lattice systems, there is a symbiotic rela-
tion between mobile holes and antiferromagnetism. This manifests
in the formation of antiferromagnetic (AFM) itinerant spin polarons
inthe hole-doped system, which we directly image by measuring spin
correlations around mobile holes. In striking contrast, we find that
particle doping favours the formation of ferromagnetic (FM) polarons

similar to those discussed previously for the square-lattice Fermi-
Hubbard model™*,

Some of the most important implications of our results are for sys-
tems in which the local interaction Uis much larger than the single
electron tunnelling ¢, in which case the magnetic superexchange/is
strongly suppressed. Indeed, thisis the relevant regime for most moiré
systems (neglecting nearest-neighbour interactions). Intuition based
onearlier studies would suggest that at temperatures higher than the
superexchange scale, the regime we explore here, one can not expect
coherent propagation of quasiparticles’. Our results demonstrate that
this does not have to be the case in triangular lattices. Formation of
polarons around mobile dopants facilitates their propagation and
makes their dynamics more coherent. This robustness of the quasi-
particle can also be understood as the result of effective magnetic
interactions with energy scale tinduced by the motion of dopantsin
the frustrated system”.

Itinerant spin polaron

Atthe heart of the mechanismresponsible for the formation of polarons
inour experimentis the phenomenon of kinetic frustration, which has
received much recent theoretical attention'®**°*, This describes the
reduction of the mobility of dopants owing to the destructive inter-
ference of different propagation paths in certain lattice geometries,
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Fig.1|Itinerantspin polaron. a, Asingle particleinatriangular lattice with
t>0minimizesits energy by occupying symmetric orbitalsoneachbond.Its
band structure E(k) exhibits aminimum energy of E=-6t.Inaspin-polarized
background, asingle hole has anegative effective tunnelling and tries to
occupy asymmetric orbitals on each bond, butis unable to do so (kinetic
frustration).Its minimum energy is £ = -3¢t. b, Once spins of the background
Mottinsulatorare considered, the motion of aholeinaclosedloopona
plaquette exchanges the spins. If the neighbouring spins are in the singlet
(§=0) sector, thefinal state |¢;) picks up aspin Berry phase, that s, ;) = e -
This phaseis absentinthetriplet (S=1)sector.c, Therelative sign flip for hole

including the triangular one. To release this frustration and lower the
kinetic energy of the dopants, the system develops magnetic cor-
relations. The resulting magnetism, known as kinetic magnetism, is
closely related to that studied by Nagaoka is his seminal work®”, but
is more robust in that it is predicted to survive for finite interactions
and doping.

Indeed, signatures of kinetic magnetism above half-filling have been
observed recently in doped van der Waals heterostructures through
measurements of the spin susceptibility”?, while separate measure-
ments of magnetization plateaus attributed to kinetic effects below
half-filling have also been measured in these materials®. Our experi-
mental results provide amicroscopic picture underlying these obser-
vations. More broadly, our results motivate studying the properties
of doped Mottinsulating statesin triangular lattices, including super-
conductivity, from the perspective of self-organization of itinerant
spin polarons™#3+%,

Our system consists of a two-dimensional degenerate gas of °Li that
isan equal mixture of two spin species correspondingto the first (| 1))
and third (|¥)) lowest hyperfine states of the atom. The gas is loaded
adiabatically into an optical lattice realizing the triangular-lattice
Hubbard model

Fa o af A PO
H=- ) t(CiCig + € joCig) + U Y fiafty,, 1)
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where¢} (¢,,) creates (destroys) a fermion of spin g at lattice site i, the
number operator fi,, = ¢} ¢;,measures site occupation and i, j denotes
nearest-neighbour sites. In the model, particles hop with ¢t > 0. With
this sign of the tunnelling, a particle in an empty lattice can lower its
energy by delocalizing on each lattice bond in a symmetric spatial
orbital (Fig. 1a). The corresponding band structure is particle-hole
asymmetric, and the particle attains its minimal energy of -6t at zero
quasi-momentum. Kinetic frustration can be understood by consider-
ing the opposite scenario of a single hole moving in a spin-polarized
background. Inthis case, the Hamiltonianis better expressed in terms
of hole operators with ; =¢;
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(particle) dopants means that a spin singlet (triplet) configurationis favoured,
manifesting asan AFM (FM) polaron.d, Anoptical lattice with triangular
connectivity is formed by superimposing non-interfering square and 1D lattice
potentials. The nearest-neighbour tunnelling matrix elements are indicated
ast,, t,andt,. e, Asinglefluorescence image gives the spatial distribution of
bothspinstates. Thereconstructed image contains hole (grey) and particle
(light blue) dopantsinaMottinsulator surrounded by either ferromagnetically
orantiferromagnetically correlated spins. Spatial distancesin the highlighted
regionofthelattice have been transformed to reflect the connectivity of
thelattice.

H=Y thh+hR)
i)y
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Crucially, the change in the sign of the tunnelling resulting from
the anticommutation of fermionic hole operators in the Hamiltonian
favours antisymmetric spatial orbitals for the hole on each bond.
Indeed, this is manifested in the band structure of the hole, which is
mirrored about zero energy relative to the particle. The hole kinetic
energy is thus minimized at a value of -3¢, larger than in the unfrus-
trated system.

Asimplified picture explaining the emergence of the itinerant spin
polaroninthe dopedinteracting system can be obtained by consider-
ing a triangular plaquette with two fermions. In the limit of strong
interactions, double occupancies are energetically forbidden and the
motion of the hole on a closed loop on the plaquette will exchange
the two spins. In the spin singlet sector, this produces a spin Berry
phase of T, whereas the phase is zero in the spin-symmetric triplet
sector (Fig. 1b)*. The phase acquired by the hole in the singlet sec-
tor returns the tunnelling to a positive value, thereby releasing the
kinetic frustration and allowing the hole toreach alower ground-state
energy.

The resulting object, a singlet bond bound to a hole with a binding
energy of order ¢, is predicted to persist in the many-body setting for
light hole doping (Fig. 1c). This corresponds to a polaron with AFM
spin correlations in the vicinity of a hole. The situation is reversed for
particle doping, favouring FM correlationsin the vicinity of adoublon.
We directly detect the itinerant spin polaron in our system using a
connected three-point correlation function, which probes the spin
correlations in the environment of a hole or doublon. Such correla-
tors have been previously used to identify magnetic polarons in the
square lattice, although, in that case, the mechanism that leads to
the formation of the polaronis different and the binding energy is on
the superexchange scale®%¥,

To realize a lattice with triangular connectivity , we super-
impose two non-interfering lattices, a strong one-dimensional (1D)
opticallattice with spacing a = 532 nmand depth Vi3, = 6.7(2) E; 53,and
aweak square optical lattice with larger spacing a = 752 nmand depth

28,29,38-42
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Fig.2|Polaroninternal structure versus doping. a, Three-point correlations
¢ ((1,0),1/2,-/3/2)and C? ((1, 0), (3/2, \/3/2)) for holes (blue and red bonds
shownoninset) and doublons (green and orange bonds shown oninset) versus
doping 6. Theory curves (grey bands) are from DQMC with U/t =11.8(4) and
T/t=0.94(4).b, Spatial map of correlations C¥ at §=-0.10(2) and § = -0.04(2)
(top) and C§’ at §=0.15(2) and 6 = 0.02(2) (bottom). The second column
highlights the spatial structure of the polarons as close as we can get
experimentally to the ideal single dopant limit. ¢, Correlations C” and C{
versusdistance at dopings of 6 =-0.04(2) and 6 = 0.02(2), respectively.

Vosy=2.9(1) Ey 55, where one recoil energy is defined as Ey , = h*/8ma’

with m the mass of the atom and his Planck’s constant* (Fig.1d). The
frequency detuning between the two lattices is used to tune their rela-
tive alignment to obtainatriangular geometry. Their relative depths
are chosen to produce an isotropic triangular lattice by equalizing
the tunnelling strength along the original square lattices axes and
one diagonal. The gas is prepared at a magnetic field near a Fesh-
bachresonance at 690 G, allowing us to freely tune the scattering
length. In this way, we tune the coupling strength U/t to explore the
evolution of the correlations from the metallic to the Mott insulating
regime.

We use aquantum gas microscope to measure site-resolved correla-
tions associated with the polaronin the many-body system*’. We further
implement a bilayer imaging technique**, wherein a magnetic field
gradientis first used to separate the two spin statesinto different layers
beforeimaging them simultaneously (Fig.1e). Fromthe reconstructed
images, we can calculate arbitrary n-point correlation functions involv-
ingbothspinand density operators averaged over experimental cycles.
Inthe strongly interacting regime, the atoms order in aMott insulator
and show short-range 120° spiral AFM correlations that have been
observed in previous experiments??%, We use the two-point spin cor-
relations for thermometry by comparison with determinant quantum
Monte Carlo (DQMC) calculations*® (Methods). The typical peak density
ofthecloudsinthelatticeisn=n, +n,=1.2,allowing ustostudy arange
of dopings 6 = n —1oneither side of half-filling of the Hubbard system
in each experimental snapshot due to the harmonic confinement of
the lattice beams.

Spin polaron correlations

To detect the polaron, we evaluate connected three-point charge-
spin-spin correlation functions. For a hole dopant, the relevant cor-
relation function, CX(d,, d,) is computed as:

Correlation distanceis defined as the distance from the dopant to the bond
midpoint, shown as the inset black arrow. Bonds are unity length, implying the
closest correlationis at adistance+/3/2.d, Dopant propagation coherently
re-orders the surrounding120° order, resulting in an alternating pattern of
correlations, asimagedinthe experiment. e, Nearest-neighbour three-point
correlators normalized by the dopant density, wherered and green points
aremeasured hole and doublon correlators. DQMC theory is shown for the
interacting systems (grey bands) and in the non-interacting limit (dotted red
andgreenlines). Error barsrepresentls.e.m.

~h AZ

c(d, d,)= Ay S roH,Srﬂ,) Ak )(Swdsroﬂ,) 3)

where we have assumed a spin-balanced system (§:) =0.Hered, and
d, are displacement vectors relative to a site at position r, in units of
the squarelattice spacing a, §f = Ay, — A, isthe projection of the spin
onsiteralongthe quantization axis and ﬁ': isthe hole number operator
(1-n,,)(1-A,,). We average the correlation function over sites ro with
similar doping. The doublon correlation function C(3) is constructed
inananalogous way by replacing the hole number operator 71, " withthe
doublon number operator nf— A A, For the range of dopings we
consider, the two-point spin correlator is always negative due to
the dominant superexchange aniferromagnetism. The second term of
the connected three-point correlators defined in equation (3) removes
any uncorrelated charge-spin-spin signal associated with this back-
ground AFM signal.

We start by studying the doping dependence of C® above and below
half-filling, shown in Fig. 2a. Correlations C{ (C{) in the vicinity of
holes (doublons) are shown for a strongly interacting sample at
U/t=11.8(4). For § < 0, C{ shows negative correlations for d, = (1, 0),
d,=(1/2, f3/2)indicating an enhancement of AFM order in theimme-
diate vicinity of a hole. In contrast, for § > 0, the doublon correlation
function Cﬁf) is positive for the same bond, revealing a preference for
FM order around doublon dopants. We then examine correlations out
to further distances to explore the structure of the polaron at a few
different dopingsin Fig. 2b. In particular, we emphasize the structure
ofthe correlationsinthe limit of vanishing dopingin the right column
ofthis panel. This doping regime s the closest to capturing the behav-
iour associated with the idealized case of a single dopant®” where
polaron-polaroninteractions are absent. Around a hole (Fig. 2b,c), we
find that although at the shortest distance C? is negative, the next
furthest ring (distances 1.32 and 1.5) shows positive correlations. The
structure of the AFM hole polaron can be understood using a picture
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Fig.3|Evolution of three-point correlations with doping and interactions.
CcPand €§ connected correlations versus doping in the metallic and Mott
insulating regimes ford; = (1, 0), d, = (1/2, -/3/2). Data are shown for U/t = 4.4(1),
T/t=0.68(2) (a), U/t=8.0(2), T/t = 0.84(3) (b) and U/t =11.8(4), T/t = 0.94(4) (c).
Forallinteractions, we observe the largest negative C” correlator atadoping
ofaround -0.3. Forincreasing U/t, the C' and C§ correlators become more

of amobile hole dopant that coherently modifies the surrounding 120°
Néel order to facilitate lowering the kinetic energy, as illustrated in
Fig. 2d. Strikingly, thisis a different structure than on the doublonside,
where predominantly positive correlations exist up a distance d = 1.8
away from the doublon. Thisindicates an energetic preference towards
alocally FM environment, as for a particle dopant the motion is unfrus-
trated in a background of polarized spins. We interpret these
short-range polaronic correlations we observe as the precursors to
Haerter-Shastry AFM and Nagaoka FM expected at lower temperatures
onthe hole-and particle-doped sides, respectively.

We also note from Fig. 2a the approximate linear dependence of
the correlators with relevant dopant density § for |§| < 0.1. This indi-
cates that in this regime, the description of the system in terms of
weakly interacting polarons is valid. Polaron interactions become
important for larger dopant densities. These observations motivate
introducing a normalized version of the correlators by dividing out
therelevant dopant density §, where C%),. = C® /8 (Fig. 2e). While the
non-normalized correlations close to zero doping appear reducedin
magnitude, the normalized spin correlation emphasizes the fact that
the spin correlations per dopant are in fact strongest close to
half-filling.

Theitinerant spin polaron picture we have presented so farisinthe
regime of strong interactions, but itis also interesting to explore how
the three-point correlations evolve with U/t. Figure 3 shows these cor-
relations in the metallic (U/t = 4.4), Mott insulating (U/¢t =11.8) and
intermediate (U/t = 8.0) regimesin the temperaturerange 7/t = 0.7-0.9.
Surprisingly, many of the qualitative features of the correlations are
similar, including the minimuminthe AFM correlations arounda hole
at6=-0.3. Thiscanagain be understood from asingle plaquette in the
alternative limit of vanishing interactions, which predicts correlations
of the same sign as theitinerant spin polaron* (Methods). For all inter-
actions, the measured correlations shows reasonable agreement
with DQMC calculations with a systematic deviationin C§and C¥ for
larger fillings, possibly owing to an increase in reconstruction errors
(Methods). The correlations differ significantly from those expected
for the non-interacting gas, especially for the two stronger interactions.
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linear near zero doping, indicating aregion where there are weakly interacting
polarons. Theblue dashed linein ¢, whichis fit tothe DQMCin the doping
range-0.09 < §<0.06, illustrates this region. DQMC theory is shown for the
interacting systems (grey bands) and in the non-interacting limit (dotted red
andgreenlines). Error barsrepresentls.e.m.

As U/tincreases, the onset of the correlation moves closer to half-filling
as contributions from virtual doublon-hole fluctuations are increas-
ingly suppressed. The characteristic linear growth of the correlations,
expected in the polaronic regime and observed for U/t =11.8, is, how-
ever, present for only the strongest interactions. Additional evidence
for an experimental observation of the itinerant spin polaron at the
largest interaction strength comes by combining the observed
three-point correlators with a measurement of the singles fraction
n,=n - n‘athalf-filling, which ensures that the systemis in the strongly
interacting regime. For U/t=4.4, U/t=8.0 and U/t =11.8, thisis 0.71(1),
0.85(1) and 0.93(1), respectively.

Kinetic versus superexchange correlations

Assuperexchange-induced AFM correlations are presentin the system
for any finite interaction strength, it is illuminating to quantify their
strength compared with kinetic magnetism around dopants. This can
be done using four-point correlation functions. For any two nearest-
neighbour sitesjand k, there are two additional sites i and / (which we
call conditioning sites) coupled to both of them (Fig. 4, inset). As a
dopant oneither conditioning site may affect the correlation strength
betweenjand k, afour-point correlation functionis required to deter-
mine the influence of the background on the j-k bond. We define
aconditional four-point correlator as the spin correlator on the shared
bond, conditioned on the occupancy observables A%, 7® on sites
iand!

(RS 55D

~a~b
(nin1>

4) =
ab —

4)
wherethelabelsa, b € {h, s}. Figure 4 shows the four-point correlator
at U/t =11.8for three different occupancies of the conditioning sites.
Below half-filling, we find that C{f) < C) < ¢, directly indicating the
enhancement of AFM correlations on a given bond by the presence
of holes on the conditioning sites. Kinetic magnetism, therefore,
strengthens the existing AFM correlations below zero doping that
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Fig.4|Comparing AFM correlations due to kineticand superexchange
mechanisms. Conditional four-point correlators C*’ show the spin-spin
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zero doping, bonds haveincreased AFM spin correlations with increasing
neighboursthatareholes. DQMC theoryisshown as coloured bands. Error bars
representls.e.m.

arise due to superexchange, which is the only mechanism at play on
the level of the four-site plaquette when the conditioning sites are
singly occupied. Above zero doping, where holes are due to virtual
fluctuations, thereis no enhancement of AFM correlations fromkinetic
magnetism and all three correlators are similar in value (Extended
Data Table 1).

Outlook

In this work, we have directly imaged itinerant spin polaronsin a tri-
angular Hubbard system by measuring three- and four-point correla-
tion functions. We have characterized their evolution with doping and
interactions, and compared the strength of correlations induced by
superexchange and kinetic effects. In future work, it would be inter-
esting to study the polaron spectroscopically*’, which would allow
direct characterization of its binding energy as well as its dispersion
and effective mass. While the polarons we have focused on here are
part of the physics of the doped triangular Hubbard model at high
temperatures, pushing to lower temperatures would shed light oniits
rich ground-state phase diagram. Theoretical work suggests that this
may include magnetically ordered phases as well as a quantum spin
liquid with fractionalized excitations atintermediate interactions®*2,
Higher-order connected correlations may be useful inidentifying more
complex multi-particle bound states in the system", which can lead
to hole-pairing mechanisms and superconductivity at high tempera-
turesIO,ll,Sl,SS*SS'

Note added in proof: During completion of the paper, we became
aware of related work studying three-point correlations inatriangular
Fermi-Hubbard system>®

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07356-6.

14.

15.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.
35.

36.

37.

38.

39.

40.

a.

Brinkman, W. F. & Rice, T. M. Single-particle excitations in magnetic insulators. Phys. Rev. B
2,1324 (1970).

Trugman, S. Interaction of holes in a Hubbard antiferromagnet and high-temperature
superconductivity. Phys. Rev. B 37,1597 (1988).

Kane, C., Lee, P. & Read, N. Motion of a single hole in a quantum antiferromagnet. Phys.
Rev. B 39, 6880 (1989).

Auerbach, A. & Larson, B. E. Small-polaron theory of doped antiferromagnets. Phys. Rev.
Lett. 66, 2262 (1991).

Grusdt, F. et al. Parton theory of magnetic polarons: mesonic resonances and signatures
in dynamics. Phys. Rev. X 8, 011046 (2018).

Koepsell, J. et al. Imaging magnetic polarons in the doped Fermi-Hubbard model. Nature
572, 358-362 (2019).

Koepsell, J. et al. Microscopic evolution of doped Mott insulators from polaronic metal to
Fermi liquid. Science 374, 82-86 (2021).

Ji, G. et al. Coupling a mobile hole to an antiferromagnetic spin background: transient
dynamics of a magnetic polaron. Phys. Rev. X 11, 021022 (2021).

Haerter, J. O. & Shastry, B. S. Kinetic antiferromagnetism in the triangular lattice. Phys.
Rev. Lett. 95, 087202 (2005).

Zhang, S.-S., Zhu, W. & Batista, C. D. Pairing from strong repulsion in triangular lattice
Hubbard model. Phys. Rev. B 97, 140507 (2018).

Morera, ., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from frustration in ladder systems.
Preprint at https://arxiv.org/abs/2106.09600 (2021).

Morera, I. et al. High-temperature kinetic magnetism in triangular lattices. Phys. Rev. Res.
5,1022048 (2023).

Davydova, M., Zhang, Y. & Fu, L. Itinerant spin polaron and metallic ferromagnetism in
semiconductor moiré superlattices. Phys. Rev. B107, 224420 (2023).

Schlémer, H., Schollwock, U., Bohrdt, A. & Grusdt, F. Kinetic-to-magnetic frustration
crossover and linear confinement in the doped triangular t-J model. Preprint at https://
arxiv.org/abs/2305.02342 (2023).

Nagaoka, Y. Ferromagnetism in a narrow, almost half-filled s band. Phys. Rev. 147, 392-405
(1966).

White, S. R. & Affleck, |. Density matrix renormalization group analysis of the Nagaoka
polaron in the two-dimensional t-J model. Phys. Rev. B 64, 024411 (2001).

Tang, Y. et al. Simulation of Hubbard model physics in WSe,/WS, moiré superlattices.
Nature 579, 353-358 (2020).

Foutty, B. A. et al. Tunable spin and valley excitations of correlated insulators in [-valley
moiré bands. Nat. Mater. 22, 731-736 (2023).

Ciorciaro, L. et al. Kinetic magnetism in triangular moiré materials. Nature 623, 509-513
(2023).

Tao, Z. et al. Observation of spin polarons in a frustrated moiré Hubbard system. Nat. Phys.
https://doi.org/101038/s41567-024-02434-y (2024).

Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum

matter to high-temperature superconductivity in copper oxides. Nature 518, 179-186
(2015).

Powell, B. & McKenzie, R. H. Quantum frustration in organic Mott insulators: from spin
liquids to unconventional superconductors. Rep. Prog. Phys. 74, 056501 (2011).

Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265-1275
(2020).

Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686-695
(2022).

Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of
strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys.
68, 13-125 (1996).

Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates:
the ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755 (2004).

Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature
superconductivity. Rev. Mod. Phys. 78, 17-85 (2006).

Mongkolkiattichai, J., Liu, L., Garwood, D., Yang, J. & Schauss, P. Quantum gas microscopy
of fermionic triangular-lattice Mott insulators. Phys. Rev. A 108, L061301(2023).

Xu, M. et al. Frustration-and doping-induced magnetism in a Fermi-Hubbard simulator.
Nature 620, 971-976 (2023).

Chen, S. A., Chen, Q. & Zhu, Z. Proposal for asymmetric photoemission and tunneling
spectroscopies in quantum simulators of the triangular-lattice Fermi-Hubbard model.
Phys. Rev. B106, 085138 (2022).

Samajdar, R. & Bhatt, R. N. Nagaoka ferromagnetism in doped Hubbard models in optical
lattices. Preprint at https://arxiv.org/abs/2305.05683 (2023).

Lee, K., Sharma, P., Vafek, O. & Changlani, H. J. Triangular lattice Hubbard model physics
at intermediate temperatures. Phys. Rev. B107, 235105 (2023).

van de Kraats, J., Nielsen, K. K. & Bruun, G. M. Holes and magnetic polarons in a triangular
lattice antiferromagnet. Phys. Rev. B106, 235143 (2022).

Alexandrov, A. S. & Mott, N. F. Polarons and Bipolarons (World Scientific, 1996).

Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped
quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).

Sposetti, C. N., Bravo, B., Trumper, A. E., Gazza, C. J. & Manuel, L. O. Classical
antiferromagnetism in kinetically frustrated electronic models. Phys. Rev. Lett. 112,
187204 (2014).

Hartke, T., Oreg, B., Turnbaugh, C., Jia, N. & Zwierlein, M. Direct observation of nonlocal
fermion pairing in an attractive Fermi-Hubbard gas. Science 381, 82-86 (2023).

Yang, J., Liu, L., Mongkolkiattichai, J. & Schauss, P. Site-resolved imaging of ultracold
fermions in a triangular-lattice quantum gas microscope. PRX Quantum 2, 020344
(2021).

Yamamoto, R., Ozawa, H., Nak, D. C., Nakamura, |. & Fukuhara, T. Single-site-resolved
imaging of ultracold atoms in a triangular optical lattice. New J. Phys. 22,123028 (2020).
Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical
lattices. Science 333, 996-999 (2011).

Wei, D. et al. Observation of brane parity order in programmable optical lattices.

Phys. Rev. X13, 021042 (2023).

Nature | Vol 629 | 9 May 2024 | 327


https://doi.org/10.1038/s41586-024-07356-6
https://arxiv.org/abs/2106.09600
https://arxiv.org/abs/2305.02342
https://arxiv.org/abs/2305.02342
https://doi.org/10.1038/s41567-024-02434-y
https://arxiv.org/abs/2305.05683

Article

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

Trisnadi, J., Zhang, M., Weiss, L. & Chin, C. Design and construction of a quantum matter
synthesizer. Rev. Sci. Instrum. 93, 083203 (2022).

Gross, C. & Bakr, W. S. Quantum gas microscopy for single atom and spin detection.

Nat. Phys. 17,1316-1323 (2021).

Preiss, P. M., Ma, R., Tai, M. E., Simon, J. & Greiner, M. Quantum gas microscopy with spin,
atom-number, and multilayer readout. Phys. Rev. A 91, 041602 (2015).

Hartke, T., Oreg, B., Jia, N. & Zwierlein, M. Doublon-hole correlations and fluctuation
thermometry in a Fermi-Hubbard gas. Phys. Rev. Lett. 125, 113601 (2020).

Koepsell, J. et al. Robust bilayer charge pumping for spin-and density-resolved quantum
gas microscopy. Phys. Rev. Lett. 125, 010403 (2020).

Yan, Z. Z. et al. Two-dimensional programmable tweezer arrays of fermions. Phys. Rev.
Lett. 129, 123201(2022).

Varney, C. N. et al. Quantum Monte Carlo study of the two-dimensional fermion Hubbard
model. Phys. Rev. B 80, 075116 (2009).

Merino, J., Powell, B. J. & McKenzie, R. H. Ferromagnetism, paramagnetism, and a Curie-
Weiss metal in an electron-doped Hubbard model on a triangular lattice. Phys. Rev. B 73,
235107 (2006).

Morera, |., Weitenberg, C., Sengstock, K. & Demler, E. Exploring kinetically induced
bound states in triangular lattices with ultracold atoms: spectroscopic approach. Preprint
at https://arxiv.org/abs/2312.00768 (2023).

Zhu, Z., Sheng, D. & Vishwanath, A. Doped Mott insulators in the triangular-lattice
Hubbard model. Phys. Rev. B 105, 205110 (2022).

328 | Nature | Vol 629 | 9 May 2024

52. Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular

lattice Hubbard model: a density matrix renormalization group study. Phys. Rev. X 10,
021042 (2020).

53. Schrieffer, J., Wen, X.-G. & Zhang, S.-C. Spin-bag mechanism of high-temperature
superconductivity. Phys. Rev. Lett. 60, 944 (1988).

54. Venderley, J. & Kim, E.-A. Density matrix renormalization group study of
superconductivity in the triangular lattice Hubbard model. Phys. Rev. B100, 060506
(2019).

55.  Zampronio, V. & Macri, T. Chiral superconductivity in the doped triangular-lattice
Fermi-Hubbard model in two dimensions. Quantum 7, 1061 (2023).

56. Lebrat, M. et al. Observation of Nagaoka polarons in a Fermi-Hubbard quantum
simulator. Nature https://doi.org/10.1038/s41586-024-07272-9 (2024).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2024


https://arxiv.org/abs/2312.00768
https://doi.org/10.1038/s41586-024-07272-9

Methods

State preparation

We use a degenerate mixture of hyperfine states [1) and |3), where |i)
represents the ith lowest energy level of the ground hyperfine manifold
of atomic °Li, to simulate the two-component Fermi-Hubbard model
onatriangular lattice. State preparation of a degenerate Fermi gas
before loading the science lattice largely proceeds as detailed in previ-
ous work®. After the final stage of evaporation, we are left with a
spin-balanced sample of approximately 400 atomsin each spin state.
At this stage, the atoms are confined in a single layer of an accordion
lattice, created with 532-nm light, with spacing a, = 3.6(3) pmand trap
frequency w,=2m x 16.4(2) kHz in the vertical (z) direction. The com-
bined in-plane two-dimensional lattices (see below) are then ramped
to their final depths following a cubic spline trajectory in 100 ms. An
additional1,070-nmoptical dipole trap propagating along zwith waist
w, =100 pum is used to provide variable confinement in the x-y plane
inthefinal science configuration. In particular, for strongly interacting
samples, thereduced compressiblity necessitates greater confinement
toachieve comparable densities. We worked at magnetic fields ranging
from 587(1) G to 612(1) G, where the scattering length varies between
330(15) and 945(30) Bohr radii, respectively.

Triangular optical lattice

The triangular lattice is formed as in ref. 41 by combining two non-
interferinglattices of different polarizations and detunings (Extended
Data Fig. 1, inset). Both lattices are created using light of wavelength
1,064 nm. Thefirstisasquarelattice with aspacing of 752 nm, created
by retroreflecting a single vertically polarized laser beamin a bowtie
geometry. The depth of this lattice is calibrated using amplitude modu-
lation spectroscopy. Both losses of laser power as the beam traverses
the vacuum chamber and and non-orthogonal beam alignments can
cause a significant tunnelling imbalance along the axes of the square
lattice. In our system, we specifically tune the angle between the lat-
tice beams to 90.7(1)° (measured using atomic fluorescence images),
which approximately cancels the imbalance due to power losses. AFM
correlations along the two axes of the square lattice show a system-
atic difference of 4(3)%, indicating a difference in the tunnellings of
approximately 1(1)%.

The second lattice is a 1D optical lattice with a spacing of 532 nm
and wavevector aligned with a diagonal of the 752-nm square lattice.
Thelight for this lattice is horizontally polarized and detuned by about
330 MHz with respect to the square lattice, preventing any electric
field interference. Both lattices share a common retroreflecting
mirror, avoiding the need for active phase stabilization as in other
schemes®*5,

The frequency detuning between the two latticesintroduces arela-
tive spatial phase between the two potentials at the atoms whichis given
by ¢ =4mLA/c, where A is the relative detuning, L is the distance from
the atoms to the retroreflecting mirror and cis the speed of light. The
triangular-lattice configurationis obtained for the case of constructive
interference, that is, ¢ = 0, which we calibrate using in situ measure-
ments. The superlattice depthis set toaweak value (Vs;, = 0.49(1) Eg s3,)
relative to the dominant square lattice (V.5,=40.2(3) E ;5,) and then
modulated at the frequency of the square-lattice p-band resonance.
As this is an odd-parity transition, excitation should be maximized
when ¢ =1/2 or ¢ = 31/2, which induces a sloshing motion. The two
corresponding prominent resonance peaks versus superlattice
detuning at a constant modulation frequency are shown in Extended
Data Fig. 1.

We perform two identical measurements separated by 1 week (red
and blue data) to assess the long-term stability of the set-up. The
agreement of the resonance peaks between the two datasets is at or
below the uncertainty (about 1 MHz) of the spectroscopic measure-
ment, indicating phase stability at or below 0.02m radians. Explicit

band-structure calculations show that such a phase drift resultsina
negligible change of the tunnelling values of less than 0.2 Hz on top
of atunnelling strength of 400 Hz.

We note that the ¢ = O (triangular) and ¢ = T (honeycomb) condi-
tions are indistinguishable from spectroscopic measurements alone
as they both produce an even-parity drive. To distinguish these two
phases, adense Mott insulator is prepared and subsequently allowed to
expand inthe combined superlattice potential with V.5, = 42.0(3) Eg 55,
and Vi3, =3.7(1) Eg 53, for 1second. The constructive interference in
the triangular lattice results in a deeper potential compared with the
destructive interference present in the honeycomb lattice, resulting
inamuch denser cloud following the same period of expansion. The
combination of these in situ measurements uniquely determines the
superlattice phase.

In principle, each lattice may be independently calibrated to give a
full reconstruction of the potentialin the plane of the atoms. However,
owingto limited power availablein the 1D lattice, independent calibra-
tionwith modulation spectroscopy is difficult as the band transitions
are not truly resolved. Instead, precise knowledge of the depth of the
square lattice, V,5,, combined with knowledge of the relative tunnel-
lings (obtained from correlation maps of the system), can be used to
obtain the 1D lattice depth. We empirically find the depth of the 1D
lattice that equalizest,, ¢, with the diagonal tunnelling ¢,.. This is done
by experimentally equalizing the nearest-neighbour two-point spin
correlations in the triangular lattice. The depth of the square lattice
used in the experiment is measured tobe V;s, = 2.9(1) Eg ;,. At the point
where we obtain an isotropic triangular-lattice connectivity, we infer
the depth of the 1D lattice using the computed band structure to be
Vi3, = 6.7(2) Eg 53, This corresponds to absolute tunnelling strengths
oft,=t,=t,=h*x400(20) Hz.

Full spin-charge readout in a bilayer imaging scheme

Simultaneous imaging of charge and spin information is performed

using abilayerimaging scheme using Raman sideband cooling, similar

to the method discussed ina previous publication. Minor differences
fromthe previous scheme are discussed here.
Imaging consists of four steps:

(1) Tunnelling is quenched by deepening the 2D lattice depth to
56.3(4) Eg ;5,in170 ps. The axial confinement lattice is turned offin
20 ms. Atoms in the ground hyperfine state |1) are transferred to
hyperfine state |2) using a radiofrequency Landau-Zener sweep
lasting 50 ms. In this state, the magnetic momentis of opposite sign
tostate |3). The magnetic Feshbach field is turned offin 10 ms.

(2) Amagpnetic field gradient of 336 G cm™ is applied to separate the
two spin components |2) and |3) along the z axis. For this step,
the two-dimensional lattice is increased to 160(1) £y 7s,.

(3) Eachspincomponentis trapped by alight sheet potential with verti-
calwaistw, =5 pum, whichis turned onin20 ms. The two potentials
are moved further apartin the z direction using a minimum-jerk
trajectory in4 msto a final separation of 16 pm.

(4) Bothlayers areimaged simultaneously using Raman sideband cool-
ing over a 2-s duration. The fluorescence photons are collected
by a microscope objective and focused on two separate areas of a
complementary metal-oxide-semiconductor camera.

Imaging fidelity

Duringtheimaging procedure described above, various types of error
can accumulate that will affect imaging fidelities. Radiofrequency
spin-flip fidelities exceed 99%, and these errors have a negligible role
compared with other infidelities.

Transport fidelity encompasses various errors that occur during the
vertical motion of the atoms. First, we observe some atom loss that
could be due to off-resonant scattering or background gas collisions. A
surviving atommay hop to other sites of the same layer, which disturbs
magnetic correlations or, if the final site is already occupied, leads to
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atom loss due to parity imaging. Finally, atoms may be transported
into the wrong layer, so that they are assigned to the wrong spin state.

These effects are difficult toisolate and characterize independently.
We instead benchmark a related quantity: by preparing an almost
unity-filled Mott insulator, we observe the proportion of singly occu-
piedsites withand without the transport step. We prepare Mott insulat-
ing states with 97.1(4)% singles fraction, verified by imaging both spin
statesin asingle layer. Any sites with zero atoms or two atoms appear
dark from parity imaging. The transport step is tested by adding the
Stern-Gerlach and optical transport (steps 2 and 3), and then revers-
ing those steps to transport both spin states back into a single layer.
Then, the visible singles fraction drops to 95.4(5)%. We assume that
transporthoppingerrors populate randomly distributed sitesand are
irreversible. Ahoppingevent will create a hole and adouble occupancy.
Therefore, this testindicates a transport infidelity of at most 0.9(3)%.

Inaddition, errors may accrue during the Raman sideband cooling,
appearingasloss (3.9%), interlayer hopping (0.5%) and intralayer hop-
ping (negligible).

Finally, errors can be introduced during image processing when
we digitize the images into an occupancy matrix. Compared with the
bilayer readout of a sparse tweezer array of fewer than 50 atoms®,
our current bilayerimaging scheme must reliably reconstruct atomic
distributions of hundreds of atoms with high filling. Each layer adds an
out-of-focus background on theimage of the opposite layer, decreasing
our signal to noise. We choose a 2-s Ramanimaging time asa compro-
mise between increasing the ratio between the desired signal and the
background layer noise and minimizing hopping and loss errors. The
problem of the out-of-focus background ultimately limits the peak
densities that we canreliably probe. Empirically, we find that beyond
dopings of 0.2, distinguishing between empty and occupied sites
becomes difficult. Weinclude arepresentative image of the occupation
histograms for both imaging layers and the corresponding Gaussian
fits to the zero and single atom peaks in Extended Data Fig. 2.

Calculation of correlation functions

The experimental correlation functions presented in the text are
computed as the fully connected three-point correlation function of
athree-observable operator:

@S;S0e= (Al @M S; - SS; - S
= (A8 S0 —(AIKS; S = (AfS }S;) ®)
= @ISO+ 2RSS

Inparticular, we do not a prioriassume a perfectly spin-balanced gas,
compared with the simplified definition in equation (3).

As we equalize the tunnellings in all three directions and the same
lattice depths are used for all datasets, we average over all 120° and
reflection symmetric higher-order correlators for plots versus doping.
In addition, all DQMC calculations are done with the assumption that
t,=t,=t,. For completeness, in Extended Data Figs. 5 and 6, the same
data asin Fig. 2a are shown without symmetrization. There appear to
be no major systematic differences between correlators of different ori-
entations. This feature holds for all datasets and three- and four-point
correlators shown in the main text.

Bootstrapping error analysis

We use abootstrapping analysis technique to obtain vertical error bars
forthe U/t =11.8 (1,146 experimental runs), U/t = 8.0 (535 experimental
runs) and U/t = 4.4 (360 experimental runs) datasets for all correlators.
The experimental runs are randomly separated into 80 groups, and
therelevant three- and four-point correlations are calculated for each
group. We sample from these 80 groups with replacement10,000 times
toobtain10,000 bootsamples. We average over all lattice symmetries
before taking the standard deviation of the bootsamples.

Effects of spatial gradients

To create strongly interacting samples with a high central density,
additional radial confinement is provided by an external dipole trap-
ping beam at1,070 nm propagating approximately orthogonal to the
atom plane. For the most strongly interacting datasets at U/t =12, the
radial trap frequency w, is approximately 21 x 370 Hz. Although the
gradient near the centre of the trap (regions of highest density) remains
small, gradients away from the centre of the lattice have the potential
to impact resonant tunnelling and affect correlations, particularly
long-range and multi-point correlations. We empirically test for such
by comparing two datasets with different global chemical potentials
(different total atom number) but otherwise identical science param-
eters’. A global chemical potential shift will displace a bin of given
density to a different radial position and hence cause it to sample a
different spatial gradient. Disagreement between the two sets, par-
ticularly at low densities where the gradient is largest, would therefore
indicate an effect due to the spatial gradient. In Extended Data Fig. 3,
we show measured three- and four-point correlations versus doping
for two datasets with different total atom number. We find no signifi-
cant systematic deviations between these two datasets, from which
we conclude that the gradient at the level present in the experiment
does not affect measured correlation functions within experimental
error bars.

Four-point correlations interaction dependence

Thefour-point correlations shownin Fig. 4 are for the strongest inter-
acting sample. In Extended Data Fig. 4, we compare these measure-
ments with the more weakly interacting dataset at U/t = 8 to probe the
evolution with interaction strength. Close to half-filling, we do not
measure a significant difference in the strongest correlation C{}),
whereas the two correlations with singlon nearest neighbours C{* and
C®arereduced in magnitude with increasing interactions. Thisis con-
sistent with kinetic magnetism being enhanced relative to superex-
change. Nonetheless, the variable temperature between datasets makes
quantitative comparison difficult.

Solution of the Hubbard model on asingle plaquette

Inthis section, we present the ground-state wavefunctions and correla-
tion functions on a three-site triangular plaquette. This toy example
shows many of the important features that are present in the larger
lattice system and is therefore instructive to consider in detail. The
ground state of the triangular plaquette above zero doping with N=4
spinhasenergy £,_, = -2t + Uinall magnetizationsectors S, € {-1, 0, 1}
for U> 0, with ground-state wavefunctions given by*:

|¢}V:4):%(|4\¢,¢,¢)— [V, M, Uy + [, 4, MLY)
1
|w2=4>=ﬁ[(|w, DAY+, 4, 1))

(N W), N, ) 6)

(™, ¥, M), M)

_ 1
|¢N1:4>=ﬁ(|w,¢,¢>— [R, D, A+, 1, ML),

The spin wavefunction is in the symmetric (triplet) configuration
with the doublon delocalized across the triangular plaquette. The
basis independent spin-spin correlation function (§,- -§j> =1/3 indi-
cates FM alignment in all bases, with the fermionic spin operators
defined as:

gi = draoaﬁéi , )

wherea, B e {?, V}and o= (0%, 0’, 6°) are the Pauli matrices.



Below half-filling, thatis, N =2, magnetization sectors are no longer
degenerate atany value of Uand the ground state has S, = 0.In this case,
the ground stateis:

199_y=al(e, N, ¥y =[o, ¥, M) + (|1, 0, 4) = |V, 0, 1))
+(IM, 4, 0= 4, 1, o] (8)

_ﬂ(l/]\\l/,°,°>+|°,4\\l/,0>+|°,0,1‘\1/)),
with energy
_ _ 2 2
E,?,:Z= 2t+U 3(2>t +4tU+ U ’ (9)

wherea=p/.J6(1+u?), B=1//31+p?) and
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42¢ '

(10)

In particular, the limiting cases of infinite and vanishing interac-
tions are straightforward: > 0 anda~>1//6 as U~ =, and a, > 1/3
as U~ 0. We may therefore compute relevant experimental correla-
tions functions for this simple example in all cases.

The theoretical correlations shown in Extended Data Table 1
assume equal weights over all degenerate ground states for 6 = +1/3,
as although global magnetization in the lattice is conserved, local
magnetization on a single plaquette may fluctuate as the bulk acts
asaparticle bath.

Theory comparison with DQMC

We used the QUEST package*® to calculate the theoretical correlations
in the triangular Fermi-Hubbard model implemented in this work.
QUEST is a Fortran-based package using DQMC to study many-body
problems with unbiased numerical methods. We point out that
DQMC can fail to converge at low temperatures and large interac-
tions strengths, but in the parameter regimes probed by this study
(T/t>0.5, U/t <12), the fermion sign problem does not prevent results
fromreliably converging.

The simulations are run on an 8 x 8 isotropic triangular lattice with
the inverse temperature split into L = 80 imaginary time slices of
spacing 87, where the inverse temperature = L61. We perform 5,000
warm-up sweeps, 20,000 measurement sweeps and 200 bins for sta-
tistics using Princeton University’s Della cluster.

Three- and four-point correlatorsin DQMC
For completeness, we detail how the three- and four-point correla-
tors are numerically obtained in DQMC. The single-particle Green’s
function determines the DQMC dynamics and is used to compute
observables. Using Wick’s theorem, arbitrary correlations can be
computed®.

Forexample, abare three-point correlator <ﬁ,-5 ﬁ; nyof densities on
three distinct sites (i, j, k), hosting spin labels (s, t, u € {*, {}) respec-
tively, can be written as the determinant

1-Gi,) -G )b, ~Gyi, kb,
=G, D6 1-Gl.j) ~G, Kb,
~Gk, )6,y ~Glk, )6y 1-Gyk, k)

where G,(i,j) = (6,76}”) is the single-particle Green’s function. Exten-

sions to four-, five- and six- point density correlators can easily be
written. Thus, datainvolving the hole-spin-spin correlators were com-
pared with DQMC numerical results by first defining this operator as

Clhareli, i k) = (1= A] = A7 + A i) (A~ A ) (A~ Ag))

and using a symbolic algebra system to enumerate the Wick contrac-
tions and automatically generate measurement code for this observ-
able.The correlatorCf) involves up toeight fermion operators, whereas
correlators suchas Cy) involve up to12.

Fitting temperatures and interaction strengths

To determine U/t and T/t for each dataset, we do a least-squares fit
using the measured densities (n", n°, n%) and the nearest-neighbour
single-spin two-point correlationC, = (ﬁfﬁf) - (ﬁf)(ﬁ;) asafunction
of doping to interpolated DQMC functions. Lattice sites are grouped
by doping such that each data point represents approximately the
same number of lattice sites. Groupings are approximately radial but
reflect the slight ellipticity and asymmetry of the atom distributionin
thelattice. Error bars on the doping come from the standard deviation
of the average doping for eachlattice site within a given grouping. Error
bars for U/t and T/t come directly from the least-squares fits. In addi-
tion, we make the overall imaging fidelity a free parameter in the
least-squares fit. For the U/t = 4.4, U/t = 8.0 and U/t =11.8 datasets, we
fitimaging fidelities of 0.957(4), 0.954(3) and 0.951(3), respectively,
consistent with the typical bilayer fidelity. The experimental doping
inall plots is the measured value scaled by the loss imaging fidelity of
0.96. Alltheory curves for three- and four-point correlators are DQMC
results corrected for the lossimaging fidelity. For example, for animag-
ing fidelity 1 - ¢, the appropriate connected three-point correlator,
corrected forimaging fidelity, is

€Y= (1-€)*Cipamc+ (1-€)*eCohauc, an

where CJ}, yc is the uncorrected DQMC output for the connected
three-point hole-spin-spin correlator and C3)qyc is the connected
three-point singlon-spin-spin correlator. The (1 - ¢)?in the first term
corrects for the potential loss of the spins during imaging and the sec-
ond term corrects the possibility that the measured hole was owing to
asingle atom that was lost during imaging. Higher-order corrections
aremuch smaller at these interactions, temperatures and dopings for
€=0.04.For C), the correction is
CY=1-6*Chomc- 12)
The DQMC theory fits the data well except for densities above
half-filling, where we systematically overestimate the number of dou-
bles and holes and underestimate the number of singles for a given
dopinginall datasets (Extended Data Fig. 7). We attribute this deviation
to the onset of an increase in reconstruction errors with increasing
particle doping, where we probably identify false-positive atoms in
agivenimaging layer due to the background signal from the other
imaging layer. This systematic error is not taken into account directly
in any imaging fidelity or error bar in the main text.

Theoretical three-point correlators versus interaction strength
and temperature

In Fig. 3, we plot C® evaluated at the closest bond to the dopant ver-
sus doping for three different U/t. Although all three datasets are at
slightly different temperatures, this does not change the qualitative
trends that exist with increasing interaction strength. To emphasize
this, in Extended Data Fig. 8, we plot C*® on the triangular plaquette
for multiple temperatures at a fixed interaction, and qualitatively all
curves are similar to the main quantitative difference being that lower
temperatures lead to larger-magnitude C® peaks. Thisis also confirmed
in Extended DataFig. 9, where spatial correlations plotted asafunction
of temperature close to half-filling do not show variationsin the struc-
ture, rather a general decrease in correlator amplitude. Toillustrate
that the key qualitative trends depend on U/t, we furthermore plot C®
evaluated at the closest bond to the dopant for multiple interactions
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at fixed temperature in Extended Data Fig. 10. Here, we see all of the
same trends shown in Fig. 3.

Data availability

Source data are provided with this paper and can be found in the
Harvard Dataverse®. All other supporting data are available from the
corresponding author uponrequest.

Code availability

The codeusedinthis paperis available fromthe corresponding author
upon request.
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Extended DataFig.1|Superlattice Phase Calibration. P-band spectroscopy
used to calibrate the superlattice phase and stability. The dips at292 MHz and
340 MHzsuperlattice detuning correspond to ¢ = 3m/2 and ¢ = ir/2. Fitted peaks
(solidlines) are at[292.4(6) MHz, 339.8(8) MHz] and [292.6(8) MHz, 341.0(8) MHz]

- 0.6
360 370

forthered andblue datarespectively. Callout fluoresence images show the
expansion of aMottinsulator after 1second for superlattice phase ¢ = m (top)
and ¢ =0 (bottom) at V;5,=42.0(3)Ey ;5,and Vi3, = 3.7(1) E 53, Inset: Experimental
setup used for realizing the optical superlattice.
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Extended DataFig.2|Bilayer Image Reconstruction. Sample deconvolved
experimental images and occupation histograms for state |3) (top, red) and
state |2) (bottom, blue) atoms. We use the Lucy-Richardson algorithm with five
iterations for the deconvolution.
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filling, we conclude spatial gradients do not appreciably suppress resonant
tunneling to affect measured correlations. Filled data points have mean atom
number 799(35) while empty data points have mean atom number 622(27).

Extended DataFig. 3 | Multi-point Correlations at Different Global Chemical
Potentials.a, C{Y (red data) and C? (green data) evaluated at the bond closest
to the dopant, and b, C* for two different datasets with distinct global chemical
potentials. As these two datasets track each other well, particularly at low
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Extended DataFig. 4 |Interaction Dependence of Four-point Correlations.
Four-point correlations vs. doping for different interaction strengths U/t = 8.0(2)
(opencircles) and U/t =11.8(4) (filled circles).
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Extended DataFig. 5| Unsymmetrised Correlations versus Distance. C for
§=-0.10(2) and C¥ for § = 0.15(2) out to d = (2, 0) without averaging over the
120 degreerotational symmetry.
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Extended DataFig. 6 | Unsymmetrised Correlations versus Doping. C?’and C% for different dopings at a U/t = 11.8 without averaging over all six individual
plaquettes. We see that unsymmetrised correlations are largely consistent between different orientations. Error barsare1s.e.m.
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Extended DataFig.7|DoublonDensity versus Doping. Number of measured
doubles (red points) and theoretical expected number of doubles from

DQMC (red band) with imaging fidelity of 0.96 accounted for at U/t =11.8(4),
T/t=0.94(4). The highest doping bin (6 = 0.15) hasaround 20 percent more,

the second highest doping bin (6 = 0.12 hasaround 10 percent more, and the
third highest doping bin (6 = 0.08) has around 5 percent more doubles than
predicted. We believe thisis caused by image reconstruction errorsand leads
toasystematic underestimate of certain three and four point correlators above
zero doping. This qualitative trend appears for all three interaction strengths.
Errorbarsarels.e.m.
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Extended DataFig. 8| Three-point Correlations Temperature Dependence.
DQMC results for C® evaluated at the closest bond to the dopant versus doping
atafixed U/t=12and different temperatures. Alltemperature curves have the
same qualitative trend with the ¥’ minimumat adoping of - —0.3 and the C%’
maximum atadoping of -0.15with alinear region near zero doping. Decreasing
T/tof the gas from 0.95t0 0.65 causes the magnitude of the peak values of C® to
increase by roughly fifty percent. Animaging fidelity of 0.96 isassumed.



T/ =0.65 T/=0.85 T/=1.05

Extended Data Fig. 9| Doublon Correlations versus Temperature. C increases slightly while there are no major qualitative differencesinthe
calculated at§ = 0.02 for U/t =12 at three different temperatures using DQMC. structure of the correlations; the size of the polaron does not have astrong
Asthetemperature decreases, the magnitude of the farther correlations dependence onthe temperature.



Article

x10°

m
m
od
od

HeerrHs B

C® Correlation

¢ ur=4.00
o ¢ ur=400
s c®ur=s00
o ¢ ur=800
s c@un=1200
o ¢ ur=1200|-

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Doping

Extended DataFig.10| Three-point Correlations Interaction Dependence.
DQMC results for C® evaluated at the closed bond to the dopant versus doping
atfixed T/t = 0.85and different interaction strengths. We see that for all
interaction strengths the ¥ minimumis ata doping of - ~0.3and the
maximumis atadopingof -0.15for the two higher interaction strengths,

while for U/t =4 the peak appearsslightly closer to zero doping. The two higher
doping curves have roughly the same peak C® magnitudes, while for U/t =4
the peaksareroughly 10 percent lower. However, we see that qualitatively the
curves are quite different close to half filling, where as U/t increases the onset
of Y and € with doping becomes sharper, leading to aregion where the C?is
linear below zero doping and C{is linear above zero doping. Animaging
fidelity of 0.96 isassumed.



Extended Data Table 1| Single plaquette correlation functions
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