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Abstract

A variety of physical phenomena involve the nonlinear transfer of energy from weakly damped
modes subjected to external forcing to other modes which are more heavily damped. In this work we
explore this in (finite-dimensional) stochastic differential equations in R™ with a quadratic, conservative
nonlinearity B(z, z) and a linear damping term — Az which is degenerate in the sense that ker A # ().

We investigate sufficient conditions to deduce the existence of a stationary measure for the associated
Markov semigroups. Existence of such measures is straightforward if A is full rank, but otherwise, en-
ergy could potentially accumulate in ker A and lead to almost-surely unbounded trajectories, making the
existence of stationary measures impossible. We give a relatively simple and general sufficient condition
based on time-averaged coercivity estimates along trajectories in neighborhoods of ker A and many ex-
amples where such estimates can be made.
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1 Introduction

A variety of physical phenomena involve the nonlinear transfer of energy from weakly damped modes
subjected to external forcing to other modes which are more heavily damped. In hydrodynamic turbulence
for example, the forcing is considered to act at large scales whereas in the high Reynolds number limit,
the viscous dissipation is only strong at very high frequencies. This leads to the phenomenon known as
anomalous dissipation (see e.g. [6,16]). A study of such phenomena in infinite-dimensional systems remains
largely out of reach (with a few exceptions, for example some simplified shell models [15,27] and Batchelor-
regime passive scalar turbulence [3]). As suggested in e.g. [26], it is natural to first study the analogues in
finite-dimensional systems. In this setting we will study systems with damping which only acts on a proper
subset of the degrees of freedom and ask the question of whether or not a statistical equilibrium, i.e. a
stationary measure, can still be shown to exist. If the undamped modes are directly forced at least, for this
to be possible the nonlinearity must continually pump energy away from the modes without damping into
modes with damping.
We study the following prototypical class of stochastic differential equations (SDEs) for x; € R"

da:t = B(.’L’t, .%'t)dt — AZL’tdt + Uth
(1.1
l't|t:0 =zx9 € R".
Here, W, = (Wt(l) ey Wt(n)) is an n-dimensional canonical Brownian motion on a complete probability

space (2, F,P), A € R™™" is positive semi-definite (with kerA # (), and ¢ € R™*"™. We will assume for
simplicity throughout this introduction that o is full rank, though, as discussed in the main body of the text,
weaker conditions are possible for the examples we study. The nonlinear term B is bilinear such that the
energy |z|? is conserved:

z-B(x,z) =0. (1.2)

Many of the specific examples we study also satisfy V - B = 0, but this is not required for our methods.
This class of systems contains Galerkin truncations of both the 2d and 3d Navier-Stokes equations, as well
as Lorenz-96 [23], and the classical shell models of hydrodynamic turbulence, GOY [17,33] and Sabra [25];
see e.g. [26] for further discussions on the motivations for studying this class of SDEs. It is straightforward
to show that the SDEs are globally well-posed and the associated Markov semigroups are well-behaved; see
e.g. [Appendix A; [4]]. We will refer to the ODE
%Zt = B(Zt, Zt)
as the conservative dynamics. This deterministic ODE plays a distinguished role, as it is the leading order
dynamics at high energies, i.e. when |z| > 1.

Denote the generator

ﬁ:%aaT:VQ—Ax-VJrB(x,x)-v (1.3)



and the associated Markov semigroups P; = e** and P} = ¢~ the former acting on the space of bounded,
Borel measurable observables B, (R™; R) and the latter acting on Borel probability measures P (R™). When
A is positive definite, it is not hard to prove that there always exists at least one stationary measure, i.e. a
measure p € P(R™) such that P; 1x = p. This is proved by the Krylov-Bogoliubov procedure (see e.g. [10])
combined with the following energy balance obtained from It6’s lemma:

1 t t — 1
§E |z¢)* + E/o xs - Arsds = 3 Z Ufj + §E |zo)? .
3,j=1
However, if ker A # (), then there is the possibility that energy could accumulate in these degrees of freedom
and the a priori estimate

1 [ 1
lim sup E/ rs - Argds < = Z alzj (1.4)
t—o00 0 2 J
2,7=1
would not be sufficient to imply the compactness required for Krylov-Bogoliubov.
It is well known that to prove the existence of a stationary measure it suffices to construct a Lyapunov

function, i.e., a C? function V : R™ — [0, o) satisfying lim,|_,, V (x) = co and
LV < —aV? 4 8 (1.5)

for some o, f > 0 and p € (0, 1]. Indeed, this is a straightforward generalization of the argument recalled
above using It6’s lemma and the Krylov-Bogoliubov procedure. Note that if the kernel of A is trivial,
then V(z) = |z|? is a Lyapunov function for (1.1), while if kerA # () then (1.5) holds only in regions
where || < | a1z|. There are many works that have successfully constructed an invariant measure
and/or obtained convergence rates to equilibrium for SDEs with partial dissipation or unstable deterministic
dynamics by building a nontrivial Lyapunov function (see e.g. [1,5, 14, 19,20, 30, 32]). A general strategy
for constructing a Lyapunov function is to patch together a sequence of local Lyapunov functions, each
satisfying (1.5) in a different part of phase space. In regions where (1.5) is not obviously satisfied by some
natural energy-type function, a common approach is to perform a scaling analysis and show (1.5) for a
reduced generator, and then justify the full inequality by an approximation argument. For a discussion
of scaling arguments and a meta-algorithm for constructing Lyapunov functions, see [1]. The Lyapunov
functions obtained by such methods tend to be quite involved, even in low dimensional, relatively simple
systems (see e.g. [1,14,19] and [section 2, [32]]), and require a careful gluing of separate local Lyapunov
functions.

In this paper, we develop a framework for constructing invariant measures for partially damped systems
based on returning to the simple a priori energy estimate (1.4). Rather than directly building a Lyapunov
function, the idea is to recover compactness by proving that the time-averaged dissipation controls the
average of some simple coercive function. More precisely, our strategy is to prove the following time-
averaged coercivity estimate for some 7" € (0,2) and r € (0, 1],

1 T o 1 T
—E <.Zl£'t> dt 5 1+ =E Ty - Azdt, (1.6)
T Jo T Jo

which we show is sufficient to imply existence in Lemma 2.1 by a straightforward iteration procedure. In
Lemma 2.2, we reduce this to short-time coercivity estimates for trajectories starting in a relatively small
neighborhood of ker A at high energy. Specifically, we show that it suffices to prove (1.6) for initial condi-
tions xg € R" satisfying

|errAJ-:L'0| < |errz41"0|r7 ‘$0| >1



and the time 7" depending on the initial energy |zo|. The goal is thus to prove that at high energies, where
the conservative dynamics dominate, solutions that start near ker A must depart rapidly (on average) due to
some kind of instability. Our strategy to prove the necessary time-averaged coercivity estimates is to use a
suitable approximation of the solution when |ITj, 41 z¢| < |keraxt|”, show that this approximate solution
rapidly enters the region |l 41 2| 2 |Hkeraz|”, and then argue that the approximation remains valid for
as long as I 41 24| S [Tgeraxe|™

The time-averaged coercivity framework is convenient in that it allows one to leverage in a natural way
assumptions on the instability of ker A under the dynamics to obtain existence of an invariant measure and
an explicit convergence rate to equilibrium. Moreover, it avoids the need to carefully patch together separate
local Lyapunov functions, which is required even if one uses a construction based on local exit times. We
will showcase the flexibility of our methods by presenting a variety of examples to which they apply, in
each case showing a different potential case that arises with degenerate damping. The examples below
are chosen to show qualitatively distinct cases where the approximation procedure described above can be
justified, although a different choice of approximate solution is used in each type of example.

1.1 Main results

We now discuss our main results and their connection to some of the existing literature on related SDEs.
Below, denote the set of undamped configurations on the unit energy sphere by

U=kerAnS L

The first theorem considers the case where U/ contains no sets which are invariant under the conserva-
tive dynamics. This case is analogous to the settings considered by hypocoercivity, which usually studies
nontrivial interplay between degenerate elliptic operators and conservative first order operators (such as
transport) to obtain decay estimates, despite the lack of coercivity; see discussions in e.g. [18,31]. Indeed,
the results we are proving are quite similar to (sub-exponential) hypocoercivity results for the associated
Markov semigroups (although here we use different, essentially probabilistic, methods). See [2, 8] for fur-
ther discussion on the relationship between Harris’ theorems and commonly used hypocoercivity methods.
The intuition is clear: if ¢/ contains no sets which are invariant under the conservative dynamics, then at
high energies any trip to a small neighborhood of ker A must necessarily be short lived.

Theorem 1.1. Suppose that 3J € N such that Vx € U, if X; solves the conservative dynamics

d
L X, = B(X;, X
{dt ;= B(X4, Xy) (1.7)
XO =7z,
then
. &’
El] § J, errAJ- th’t:(] 7é 0. (18)

dt
Then, there exists at least one stationary measure . and {(x)P € L' (du) for all p < .

Remark 1. Condition (1.8) implies that solutions to (1.7) that start on ker A instantly depart it (at least at
a rate like > (Kt)” if |x| ~ K; see Lemma 3.2). Note that the condition in (1.8) is purely algebraic,
that is, in principle it could be investigated using methods from algebraic geometry, rather than being an
abstract condition on trajectories. Related algebraic conditions describing the instability of a set under some
conservative dynamics have appeared in [32].

Remark 2. As to be expected, Theorem 1.1 requires no assumptions on o.



In [14], the authors consider the stochastically driven Lorenz-63 model, a classical three dimensional
model introduced in [22]. This model does not take exactly the form of (1.1) due to the presence of a non-
dissipative linear term, but the setting is essentially the same since there still exists a natural energy function
that yields an invariant measure when ker A = (). The authors consider the case where ker A = span {ey } for
some canonical unit vector e; and consists of conservative equilibria that to leading order at high energies
exhibit a Jordan block instability. They prove using a Lyapunov function approach that if the noise directly
excites the instability, then there always exists a stationary measure. The next theorem is a similar kind of
result but generalized to higher dimensional systems in which ker A = span {e; } for ej, a general unstable
equilibrium point of the conservative dynamics. Unlike in the setting of Theorem 1.1, in this case we cannot
depend purely on the conservative dynamics to simply transport the x; away from ker A. Instead, we must
rely on the noise to push the dynamics off of the equilibrium and its stable manifold so that z; is repelled
quickly from neighborhoods of kerA at high energy. We denote the (instantaneous) linearization of the
conservative nonlinearity around any fixed = as

Lyv = B(z,v) + B(v,x) (1.9)
and for the restriction to ker A+ we write

Lyv =Tt LTl pt .
Recall that for simplicity we assume for now unless otherwise stated that rank(o) = n.

Theorem 1.2. Suppose that U = {xy, —xo} for some unit vector xq and that for each x € U there holds

B(z,z) =0, lim HetLi = 0.

t—o00

Then, there exists at least one stationary measure ji and (x)P € L'(dp) for all p < 1/3.

Remark 3. If 2y and —z are spectrally unstable, i.e. L., has an eigenvalue A\ with ReA > 0, then the
stationary measure satisfies (x)” € L!(dp) for all p < co. Notice however, that in general we do not require
that x is spectrally unstable, that is, it is sufficient for the equilibria to have an O(¢) growth coming from a
non-trivial Jordan block. We did not take care in this paper to optimize the moment bounds on the stationary
measures that we construct and in general they are probably far from sharp. For example, it is likely that
1 has exponential moments in many cases. In fact, the existence of an invariant measure with exponential
moments was proven for a 3d model satisfying the conditions of Theorem 1.2 in [32].

Remark 4. The condition rank(oc) = n is not necessary. What is used in the proof is essentially that the
range of ¢ contains at least one eigenvector or generalized eigenvector associated with the fastest instability
of L. For the precise statement of Theorem 1.2 with weaker assumptions on o, see Theorem 4.5. In fact,
none of the theorems we prove require the forcing to act on all variables. We expect that all of the theorems
that rely on unstable equilibria hold only under the assumption that the forcing is hypoelliptic if all of the
instabilities are spectral, however, we did not pursue this direction here. Similarly, we expect variations of
these results to be valid with multiplicative stochastic forcing under suitable assumptions.

We can also treat cases with dim(kerA) > 1 provided that U consists either entirely of spectrally
unstable equilibria or Jordan block unstable equilibria. In the latter case we require an additional cancellation
condition due to the slower timescale of the instability.

Theorem 1.3. Suppose that B(z,x) = 0 for every x € U and that there exists a constant C > 0 so that

suE(HPzH +1P7) < ¢, (1.10)
TE

where Jj =P, 1LjP;p is the Jordan canonical form of Lj. Then, we have the following results.



o [f for every x € U there is an eigenvalue of Li with positive real part, then there exists at least one
stationary measure i and (z)P € LY (du) for every p < 2/3.

e Assume that
Ilyera (B(errAx, errAJ_ :E) + B(errAJ- T, errAx)) =0

for every x € R™. If for every x € U there exists J € {1,2,...,n — 2} so that there holds
t o )| Sa (14 7)
forallt > 0, then there exists at least one stationary measure ji and (x)* € L'(dp) for everyp < 1/3.

Remark 5. Analogous criteria to Theorems 1.2, 1.3, and Theorem 1.1 can be found for much more general
nonlinearities, i.e. systems of the form dz; = F'(x;)dt — Axy + odW; with z - F(x) = 0, however, the lack
of scaling invariance requires slightly more care.

A first natural question is whether or not Theorem 1.1 and Theorems 1.2,1.3 can be combined into one.
We do not know how to do this in reasonable generality due to difficulties in dealing with transitions between
“transverse” regions as in Theorem 1.1 and unstable equilibria as in Theorems 1.2 and 1.3. However,
in Section 5 we prove Theorem 5.1, which provides at least one general setting where this is possible.
Specifically, we consider systems for which kerA = Vi @& V5 for subspaces Vi, Vo C R"™ consisting of
spectrally unstable equilibria and such that the region where Iy, « and Iy, are both sufficiently large
can be treated as a transverse zone. Note that in this setting the instability of ITy, x need not cause growth
of the damped modes directly, but could instead cause the solution to enter a transverse region, where it
is then subsequently expelled from kerA in a manner similar to Theorem 1.1. While we require some
additional structural assumptions to justify the approximations, Theorem 5.1 applies to several well-known
examples, for example the Sabra model with ker A given by the first two frequency shells (which means
dim(kerA) = 4) and the 2d Galerkin-Navier-Stokes equations with ker A consisting of a four-dimensional
subspace of suitably chosen shear flows. We will state here our result on the Navier-Stokes equations, and
defer the general result and application to Sabra to Section 5.

Recall the 2d Navier-Stokes equations in vorticity form on a square torus T? subjected to stochastic
forcing:

dw + (u - Vw — Aw)dt = Z O'](Cl) cos(k - x)th(k;l) + 01(@2) sin(k - x)th(k;Q)
kEZ2:k#0

= (a)eare

Let II< v be the projection to the modes such that max(|k1|, |k2|) =: |k|,, < N (any choice of /¥ works).
Then the Galerkin Navier-Stokes equations are given by the SDE defined for mean-zero w € ImlII<y by

dw + (I<y(u - Vw) + Aw)dt = Z a,il) cos(k - x)th(k;l) + 0,532) sin(k - x)th(k;Q)

0<|k| <N
—0. _
u= 72 ) (=A)w,
Oz,
where we have replaced the matrix —II<yAll<x with a general positive semi-definite matrix A.

Theorem 1.4. Let N > 3 be arbitrary and define the two subspaces of ImIl<n

Vi @ Vo = span(cos £z, sin fx1) @ span(cos kxa, sin kxs),



for two arbitrary integers {, k > 2 such that { # k and max(¢, k) < N. Suppose further that the forcing
coefficients Ué,] ) are all non-zero. If kerA = Vi @ V; then there exists a (unique) invariant measure i, of
the Galerkin Navier-Stokes equations with truncation N and for all p < 2/3 there holds

/ |w|P dp, < 0.
ImHSN

As an additional example in a setting similar to Theorem 5.1 described above, we consider the Lorenz-
96 model, put forward by Lorenz in [23], for n real-valued unknowns wuy, ..., u, in a periodic ensemble

Ujt-kn = U4t
Aty = (Umt1 — Um—2)Um—1dt — (Au)pdt + deWt(m)‘ (L11)

Here, {Wt(m)} are independent Brownian motions and {¢;,} are fixed parameters. This model has been
studied as a prototypical high dimensional chaotic system (see e.g. [21,24,26]). We consider (1.11) with

kerA = {u; = uz = 0}.

Similar to the general setting of Theorem 5.1, this example contains a mixture of all of Theorems 1.1, 1.2,
and 1.3 in the sense that I/ contains both unstable equilibria and a region in which the conservative dynamics
expel from ker A as in Theorem 1.1. However, the equilibria are only Jordan block unstable, so Theorem 5.1
(the proof of which relies crucially on the exponential instability of the equilibria in V) does not apply.
The linear instability of the equilibria defined by u = «es (i.e. only supported in the second mode) causes
growth of the e; direction, rather than a mode in ker A-. In this region of kerA, a careful (and somewhat
nonlinear) argument is used to show that the linear instability moves the dynamics into a region where the
nonlinearity can then transport the dynamics out of ker A. Despite the lack of unstable eigenvalues, using
the precise structure of (1.11) we can justify the approximations needed to apply our methods and construct
an invariant measure.

Theorem 1.5. Let 6 < n < oo and suppose that q,_1,qy, are both non-zero. Suppose that kerA =
{uy = ug = 0}. Then, (1.11) admits at least one stationary measure i and (x)* € L*(dy) for all p < 1/3.

Remark 6. After completion of this work, we have been made aware of a similar result for Lorenz-96 in the
upcoming thesis [7], which considers the case where n = 4, ker A consists of two modes, and the forcing
acts only on the two modes in ker A+

The above theorems do not contain all of the interesting possible relationships between ker A and the
dynamics of B. In particular, none of the above examples consider a case in which U/ contains a non-
equilibrium invariant set for the conservative dynamics. We give one such example where our methods
apply, based on the following simple “stochastic triad” model [26] defined by the nonlinearity

T2X3
B(z,z)=| zz3 |. (1.12)
—2%1%2

The x3-axis contains unstable equilibria and so Theorem 1.2 shows that if kerA = span {e3}, then there
exists a stationary measure (this result was already proven in [32]). To contrast, the plane defined by
{z : x1 = 2} consists of heteroclinic connections between the unstable equilibria with z3 > 0 and those
with 3 < 0, and so neither Theorem 1.2 nor Theorem 1.3 apply to the case that kerA = {x : 21 = z2}.
Nevertheless, we are able to adapt our methods to cover this case since we can precisely describe the con-
servative dynamics restricted to ker A.



Theorem 1.6. Consider the stochastic triad model defined by (1.12) in R? and suppose ker A = {x : 21 = x5},
Then, there exists at least one stationary measure ji and (z)P € L'(dp) for all p < 2/3.

In all of the above examples, existing results give uniqueness and regularity of the stationary measure
once existence is proved; see e.g. the Doob-Khasminskii theorem [10]. Moreover, the proof yields a sub-
geometric Lyapunov function and one can apply a suitable variation of Harris’ theorem to obtain explicit
convergence estimates on the Markov semigroups in the total variation norm [13].

Corollary 1.7. Ifrank (o) = n and if x4 is irreducible, that is, if Vo € R™, open sets O C R™ and V't > 0,
P(z, € O) >0,

then in any of the above examples, there is a unique stationary measure L, and this stationary measure is
C°°. Moreover, if V() = (x)?, then for T and r as in (1.6),

- 1 (7T
V(z) = / PV (x)dt
T Jo
satisfies for r as above and some constants ¢, C' > 0,
LV < —cV" +C,

and hence by results in [13], for any x € R", there holds (with the convention that if r = 1, then the decay
is exponential)

1P, ) = pllpy S (67T V().

Remark 7. A simple energy estimate (Lemma A.1) shows that necessarily V (z) > (x)?.

1.2 Discussion and related work

As alluded to above, the proofs of Theorems 1.1-1.6 are all about ruling out the possibility that energy
accumulates into ker A which is be done by demonstrating a time-averaged coercivity estimate of the form
(1.6). For (1.6) to hold, we see that it would suffice to show that the solution does not spend a significant
percentage of its time near ker A. In fact, at higher energies, we show that the dynamics are expelled from
neighborhoods of kerA faster. This has a clear analogy with variations of hypocoercivity that emphasize
this aspect (see discussions in [31]), however, these previously existing works are all essentially in the case
of Theorem 1.1.

Section 2 provides two important lemmas: Lemma 2.1 shows that (1.6) suffices to prove the existence of
stationary measures and Lemma 2.2 reduces this to short-time coercivity estimates in a small region of ker A
(see Assumption 1). Moreover, (1.6) implies the existence of a sub-geometric drift condition as pointed out
in Corollary 1.7.

In order to prove (1.6) (via Lemma 2.2), it makes sense to proceed by contradiction. When (1.6) fails at
high energy, it is necessary for the majority of the energy to be concentrated in a small region around ker A4,
which could allow a perturbative treatment for as long as the dynamics remain in the small region. Theorem
1.1 simply uses the pure conservative dynamics as the approximate solution, whereas Theorems 1.2 and 1.3
use the linearization around Ily.. 4o (frozen in time) to justify the expulsion. Notice that the noise remains
important here near the stable manifold of the equilibria. Theorems 1.4, 1.5, and 1.6 use more careful
approximations based on what region of ker A the solution is close to. For example, to prove Theorem 1.6, if
one is near an equilibrium (0, 0, z3) with z3 > 0, then we first prove that with high probability the solution
is rapidly transported away along the heteroclinic connections that run through {x : 1 = 22}, and then



show that it is likely to be expelled from ker A along the unstable manifold of the corresponding equilibrium
at (0, 0, —.1‘3).

We remark here that many aspects of our work are not specific to the system (1.1) and could easily be
adapted to various other regimes. However, systems with an underlying conservative dynamics which is
a homogeneous polynomial (and hence a scale invariance is available), linear damping, and additive noise
seem to be the simplest case to consider.

There are several works in the literature related to ours. The works that consider settings most similar to
what we study here are [14] and [32]. In addition to the existence result discussed above around Theorem 1.2,
it is proven in [ 14] that if the noise does not excite the instability and ey, is directly forced, then no stationary
measure exists. The work [32] considers (1.1) with an additional structural assumption on B motivated by
the nonlinearity in the Navier-Stokes equations. When the deterministic invariant subset of ker A, denoted
by N, consists only of spectrally unstable equilibria, existence of an invariant measure is proven under an
algebraic assumption that describes growth of the damped modes for initial conditions near N In the context
of our work, this main result of [32] seems closely related to Theorem 5.1 and can be viewed essentially as
sufficiently strict assumptions under which the combination of Theorems 1.1 and 1.3 is possible.

A set of works with close links to ours considers noise-induced stabilization for systems with determin-
istic dynamics that contain finite-time blow-up solutions; see e.g. [1,19,28,30]. In these works, despite the
finite-time blow-up of certain deterministic trajectories, depending on the noise or whether the blow-ups are
unstable, one can nevertheless obtain almost-sure global well-posedness and prove the existence of station-
ary measures. The works using additive noise proceed by a Lyapunov function approach and so are closely
related to [14]. Another related work is that of Coti Zelati and Hairer [9], which considers the Lorenz-63
system with kerA = (), but where the forcing only acts on span {es}. This makes span {e3} an almost-
surely invariant set for the stochastically forced system, in which case, an argument based on transverse
Lyapunov exponents can be made, providing another method for dynamically driving solutions away.

2 Time-averaged coercivity near ker A

The purpose of this section is to prove a useful general result that will be applied to construct an invariant
measure in each of the examples discussed in Section 1. The main abstract condition for the existence of
invariant measures is stated below as Assumption 1. Intuitively, the condition requires that if the process
enters the vicinity of kerA at high energies, then it is quickly ejected and subsequently stays away from
ker A for some amount of time.

2.1 Time-averaged coercivity implies existence
In what follows denote
D(z) =z - Ax.
Notice that
’errALfUF SD() S ’errAL$|2-

We begin with a preliminary lemma which reduces the existence of a stationary measure to the kind of
time-averaged coercivity alluded to in (1.6). The proof follows in a straightforward way from the Krylov-
Bogoliubov procedure and the energy conservation property of B, however, we include it for the sake of
completeness.

Lemma 2.1. Let V(z) = (x>2 and let Py be the Feller Markov semigroup on R"™ generated by L (defined
in (1.3)). If there exists 7 € (0,1, 1 <p < (1 —7)"L, C > 0and T € (0,2) such that

T T
1/ PV (z)dt < C <1 + 1/ PtDp(a:)dt> Vz € R, @2.1)
T 0 T 0



then there exists at least one stationary measure ji, of Py such that V'™ € L'(du.). Moreover, there exist
a, B > 0 such that the function

T
V)= /0 PP (x)dt

satisfies 3 3
LV < —aV" 4+ B. (2.2)

That is, V is a sub-geometric (when r < 1) Lyapunov function.

Proof. Let p be any Borel measure on R with [ V?(x)u(dx) < oo and let T be given as in the assumption.
We first claim that for every n € N there holds

/OnT/Vrp(a;)P;u(d:c)ds <C (nT_|_ /ORT/Dp(ﬁ)P;ku(da:)d(s) ‘ 23)

By the assumption (2.1) and Fubini’s theorem, we have

/0 ' / VTP ()P u(da)ds = / ( /0 TPSV”’(:B)ds> u(dz) < C <T+ / ( /0 TPSDp(x)ds> y(dm)),

and hence - -
[ [vrapianas<c(r+ [ [ orpintas). 24
0 0

By the semigroup property and (2.4), for any m € N we have

m(;n—l—l)T / VP (z)P:u(dx)ds < C (T n /OT / DP ()P (Pr o) (d) ds)
=C <T+ /(m+1)T/Dp($)P:M<dx)ds> _ (2.5)
mT

Summing (2.5) over 0 < m < n yields (2.3).
Next, notice a direct computation using B(x, x) - x = 0 shows that

LVP(z) < C1V(x)P~L — CoDP(z) (2.6)

for some constants C', Cy > 0. Thus,

d

& [Vr@Piuan) < ¢ / V()PP u(da) — C / DP ()P} u(de). @.7)

Let n € N. Integrating the previous inequality over 0 < ¢ < nT" we see that
nT nT
/ / DP(2)P* p(da)ds < 1+ / / V(2)P P u(da)ds, 2.8)
0 0
where the implicit constant depends on [ VP (z)u(dz). Applying (2.3) and (2.8) gives
nT nT
/ /Vrp(a?)P;u(dx)ds <C(1+nT)+ C/ /V(:c)plpju(dx)ds. (2.9)
0 0

The choice p < (1 —r)~! ensures that p — 1 < rp, and so for every € > 0 there is C, such that

VPl < VTP 4 ..

10



Hence, the integral on the right-hand side of (2.9) can be absorbed into the left-hand side, yielding

/OnT / V() P; p(dw)ds S (1+nT).

Therefore
1 nT

sup — /Vrp(m)P:u(da:)ds < 0. (2.10)
neN nT 0

Using the tightness implied by (2.10), the existence of a stationary measure ji, with V™ € L!(dpu.) follows
by the usual Krylov-Bogoliubov method (see e.g. [11]).
It remain to prove (2.2). First, by (2.6), (2.1),and p < (1 — 7")*1 there exist constants ¢, C' > 0 such that

T
LV < —;/ PV At + C. @2.11)
0

Next, one can show using Gronwall’s lemma that for any g > 1 there exists C;; > 1 such that
()% — Ct((2)*7 + 1) < P V(z) < Cy((z)* +1) Ve [0,2].

It follows that for all = with |z| sufficiently large and T" € (0, 2) there holds

1 (T
7 /0 PVI(x)dt =, (). (2.12)
Using (2.12) in (2.11) completes the proof. 0

2.2 Short-time coercivity near ker A

Next, we formulate a sufficient condition for (2.1) based on short-time (time-averaged) coercivity of solu-
tions near ker A. Intuitively, this is similar to estimating average exit times from the vicinity of ker A, but
not quite the same.

Assumption 1. Let Py be the Feller Markov semigroup on R" generated by L defined in (1.3) . We say that
Py satisfies Assumption 1 if there exist r € (0,1], K, > 1, ¢, > 0,6 € (0,1), and a finite collection of times
n; : [0,00) = (0,1], 1 < j < m, such that:
® th—>00 Suplgjgm 77] (K) = 0,‘
e forevery K > K, the set
Bx = {z € R" : [T arz|* < 6| ieraz|*" and (1 — 6)K? < |z]? < (1 +0)K?}
admits a decomposition
m
Bk = | Bx,
j=1
for which Bk ; € R" is such that x € B ; implies

! /nj(K) P,D(z)d K% 2.13
— = v D(z)dt > e K. (2.13)
i (K) Jo
Remark 8. By the Holder and Jensen inequalities, (2.13) implies that for any p > 1 and z € Bk ; there
holds
1

n; (K)

n; (K)
/ P, DP(x)dt > P K. (2.14)
0

11



The main result of this section is the following lemma, which shows that Assumption 1 implies (2.1),
which is a sufficient condition for the existence of an invariant measure due to Lemma 2.1.

Lemma 2.2. Suppose that Assumption 1 holds for some r € (0, 1]. Then, there exists at least one stationary
measure (1. of Py and (x)? € LY (du.) for every ¢ < 2r/(1 — r). Moreover, for every1 < p < (1 —r)~!
the function V defined in Lemma 2.1 satisfies (2.2).

Before proceeding to the details of the proof we give a few remarks on the intuition behind Lemma 2.2.
As we will see at the beginning of the proof below, the lemma reduces to showing that there are 7' € (0, 2)
and C' > 0 so that for every x € R™ with |z| = K >> 1 there holds

C T
K?P < = / P, DP(z)dt. (2.15)
0

The idea behind proving (2.15) is to first note that if the process ever enters the set
B={z €R": [Myppr2|” < 0[Mheeraz[*"}, (2.16)

then, provided 7' is small, by Lemma A.1 it is in Bg with high probability. Hence one can essentially
assume that z;(w) € By whenever z;(w) € B. Now, the time average of D(z;)P controls K27 when the
process is not in B and, by the discussion above and Assumption 1, with high probability it controls K 2P
on some short time interval if the process ever does enter B. By tracking the return times of the process to
B, (2.15) follows by a suitable iteration of Assumption 1.

We now give the proof of Lemma 2.2.

Proof of Lemma 2.2. First notice that by Lemma 2.1 and (2.12) we just need to show that forevery 1 < p <
(1 —7)~! there exists C > 0 and T € (0, 2) so that for every x € R"

T
(@) =VP(x) < C (1 + % / PtD”(x)dt) : 217
0

We now set out to prove (2.17). Let §, c,, and K, be as in Assumption 1 and let z; denote the solution
to (1.1) with 29 = z. The bound (2.17) is trivial if |z| < K, because we can take C sufficiently large
depending on K, and so we need only consider when |z| := K > K,. In this case we make precise the
intuition described directly after the statement of the lemma. Let B be as in (2.16) and define the sequence
of stopping times 7o(w) = 0, 71 (w) = inf{t > 0 : z4(w) € B} AT, and for n > 1

Tn<w) if L (w) (w) ¢ Bx

inf{t > 7, (w) + 1 (K) : 2(w) € BYAT  if 2, () (w) € By
Tn-i—l(w) = .

inf{t > 7, (w) + N (K) : 21(w) € B} AT if 7 () (w) € Brm-

Moreover, define
F(w) =inf{t > 0: ||z (w)]* — K2| > 6K}

Due to Lemma A.1 applied with ¢ = §, by taking T sufficiently small and K, sufficiently large (both
depending only on §) we may assume that

P(7>T)>1/2. (2.18)



With T fixed, choosing K perhaps even larger and recalling lim g/ o0 SUP1 < j <, 75 (K "} = 0 implies that
we may assume

sup n;(K) <T/2. (2.19)
1<j<m
Let now
Ap={weQ:mw) <T/2}
and

An,j = {w €0 xTn(w)(w) S BKJ‘}.

Using that 7, is an increasing sequence with lim,, oo 7,,(w) < T we have

/0 Pt > /Q nZ / + (w))didP
= / Z/THH o Dp(l“vﬁt(w))dtdp
SHY

Tn41 Tn(w)
/ DP(2r, +4(w))dtdP. (2.20)
o= A,

Now, if 7., () (w) € Bk j and 7, (w) < T/2, then 73,11 (w) =7 (w) > 0;(K) due to (2.19) and the definition
of 7,4+1. For 1 < 57 < m we thus have

Tnt1 (W) =7n (W)
/ / DP(z;, +1(w))dtdP
ApiNA,

i 1)~ @)
/ / DP(2r, 1(w)) P + / / DP(2r, +4(w))dtdP.
Ap iNA, An,ijn nJ(K)

n,j

2.21)

For the first piece, observe that A, ; N A, is measurable with respect to F , the o-algebra of events
determined prior to the stopping time 7,, (this agrees with the o-algebra generated by {Wsar,,; s > 0}).

Thus,
n; (K) n; (K)
/ / Dp(.%'Tn+t(W))dth = / / E(Dp((IZTn_H)‘.FT")det.
An,]‘ﬂAn 0 0 AnyjﬁAn

It then follows from the strong Markov property and Assumption 1 in the form (2.14) that

n;( n; (K)
/ ) / C DP(ar, 4a(w))dtdP = / ) / C PP (2, )dtdP > (K ) KPPP( A, iNAy).
n]m n n]m n

(2.22)
For the second piece, first note that

Tn41(w)—7n( Tnt1(w)—Tn (w)
/ / DP(x;, +1(w))dtdP 2/ / DP(x;, +1(w))dtdP.
A iNAy Ini(K) A jNARN{T2T} J;(K)

Now, by construction, if w € A, ; N A, N {7 > T'} then for each t € (n;(K), Th4+1(w) — 7, (w)) one has
Merat ey 4t (@) [* > | Tkernzr, (W) and (1= 0)K? < |ar, 1(w)* < (1+0)K*
Thus, there is a constant ¢y € (0, 1) so that, for any ¢ € (0, ¢p), over the same time interval there holds

DP(z,, 1 1(w)) > coPK?P,
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Consequently,

Tnt1(w)—Tn (W)
/ / DP(z;, 41(w))dtdP
Ap jNAn I (K) (2.23)

> cépKQ’”p/ (Tnt1(w) — T (w))dP — cnj(K)épKQTpP(An,j NAy).
A jNAN{F>T}

Choosing ¢ < min(cy, ¢}) and then putting (2.22) and (2.23) into (2.21) we find
Tn1(w)=Tn (W)
/ / DP(x;, +1(w))dtdP > C(V’K%p/ (Tnt1(w) — T (w))dP.
An’jﬁAn 0 AnyjﬂAnﬂ{?ZT}
Using this bound in (2.20) and noting that if 7(w) > T and 7, (w) < T/2 then . (,,) € Bx gives

T oo m
/0 PO (a)dt > e K¥7 3y /A (Fos1 () = 7 (w))dP

n=0 j—1 ¥ An,jNAn{T2T}
— cOPK?P Z / 1, <123 (Toy1 (W) — T (w))dP.
n=0 T>T}

By the telescoping summation and the definition of 7,,, we have
(o.9)
Z 17, <r/2) (Tas1(w) — Tn(w)) = T'/2
n=0

whenever 7(w) > T, and hence we conclude
e ¢ 2rpPp (= ¢ 2r
= PDP(x)dt > —6PK“PP(T > T) > —0PK*"P,
T Jo 2 4
which completes the proof. O

3 Conservative flow transverse to the kernel

Theorem 1.1 is an immediate consequence of Lemma 2.2 together with the following proposition. The proof
consists of two main steps: the first is to deduce growth of the damped modes for a suitable approximate so-
lution (in this case, the deterministic, conservative dynamics) and the second is to justify the approximation
on a long enough time-scale to verify Assumption 1 for the true solution.

Proposition 3.1. Let B and A satisfy the conditions of Theorem 1.1. Then, Assumption 1 holds for r = 1.
Proof. Let xp € R" with K/2 < |zg| < 2K and |II}, 41 xo| < §|Ikeramo| for some K > 1and 6 € (0,1).

Note that the assumptions on zg imply that

K
Iyeraxol > —. 3.1
|Hkeraol 75 3.1

Let X; solve

{tht = B(Xy, X;) 42

Xt|t:0 = To

14



and X + solve

(3.3)

4%, = B(X, %)
Xt|t=0 = errAw()'

By taking successive time derivatives of (3.3), we see that

i -

— Xi|t=

o tlt=0

is a homogeneous j + 1 degree polynomial in Ily..4xo. Therefore, (3.1) and the condition (1.8) imply that

JC; > 1 and j < J such that

i - 2 .
iy /R lt
‘errAL o Xt|t=o| > C]K .
It follows that for § sufficiently small there holds

dJ
‘ermL th li=0

> CleJ'“. (3.4)

Step 1 (growth for the deterministic dynamics): The first step quantifies how condition (1.8) implies
growth of II, . 4 1 X; for short times.

Lemma 3.2. Let § € (0, 1) be small enough so that (3.4) holds and fix T = K. There is a constant ¢, > 0
depending on Cy and J such that

1 T
7'/ ‘errAlXt|dt Z C*K. (35)
0

Proof. We first claim that there exists vy € (0, 1) so that if for some 1 < ¢ < J and v € (0, ) there holds

ker A+ att t‘t:O = E ) .
then there is ¢y € {0,372 K !} such that
défl 73 ;
Hyerat WXth:to > EK . (3.7)

The claim is trivial if the desired bound holds for ¢y = 0. So, suppose otherwise and expand to first order to
obtain

YV e+l ’Y3 Y 2 7 0+2
> K™t —K'—Ct°K
—Cy Cy

for some constant C' > 1 that does not depend on ¢ (it depends on J and the size of B on the unit sphere).
Thus, for tg = 372K_1 we have

défl
‘errAJ- WXt

9 3
> “T gt 9oy tKY.

dé—l
‘ Cy

errAL dtg_ 1 Xt ’t:to

The bound (3.7) then follows for 7o < (9CC;)~ 1.
Using (3.4) and iterating the claim we just proved, it is straightforward to show that if

v < min((9CCy)~*, 1/v/2),
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then there exists ¢y € [0, 62K ~1] such that
ol
Myerat Xep| = o K
J
Taylor expanding to first order at t = ¢y then gives
ol
Myeras Xeoe| 2 7K — tOK?
J

and hence for 7 = (1/2)73J (KCCj)~! we have

1 T1 37

~
— 11 X dt > —K.
1 Jo | kerAL t0+t’ = 2CJ

Supposing that +y is small enough so that 71 + to < K !, it follows that for 7 = K ! there holds
2:37

1 /7 73J a1 ~y
- e X, |dt > —K—= > K
T/O Miera Xeldt = 2C; T T 40C%

which completes the proof. O

Step 2 (approximating with X;): In order to make use of Lemma 3.2 we need to show that X; is a
sufficiently good approximation of x; for t < K ~!. To this end, we have the following lemma.

Lemma 3.3. Let x and K be as defined at the beginning of proof and set T = K 1. With X; given by (3.2)
and x¢ given by (1.1), there are K, > 1 and C' > 0 (both independent of xq) so that for K > K, there holds

1
P<sup |Xt—xt\§0> 25.

0<t<r
Proof. The error X; — x; solves
d(Xt — ZL‘t) = LXt (Xt — xt)dt + AXtdt - A(Xt — I‘t)dt — B(Xt — T, Xt — .I‘t)dt — Uth,

where the operator L, is as defined in (1.9). In what follows, denote by Sx(¢,s) the two-time linear
propagator of the time-inhomogeneous ODE associated to L, i.e.

d
%SX (tv S)’U = LXt Sx (tv S)U
Sx(s,s)v=n.
Since | X;| < 2K for all ¢ there is a constant C that does not depend on K such that for ¢ > s,
1Sx. (£, 5)|| < eCrEE=9), (3.8)

Therefore, there is C'; > 0 independent of K so thatforT <7 = K —1 we have

¢
sup | X — x| < / eCK(t_s)(|Xs — :c3|2 + | Xs| + | Xs — x5|)ds + sup
0<t<T 0 0<t<r

t
/ Sx . (t,s)odWs
0

) . (3.9

t
/ Sx (1, )od W,
0

< Oy Kt sup | X — :nt|2 + 14 sup
0<t<T 0<t<T
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By the Doob martingale inequality, the Itd isometry, and (3.8), there is C3 > 0 depending on ¢ but indepen-
dent of K and so that for all ? > 1 there holds

( sup
0<t<r

Therefore, there is R, > 1 independent of K so that P(€g) > 1/2 if we define ) as

> R/\ﬁ) / E0=3) o) 2ds < %
0

QO—{wGQ: sup

0<t<t

s gR*/\/?}.

Fix w € Qg and let T}, be the maximal time such that supy<; <7, [X¢(w) — 7¢(w)| < 2Cs, where Cy is as in
(3.9). Since x; and X, take values continuously in time, 7., > 0. Moreover, by (3.9) and the definition of
Qp, for T' < min(7,,, 7) we have

C C2R*
sup | X; —ay| < —2 + Co + == 3.10
OgtET’ ol s g *TVUK G-10
Thus, T,, > 7 as soon as K > max(4R2,8C%). This completes the proof. O]

With Lemma 3.2 and Lemma 3.3 in hand, the proof of Proposition 3.1 follows quickly. Indeed, let xg,
0 > 0,and K > 1 be as defined at the beginning of the proof and K, be as in Lemma 3.3. We need to show
that there is ¢ > 0 so that for all K > K, there holds

1 T
/ E|, 41 2¢|2dt > cK?,
T Jo
where as before 7 = K !, First, by Chebyshev’s inequality we have for all X > 1 and ' > 0,
! 12 1 T 2 ! 72 1 T 2
OK*P | — ‘errAth’ dt > 0K < - E|errAlwt| dt.

T Jo T Jo

Let 21 be the set such that

sup | X — x| < C,
0<t<r

where C'is as in Lemma 3.3, which implies P (1) > 1/2 (note that while ©; can depend on K and x, the
associated estimates do not). By Lemma 3.2, for w € {2; we have

T 62
/ ’errALfL‘t|2 dt > E*KQT —CT.
0
Therefore, assuming also K, > 2v/C/c,, for &' < ¢2/4and K > K, we have
1.9 1 /7 )
§5K < - E‘errAlxt‘ dt,
T Jo

which implies Assumption 1. O
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4 Unstable equilibria in the kernel

In this section, we consider the case where i = ker(A) N S™~! consists entirely of unstable equilibria of
the conservative dynamics (i.e., B(x,z) = 0 for every x € kerA) and prove Theorems 1.2 and 1.3. As in
Section 3, the proofs are based on a two-step procedure that consists of first deducing growth of the damped
modes for a suitable approximate solution and second justifying the approximation on a long enough time-
scale to verify Assumption 1. In the present setting, for an initial condition x € B (where B is as in the
statement of Assumption 1), the approximation of the damped modes that we consider is obtained simply
by linearizing B around the equilibrium Iy, 4.

Recall that for z € R™ we define L, : R® — R"” by L,v = B(z,v) + B(v,z) and that we denote
Lt = My p1 LyITy, 41 . In the setting of Theorems 1.2 and 1.3, for any € U, L either has an eigenvalue
A with Re(A) > 0 or an unstable Jordan block corresponding to Re(\) = 0. In studying the properties of
linearized solutions we must consider separately these two scenarios. In Section 4.1 we prove the necessary
growth and approximation estimates in the spectrally unstable case, and in Section 4.2 we treat the Jordan
block unstable case. In Section 4.3 we use the results of Sections 4.1 and 4.2 to complete the proofs of
Theorems 1.2 and 1.3.

4.1 Spectrally unstable estimates

We begin by considering the case where for z € U, L is spectrally unstable. In this setting, the result
concerning growth of the damped modes for the linear approximation is given as follows. Recall from
Section 1 that we denote the Jordan normal form of L} by

Lt =PJtP L

Lemma 4.1. Let z € kerA and r € (0,1). Assume that the eigenvalue A = A\r + i\f ofLZL/‘Z| with largest
real part is such that A\r > 0. Suppose further that there exists a generalized eigenvector v = vg + vy
corresponding to eigenvalue A such that Ran(o) N {vg,vr} \ {0} # 0 and, defining V = Span{Pz_/‘lzlv},
there holds

My J3, @ = Mlyz Ve C", 4.1)

LetY; : [0,00) — ker At solve

42
Yili—o = Yp € ker A~ *2)

{dYt = LiVidt + My, 40 0dW,
Forany € € (0,1), there is K, (€) > 1 and constants c., 5 > 0 that do not depend on ¢, r, or |z| so that for
|z| > K, and
(1/2 47+ €)log(|z|)
Arl?|

there holds L
p (/ 1Y (w)|dt > c*w) > 3. “3)
T Jo

Remark 9. The condition (4.1) just says that v is the first generalized eigenvector in a Jordan chain corre-
sponding to eigenvalue ).

Remark 10. It follows directly from the proof below that if ¢ is invertible, then for any C' > 0 the constants
¢, and (3 can be chosen uniformly for \g > C~! and || P, || + HPZ_/L\ | < C. The main observation here

is that when o is invertible the constant ¢ in the proof below depends only on [|o~!|| and || P, /]|.

18



Proof. We will consider the case where A; # 0, as the situation where A\; = 0 follows from the same
argument. Without loss of generality, we may suppose that vz € Ran(o). Let Y; = Pz_/1 Y, € C". For

||

simplicity of notation we write .J*- for .J ZL/|Z| and P for P, |.|. Then, Y, solves

dY; = |2|JYdt + P~ 40 0d W, “h
Y, = Py, e C™. '
Since y
Y| = [P < IP7 Y [enmen Vi, 4.5)

it suffices to prove (4.3) with Y;(w) replaced by Y;(w). Define the subspace V = span{ P~ v} of C" and
let . = (Ag|z|)~!. The plan is to first show that for every R > 0 there exists 3; > 0 so that

- R
P> ——— | > 5. (4.6)
AR|?|

We will then prove that there is R > 1 and ¢, > 0 so that

1 [T . -~ R 1
P > esl | Tl > >1 @)
7 Jo Ar|?| 2
Together, (4.6) and (4.7) yield the bound (4~L.3) for fft
We now prove (4.6). The formula for Y; reads
t
Y, = 7ty +/ AT =) Pl L ed WY, (4.8)
0
By the It6 isometry, the variance of vaft* is given by
- tx JL 1 2
Var(ITy V., ) = / HHVAZ‘ (t=s) p=1py, ALUHF ds, 4.9)
0
where || - | 7 denotes the Frobenius norm on C™*". Observe now that for any ¢ > 0 there holds

Ly 1 _
HVE‘ZlJ tP I'L)R:§€>\|Z‘tp 11},

which gives

2 2|z| ARt
’Hve"z'JLtP_lvR‘ > ¢ y (4.10)
Since v € Ran(o), by (4.10) we have
)‘HV@'Z‘JL(t*_S)P_lnkerAJ_0-‘ 2 > 0162‘Z|>\R(t*—5) (411)
Crn—Cnr

for some ¢; > 0 depending only on ¢ and vgi. Thus, from (4.9) and the equivalence of norms in finite
dimensions there holds

2
Lt — —
I €\Z|J (t« s)P 1H o O_H

ta
0

T
Var(IT f/*z/ >
Mv¥) 2 Ael7]
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The claim (4.6) then follows from (4.12) and the fact that the real and imaginary parts of vaft* are both
Gaussian.

We now turn to (4.7). First, note that

2 2 2
14~ 1 ~ ~
’HVG'Z‘J tY[)’ e‘zl.] tHVYO‘ — 62|Z|)\Rt HV%‘

Therefore, [Ty Yo| > R/+/Ag|z| implies that

1 T—1x G-
/ yel?/ "t |dt >
T Jo

Z|)\tht > R|Z’T+E

R /Tt* ‘
NCTER 6eLog([21)v/Ar

where in the second inequality we have assumed that K, > 2e. Taking K,(e) even larger to ensure that
|z|¢ > log(|z]), it follows from (4.13) and

1 T—tx B 1 T—t4 . 1 T
e A A
T Jo T Jo T Jo

that to complete the proof of (4.7) it suffices to show that

P(-)

for some R > 1. By the Itd isometry, we have

1 T
E/
T 0

(4.13)

t
/ Myel2l/ =) P11, 4L odW,| dt,

0

t
/ My el =) p=1L, 1 odW, (4.14)

0

r4e
gt < L ) >

1
= 12elog(|z))vVAg/ ~ 2

t
/Hve|zJl(t—S>P—1errAdes
0

1 T t n 1/2
it < - /0 < /O Iy el <t—5>P—1errAm||2Fds> dt

1 T t 1/2
<1 (/ e“'mt-s)rP—1||2ua|12ds) dat
T Jo 0

< | P~ H]|o|l] 2|t
VArlog(|z|)

Then, (4.14) follows by taking R sufficiently large and using Chebyshev’s inequality, completing the proof.
O

We now use Lemma 4.1 to prove the time-averaged growth estimate (2.13) required by Assumption 1
when the initial condition z € R" is such that IIx, 4 is a spectrally unstable equilibrium point for B. In
what follows, for z € R"™ we write 2 = lIxeraz and y = o — 2z = Il 41 2.

Lemma 4.2. Suppose that B(x,z) = 0 for every x € kerA and let xy € R™ be such that Liz) /170 has
maximally unstable eigenvalue A = A\ + i\ with Ar > 0. Suppose further that there exists a generalized
eigenvector v = v + vy satisfying the conditions of Lemma 4.1. Fix r € (0,1/4) and for K > 1 set

(1/2+r)log(K))
ArK '

() =10
There exist K, > 1, ¢, > 0, and a universal constant 6, € (0, 1/4] so that if
lyo| < 0|z0]" and (1 — 0)K < |zo] < (14 §)K

foré € (0,0,] and K > K, then there holds

1 n(K) N )
0
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Moreover, if o is invertible, ro € (0,1/4) is fixed, and Cy > 1 is such that A\ > C’O_l and

1P o 1+ 11 Pag 101 | < Coo, (4.16)

Z

then the constants c, and K, can be chosen to depend only on Cy and rq for r < rg.
Proof. We first assume only that {vg,vr} \ {0} N Ran(o) # 0. For € € (0, 1) to be chosen, let

__ (1/2+ 7+ ) log(|z]) 4.17)
/\R’ZO‘

and suppose that
-
/ E|y|2dt < 76, K*" (4.18)
0

for some 0; € (0,1). We will obtain a contradiction for ¢; sufficiently small.
The first step is to use the contradiction hypothesis (4.18) to obtain bounds on |z; —zg|. Since B(z¢, 2t) =
0 by assumption, we have

dzy = (Mgera(B(ye, 2¢e) + B2, yt) + B(ye, yi) — Aye)dt + HyeracdWy. (4.19)

Using (4.18), the Cauchy-Schwarz inequality, E|z;| < K for ¢ < 1 (this follows from (A.5)), and Doob’s
martingale inequality we obtain

E sup |z — 20| < VO KT 4+ /7 < max(V/61, K*_l/Q)KHTT. (4.20)
0<t<r

Define -
Qp = {w e N: / ]yt\th < V6 TK?, sup |z — 20| < KH_TT}
0 0<t<r

and let 3, c, > 0 be as in Lemma 4.1 applied with z = 2z and the chosen € (0,1/4). Recall here that
[ and ¢, do not depend on 7 or €. By (4.18) and (4.20), for §; sufficiently small and K, sufficiently large

depending only on [ there holds
P(Q)>1-3/2. 4.21)

Let Y; solve
dY; = L Yidt + My g odWy
}/t‘t:O = Ilyera o.
We will show that the exact solution g is well approximated by the linearized dynamics Y; on the set ().

The difference Y; — y; solves

d
*(Yt - yt) = errAl(B(Yt, Zo) + B(ZO, Yt) - B(yt, Zt) - B(ztayt) - B(ytu yt) + Ayt)

dt
= LZLO(Yt - yt) + errAi(B(yta 20 — Zt) + B(ZO — 2, Yt) — B(yt,yt) + Ayt)-
Therefore,
t
Lo
Y-y = / eE I 4 (B 0 — 28) + B(20 — 20,) — Bys, ) + Ays)ds. (422
0

Now, from the Jordan canonical form, for ¢ < 7 and

01 = ||on/|zo|H||P71\z0|||
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there holds .
le" 0"l < C1(1 + (Jzo[t)™)er 0l < C1(1 4+ AR™)| log(K)|"e =l

Thus, by applying Young’s convolution inequality in (4.22), for wy € €29 we have the estimate

/OT |Yi(wo) — ye(wo)|dt < Cr(1 4+ A5™)| log(K)|™ (/OT 6)\13|z0tdt>

(
. ( ()2 + )|+l — o)
Cr(1+ A7) Tog(K) K=/ (6117 K 4 6147k 4 5/ r2 K120
C1(14 27" log (K) [T K K> 2 (51 K7 r), (4.23)
where in the last inequality above we have assumed that K is large enough so that |zo| > K /2 (and conse-
quently K7 < )\;21 log(K)). Assuming r < 7y < 1/4, we may take ¢ = 1/4 — ¢ > 0 to obtain

/ Vi (wo) — g (wo)|dt < CLCH8 KT (4.24)
0

for some constant Cy > 0 satisfying

Cy < (1+M5"7?) sup{K “log(K)"™}. (4.25)
K>1

With (4.24) established we are now ready to use Lemma 4.1 to complete the proof. Applying Lemma 4.1
and using again |zg| > K /2, we obtain that for K sufficiently large depending only on e there holds

P (/T 1Y (w)|dt > 27K> > P (/T 1Y (w)|dt > C*T|Zor> > B, (4.26)
0 0

where the constants ¢, and [ are as defined after (4.20). From P () > 1 — 3/2 we thus have

P (QO N {/T Y3 (w)|dt > Cﬂ(}) > 5 4.27)
; 2 2

By (4.27), the reverse triangle inequality, Cauchy-Schwarz, and (4.24) we deduce that for C CQ(S% /4 <. /4
there holds

/ |ye|*dt > 5 Bl g, (4.28)

Taking 4, even smaller to ensure §; < 6 * gives the desired contradiction with (4.18).

In the calculations above, d7 is chosen small depending on C, C5, 3, and c,, while K is chosen suffi-
ciently large depending only on 3 and € = 1/4—1(. We conclude that there is a constant ¢, (C, Ca, 3, ¢x) >
0 and K, (3, ro) so that for K > K, there holds

E / lye|2dt > ¢, 7K. (4.29)
0

To obtain (4.15) from (4.29), observe that |yg| < d|zp|" and (1 — §)K < |zo| < (1 + §)K imply that
(1 -=20)K < |z9| < (14 0)K for ¢ small enough. Therefore, taking ¢, sufficiently small and K, perhaps

larger yields
1

ZOU(K) <7 < n(K),
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which when combined with (4.29) gives
n(K) 2 é 2r .M 2r
B ldt > (KK = (KK, (4.30)
0

It remains only to argue that if o is invertible and Cy > 1 is such that A\g > C L and (4.16) holds, then
K., and the constant ¢ in (4.30) can be taken to depend only on Cj and ry. Since in the proof of (4.29) we
took K, = K.(83,70) and ¢, = ¢, (C1,Cy, B3, cx), it suffices to show that 8, Cy, Cs, and ¢, can be taken
to depend only on Cj and rg. By Lemma 4.1 and Remark 10, both 8 and c. depend only on Cy when o
is invertible. Regarding C and C5, following the proof above we see that (4.16) and A\p > C L imply
1 < C’g and

Cy < (14 CIF2) sup (K470 log (K)"+1}.
K>1

This completes the proof. O

4.2 Jordan block unstable estimates

In this section, we consider the case where for each z € ker A the eigenvalues of LZL/M all have non-positive
real part, but there exists an unstable Jordan block of size greater than or equal to two corresponding to an
eigenvalue A with Re(\) = 0. In other words, there exists 1 < J < n — 2 such that

t < Jle”= 11 |gnoymn < (1+17) (431)

for all ¢ > 0. Note that when (4.31) holds there necessarily exists a generalized eigenvector v = vp + vy
of Lzl/\ZI corresponding to eigenvalue A such that, defining V = span{PZ_/‘ldv}, there holds both

Hij/‘le = )\Jj/MHVx Yz e C" (4.32)

and N
Jz z tp—1 >
e =/l=] PZ/MU 2 t. (4.33)

In this setting, the analogue of Lemma 4.1 is stated as follows.

Lemma 4.3. Let z € kerA and assume that LZL/M has an unstable Jordan block in the sense that (4.31)
holds. Suppose that there exists a generalized eigenvector v = vy + vy satisfying (4.32) and (4.33) above

as well as {vg,vr} \ {0} NRan(o) # (0. Let 0 be the generalized eigenvector such that (LZL/M —ANv=10
and define V = span{PZ_”lZ'T;}. Forp € (0,2/3), setr =1—3p/2 > 0 and

7(l2]) = [2]7*.

There are constants c, 3 > 0 that do not depend on |z| so that the solution to (4.2) satisfies

7(l2)

Remark 11. The assumptions above imply that v is the first vector in a Jordan chain of length greater than
or equal to two corresponding to eigenvalue A. Thus, v is a generalized eigenvector in the same chain and
for any x € C" there holds

L)
p ( / P Yi(w)ldt > e ) 2 B. (4.34)
0

Mge’=/e = (I a + Ty ), (4.35)
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Remark 12. Similar to Lemma 4.1, if o is invertible and || P, .|| + HPz_/L\ | < C, then ¢, and 3 can be
chosen depending only on C' and o. This follows directly from the proof below after noting that when o is
invertible, the constant ¢; in (4.39) satisfes ¢1 2 (|lo™ ||| P,.([) 2.

Proof. As in the proof of Lemma 4.1, we assume that vp € Ran(o) and A # 0 (so that A is pure imaginary);
the case A = 0 is a straightforward variation. Denote P, .| and J ZL/|z\ by P and J1, respectively. Let
Y, = P~'Y; € C", which is given by the formula

t
Y, = el +/ AT =S Pl L gd WY, (4.36)
0

We will follow the same general strategy as in the proof of Lemma 4.1.
We first show that for every R > 0 there exists $; > 0 so that

P (¥, o] > RV7) = 6. 437)
Since vr € Ran(c) and
Iy el =) p=lyp| > 1, (4.38)
we have /2
~ T 2
Var(Ily Y, j5) = / [itvels Pty o ds > err (4.39)
0

for a constant c; depending vy and o. The bound (4.37) now follows from the fact that HVY/T /2 1s Gaussian.
Next, as in Lemma 4.1, to complete the proof it suffices to show that there is ¢, > 0 and R sufficiently
large so that

1 T/2 B N 1
P (T/o Iy Yi|dt > eul2]"| [Ty Yo| > R\ﬁ) > (4.40)
First, note the elementary fact that for any a,b € R and T" > 0 there holds
T
|l btlar 2 oz (@41
0

with the implicit constant independent of a, b or T'. One can see this easily by dividing the integral into
t <min(—%,T) and t > min(—4%,T). By (4.41), (4.35), and |e*| = 1 we have

1 T/2 Jlpe 1 T/2 5 5
/ el Y| dt = T/ T Yo + t]2|[Tly Yo|dt = R|z|73/2. (4.42)
0 0

T

Moreover, by the Itd isometry,
Lo [T el 60 pt 1P~ lll [ ( " A
7_:E/O‘ /O Hf/e‘»ﬂ ( S)P errALO'dWs dt S 7'/0 /0 (1 + |Z’$) dS dt (443)

SIPHlelz1r>2.
Using the reverse triangle inequality and Chebyshev’s inequality as in the proof of (4.7), the estimates (4.42)
and (4.43) together yield, for R >> || P~1|||o]],

L[ - 1
P(/ uwmszwﬁﬂmwﬂsz>zQ.
7 Jo
Since 7(p) is such that |z|73/2 = |z|" we obtain (4.40), completing the proof.
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We now turn to the analogue of Lemma 4.2 in the Jordan block unstable case. The idea is the same
as in the spectrally unstable case. However, due to the slower timescale of the instability (i.e., p < 1 in
Lemma 4.4) we need to make use of the cancellation

Myera(B(y, 2) + B(z,y)) =0 Vz € kerA,y € kerA+ (4.44)

assumed in Theorem 1.3. We have not assumed (4.44) in Theorem 1.2 since, as we will show in Lemma 4.6,
the cancellation condition is automatically satisfied in the case that dim(kerA) = 1 due to B(z,x) - x = 0.

Lemma 4.4. Suppose that B(x,x) = 0 for every x € kerA and that the cancellation condition (4.44)
is satisfied. Let g € R"™ be such that Ljo /170 is Jordan block unstable in the sense that (4.31) holds
and suppose that there exists a generalized eigenvector v satisfying the conditions in Lemma 4.3. Fix any
r € (0,1/7) and for K > 1 set

n(K) = 4K*5". (4.45)

There exists ¢, > 0 and a universal constant §,. € (0, 1) so that if
lyo| < d|z0|" and K/2 < |zg| < 2K

ford € (0,0,) and K > 1, then

1 /n(K) Elyd e
— Y, t > cy .
U(K) 0 !
Moreover, if o is invertible and
1P2o 10/l + 1P 1201 < Co (4.46)

for some Cy > 1, then c, can be chosen depending only on o and Cy.

Proof. We will consider the case where o is invertible and (4.46) holds. The proof when one only assumes
that {vgr,vr} \ {0} N Ran(o) # 0 follows from exactly the same argument. Let X' > 1 be such that
K /2 < |zy| < 2K and suppose for the sake of contradiction that

n
E / |y ?dt < 6ynK>" (4.47)
0

for ; € (0,1) and n = n(K) given by (4.45). As in the proof of Lemma 4.2, we will obtain a contradiction
for ¢; sufficiently small.
By the cancellation condition (4.44), the equation for z; is given by

dzt = errA<B(yt7 yt) - Ayt>dt + errAUth~ (448)

It follows that

r—1
)

E sup |z — 20| < 77\/(51K2T +VnS K3
0<t<n

(4.49)

where we have used that the choices of 77 and r are such that

WK S VS K
Let ¢,, B > 0 be as in Lemma 4.3 applied with z = zp and p = (2 — 2r)/3. Recall from Remark 12 that ¢,
and 8 > 0 depend only on Cj and o. By (4.47) and (4.49), for §; sufficiently small and R sufficiently large,
both depending on 3, we have

n r—1
P(Q= wGQ:/ lye|?dt < /o1mK*, sup |z — 2| < RK 3 >1-
0 0<t<n

(4.50)

N |
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Now, as in the proof of Lemma 4.2, let Y; solve

dY; = L1 Ydt + iy 4 odWy
}/t‘t:O = errAixO'

Let ¢ and V be as in Lemma 4.3. By the Jordan canonical form, we have

T P20 Pt < Co(1 + |20lt) < Co(1 + 2KE).

Zo/IZO\

Using this in (4.22) we obtain, for wg € €,

Iy (Ye - dt < C ! 14+ Kt)d 51/4 K2 R61/4 KSR
‘ zo/lzol #(wo) — yi(wo))|dt S Co 0( + Kt)dt + n

S Cody/"nK" (Kn) (TJK’" + Ryﬁ%)

< CoRy'nK" (KnjnK”

where in the last line we noted that trivially K = < K". Observe now that the restriction < 1/7 and the
formula for 1 imply that
(KnnK" <1,

and thus we have
[ P (V) = o) CoRy o 451)

We now use (4.51) and Lemma 4.3 to complete the proof. Suppose that § is small enough so that
K /4 < |z| < 2K. Then, the choice of n(K ) ensures that

2r—2
20 5 <n(K) <8Jz| T

Thus, from Lemma 4.3 we have

1 n(K) ) Co
P n(K)/o Ty P Yildt = 2 K7 ) > 8. (4.52)

It follows from (4.51), (4.52), and P(€y) > 1 — 3/2 that for ; sufficiently small depending only on ¢, 3,

and Cj there holds
2/8 2r
/ o Pyl > () Goie™

n 1 /ca\20
E 2t > — (7) Enrr,
We obtain a contradiction by taking d; perhaps even smaller to guarantee
c\2 0
<o (5) 1
1=z e

1
Since ¢, and S depend only on Cj and o we obtain

Therefore,

U
E/ lye|?dt > enK>"
0

for a constant ¢ depending only on C and o, which completes the proof. O

Remark 13. If the cancellation condition (4.44) is assumed in the spectrally unstable case, so that (4.19)
can be replaced with (4.48), one can show that any r € (0, 1) is permissible in Lemma 4.2.
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4.3 Concluding the proofs of Theorems 1.2 and 1.3

In this section we use the results from Sections 4.1 and 4.2 to prove Theorems 1.2 and 1.3.
4.3.1 dim(kerA4) =1

In this section we prove Theorem 1.2. It is a special case of the result below, stated for more general
assumptions on ¢. Recall that we denote I/ = kerA N S™~! and for = € U write

Lt =P, J P!
for the Jordan normal form of L.

Theorem 4.5. Suppose that U = {x, —xo} for some unit vector x( and that for each x € U there holds

B(z,z) =0, lim HetL;
t—o0

= 00. (4.53)

Moreover, let o satisfy the following conditions (which hold trivially when rank(c) = n).

o If x € U is such that L has an eigenvalue with positive real part, then there is a generalized
eigenvector v = vR + vy associated with the eigenvalue \ of L% with maximal real part such that

{vr,vr} \ {0} NRan(o) # 0 and
Jry = \J,II

Hspan{Pglv} P LY Yy € C". (4.54)

span{ P,

o Ifx € U is such that t7 < |el=t|| < 1+ t/ for some 1 < J < n — 2, then there is a generalized
eigenvector v = vg + vy associated with an eigenvalue )\ of L with Re()\) = 0 that satisfies
{vr,vr} \ {0} NRan(c) # 0, (4.54), and |e’+ P o] > .

Then, there exists at least one stationary measure i and (x)P € L' (dp) forall p < 1/3.

We begin by showing that the cancellation condition (4.44) is automatically satisfied in one dimension
due to B(z,z) -z = 0.

Lemma 4.6. Let I : R®™ — R" be a projection onto a one-dimensional subspace of R". Suppose B :
R™ x R™ — R™ is a bilinear function satisfying B(z,x) - x = 0 and

B(Ilz,Ilz) =0 VzeR™

Then,
IIB(Iz, ITtz) + IB( 2, IIz) = 0

for every x € R™.

Proof. The property B(x,z) -z = 0 remains true after any orthogonal coordinate transform, and so without
loss of generality we may assume that IT is the projection onto the subspace {(z1,0,...,0) : z; € R}. In
this setting, we need to show that

By (Iz, 1Tt z) + By (It a2, 11z) = 0

for any z € R". The condition B(Ilz,IIz) = 0 implies that 92 B(z,z) = 0. Hence, differentiating
B(z,x) - x = 0 twice with respect to 1 gives

Or, [Bi(z,z)] = 0.
Substituting z = Iz + II*z we find
O, (B (T, 1Tt z) 4 By (1, T1z)) = 0.
Noting that By (ITz, [I+x) + By (ITtz, [Ix) = 0 when 21 = 0 completes the proof. O
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We are now ready to prove Theorem 4.5:

Proof of Theorem 4.5. LetU = {xg, —x0} for xg € kerA N S"L. Fix r < 1/7 and for § € (0,1) to be
chosen let

Bl = {z e R" : I 4r2]? < 0|geraz|? and (1 — 6)K? < |z]? < (14 0)K?2}.

For any x € R™ \ {0} there is ¢ > 0 and j € {1,2} such that T, 47 = c(—1) x¢. Therefore, defining for
J € {1,2} the sets ‘
B}S(J = {z € BY : Ixerax = c(—1) x¢ for some ¢ > 0},

we have B}S( = B‘;m U B?(,Q' The assumptions in (4.53) imply that xg and —z( are both equilibria of B
with Lio and foo spectrally or Jordan block unstable. Observe now that » < 1/7 is always permitted in
Lemmas 4.2 and 4.4. Moreover, the associated 7 always satisfies

n(K) S K7

Therefore, by Lemmas 4.2 and 4.4 (note that we may apply Lemma 4.4 in the present one-dimensional
setting due to Lemma 4.6) there are constants 6 > 0, ¢, > 0, and K, > 1 along with functions 7;(K)
satisfying lim e, o0 sUp;_1 o 1;(K) = 0 such that for K > K, there holds

1 nj (K) ) )
o € BK,j — ) / |errAiwt| dt > c. K T
0

i (K
Thus, Assumption 1 is satisfied for any » < 1/7. Theorem 4.5 then follows from Lemma 2.1. O

Remark 14. Let u be the stationary measure constructed in Theorem 4.5. If Lio and foo are both spec-
trally unstable, then by Remark 13 and Lemma 4.6 it holds that (z)” € L'(du) for every p > 0.

4.3.2 dim(kerA4) > 1

Proof of Theorem 1.3. We will give the details only for the spectrally unstable case, i.e., the case where
there exists Cy > 1 so that for every z € U there is a maximally unstable eigenvalue \(z) of L} satisfying
Re(A(z)) > 0. Fixr < 1/4 and for § € (0,1/4), K > 1, and z € U, define the sets

By = {2 € R": |Ipr2|? < 6| Mgeraz|, (1 — 6)K? < |z* < (1+6)K?}

and
B(IS(,Z = B?{ N {l’ cR": errAm/’errAfL’| =z E Z/[} .

Since U is compact and the eigenvalues of a matrix vary continuously with respect its entries, we have

0 < A_ :=minRe(\(z)) < maxRe(A\(z)) := \; < oo.
zeU zeU

Therefore, by Lemma 4.2 and (1.10) there exist 0, € (0,1/4), K. > 1, and ¢, > 0 so that for every z € U

and K > K,, defining
(1/2+7r) log(K))
Re(A(2))K ’

n(K,z) =10 (

there holds
1

Ox

n(K.z)
E/ Mo a2 2dt > e K27
0

28



We used here the statement at the end of Lemma 4.2 about the dependence of the constants when o is
invertible and (4.46) holds. Since

(1/2 + r)log(K) (1/2 +r)log(K)
10( WK )Sn(K,z)SlO( K >

for every z € U it follows that for

. (K) = 10 ((1/2 J;i)fl(og(K)>

and K > K, there holds

B — — E/m(K) |11 2dt > A K

x x —c .

0 K s (K) 0 ker AL Lt = )\+ *

Thus, Assumption 1 is satisfied for any < 1/4, which due to Lemma 2.2 completes the proof. O

5 Sabra and Galerkin Navier-Stokes

5.1 Statement and proof of general result

In this section we state and prove the general theorem that will be used to obtain Theorem 1.4 announced
earlier.

Theorem 5.1. Let rank(c) = n and suppose that ker A = V1 &V, for orthogonal subspaces of R™ satisfying
the following properties.

e Forany x € V1 U Vs, B(x,x) =0, i.e., Vi and Vs consist of deterministic equilibria.

e Thereis C > 0 so that

max  sup (|[Pugll + 1P 1) < C, (5.1)

=1 zeV;Nsn—1

where Py, jJ ijx_ ]1 denotes the Jordan canonical form of 11,1 L,11,, .1, with L, as defined in (1.9).
> J J

o There is Amin > 0 such that for any j € {1,2} and v € V; N S"=1 there is an eigenvalue \ of
HV_LLJCHV; with Re(/\) > Amin-
J J

o There exists ¢ > 0 so that for any vy € V1 and vy € V5 there holds
HyeraB(v1,v2) + Hyera B(v2,v1) = 0 (5.2)

and
|errAJ-B(U17 U2) + errAJ-B(UQa U1)| > C|U1||U2|' (5.3)

Then, there exists at least one stationary measure ji and (x)* € L'(du) for every p < 2/3.

The proof of Theorem 5.1 will proceed roughly as follows. As before we will verify Assumption 1. For
initial conditions z near ker A with min(|IIy, zo|, |IIy,zo|) sufficiently large, we use (5.3) and arguments
similar to those in Section 3 to obtain growth of the damped modes. If instead x is concentrated in one of the
V;, we proceed similarly to Section 4 and use the spectral instability to deduce growth into VjL. This either
causes the damped modes to grow directly or the solution to enter a region where min(|IIy, x|, [Ty, z|) is
large enough to subsequently apply (5.3) as in the first case. The cancellation (5.2) is used throughout to
justify certain approximations.

We begin with a lemma that describes growth of the damped modes for initial conditions with |ITy, x|
and |IIy, x| both sufficiently large.
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Lemma 5.2. Fixr € (0,1] and 69 € (0,1). There are c,(dg) > 0 and K.(dp) > 1 so that for any xo € R"™
satisfying

K/2 < |wo| < 2K,  |Myarmol? < 6K?,  min |y, 2o, My,ao|) > 6/ K"
for0 <46 < 658/ 4 and K > K., where € is a sufficiently small constant independent of 0o, there holds

1 K
—lE/ |errAJ_CL't|2dt 2 C*KQT.
K 0

Proof. Let X; solve

5.4

49X, = B(Xy, Xy)
Xo =0

and define n(K) = K~!. We claim that there is c,(dg) > 0 so that for all K > 1, § < 58/4, and x( as in
the statement of the lemma there holds

Lo M Xe|*d K 5.5
—— t > Cx . .
U(K) /0 ‘ ker A+ t| ZcC (5.5)
From here the lemma follows by taking K, large enough so that ¢, K2" >> 1 and applying Lemma 3.3. We
now prove (5.5). For v € (0,1) to be chosen sufficiently small and 77(K) = 76(1)/ -1 suppose for the
sake of contradiction that

1 7
F / Mheep a X 2dt < 6, K2 (5.6)
0

for §; € (0,1). By performing a Taylor expansion and using (5.3), [l ., 4. Xo| < VK", and | X;| < 2K
we obtain, for ¢t < 7,

t
d
|errAJ-Xt| = errAJ-XO + terrAJ-B(X()v XO) + errAJ- / (t - 8)£B(X3a Xs)ds
0
t
> et [Ty, Xo| [Ty, Xo| — CVOKT — CKﬁ/ |B(X, X,)|ds, (5.7)
0

where in the second inequality we used that

diB(XS,XS) = B(B(X,, X,), Xs) + B(X,, B(X,, X))
S

The goal is now to bound the integral in (5.7). First, by writing
Xs = HyeraXs + Mgy g1 X = Ty X + Ty X5 + g1 Xs
and using the triangle inequality we deduce
|B(Xs, Xs)| S KMyeraXs — MyeraXo| + K[ 41 X | + [Ty, Xo||TTyz, Xo. (5.8)
Now, by (5.6) and (5.2), for all ¢ < 7) there holds
Mera Xt — MgeraXo| < /Ot | B(Tker A X sy Hieepar Xs)|ds + /Ot | B(IT oy a1 Xs, Xs)|ds

t 5.9
S K/ |errAlXS‘ds 5 75(1)/4KT‘
0
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Putting this bound into (5.8) and using (5.6) again gives, for ¢t < 7,
t
/ |B(X,, X,)|ds < 68/ K7 + ij| Ty, Xo| [Ty, Xol. (5.10)
0

Inserting (5.10) in (5.7) and integrating the resulting bound over [0, 7] yields, for + sufficiently small (and
new constants ¢ and C' which may change from line to line),

1 7 ~ r 2 r ~

il Merar Xe|dt > cij| My, Xo |y, Xo| — CVIK™ — Cy*\/8o K™ — Cryij| Ty, Xo| |, Xol
> ij| Iy, Xo| Iy, Xo|(c — C) — CVEK™ — Cy*\/5oK"
> 0753/8KT — CVOK".

In the last inequality we have used the fact that [Ty, Xo| 2 K for some j € {1,2} when § < 1. With v
0

now fixed we may take § < to obtain, for some new constant ¢ € (0, 1),

1 /7
- / Myae Xi|2dt > 205 K2
nJo

We obtain a contradiction with (5.6) for 6; < (¢/ 2)7263/ % and so we conclude
1

n -
NE a2¢3/dp-2r _ C 3 2r

— II X, 2dt > L=A25 KT = ZA35 K

77/0 ‘ kerA-L t| = 772'7 0 27 0 s

which implies (5.5) and completes the proof. O

Proof of Theorem 5.1. Fix any r € (0,1/4) and for § € (0,1/100) and I > 2 define

Bl = {z e R": [T, 4r2]? < 0|keraz]®, (1 — 0)K? < |z? < (14 0)K?2).

aj):{l .

2 j=1.

Let

We split the set B}5< as
b ) ) )
By = By 1 U Bk o U By 3,

where
B}, ={x € B} : [y, x| < 6Y/°K"} ifje{1,2}

and
By = {z € By : min (|Iy, ], [My,a|) > 6'/°K"}.

By Lemma 2.2, to complete the proof it suffices to show that there are K, > 1, > 0, ¢, > 0, and times
{n; 5?:1 with lim ¢ o0 sup; 7;(K) = 0 so that for K' > K, there holds

0 1 s (K) 2 2r
xo € BK,] — 7’“(_[{)/0 |errAl.’13t| dt Z C*K . (511)

Due to Lemma 5.2, for all ¢ sufficiently small there is c.(0) > 0 and K, (d) > 1 so that (5.11) is satisfied
for j = 3 by taking n3(K) = K . Thus we must only consider the case where j € {1,2}.
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Let 2oy € B?(, ; for j € {1,2} and fix any 7 with r < 7 < 1/4. Suppose that the maximally unstable
eigenvalue of ijJ_ Lij @0 /[Ty, xO‘HVJ; has real part A > Apin > 0 and define, for € € (0, 1) to be chosen,

(1/2+ 7+ €) log(|y; zo|)

T =

and 7 = 7 + K 1. Let the approximate solution Y; : [0, c0) — VjL solve

4y, = (ijl LHijoHVjL)Ytdt + HV}J_ odW; (5.12)
J

By Lemma 4.1 (with Ily, 29 and V; playing the roles of z and ker A, respectively), there are K;(e) > 1 and
cj, Bj > 0 that do not depend on ¢, 7, or zq so that for |IIy, 29| > K there holds

1 /™ -
P2 [ Wl o lyal) 2 6 6513
0
Towards a contradiction, suppose that
-
E/ |errAJ_.ZUt|2dt < (STKZT (514)
0
for K > K, > 0~!. Note that since 7/7; < 1 this implies
T1
E/ |errAi$t|2dt 5 57’1K2r. (515)
0

The condition (5.2) and the fact that V; U V5 consists of deterministic equilibria imply that the equation for
zt = Ikera®: 18 exactly (4.19). Thus, using (5.15), the proof of (4.20) applies and gives

E sup |z — 20| S VOK'™r + /7 S Vilog(K)K, (5.16)

0<t<r

where in the second inequality we used the assumption that K > §~!. Define

T1
Qo = {w €eQ: / Ty 2 |2dt < 6Y/87 (log(K))? K%, sup |z — 2| < 6YAK" log(K)} .
0 J

0<t<m

Since |HVZ(].)$Q| < SUSKT by the definition of B‘IS( o it follows from (5.15) and (5.16) that for § sufficiently
small depending on 3; there holds

P(Q) > 1— % (5.17)

Obtaining estimates on Y;(w) — IIy, 124 (w) for w € g as in proof of Lemma 4.2 (we make the choice
J

€ = 1/4 — 7) and then using (5.13), we deduce that there is ¢y € (0, 1) depending only on ¢; so that for &
sufficiently small and K, sufficiently large there holds

1 T1 _ .
P </ [y, L (w)|dt > CoKT> > & (5.18)
0 J

T1 2

It follows that

1 T1 co _ B 1 T1 o ~ ﬁ
p <71/o Myeerar @e(w)|dt > 2KT> > ZJ or P </0 Ly, ze(w)|dt > §KT > Zj

(5.19)
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In the first case, we immediately obtain a contradiction to (5.15) for § sufficiently small depending on ¢
and f3;. In the second case, define the stopping time

F(w) = inf {t > 0 : min(|y, x|, My ae]) > %”KF,K/z < |zy| < 2K, My qr 2 ]? < 51/8K2f} .
Now, using [I1y, ,, zo| < SY8K™ and [T, 41 20| < VOK” we can show

sup | arxe| < VK" + K1+T51/87'1 + 71K sup |z —z0| + sup |Wy
0<t<m 0<t<m 0<t<m

2 -
+ 11 < sup |zt —2’0’) —i—/ ‘errALfEtht
0

0<t<m

1 1/2
+ ﬁ( sup |z — 2o —|—K> (/ \errAth\th> .
0

0<t<m

It follows then from (5.15), (5.16), and K > §~! that for § sufficiently small there holds

P ( sup |y qewe| < 6Y 16(1og(K))3K’”> >1- Bi (5.20)
0<t<m 32

By Lemma A.1, (5.20), (5.16), and assuming the second case in (5.19), for K, sufficiently large depending
on f3;, r, and 7 we have

P(f' <rT 1) > ﬂSJ
Thus, by Lemma 5.2 and the strong Markov property, there is ¢{, depending on ¢y so that for all ¢ sufficiently
small and K sufficiently large (both depending only on cg) there holds

1 T 1 T—TINT
E/ Ty a2 ¢ |2t > // D(x pr gt )dtdP
T Jo T JaJo

16 K
> -2 gnf D(x>(w))dt
>t [ A
L LBy g 5 B

TK 8 log(K)

Taking K large enough so that K27 log(K)~! > K?" yields a contradiction with (5.14) for § small enough.
Overall, we have shown that for all § sufficiently small there are K, > 1 and ¢, > 0 so that, for j € {1, 2}
and K > K,,
1 7(z0)
)E/ ‘errAthPdt > C*KQT.

0

)
Ty € BKJ — (o

The desired bound (5.11) then follows for j € {1, 2} by setting

m(K) =mn(K)= (J;Og(?

for some C' sufficiently large. O
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5.2 Applications to the Sabra shell model and Galerkin Navier-Stokes

In this section we first apply Theorem 5.1 to prove Theorem 1.4 on the 2d Galerkin Navier-Stokes equations
and then we give an application of Theorem 5.1 to the Sabra shell model.

Proof of Theorem 1.4. Note that the nonlinear structure implies that L, = II;,. L,1I;,. for any x € V; and
J J

J € {1,2}. By translation invariance, the linearization around A cos ¢x; + Bsin fx; is unitarily conjugate
to the linearization around v/ A% + B2 cos fz1, and so the uniformity of eigenvalues and || P|| of the Jordan
canonical form follows immediately on each V; once it is verified for cos £z (by discrete rotation invariance,
the analysis in the 9 direction is also the same as the z; direction). That for any ¢ > 2, the linearization of
cos £z1 in T2 has an eigenvalue with positive real part in the conservative system is a well-known variation
of the classical results of Meshalkin and Sinai [29]. It remains only to verify the conditions (5.2) and (5.3).
For v1 = acosfx; + [Bsinfx; and vy = sin kxo (this is sufficient by translation invariance), we may
compute

k 4
B(vi,v2) + B(va,v1) = Z(—a sin fxq 4 [ cos lx1) cos kxg — z cos kxo(—asinlxy + B coslxy)

= <I; — ]i) (—asinlzy + B coslxy) cos kxs.

For our choices of &,/ conditions (5.2) and (5.3) follow immediately and hence Theorem 5.1 applies. ]

The Sabra shell model was first introduced in [25]. Here we consider the model truncated to finite
dimensions. Denoting the dependent variable (ug, ..., u;) € C’, the equation reads

4

— 522, + G d W, i ™D,

. _ 0 6—1
duy, =i2™ (Um+1um+2 — 3Um—1Um+1 — quUml)
2 (5.21)

where ¢y, pn, are real parameters and § € (0,2) \ {1}. The boundary conditions are u_; = ug = uj41 =
uj42 = 0. When § € (0,1) the system has just one positive invariant and is considered a model for 3d
turbulence. If instead 0 € (1, 2) then there are two positive invariants and the equations are meant to capture
properties of 2d turbulence. For additional discussion of Sabra and other shell models, see [12]. Rewriting
the system in real variables wu,, = a, + ib,,, and introducing parameters c,, € {0, 1} that determine whether
or not there is damping on shell m, we obtain the system

day, = 2m(am+2bm+1 - am+1bm+2) + 52m71(am—lbm+1 - am+1bm—1)
+ (60— 1)2m_2(am,2bm,1 + am—1bm—2) — PRI qdet(m;R),
dby, = 2m(am+1bm+2 + bm+1bm+2) - 62m71(am—1am+1 + bm—i—lbm—l)

— (5 = 1)2™ 2(am—2am-1 — bm—1bm—2) — 622 b + prdW, ™.

(5.22)

Theorem 5.3. Assume that § € (1/4,1), ¢; = ca =0, ¢y > 0for 3 < m < J, and G, pm, # 0 for all m.
Then, system (5.22) admits a unique invariant measure [ and

/ (la| + [b])?u(da, db) < oo
RQJ

foreveryp < 2/3.

34



Proof. We denote the solution (a,b) = (a1,...,az,b1,...,b5) € R’ x R’ and the natural canonical basis
vectors by {Gm }7,_1, {bm}7,_,. Observe that (5.22) takes the form of (1.1) with

kerA = {(al,ag,o, ...,0,b1,00,0, ... ,0) tap,by,az,be € R},

and the drift B given by
~ J ~ ~ ~ ~
B ((a, b), (a, b)) = Z 2" (@m+2bm+1 — Gmt1bm+2) + 52m71(am—1bm+1 — am+41bm-1)
m=1

+ (5 = 1)2™ 2(ay—_2bm—1 + Am1bm—2)]dm
( ) (am—2bm—1 1bm—2)] (523)

J
+ Z [Qm(am+1bm+2 + bm+1bm+2) - 52m_l(am—lém-kl + bm-i-lbm—l)

— (5 — 1)2m’2(am_2am_1 — bm_li)m_g)]gm.
We will verify the conditions of Theorem 5.1. For j = 1,2 let
V; = span{a;, b; }.

It is immediate from the lack of self-interactions in (5.23) that each V; consists entirely of deterministic
equilibria, and so the first condition in Theorem 5.1 is satisfied. Similarly, since the m’th coordinates of
(a,b) and (&, b) do not show up in B - i, or B - by, it is easy to see that (5. 2) is satisfied. To verify the lower
bound (5.3) we compute, for v; = a1a; + b1b1 € V1 and vg = asao + b2b2 eV,

Myeeras (B(v1,v2) + B(vz, 01))| = [ 05, 53 (B(01,02) + B(vg, v1))]
= |2(6 — 1)||(a1bg + agb)as — (araz — biba)bs]
= [2(6 — 1)|v/(a1bg + agh1)? + (araz — biba)?
= |2(5 )I\/ a2 + b2)(a2 4 b3)
=1[2(6-1)

It remains only to check the second and third conditions. This requires computing the linearized operators
Iy, . L 10, 1 for o € V; with |z| = 1. For j = 1, let
J J

[[v1]|vz].

r = (a1,0,...,0,b1,0,...,0)

for @, by € R satisfying y/a? + b3 = 1. For general (a,b) € R’ x R’ we compute

0 0 —2661 25&1 az
B 0 0 —20a; —28by | | bo

HvﬁLl‘HVﬁ(a’ b) = 2066 — )by 2(5 — 1)a 0 0 az |’
—2(6—-1a; 2(6—-1b 0 0 bs

with the components not shown being zero. The eigenvalues and associated eigenvectors of the matrix above
are given by

—ay 5f1 l_)l 5§1
7 ) — )
Mg =20/0(1=96), Ey = bin/s=t |, [an/s= | ), (5.24)
0 1
1 0
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— )
a1/ 5=1

)\_71 = —2\/5(1 — 5), E_,l =
0
1
For & = G5dsy + boby with |z| = 1 we similarly have
0 0 2by
0 0 2a9
] 200-1)by 2(6—1)ag 0
Iy Lol (a,b) = —2(6 — 1ag  2(6 — 1)by 0
0 0 A(6 — 1)by
0 0 —4(5 — 1)ay

Defining cs = 56 — 462 — 1 > 0, the eigenvalues and associated eigenvectors are given by

7 /s _ 5
—b1\/ 553 , | T4/ 51

1
0

—2a9 0
20y 0

0 —45by

0 —46as
4((5 — 1)@2 0
46 —-1)by 0

—4asbo6 2b26—2a36
_o0—1 51
2b26—2a36 4G9bod
0—1 o—1
)\U = Oa EO = 0 ) 0 )
0 0
0 1
L 1 0
( —(_1252 B%—EL%
-1 2(6—1)
bgfag 5,2?)2
2(6—-1) -1
—0a2+/Cs ba\/cs
Ao =24/c E, 5= 2(0-1) 2(3—1)
+2 » T2 bhya || ave | [
2(6—1) 2(6—-1)
0 1
1 0
and ~ ~
—aobo b%772
-1 2(5-1)
b%_a% &2?)2
2(6—1) d—1
a2+/Cs —ba2./Cs
A2 =2c;5, E_o= 20-1) |, | 2(6-D
—b2,/Cs —a2,/Cs
200—1) 200—-1)
0 1
1 0

0
0
4éas
—46by
0
0

(5.25)

aj
b1
as

a4
by

(5.26)

(5.27)

(5.28)

Since, for each j, Ay ; is positive and independent of x € V; N S"~1, we see that the third condition of
Theorem 5.1 is satisfied. Lastly, (5.1) follows from the formula for the eigenvectors given in (5.24)-(5.28).

This completes the proof of Theorem 5.3. O
6 Lorenz-96 with a two-dimensional kernel
In this section, we consider the stochastic Lorenz-96 system for z; = (x41,...,2,) € R (with n > 6)
defined by ‘

dry; = —ajxy jdt + Bj(xy, x,)dt + crdet(]), 6.1)
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where 4 ), = ¢ 4, (periodic conditions), a; > 0, and
Bj(l‘, :E) = ({L‘j_;,_l — xj—Z)xj—l- (62)

Consistent with our earlier notation, we write A = diag(ay,...,a,). A consequence of Theorem 4.5
is that (6.1) admits an invariant measure when a; = 0, 0,1 # 0, and a; > O forall 2 < j < n.
Indeed, in this case B(z,z) = 0 for every x € kerA and moreover it is straightforward to check that for
z = (20,0,...,0) € kerA the linearized operator L:- is Jordan block unstable with

(1210 S [Pt S 1+ (|21 and [P te, ] 2 |2t

where e, 1, which denotes the usual canonical basis vector, is a generalized eigenvector that is the last
element of a Jordan chain. Our goal in this section is to show that an invariant measure can in fact also be
constructed using our methods in the more degenerate case where a; = as = 0. The main result is stated
precisely as follows.

Theorem 6.1. Let 6 < n < oo. The stochastic Lorenz-96 system with a1 = az = 0 and a; > 0 for
3 < j < n admits an invariant measure (., provided that oy,0n—1 # 0. Moreover, we have the moment

bound
/ 2P pua(d) < o0
Rn

Sorevery 0 < p < 1/3.

As in the earlier sections, we will prove Theorem 6.1 by verifying Assumption 1 using suitable approx-
imation arguments for solutions in the vicinity of ker A. To this end, for K > 1 and § € (0, 1) we split the
set

Brs = {z € R" : [ g 2| < 0|Teraz|”” and K/2 < || < 2K}

as
1 2 3
Bk = BisU B s U Bk s,

where, for some small parameter d; € (0,1),
B}(’(; = {$ S BK75 : |1:1| > K/V 32},

B%(,é = {x S BK’(; : (51K1/7 < ]x1| < K/\/ﬁ},

and
Bjs={x €Bgys:|x1| < SKYT

Note that |z5| > K/+/32 for 2 € B%Q; U B;’w.

In the region B}, s, we can use a treatment similar to that used for Jordan block unstable equilibria in
Theorem 1.2. Speciﬁéally, we show that a large 1 induces a significant growth in x,, through the interaction
&y = T1Tn—1+.... He we rely on the fact that z,,_1 is being driven by a Brownian motion (since 0,1 # 0),
which ensures it is non-trivial with high probability. In the region B%( 5» We can use a treatment similar to
that used in Theorem 1.1, by noting that ©3 = —x122 + ... and hence if both x1 and z9 are sufficiently large,
then x3 will rapidly grow. The region B% 5 1s the region that is most different from previous cases. Here,
the Jordan block instability of the equilibrium ez excites x1, which is still in ker A. Heuristically, we show
that solutions which start in B% 5 are basically ejected into B%Q 5» Where they are subsequently ejected into
(kerA)*.

By Lemma 2.2, Theorem 6.1 is a direct consequence of the following time-averaged coercivity estimates.
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Proposition 6.2. Ler 7(K) = 13(K) = K_4/7 and 7(K) = K~'. There exist K, > 1, ¢, > 0, and
9,01 € (0,1) sothat if K > K, and zy € B%((; then

! m II 2d K7
— t > c, ,

T] (K) A ‘ kerAL xt’ &
Consequently, Assumption 1 is satisfied withr = 1/7.

As discussed above the region B;’( 5 1s the most involved. The main difficulty here is to deduce growth
of I, 4 X; for a suitable approximate solution when Xg € B;’{ 5» as proved in the next lemma.

Lemma 6.3. Let X; solve

dX1p = Xy1 Xy p1dt + 0, dW™

dX; 1 = X0 X, pdt

dX;5 = —X;1 Xy odt

dX; =0 j&{n,1,3}.

(6.3)

with initial condition Xy € B:;’(ﬁ and some o, # 0. For § and 6, chosen sufficiently small, there are
constants 3, ¢, > 0 (independent of Xo) so that for all K sufficiently large and 7 = K—*/7 there holds

P <1/ | X 3]dt > c*K4/7> > B. (6.4)
T Jo

Proof. Without loss of generality we set anth(") = dW; for a standard Brownian motion ;. We also

write r = 1/7, so that 7 = K %" and moreover from the definition of B})’{ 5 We have

n
D I Xo* < 0% (1 X0 + [ Xo2l?)" < 482K, (6.5)
j=3
| Xo4| < 01K (6.6)
For R > 1 to be chosen we split into the cases | Xy ,| > Ry/7 and | Xo,| < R+/7. In the former, we
approximate X; , ~ Xy, and in the latter we approximate X; , ~ Xo, + W;.
Case 1 (| Xo,| > R/7): Write X, ,, = X, + E¢, where E} is an error to be controlled. Substituting
this into the system we have
dEy = X1 X0 p—1dt + dWy
dXi1 = Xo2(Xon + Ep)dt (6.7
dX;5 = —X;1 X024t
Thus,

¢
X1 = Xo1 +tXo2X0n + X0,2/ Eqds (6.8)
0

and
2

t t
Ey =tX0n-1X01 + 5X0,n—1X0,nX0,2 + Xo,n—1X0,2/ (t — s)Egds + W.
0

Recalling | X| < 2K and using the bounds (6.5) and (6.6) we have

t
|Ey| < 2061t K" 4+ 25t* K" X 0| 4+ 45t K"+ / |E,|ds + |Wyl, (6.9)
0
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and therefore

t
E sup |Ey| < 2t661 K + 26t> K| Xo | + 40t KT / E sup |Ey|ds+Vt (6.10)
0<t'<t 0 0<t'<s

By Gronwall’s Lemma, | X ,| > RK~%/7, and the definitions of 7 and 7, it follows that

E sup |F;| < (2706, K" + 2672 K| X0 | + V/T) exp(4072 K1)
0<t<r

< O(K™%7 46| Xo,0])
< 2C max (5, R )| Xo.nl,

where C is a constant that does not depend on &, d;, or K. Putting in R = §~/2 we conclude

E sup |Ey| <2CV5|Xqn)- (6.11)

0<t<r

The goal is now to use (6.11) to show that X; 3 must grow. By (6.11) and Chebyshev’s inequality, for §
sufficiently small we have

1
P < sup |Ey| < 51/4|X0,n|> > . (6.12)
0<t<r 2
Suppose that w € €2 is such that
sup |Ey(w)| < 6Y4| Xonl. (6.13)

0<t<r

We will show that in this case, for ¢ sufficiently small, there is ¢, € (0, 1] (independent of w, X, K) such
that

/ | X 3(w)|dt > .t K7, (6.14)
0

which is sufficient to imply (6.4) with § = 1/2. From (6.8) and (6.13) we have (suppressing now the
dependence on w from the notation)

1 X1 — tX02Xo0.n| < |Xoa| + 64 Xo2|| Xonlt ¥t e [0,7]. (6.15)

Applying this bound in the formula for X 3 and using | X 3| < K" we get, for t € [0, 7],

t t
| X3 > '/ 5X3 9 Xonds| — |X0,2|/ (1Xo] + 564 Xo2|| Xonl)ds — K"
0 0

2
> | Xoa* [ Xon| = t1Xo2|| Xoa| - V42| X0 2* | Xon| — K7
tz 2 T
2 - 1 Xo2"[Xon| — | Xoz|| Xo| — K7,
where in the last inequality we have assumed that ¢ is sufficiently small. We thus have

2
-
| Xt 3] > E‘X0’2|2|X0’n‘ — 7| Xo,2||X01| — K" Vte[r/2,7]. (6.16)

Using (6.16), |Xo1| < K", 0~ Y2K 2" < |Xg,| < 26K", and K/+/32 < | Xg2| < 2K it follows that for
t € [r/2,7] = [K~* /2, K~ and § sufficiently small there holds

L S oK1 g s L5—1/2K4/7 _ KT

Xa>2 0
[Xisl = 512 = 512

39



where we have noted that the choice » = 1/7 implies 2 — 10r = 1 — 3r = 4/7. Hence, for ¢ sufficiently
small we have | X; 3| > K*/7 fort € [7/2, 7], and so

T 1
/ | X, ldt > 7 K7,
0 2

which proves (6.14).
Case 2 (| Xo,,| < R\T = 6~1/2,/7): Let Xin = Xon + Wi + E;, where again E; is an error to be
bounded. Computations similar to those of Case 1 give

E sup 121 < CRé < CV5, 6.17)

0<t<r

where C'is a constant that does not depend on § or K. Now we justify the growth of X; 3, which is also
similar to above. We have

t t
Xt,l = X071 + X072X07nt + X()72 / Wsds + X()72 / FE.ds. (6.18)
0 0

Without loss of generality we may assume that X, 2Xo, > 0. By the scaling and support theorems for
Brownian motion, there exists o > 0 that does not depend on K such that

t
P (XQ2 / Wids > | Xoo|m3/? Vit e [r/4, ﬂ) > a. (6.19)
0
By (6.17) and (6.19), if § is small enough we have

t
P (XO,Q/ Wids > | Xoo|m>/? Vte[r/4,7] and sup |E(t)|/Vt< 51/4)> > (6.20)
0

«
0<t<r -2

Let w € € be such that the two bounds in (6.20) hold true. We will prove that for such an w one has
T
/ X a(w)|dt > et KV
0
for c, sufficiently small. First, there is nothing to show if

.
.

X dt > ——K*7
/OI ta()ldt 2 oo K,

so suppose otherwise. In this case, there exists ¢y € [7/4, 7/2] is such that | Xy, 3| < K*/7/2000. Then, for

t € [to, 7] there holds
t s
/ X2, <X07ns + / Wslds’) ds
to ’ 0

t S , K4/7
— X X X Eglds' | ds —
/to | X0,2] < o1l +1 o,g!/O |Ey| s) 5= 5000

252 _ KV
2000

| Xy 3] >

> | Xoa[?(t — to)™/? — t|Xo || Xoa| — 64| X0,

where in obtaining the final inequality we have noted that X ,, and |, 05 W ds' have the same sign for s > ¢
since X X022 > 0. Taking ¢ sufficiently small and ¢ € [37/4, 7] to absorb the third term by the first we
obtain

K47 K4/7
— >

> > — 25, K7, 6.21)
7 256 2000 — 512



where we have recalled also that K?/32 < X§, < 4K?, |Xo1| < 6K",and 2 — 10r = 1 — 3r = 4/7. For
&y sufficiently small we conclude that | X; 3| > K*/7/1024 for t € [37/4,7]. Thus,

P /T]X it > —gT) > @
; o
o = 4006 =2

which completes the proof. O

We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2. Let xg € B s for K to be taken sufficiently large and d, ; chosen appropriately.
As before, set = 1/7 for the sake of simplifying the presentation of the estimates. Let 7;( /) be as given
in the statement of the proposition. There are three cases to consider.

Case 1 (zg € B}(’ 5): Consider the approximate solution X; defined by

dXp = X4 1 Xy pordt + o d W™
dXip1 = op_ydW," "V (6.22)
dXt,j =0 .7 g {TL, n— 1}

and initial condition Xy = x¢. We have
t
Xt,n = XO,n + tX071X0’n_1 + O’n_1X071/ Ws(nil)ds + O'nWt(n).
0

Similar to as in Case 2 from the proof of Lemma 6.3, using the support theorem for Brownian motion we
can show that ,
P (|Xin| > K7{* Vte[n/2,m]) 2 a (6.23)

for some o > 0 that does not depend on K or §. Consequently, since K Tf P oK T,

1 [m 1
P (/ | Xy |t > 2K’“> > a. (6.24)
0

1

Suppose now for the sake of contradiction that
1 n Tl
E/ L, 40 2| ?dt = EZ/ |20 |* < ST K" (6.25)
0 —J0
7=3

The error X;,, — x4, solves
Ad( Xt — Ten) = 201 (Xen—1 — Ten—1)dt + T n—1(x01 — T¢1)dt + any ndt + T4 2Tt n—1dt  (6.26)

with zero initial condition, and so

t t
|Xt,n - xt,n| < 2K/ ‘Xs,n—l - xs,n—l’ds +/ ’xs,n—l”xo,l - $571|d8
0 0 (6.27)

t t
4 lan] / T e nlds + / Zam—2l| s n_1ds.
0 0

We now obtain bounds on | X} ,,—1 — z¢n—1| and |xo1 — x¢1|. By (6.25) and E|z;| < K for t < 1 we have

E sup |zo; — 2] < C (Vor K™ 4 yr) < C(Va + KITHK!, (6.28)

0<t<r
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Moreover, a straightforward application of (6.25) yields

E sup [Xin 1 —Ttn 1] <CVIK™2. (6.29)

0<t<m

Let

n Eal
0 = wGQ:Z/ s ;2ds < VK2 )
j=3"0

Qo = {w €Q: sup |zo1 — 1] < KlsT},
0<t<m

Q3 = {w €Q: sup [Xip1 —2pp-1]| < 51/4K—2T} ;
0<t<m

Qleﬂﬁgﬁﬁg.

By (6.25), (6.28), and (6.29) for ¢ sufficiently small and K sufficiently large we have P(Q) >1—a/2.
Now, by (6.27) and 7| = K~ for w € ) we have

sup | Xppn — o] < COYAKYOT = C5VAKT,
OStSTl

and hence "
P </ | Xy — Ty p|dt < 71051/41{’") >1- % (6.30)
0

Combining (6.24) and (6.30) we see that for § sufficiently small there holds

1 T1 (e}
P dt > —K" | > —.
([ i )

This is enough to yield a contradiction for § sufficiently small.
Case 2 (zg € B%(’ 5): Consider the approximate solution X; defined simply by

dXy3 = — X1 X 0dt
t,3 1582 . 6.31)
dXtJ' =0 Vi 75 3
with initial condition Xy = x¢. We have then
X3 = Xo,3 —tXo,1Xo0,2
so that the bounds on zg € B%( 5 imply
1 T2 T2 1 61
— Xisldt > =6 KT K" = = -6 ) K".
72/0 [ Xealdt = 5401 (64
Taking § < d; yields
L[ | X, 5|dt > OL g (6.32)
o L DT :

The error satisfies

d(Xt73 — l't’g) = (:L't71 — 1’071)1}726& + :E071(:Et72 — :L'og)dt + a3$t73dt — ZL't’4{L‘t72dt — Ugth(g). (6.33)

42



Supposing for contradiction that
T2 n T2
E / Mygearze*dt =B / |20 |* < S K" (6.34)
0 —J0
J=3

we easily derive

E sup |zi1 —xo1| +E sup w12 — zo2| < C(\/STQK1+T + 1) < Cmax(\/g, K;l/Q)KT.
0<t<mo 0<t<ms

Therefore, choosing K, = 6! and defining

Q ={weQ: sup |z —xzoa|+ sup |zpo — zog| < 6YVAKT},

0<t<m2 0<t<my
Q={we: sup |og|W?] < 6V4KT},
0<t<mo

n To
Qs ={we: Z/ |2 4| 2dt < Vo KT},
j=3"0

we have P(Q; N Q2N Q) > 1/2 for § taken sufficiently small. Let w € 1 N Q2 N Q3. Returning to (6.33)
we obtain

sup | Xiz(w) — e 3(w)] < C\AKT (6.35)
0<t<7mo
Hence,
T2 1
P < / 1 Xy 3 — w3ldt < 07251/41(7“) > (6.36)
0

By choosing § < 511, (6.36) and (6.32) combined are enough to yield a contradiction.
Case 3 (zg € B}s{ s): Now we turn to the final case. Let X; be as given in Lemma 6.3 and define
Zy; = Xtj — x¢,5. Observe that

{dl‘t,n = xO,n—ljt,ldt + $t,1($07n—1 - xt,n—l)dt + anTipn + Jf't,n—QfEt,n—ldt (6.37)

_ _ 1
AT = 202T4ndt + T4 (202 — Te2)dt + Ty 124 pdt — Ulth( ),

Let
F(t) = xt,l(xo,n—l - xt,n—l) + anTtn + Te,n—2T¢n—1,

G(t) = zyn(®02 — T1,2) + Ton—1Tt s

and S(t) be the group generated by the corresponding (constant) linearization matrix:

S(t) == exp (t <$g’2 x0’8‘1>> .
(2:) = /0 St s) (gEZD ds — /0 St s) (01 d;/g)) : (6.38)

Note that since 73K (1+7)/2 < 1, for any s < ¢ < 73 there holds

I1S(t — 5)|| < exp <(t — )/ w0702 ) < exp ((t - S)CK(1+T)/2) <1 (6.39)
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Thus,

2
t 0
E su /St—s <my=K* 6.40
S ) (t—s) (aldWs(l)) 3 (6.40)
Suppose now for the sake of contradiction that
T3 1
E/ > JaelPdt < 63K 6.41)
0 -
7=3

For R > 1, let 2y C () be the set where the following bounds hold:

t 0
St — <R
| st=s) <01 dWsm)‘ < Ry,
T3 T
/ Z ‘iL't,det S \/ngKQT,
0o =

sup |Wi| < Ry/73,

0<t<rs

sup |ze1] < (5%/4 + OVH K 1.
0<t<73

sup
0<t<r3

By (6.40), (6.41), and

E sup |zi1| SOK" + VoK"Y 4+ 73 < (01 + VO KY + K%,
0<t<t3

for R, K sufficiently large and 4, 0; sufficiently small we have P(€y) > 1 — /2, where f3 is as given in
Lemma 6.3. Note that for w € )y we have the additional estimates

sup |z¢n-1 — Zon-1| < CRK ™, (6.42)
0<t<13
sup |z — zo2| < C’R(51/4KT + K_QT). (6.43)
0<t<73

Moreover, by (6.42), (6.43), (6.38), and (6.39) for w € () there holds

sup |Zypn|+ sup |Ze1] < CR. (6.44)
0<t<t3 0<t<t3

Observe now that

- - 3
d( X3 —x13) = =Tz pdt + 241 (2 — 20 2)dt + Ty 1 (242 — To2)dt — T sy 2dt + azzy 3 — Udet( ),
(6.45)
which together with the estimates above gives, for w € €,

)

sup |Xi3 —xe3| <13 osup (|Zeazea| + |xe1l|ze2 — zo2| + |ZTe1l|ze2 — zo2
0<t<T3 0<t<73

T3
3
T / (eeazra] + lasllzesl)dt + sup |osWi)|
0 0<t<t3
< CKY(6Y* + R2K[T).

This error estimate (with § taken sufficiently small and K, taken sufficiently large), together with Lemma
6.3 on the growth of the approximate solution, allows us to obtain a contradiction as in our earlier arguments.
This completes the proof of Proposition 6.2 (and hence also of Theorem 6.1).

O
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7 Stochastic triad model with non-trivial, invariant conservative dynamics
in the kernel

In this section we prove Theorem 1.6. It is sufficient to prove the result after rotating coordinates so that
kerA = {x9 = 0}. In these new coordinates, the nonlinearity becomes

T1Y3
B(z,y) = —T2Y3 . (7.1)
(w2 — 21)(y2 + 41)

Henceforth in this section, x; denotes the solution to (1.1) with n = 3, B given by (7.1), the non-negative
definite matrix A such that kerA = {xy = 0}, and o € R3*3 satisfying rank(c) = 3.

The dynamical system & = B(z,x), with B given by (7.1), has equilibria at (0,0, +a) for any a > 0
and the stable/unstable manifold of each fixed point is joined to the other via a heteroclinic connection. The
unstable manifold of (0,0, a) is tangent to ker A and the associated heteroclinic connections with the stable
manifold of (0,0, —a) lie entirely in ker A. The present example thus distinguishes itself from the previous
ones in that there exist nontrivial conservative dynamics in ker A.

As in the earlier examples, our plan to prove Theorem 1.6 is to show that the Markov semigroup gen-
erated by (1.1) satisfies Assumption 1. Again as before, we will deduce the growth required by (2.13)
by establishing it instead for a suitable approximate solution. The idea is to study the linearization of
Iyer a1 B(+, ) around Z; = (X41,0, X, 3) € kerA solving

%Xt,l = X1 X4 3

GXi3 =X} (1.2)

(Xo0,1,0, Xo,3) = Hierazo.
Since (0,0, —a) attracts all points on the circle {(z1,0, z3) € R® : 22 +23 = a?} except (0,0, a) and has an
unstable manifold perpendicular to ker A, one expects this linearization to grow exponentially fast provided
the noise has a nonzero projection onto both (1,0,0) and (0, 1,0). Besides arguments analogous to those

in previous sections used to study the linearization around (7.2), we construct a local Lyapunov function to
estimate exit times of the process from the vicinity of the unstable fixed points (0,0, a).

7.1 Local Lyapunov function
Lemma 7.1. For K > 1, let
Br = {(z1,22,23) € R®: K/2 <13 < 2K, |o1| <K, |wg| < KV}

There exists v € (0,1) such that for all K sufficiently large there is a smooth, strictly positive function
Vi : R® = R such that for x € B,

LV < —yKVk (7.3)
and
AVK ' < Vg <y WK. (7.4)
Specifically, for some R > 1 sufficiently large,
1 K |z|?
- K(1-=
Vi |$1‘XT(961) + \/»< 9 12 xp (1),

where for an arbitrary smooth cutoff ¢ : [0,00) — [0, 1] with ¢(y) = 1 fory < 1/2, p(y) = 0 fory > 1,
and ¢'(y) < 0, we define

wp(@1) = (J{Z]%xﬂ) () =1— (@xﬂ) ‘
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Remark 15. The cutoff y refers to ‘transport’ as it is in the region |z1| 2 K ~1/2 wherein the conservative

dynamics (i.e. the first order terms in the generator) will be the most significant. The cutoff xp refers
to ‘diffusive’, as it is in the region |z1| < K ~1/2 in which the noise (i.e. the second order terms in the
generator) will be dominant.

Proof. Since ker A = {x9 = 0}, there exist aj, az, az € R such that

3
A.T'VZQ:QZCL]'@IJ-.

J=1

T

Defining A = oo, we can thus write the generator as

3 3
1
=5 Z Aij(?xixj + 212305, — X230, + (z% — x%)@m — T9 Za]@xj. (7.5)

1,7=1

Note that A1; > 0 since o is assumed full rank. Let ¢ : [0, 00) — [0, 1] be a smooth cutoff with ¢(y) = 1
fory < 1/2, p(y) =0fory > 1and ¢'(y) < 0. For R > 1 to be chosen sufficiently large independently of
K, define

xr(z1) =1—¢ (@) . Vir(1) = xr(@)la| 7

For x € By we compute

A aj1x1T9
LV =—x3VkT + XT| NE + Xr e

rir3  r2a1

A + - >8 NECEERN

( “|x1|3 1] ] ) T 2
K A

5 Vkr+ ( 1|12 + |al‘|$2|> Vk,r

|21 |21
VK |2

1
+C? (ﬂ:’ ’2 +’ 3| + ‘ ) 1RK—1/2/2S|$1|SRK_1/2

K 1
+CR2| |1RK 1/2 /2< |z |<RK—1/2»

where C' is a constant that depends only on A, o, and the choice of cutoff ¢. We will continue to denote by
C such a constant, though it may change line-to-line. From the support properties of x7 and x € By we
then obtain that for R large depending only on A1y and |a;] there holds

K3/2
ﬁVKT < _7VKT+C 1RK*1/2/2§\:E1\§RK*1/2' (76)

Now define

Xp(z1) = (@g”) , Vip(z1) = XD(H?l)\/E< g |§2| )

and note that

VK
5 XD <Vkp< VExp.
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For z € By we now compute

K3/? A
LV p = TR);D <—211 — |21 25 + a1x1x2>

+0 B VR (1= B g — ara)
z1 XD 11 16R2 1 32R2 T1T3 a1r2
A Klxq|?
2 AL 1
Oxn ( 32172
KAy K5/ ) 5/4
< ———V, C
= 3Rz P 32R2 =i+ R P
/K KS /2
+ C? |1‘1| + \ﬁ|332\ 2RK*1/2§|:1:1|§4RK*1/2
K3/2

+ 0?12RK*1/2§|M|§4RK*1/27
where in the inequality we noted that x1230,, xp < 0 for z € By . Taking K large enough so that

K5/4 _ A11K3/2

R — 128R2
it follows that
KAH K5/ K3/2 K5/4
LVkp < —Grpa VKD = 32R2 Play 2+ C 75+ 5 | Lark-icy<anic-ie ()

The plan is now to add (7.6) and (7.7). Upon doing this, for K" and R sufficiently large the second term in
(7.7) absorbs the second term in (7.6) and the first term in (7.6) absorbs the third term in (7.7). In particular,
defining

Vk =Vkp+Vkr

we have

1A
LVi < Kmm( ¥ 4£2>VK (7.8)

This completes the proof. O

The next lemma uses Lemma 7.1 to obtain estimates on the exit times from neighborhoods of the north
pole equilibria 1 = 22 = 0, x3 > 0.

Lemma 7.2. Let zo € R3 satisfy
lzo| = K, o3>0, |zo1| <K, and |xp2| < SKY/A
for K > 1and é§ € (0,1). Define the stopping time
T(w) = inf{t > 0: |z, ()| > 0K, |zr0(w)] < K/}

There exists Cy > 1 so that for all K sufficiently large and ¢ sufficiently small there holds

C'ologK 1
< —= | > —, .
P<T_ o )_2 (7.9
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Proof. First note that taking at least 5% < 7/32 gives 3K /4 < z0,3 < K, so we may assume that zog € By

as defined in Lemma 7.1. Define Bg s C Bk by
Brs={zeR®: K/2 <3 <2K, |11 <K, |z <K'}

and let
T(w) = inf{t > 0: 2 (w) € Bk s}

Let Vi be as given in Lemma 7.1. By Dynkin’s formula, for any ¢ > 0 there holds
) AT
E" 5N Vi (2i07) < Vig (o) + E/ VB3 (L 4+ yK) Vi (24)ds.
0

Since zs(w) € Bk for s < 7(w), it follows from Lemma 7.1 that
Ee’th/\f' < 7—2];{3/2.

From (7.11) and Chebyshev’s inequality we obtain, for any Cy > 0,
p (% > Cop log K) < 2 [3/29C0,

Hence, for Cy > 2/~ and K sufficiently large there holds

~ ColOgK 3
P < /2= ) >
<T— K >—4

Now set t,. = Cplog(K)/K. By (7.13) and the definitions of 7 and T we have

P(r<t)> Z -P ({\a:;72| > KV n{r < t*}>

—P ({3 > 2K orzss < K/2Y N {7 < t.}),

and so to complete the proof it suffices to show that

p ({|mmy > KV {7 < t*}> +P ({zs3 > 2K orwss < K/2} N {7 < t,}) <

To bound the first term we begin by using Dynkin’s formula to obtain

tAF
E|z, 72> = |zo2|* + E/ (Ao — 224 3752 — 202|752
0

Since ap > 0 and x4 3 > 0 for s < 7 it follows that
E|zs, 0727 < |202]? + Asats < 62VEK + Aot

Thus,

1
P ({loral 2 KM} 01 {7 < t.}) < —=Blopel? <62+ OK 2,

VK

which implies
P ({lzzol = K/} {7 <1.}) <

oo
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for ¢ sufficiently small and K sufficiently large. To bound the second term in (7.14), observe that for K > 8
and 62 < 1/8 we have

P({r:3>2Kora:3 < K/2}N{7<t,}) <P < sup ||| — K?| > K2/2) .
0<t<t,
Now, for K sufficiently large, Lemma A.1 implies
1
P ( sup [[z]* — K?[ > K2/2> <2
0<t<t, 8

which completes the proof. O

7.2 Growth of approximate solution

The next lemma gives the growth of an approximate solution for initial conditions that are in the vicinity of
ker A but not too close to the north pole equilibria.

Lemma 7.3. Fixr,e,6 € (0,1/4) and let X; solve
dX;1 = X341 X3dt

Xt = —XepXeadt + 30 ooydW (7.18)
dXy3 = —X7dt

with an initial condition Xy € R? that satisfies
| Xoz2| < (1 Xo1l* + [ Xoa*)"

and at least one the bounds
X073 < 0 or ‘X()J’ > (5’X0’ (719)
There exist K.(€) > 1, Cy(€,9) > 1, ci(€,6) > 0, and 5 > 0 so that for | Xo| > K, and

_ Co(e,8) | (1/2+ 1+ €)log(|Xo|)
| Xo (1 —€)|Xol

there holds L
P < / | X 2|dt > c*rXoV> > 4. (7.20)
T Jo

Remark 16. Observe that the dynamics of Z; := (X 1,0, Xy 3) € kerA is decoupled from X;  and satisfies
|Z:* = | Zof® (7.21)
forall ¢t > 0.

Proof. By (7.21) and | X 2| < |Zy|", for K,(e) sufficiently large we have |Z;| > (1 — €/2)|X,| for all
t > 0. It follows then by (7.19) and rescaling Z; back to the unit circle that there exists C(e, d) such that
for 71 = Cp/|Xo| there holds

Xis < —(1- )Xo (7.22)

for all t > 7. Now, we may assume without loss of generality that Z?Zl azdet(j ) — dW; for a standard
Brownian motion W;. The formula for X; 5 then reads

¢ g /
Xpp = e hiXends g, 4 / e X505 gy (7.23)
0
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Since X 3 is deterministic, we have that fOT X¢,2dt is a Gaussian random variable with variance

T T T t
/ Xt,gdt — / e fg Xs’SdSX()’th / / e f; XS/VJdS/dWSdt
0 0 0 JO

T T 2
:E/ / e_fstXS’aide,dt’ ds.
0

S
Using X, 3 < | Xo| for any s and X3 < —(1 — €)|Xo| for s > 7 we obtain, for K, sufficiently large, the

lower bound
E/T /T e s Xorad gy
0 s

It follows that there are ¢, (¢, 6), 5 > 0 sufficiently small so that

2

2
E =E

_ T 201=9)Xo|(r—m1) _ 7-|X0|2T+26*1, (7.24)

p(l /T\X \dt > Xl ) 3 (7.25)
- t,2 = Cx = P. .
T Jo V/1og | Xo|
This completes the proof for K, (€) sufficiently large. O

7.3 Justifying the approximation

Theorem 1.6 follows immediately from Lemma 2.2 and the following proposition.
Proposition 7.4. Fixr € (0,1/4) and for 6 € (0,1/4) define
B = {(z1, 2, 23) € R : |20]? < 6(|z1|? + |x3)?)", (1 —80)K? <|z|> < (1+6)K?}.

For § sufficiently small there exist n(K) ~ log(K)/K, ¢, > 0, and K, > 1 so that for any K > K, large
there holds

zo € BY = g /H(K) |z 0| 2dt > ¢ K" (7.26)
n(K)  Jo ’
Proof. Let
Ss, = {x € R : 23 > 0, |x1| < &1z|}
and

B = 55, 0 {w € B ¢ aaf’ < (jaa? + s, (1 - 20)K? < [af? < (14 20)K7).

We first show that it is sufficient to prove that if ¢ sufficiently small then for every d; € (0,1/4) there is
m (K) =5, log(K)/K and ¢ > 0 so that for K sufficiently large there holds

€ B — ! /m(K)PD( )dt > cK*" (7.27)
MR T om) Sy TS |

where D : R? — R3 is defined by D(x) = |x2|?. Fix 29 € BY and let
F(w) = inf {t >0 2y(w) € Bffl} .
By Lemma 7.2 and Lemma A.1, there are §;, C; > 0 so that for all 6 small enough, if K is taken sufficiently

large depending on § there holds
. _ Cilog(K) 1
P < —2 ) >-. 7.28
<T 1< % > (7.28)
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Let now 7; and ¢ be as in (7.27) applied with §; chosen so that (7.28) holds. Define

C1log(K)
+ K .

By (7.28), the strong Markov property and (7.27), for K sufficiently large we have

n—7An
/ |xt2| dt > // 557-/\7]+t( ))dth

" P (z7(w))dt

A\

=10 .J;\

inf
T(w)SCl log(K)/K

> —m(K)K?.

The bound (7.26) then follows since 11 (K) ~ n(K).
We now prove (7.27). Let zg € B}Sfl for some 1 € (0,1/4). For € € (0,1/4) to be chosen later, define

_ Cb&,&)_+(1/2+-T+-Qlogﬂ$oD
|20l (1 — €)|zo| ’

where () is as defined in Lemma 7.3. Suppose now for contradiction that
1 T
E/|%ﬁﬁg@KW (7.29)
T Jo

for some d2 € (0, 1) to be chosen sufficiently small. Let X; solve (7.18) with initial condition x(. By
Lemma 7.3 there exists c. (€, 1), 8 > 0 so that for K sufficiently large (depending on ¢) there holds

1 T
P(/]&ﬂﬁz@mw>26 (7.30)
T Jo

and X3 < —(1 — €)|zo| forall t > 7 := Cp/|xo|. As in our earlier proofs, the plan is now to proceed by
deriving suitable estimates on the error | X; o2 — x 2]

We begin by estimating |[ITye, 4 (X; — 2¢)|. This is slightly more involved than in earlier arguments since
ITyera Xy is not constant. We denote Z; = (Z;1,0, Z¢3) = (X4,1,0, Xt 3) € kerAand Y; = X, € ker A+
and define z, and y; similarly. Moreover, for z € ker A we define the linear operator L, : R? — R3 by

I—/z(w) = errA(B(Z; errAx) + B(errAx7 Z)) = errALszerA-
The error z; = Z; — z; then solves

dit = .ZZt (Z})dt — B(it, Et)dt — B(yt, yt)dt + errAUth~

For f : [0,00) — kerA and h € R3 we write S¢(t, s)h for the solution to the problem

%th = f/f(t)th, t>s
S¢(s,s)h = h.

With this notation, z; satisfies
t ¢
- / SZ(tv 3)[B(287 ZS) + B(Z/s: ys)]ds + / Sz(t, 3>errAUdWs'
0 0
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By Holder’s inequality and Fubini’s theorem, for any 7" < 7 we have

T rt 1/2
latlzzom S ([ [ 1Szl (I + loel) dsdt) (oo + lseloaoim)

r 2 1/2
-/ i
0

r 1/2
< (s [Trealszaa) (Vo + lnlon)

0<s<Tt
2 1/2
dt> |

o

To proceed we need estimates for || Sz(t, s)||. A straightforward computation shows that the top eigenvalue
of the symmetric part of L, is bounded above by (z3 + |z|)/2. Thus, using that Z; 3 < —(1 — €)|xg| for
t > 11, we have

¢
/ Sz(t, s)UykeracdWs
0

(7.31)

t
/ Sz (t, S)errAO'dWS
0

vtz ym
1S2(t, s)|| < exp ( / Wdt’) < eCoelt=mi)elzol/2, (7.32)
Consequently,
- 1/2 T 12 Co
( sup / 1<¢||Sz(t, S)H2dt) < et </ e(tﬁ)dzoldt) <~ w2 (7.33)
0<s<7J0 - 0 Ve
and ) .
- t T ot 2Co
E / / Sy (t, ) eaod W dt < / / 1S4t ) [2dsdt < T lwoPt. (7.34)
0 0 0 Jo €

For R > 1, define
M =<weN: /
0

N ={we: / lye|?dt < /67 K?"}.
0

t 2 1/2
/SZ(t, $) HyeracdWs dt) SR\/;|CCQ|E_1/2
0

and

By (7.34) and (7.29), for R(e, 41, ) sufficiently large and d2(/3) sufficiently small there holds
P(Ql N Qg) >1-— g (7.35)
By (7.33), (7.31), and r < 1/4, for w € ©; N Qs there holds
- e e—1/2 (|15 2 2r e—1/2
lz@lizon $ K2 (1) o + VETE”) + RVTK
< e K125 2 e K12
~ e 126 Z2 0,y + R%\ﬁ
for any T' < 7. From a standard continuity argument, for K sufficiently large we have
Co
€ _
1Ze(@) 20,1 S RﬁﬁKe 172, (7.36)
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Now we use (7.36) to bound 7; := Y; — y; for w € Q1 N2y, We have

d
a@t = —Z13Yt — Zt3Yt, (7.37)
so that
t t
G— / exp <_ / zt,,gdtf) s syeds. (7.38)
0 s
Using the rough bound

t
exp <—/ Zt/,gdt/> < e(t=9)lzol

and Young’s convolution inequality we obtain

lzolT  pT
_ € _
0y S o | sl 7.39

Thus, utilizing (7.36), for w € 1 N Q2 and € small enough we have

1/24r+e Co
1F: (@) L10.7) S ) e _IR%\EKEAM‘S;MTKT
£2Co (7.40)
S 5;/4R TK".

As in our earlier proofs, (7.40), (7.30), and (7.35) together are enough to obtain a contradiction for Jo
sufficiently small. The result is that there is ¢ > 0 so that for K sufficiently large there holds

1 T
-E / |24 2|2dt > K" (7.41)
T 0

For K large and ¢ small one has 7 ~, log(K)/K, and so from (7.41) the proof is completed by setting
m (K) = Cs, log(K)/K for some large constant Cj, . O

A A basic energy estimate

The following lemma quantifies how B(z,x) - = 0 and the additive nature of the noise imply that the
energy level of a trajectory can only change a small amount in a short time.

Lemma A.1. Fix e € (0,1). There exist K.(¢) > 1, 7«(€) < 1, and C > 0 (which does not depend on ¢)
such that for 0 < 7 < 7, and any xy € R" with |xo| = K > K, there holds

Cr

P <o§§§ ||e|* — K?| > 6K2> < S (A.1)
Proof. 1t suffices to show
P <oi‘2‘<l | > (1+ €/2)|z0]* + R2> < 07'1‘23'2 (A2)
and )
P (0%13; lze]? < (1 — ¢/2)|zo|* — R2> CT|;2| (A.3)
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for some constant C' that does not depend on e. Indeed, the desired result follows immediately by taking

R = \/€/2|xg| in (A.2) and (A.3).
We begin with the proof of (A.2). By It6’s formula and B(x, z) - ¢ = 0, we have

t t n
|2 — || = 2/ s - odW, — 2/ Az zods+1 Y |oyl*. (A.4)
0 0 ij=1

Thus,
E|z;|* < |zo|* + Cot, (A.5)

where we have set C, = Zf =1 |oij |2. Using the martingale inequality followed by Itd isometry and (A.5)

in (A.4) gives
t
/ Ts-odWs| > Rz)
0

7|zo|?
R4

P ( sup |z¢]? — |zol? — Cut > R2> <P <2 sup
0<t<r 0<t<r

4 T e )
SR‘LE'/O zg - odWy §R4/0 E|z,|“ds < C (A.6)

where in the last inequality we assume that K, is sufficiently large. The bound (A.2) then follows provided

K, > +\/2C,/e.

Now we turn to the proof of (A.3). Let 2; = e

Aly, where A4 > 0 is the largest eigenvalue of A. Then,
Ay = Aadydt + M By, ) dt — AZydt + lodW,. (A7)

Since &y - e B(xy, 1) = €2 A B(xy, 24) - 2, = 0, another application of 1td’s lemma gives
d|7|* = 22 a| @) 2dt — 2A%; - Fydt + 2 M F - 0dWy 4 Cpe* aldt. (A.8)

Using A\a |32 > ATy - &4, (A.8) implies

|Z4[* > |zol® — 2 ‘/ot Ty 0dW| (A.9)
and hence for 0 < t < 7 there holds
|22 > e 227|202 — 2 /Ot e odW,| (A.10)
Proceeding as in the proof of (A.6) we obtain
P <0;It1£7 2|2 < e 22T g0 |2 — RQ) < % /OTE|1:S|2ds < CT’;Z‘Q. (A.11)
The desired bound follows provided that 7, is small enough so that e=2*4™ > 1 — ¢/2, O

No data was used or collected in this work.
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