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Abstract. We study the optimal rate of convergence in periodic homogenization of the viscous Hamilton-4
Jacobi equation uε

t + H(x
ε
, Duε) = ε∆uε in R

n × (0,∞) subject to a given initial datum. We prove that ‖uε −5

u‖L∞(Rn×[0,T ]) ≤ C(1 + T )
√
ε for any given T > 0, where u is the viscosity solution of the effective problem.6

Moreover, we show that the O(
√
ε) rate is optimal for a natural class of H and a Lipschitz continuous initial datum,7

both theoretically and through numerical experiments. It remains an interesting question to investigate whether8
the convergence rate can be improved when H is uniformly convex. Finally, we propose a numerical scheme for9
the approximation of the effective Hamiltonian based on a finite element approximation of approximate corrector10
problems.11
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1. Introduction.15

1.1. Settings. For each ε > 0, let uε ∈ C(Rn × [0,∞)) be the viscosity solution to16

(1.1)

{
uεt +H

(
x
ε , Du

ε
)
= ε∆uε in R

n × (0,∞),

uε(x, 0) = g(x) on R
n.

17

Here, g ∈ C0,1(Rn) is a given initial datum and H = H(y, p) ∈ Lip loc(R
n × R

n) is a given18

Hamiltonian that is Zn-periodic in its y-variable and satisfies19

ess inf
y∈Rn

{
|H(y, p)|2 + (n+ 1)DyH(y, p) · p

}
−→ ∞ as |p| → ∞.(1.2)20

Then, it is known that uε converges to u ∈ C(Rn × [0,∞)) locally uniformly on R
n × [0,∞) as21

ε→ 0+, where u is the viscosity solution to the effective problem22

(1.3)

{
ut +H (Du) = 0 in R

n × (0,∞),

u(x, 0) = g(x) on R
n;

23

see [21, 8]. Here, the effective Hamiltonian H ∈ C(Rn) is determined by H in a nonlinear way24

through cell problems. It is worth noting that if H = H(y, p) is independent of y, that is,25

H(y, p) = F (p), then (1.1) becomes the usual vanishing viscosity problem26

(1.4)

{
uεt + F (Duε) = ε∆uε in R

n × (0,∞),

uε(x, 0) = g(x) on R
n,

27

in which case we have H = F . Both (1.1) and (1.4) are basic and fundamentally important28

problems in the theory of viscosity solutions.29

Introducing the notation T
n := R

n/Zn, we now give a precise definition of H.30
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Definition 1 (Effective Hamiltonian). Assume (A1)–(A2). For each p ∈ R
n, there exists a31

unique constant H(p) ∈ R such that the cell (ergodic) problem32

(1.5) H(y, p+Dv) = H(p) + ∆v for y ∈ T
n

33

has a continuous viscosity solution v. If needed, we write v = v(y, p) or v = vp(y) to clearly34

demonstrate the nonlinear dependence of v on p. In the literature, v(·, p) is often called a corrector.35

It is worth mentioning that v(·, p) is unique up to additive constants.36

From now on, we normalize the corrector v so that v(0, p) = 0 for all p ∈ R
n. In fact, v(·, p) ∈37

C2(Tn) and p 7→ v(·, p) is locally Lipschitz. Further, the effective Hamiltonian H is locally38

Lipschitz.39

Our main goal in this paper is to obtain the optimal rate for the convergence of uε to u, that40

is, an optimal bound for ‖uε−u‖L∞(Rn×[0,T ]) for any given T > 0 as ε→ 0+. Heuristically, thanks41

to the two-scale asymptotic expansion,42

(1.6) uε(x, t) ≈ u(x, t) + εv
(x
ε
,Du(x, t)

)
+O(ε2).43

However, this is just a formal local expansion, and it is not clear at all how to obtain the optimal44

global bound in the L∞-norm from this.45

1.2. Main results. We now describe our main results. Let us introduce the set of assump-46

tions (A1)–(A3) given by47

(A1) H ∈ Lip loc(R
n × R

n), and H(·, p) is Zn-periodic for each p ∈ R
n;48

(A2) H satisfies (1.2);49

(A3) g ∈ Lip (Rn) with ‖g‖C0,1(Rn) <∞.50

Theorem 1.1. Assume (A1)–(A3) and fix T > 0. Then, there exists a constant C > 051

depending only on H, n, and ‖g‖C0,1(Rn) such that for ε ∈ (0, 1) there holds52

‖uε − u‖L∞(Rn×[0,T ]) ≤ C(1 + T )
√
ε,53

where uε and u denote the viscosity solutions to (1.1) and (1.3), respectively.54

The above rate O(
√
ε) turns out to be optimal in the sense that there exist particular choices55

of H and g satisfying (A1)–(A3) such that the convergence rate is exactly O(
√
ε). Quantitative56

homogenization for Hamilton-Jacobi equations in the periodic setting has received quite a lot of57

attention in the past twenty years. The convergence rate O(ε1/3) was obtained for first-order58

equations first in [5]. In [3], the authors generalized the method in [5] to get the same convergence59

rate O(ε1/3) for the viscous case considered in this paper. For weakly coupled systems of first-order60

equations, see [25]. For other related works, see the references in [5, 3, 25]. Of course, the rate61

O(ε1/3) is not known to be optimal in general.62

The optimal rate of convergence O(ε) for convex first-order equations was recently obtained63

in [35]. Moreover, we expect that for any given uniformly convex H, the convergence rate is O(ε)64

for (1.1) for generic initial data, which is stronger than the notion of optimality in this paper. We65

refer to [17] for the multi-scale setting. For earlier progress in this direction with nearly optimal66

rates of convergence, we refer the reader to [26, 36, 24, 6] and the references therein. To date,67

optimal rates of convergence for general nonconvex first-order cases have not been established.68

To the best of our knowledge, the optimal rate of convergence for periodic homogenization of69

viscous Hamilton-Jacobi equations has not been obtained in the current literature. The rate O(ε1/3)70

was obtained in [5, 3] by using the doubling variable technique, the perturbed test function method71

[8], and the approximate cell problems. The usage of the approximate cell problems introduces72

another parameter in the analysis, and as a result, the rate O(ε1/3) was the best one can obtain73

through this route by optimizing over all parameters.74

In this paper, we are able to obtain the O(
√
ε) convergence rate by dealing directly with75

the correctors. A key point is that after normalizing v(0, p) = 0, we have that v(·, p) is unique,76

and p 7→ v(·, p) is locally Lipschitz. It is worth noting that we do not require convexity of the77

Hamiltonian in Theorem 1.1.78
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Here, we will use H(y, p) = F (p) for some choices of nonlinear F to construct computable79

sharp examples. Similar results were known for linear F in the context of conservation laws [31].80

The connection between scalar conservation laws and Hamilton-Jacobi equations is well known to81

experts. Precisely speaking, in one dimension, if u = u(x, t) is a viscosity solution to ut+F (ux) = 0,82

then v = ux is an entropy solution to vt+(F (v))x = 0. The convergence rate of vanishing viscosity83

in scalar conservation laws has been well studied and the convergence rate of O(
√
ε) was known84

under suitable assumptions [19].85

Theorem 1.2. Let n = 1. Let F ∈ Lip loc(R) be such that86

{
F (p) = p for p ∈ [0, 1],

F (p) ≤ p for p ∈ [−1, 0],
87

and suppose that g(x) = max{1− |x|, 0} for x ∈ R. Then, for any ε ∈ (0, 14 ) there holds88

|uε(0, 1)− u(0, 1)| ≥ e− 1√
πe

√
ε,89

where uε denotes the viscosity solution to (1.4) and u denotes the viscosity solution to (1.3) with90

H = F .91

We would like to point out that the above g can be replaced by a smooth function (Remark92

1). Also, the proof of Theorem 1.2 leads to the following corollary.93

Corollary 1.3. Let n = 1. Assume that F ∈ Lip loc(R) and that F is linear in (a, b) ⊂ R94

for some given a < b. Then, there exists an initial datum g ∈ Lip (R) such that for any ε ∈ (0, 14 )95

we have that96

|uε(0, 1)− u(0, 1)| ≥ c0
√
ε97

for some constant c0 > 0 depending only on F and g, where uε denotes the viscosity solution to98

(1.4) and u denotes the viscosity solution to (1.3) with H = F .99

It is also straightforward to generalize Theorem 1.2 to any dimension in the corollary below,100

whose proof is essentially the same as that of Theorem 1.2.101

Corollary 1.4. Let F ∈ Lip loc(R
n) be such that102

{
F (se1) = s for s ∈ [0, 1],

F (se1) ≤ s for s ∈ [−1, 0],
103

and suppose that g(x) = max{1− |x1|, 0} for x ∈ R
n. Then, for any ε ∈ (0, 14 ) there holds104

|uε(0, 1)− u(0, 1)| ≥ e− 1√
πe

√
ε,105

where uε denotes the viscosity solution to (1.4) and u denotes the viscosity solution to (1.3) with106

H = F .107

The bound O(
√
Tε) for ‖uε − u‖L∞(Rn×[0,T ]) for the vanishing viscosity process of (1.4) was108

obtained in [12, 7, 9]. In this situation, we only need to assume that F is locally Lipschitz on109

R
n and g is bounded and Lipschitz on R

n (see e.g., [7, Theorem 5.1]). For the static cases, see110

[33, 34].111

Thus, the results of Theorem 1.2 and Corollaries 1.3–1.4 confirm both the optimality of the112

convergence rate of the vanishing viscosity process of (1.4) with optimal conditions, and the113

optimality of the O(
√
ε) bound in Theorem 1.1. See Remark 1 for Theorem 1.2 with a C2 initial114

condition for each ε > 0. Besides, we provide a generalization of Theorem 1.2 in Proposition 4.2115

in which for each fixed ε ∈ (0, 14 ), the Hamiltonian F needs not to be linear in any interval in one116

dimension at the price of nonconvexity. Note also that in Corollary 1.4, F does not need to be117

linear in any open set in multiple dimensions.118
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Note that all the Hamiltonians in Theorem 1.2 and Corollaries 1.3–1.4 are not strictly convex119

and do not have y-dependence (i.e., no homogenization effect is involved). Hence, it is natural to120

ask (I) whether the convergence rate can be improved for strictly/uniformly convex H and (II)121

how the y-dependence impacts the convergence rate.122

(I) has been investigated in the context of one dimensional conservation laws for the vanishing123

viscosity process of (1.4). It was proved that the convergence rate can be improved to O(ε| log ε|)124

for uniformly convex F under some technical assumptions [32]. In Section 4.3, we demonstrate this125

fact for the quadratic Hamiltonian F (p) = 1
2 |p|2 in any dimension for general Lipschitz continuous126

initial data. More interestingly, we showed that for any C2 initial datum g, the convergence rate is127

O(ε) for a.e. (x, t) ∈ R
n×(0,∞). For strictly but not uniformly convex F , numerical computation128

shows that the convergence rate could be various fractions. For instance, for F (p) = 1
4 |p|4 in129

Example 5, the rate of convergence for the vanishing viscosity process of (1.4) seems to be O(ε2/3).130

This suggests that there might be a variety of rates O(εs) for 1
2 ≤ s ≤ 1 for (1.4), which is a131

new phenomenon. It will be an interesting project to find an example where a convergence rate132

α ∈ ( 12 , 1) can be established rigorously.133

As for (II), it is quite challenging to conduct a theoretical analysis beyond Theorem 1.1 when134

y is present. In this paper, we will focus on numerical computations to get some rough ideas and135

inspire interested readers to work on this subject. Our numerical Examples 10 and 11 show that136

when H = H(y, p) is strictly convex in p and smooth in y, the convergence rate is similar to O(ε)137

or O(ε| log ε|). Meanwhile, when the regularity in y is merely Lipschitz continuity, the convergence138

rate seems to be reduced; see Examples 6–9.139

Finally, we discuss the construction of numerical methods for the approximation of the effective140

Hamiltonian H. In particular, we provide a simple scheme to approximate H at a fixed point based141

on a finite element approximation of approximate corrector problems. For related work on the142

numerical approximation of effective Hamiltonians we refer to [1, 11, 15, 16, 23, 27] for first-order143

Hamilton-Jacobi equations without viscosity term, and to [14, 18] for second-order Hamilton-144

Jacobi-Bellman and Isaacs equations.145

Organization of the paper. In Section 2, we use a priori estimates to simplify the settings146

of the problems. The proof of the bound in Theorem 1.1 is given in Section 3. In Section 4, we147

consider (1.4) with various choices of F and g, and obtain the optimality of the bound in Theorem148

1.1. In particular, this section includes a proof of Theorem 1.2. Numerical results for both (1.1)149

and (1.4) are studied in Section 5. The approximation of the effective Hamiltonian is studied in150

Section 6.151

2. Settings and simplifications. Assume (A1)–(A3). For ε ∈ (0, 1), let uε denote the152

viscosity solution to (1.1). Let u denote the viscosity solution to (1.3). By the comparison153

principle, we have that154

(2.1) ‖ut‖L∞(Rn×[0,∞)) + ‖Du‖L∞(Rn×[0,∞)) ≤M155

for M := R0 +maxB(0,R0)

∣∣H
∣∣ ≤ R0 +max

Rn×B(0,R0)
|H|, where R0 := ‖Dg‖L∞(Rn).156

Let us further assume that157

(2.2) ‖uεt‖L∞(Rn×[0,∞)) + ‖Duε‖L∞(Rn×[0,∞)) ≤ C0158

for a constant C0 ≥ M that is independent of ε. Note that (2.2) is satisfied if ‖Dg‖L∞(Rn) +159

ε‖∆g‖L∞(Rn) ≤ C for some C > 0 independent of ε ∈ (0, 1) thanks to the classical Bernstein160

method based on (A1)–(A2) (see, e.g., [34, Chapter 1]). In particular, (2.2) holds if g ∈ C2(Rn)161

with ‖Dg‖L∞(Rn) + ‖∆g‖L∞(Rn) <∞. Since g is merely assumed to be in C0,1(Rn) in Theorem162

1.1, we will employ a suitable mollification of g in Section 3.2 to remove the assumption (2.2).163

Accordingly, values of H(y, p) for |p| > C0 are irrelevant. Indeed, letting ξ ∈ C∞(Rn, [0, 1])164

be a cut-off function satisfying165

ξ(p) = 1 if |p| ≤ C0 + 1, ξ(p) = 0 if |p| ≥ 2(C0 + 1),166
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and introducing167

H̃(y, p) := ξ(p)H(y, p) + (1− ξ(p))|p|2 for (y, p) ∈ T
n × R

n,168

we have that H̃ satisfies (A1)–(A2) and uε solves (1.1) with H̃ in place of H. Therefore, from now169

on, we can assume that H takes the form of H̃, that is, H satisfies170

(A4) H(y, p) = |p|2 for y ∈ T
n and |p| ≥ 2(C0 + 1).171

Assumption (A4) helps us simplify the situation quite a bit as follows. For |p| ≥ 2(C0 + 1), it is172

clear that v(·, p) ≡ 0 and H(p) = |p|2. Hence, we obtain that p 7→ v(·, p) is bounded and globally173

Lipschitz, that is, there exists C > 0 such that174

(2.3) ‖v(·, p)‖L∞(Tn) ≤ C, ‖v(·, p)− v(·, p̃)‖L∞(Tn) ≤ C|p− p̃| ∀p, p̃ ∈ R
n.175

If a function h : Rn → R is Zn-periodic, we can think of h as a function from T
n to R as well,176

and vise versa. In this paper, we switch freely between the two interpretations.177

3. Proof of Theorem 1.1.178

3.1. Part 1: Proof based on (2.2). Assumptions (A1)–(A4) are always in force in this179

section. Let T > 0 be fixed. Our goal is to show that there exists a constant C > 0 depending180

only on ‖H‖C0,1(Tn×B(0,2(C0+1))), n, and C0 from (2.2) such that for any ε ∈ (0, 1) there holds181

(3.1) ‖uε − u‖L∞(Rn×[0,T ]) ≤ C(1 + T )
√
ε.182

The approach here is inspired by that in [34, Theorem 4.40]. We first show that183

uε(x, t)− u(x, t) ≤ C(1 + T )
√
ε ∀(x, t) ∈ R

n × [0, T ].(3.2)184

185

Proof of (3.2). We divide the proof into several steps.186

Step 0: We write A := R
n × R

n × R
n × [0,∞)× [0,∞). For K > 0 to be chosen and γ ∈ (0, 12 ),187

we introduce the auxiliary function Φ1 : A → R given by188

Φ1(a) := uε(x, t)− u(y, s)− εv

(
x

ε
,
z − y√

ε

)
− ω(a) for a = (x, y, z, t, s) ∈ A,189

where190

ω(x, y, z, t, s) :=
|x− y|2 + |x− z|2 + |t− s|2

2
√
ε

+K(t+ s) + γ
√
1 + |x|2.(3.3)191

Note that there exist x̂, ŷ, ẑ ∈ R
n and t̂, ŝ ∈ [0,∞) such that Φ1 has a global maximum at the192

point â := (x̂, ŷ, ẑ, t̂, ŝ) ∈ A. We fix such a choice of â and introduce Φ : A → R given by193

Φ(a) := Φ1(a)− γ
|a− â|2

2
for a ∈ A.194

Observe that Φ has a strict global maximum at the point â.195

Step 1: We show that196

|x̂− ẑ| ≤ Cε, |x̂− ŷ|+ |ŷ − ẑ| ≤ C
√
ε, |t̂− ŝ| ≤ C(1 +K)

√
ε.(3.4)197

To this end, we first use that Φ(â) ≥ Φ(x̂, ŷ, x̂, t̂, ŝ) and (2.3) to obtain198

(1− γ
√
ε)
|x̂− ẑ|2
2
√
ε

≤ ε

[
v

(
x̂

ε
,
x̂− ŷ√

ε

)
− v

(
x̂

ε
,
ẑ − ŷ√

ε

)]
≤ C

√
ε|x̂− ẑ|,199



6 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

which yields |x̂ − ẑ| ≤ Cε as γ
√
ε ≤ 1

2 . Then, we use that Φ(â) ≥ Φ(x̂, x̂, x̂, t̂, ŝ), (2.1), and (2.3)200

to find that201

(1− γ
√
ε)
|x̂− ŷ|2 + |x̂− ẑ|2

2
√
ε

≤ u(x̂, ŝ)− u(ŷ, ŝ) + ε

[
v

(
x̂

ε
, 0

)
− v

(
x̂

ε
,
ẑ − ŷ√

ε

)]
202

≤ C|x̂− ŷ|+ C
√
ε|ŷ − ẑ|203

≤ C|x̂− ŷ|+ Cε
3/2,204

which yields |x̂− ŷ| ≤ C
√
ε. Finally, using Φ(â) ≥ Φ(x̂, ŷ, ẑ, t̂, t̂) and (2.1), we find205

(1− γ
√
ε)
|t̂− ŝ|2
2
√
ε

≤ u(ŷ, t̂)− u(ŷ, ŝ) +K(t̂− ŝ) ≤ (C +K)|t̂− ŝ|,206

which yields |t̂− ŝ| ≤ C(1 +K)
√
ε.207

Step 2: For the case t̂, ŝ > 0, we show that208

(3.5) K +
t̂− ŝ√
ε

+H

(
ẑ − ŷ√

ε

)
≤ C

√
ε+ Cγ.209

Introducing ϕ : Rn × [0,∞) → R defined by ϕ(x, t) := uε(x, t)−Φ(x, ŷ, ẑ, t, ŝ), we see that uε − ϕ210

has a global maximum at (x̂, t̂). We compute ϕt(x̂, t̂) = K + t̂−ŝ√
ε
and211

Dϕ(x̂, t̂) = Dv

(
x̂

ε
,
ẑ − ŷ√

ε

)
+

(x̂− ŷ) + (x̂− ẑ)√
ε

+ γ
x̂√

1 + |x̂|2
,212

ε∆ϕ(x̂, t̂) = ∆v

(
x̂

ε
,
ẑ − ŷ√

ε

)
+ 2n

√
ε+ γε

n+ (n− 1)|x̂|2
(1 + |x̂|2)3/2 + γnε.213

Writing y0 := x̂
ε and p0 := ẑ−ŷ√

ε
, we can use the viscosity subsolution test, (1.5), (3.4), and local214

Lipschitz continuity of H to find that215

K +
t̂− ŝ√
ε

+H

(
ẑ − ŷ√

ε

)
= ϕt(x̂, t̂) +H(p0)216

≤
[
ε∆ϕ(x̂, t̂)−∆v(y0, p0)

]
+

[
H(y0, p0 +Dv(y0, p0))−H(y0, Dϕ(x̂, t̂))

]
217

≤ 2n
√
ε+ γε

n+ (n− 1)|x̂|2
(1 + |x̂|2)3/2 + γnε+ C

∣∣∣∣∣2
ẑ − x̂√

ε
− γ

x̂√
1 + |x̂|2

∣∣∣∣∣218

≤ C
√
ε+ Cγ;219

i.e., (3.5) holds.220

Step 3: For the case t̂, ŝ > 0, we show that221

(3.6) K − t̂− ŝ√
ε

−H

(
x̂− ŷ√

ε

)
≤ C

√
ε.222

For α > 0, we introduce the auxiliary function Ψ : Rn × R
n × [0,∞) → R given by223

Ψ(y, ξ, s) := u(y, s) + εv

(
x̂

ε
,
ẑ − ξ√
ε

)
+

|x̂− y|2 + |t̂− s|2
2
√
ε

+
|y − ξ|2

2α
+Ks224

+ γ
|ŷ − y|2 + |ŝ− s|2

2
.225

Note that there exist yα, ξα ∈ R
n and sα ∈ [0,∞) such that the function Ψ has a global minimum226

at the point (yα, ξα, sα).227
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Step 3.1: We first show that228

|yα − ξα| ≤ Cα
√
ε, |x̂− yα| ≤ C

√
1 + α

√
ε, |t̂− sα| ≤ C(1 +K)

√
ε.(3.7)229

We use Ψ(yα, ξα, sα) ≤ Ψ(yα, yα, sα) and (2.3) to obtain230

|yα − ξα|2
2α

≤ ε

[
v

(
x̂

ε
,
ẑ − yα√

ε

)
− v

(
x̂

ε
,
ẑ − ξα√

ε

)]
≤ C

√
ε|yα − ξα|,231

which yields |yα − ξα| ≤ Cα
√
ε. Then, using Ψ(yα, ξα, sα) ≤ Ψ(x̂, x̂, sα), (2.1), and (2.3), we232

obtain233

|x̂− yα|2
2
√
ε

≤ u(x̂, sα)− u(yα, sα) + ε

[
v

(
x̂

ε
,
ẑ − x̂√

ε

)
− v

(
x̂

ε
,
ẑ − ξα√

ε

)]
+ γ

|x̂− ŷ|2
2

234

≤ C|x̂− yα|+ C
√
ε|x̂− ξα|+ Cε235

≤ C|x̂− yα|+ C(1 + α)ε,236

which yields |x̂− yα| ≤ C
√
1 + α

√
ε. Finally, |t̂− sα| ≤ C(1 +K)

√
ε follows from Ψ(yα, ξα, sα) ≤237

Ψ(yα, ξα, t̂), (2.1), and (3.4).238

Step 3.2: We now show that, upon passing to a subsequence, there holds239

(yα, ξα, sα) → (ŷ, ŷ, ŝ) as α→ 0+.(3.8)240

In view of (3.7), there exists (ỹ, s̃) ∈ R
n × [0,∞) such that, upon passing to a subsequence,241

(yα, ξα, sα) → (ỹ, ỹ, s̃) as α → 0+. As Ψ(ỹ, ỹ, s̃) = limα→0+ Ψ(yα, ξα, sα) ≤ Ψ(ŷ, ŷ, ŝ) and using242

that, by (Step 0), the point (ŷ, ŝ) is a strict global minimum of the map (y, s) 7→ Ψ(y, y, s), we243

find that (ỹ, s̃) = (ŷ, ŝ).244

Step 3.3: Introducing ψ : Rn × [0,∞) → R defined by ψ(x, t) := u(x, t)−Ψ(x, ξα, t), we see that245

u− ψ has a global minimum at the point (yα, sα). We compute246

ψt(yα, sα) =
t̂− sα√

ε
−K + γ(ŝ− sα), Dψ(yα, sα) =

x̂− yα√
ε

+
ξα − yα

α
+ γ(ŷ − yα).247

By the viscosity supersolution test, local Lipschitz continuity of H, and (3.7), we have for any248

α ∈ (0, 1) that249

K − t̂− sα√
ε

− γ(ŝ− sα)−H

(
x̂− yα√

ε
+ γ(ŷ − yα)

)
250

= −ψt(yα, sα)−H

(
Dψ(yα, sα)−

ξα − yα
α

)
251

≤ H(Dψ(yα, sα))−H

(
Dψ(yα, sα)−

ξα − yα
α

)
≤ C

√
ε.252

In view of (3.8), passing to the limit α→ 0+ in the above inequality yields (3.6).253

Step 4: For the case t̂, ŝ > 0, we combine (3.5) and (3.6), use local Lipschitz continuity of H, and254

(3.4), to find that255

2K ≤ H

(
x̂− ŷ√

ε

)
−H

(
ẑ − ŷ√

ε

)
+ C

√
ε+ Cγ ≤ C

√
ε+ Cγ,256

which is a contradiction if γ ≤ 1
2

√
ε and K = K1

√
ε for K1 > 0 sufficiently large. Thus, t̂ = 0 or257

ŝ = 0. In either scenario, using the definition of Φ, the fact that uε(·, 0) = u(·, 0), (2.1) and (2.3),258

we have for any (x, t) ∈ R
n × [0, T ] that259

Φ(x, x, x, t, t) ≤ Φ(â) ≤ uε(x̂, t̂)− u(ŷ, ŝ)− εv

(
x̂

ε
,
ẑ − ŷ√

ε

)
≤ C

√
ε.260
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In view of the definition of Φ, letting γ → 0+ in the above inequality yields261

uε(x, t)− u(x, t)− εv
(x
ε
, 0
)
− 2K1

√
εt ≤ C

√
ε ∀(x, t) ∈ R

n × [0, T ].262

Finally, by (2.3), we conclude that263

uε(x, t)− u(x, t) ≤ C(1 + T )
√
ε ∀(x, t) ∈ R

n × [0, T ].264

To complete the proof of (3.1), it remains to show that265

uε(x, t)− u(x, t) ≥ −C(1 + T )
√
ε ∀(x, t) ∈ R

n × [0, T ].(3.9)266

267

Proof of (3.9). For K > 0 to be chosen and γ > 0 small, we introduce the auxiliary function268

Φ̃1 : Rn × R
n × R

n × [0,∞)× [0,∞) → R given by269

Φ̃1(x, y, z, t, s) := uε(x, t)− u(y, s)− εv

(
x

ε
,
z − y√

ε

)
+ ω(x, y, z, t, s),270

where ω is defined as in (3.3). By following closely and carefully the proof of (3.2), we obtain the271

desired result.272

3.2. Part II: Removal of assumption (2.2). Let T > 0 be fixed, ε ∈ (0, 1), and sup-273

pose that we are in the situation (A1)–(A3), i.e., (A1)–(A2) hold and g ∈ C0,1(Rn). Let274

ρ ∈ C∞
c (Rn, [0,∞)) be a standard mollifier, i.e.,275

∫

Rn

ρ(x) dx = 1, supp(ρ) ⊂ {x ∈ R
n : |x| ≤ 1}, ρ(x) = ρ(−x) for x ∈ R

n,276

We set ρε := 1
εn ρ(

·
ε ) and g

ε := ρε ∗ g. Then, gε ∈ C2(Rn) and we have the bounds277

(3.10) ‖gε − g‖L∞(Rn) ≤ Cε, ‖Dgε‖L∞(Rn) + ε‖D2gε‖L∞(Rn) ≤ C.278

Let ũε denote the viscosity solution to279

(3.11)

{
ũεt +H

(
x
ε , Dũ

ε
)
= ε∆ũε in R

n × (0,∞),

ũε(x, 0) = gε(x) on R
n,

280

and let ũ denote the viscosity solution to281

{
ũt +H (Dũ) = 0 in R

n × (0,∞),

ũ(x, 0) = gε(x) on R
n.

282

By (3.10) and the comparison principle, we have that283

(3.12) ‖ũε − uε‖L∞(Rn×[0,∞)) + ‖ũ− u‖L∞(Rn×[0,∞)) ≤ Cε.284

On the other hand, in view of (3.10) we have
∣∣H(xε , Dg

ε(x))− ε∆gε(x)
∣∣ ≤ C for x ∈ R

n, which285

yields that (x, t) 7→ gε(x)+Ct is a supersolution to (3.11), and (x, t) 7→ gε(x)−Ct is a subsolution286

to (3.11). By the comparison principle,287

gε(x)− Ct ≤ ũε(x, t) ≤ gε(x) + Ct ∀(x, t) ∈ R
n × [0,∞),288

which implies that ‖ũεt (·, 0)‖L∞(Rn) ≤ C. As ũεt solves a linear parabolic equation, we find that289

‖ũεt‖L∞(Rn×[0,∞)) ≤ C by the maximum principle. Then, by the classical Bernstein method (see,290

e.g., [34, Chapter 1]),291

‖ũεt‖L∞(Rn×[0,∞)) + ‖Dũε‖L∞(Rn×[0,∞)) ≤ C.292
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Thus, we can assume that (A4) holds, and the proof from Section 3.1 yields293

(3.13) ‖ũε − ũ‖L∞(Rn×[0,T )) ≤ C(1 + T )
√
ε.294

Finally, combining (3.12) and (3.13), we see that295

‖uε − u‖L∞(Rn×[0,T ]) ≤ C(1 + T )
√
ε,296

which concludes the proof.297

4. Optimality of the bound in Theorem 1.1. In this section, we consider the vanishing298

viscosity problem (1.4) with particular choices of F and g. For ε > 0, let uε denote the viscosity299

solution to (1.4), and let u denote the viscosity solution to (1.3) with H = F . If F ∈ Lip loc(R
n)300

and g ∈ Lip (Rn), then ‖Duε‖L∞(Rn×[0,∞)) ≤ ‖Dg‖L∞(Rn). Besides, it was obtained in [12, 7, 9]301

that302

(4.1) ‖uε − u‖L∞(Rn×[0,T ]) ≤ C
√
Tε,303

where the constant C > 0 depends only on n, R0 := ‖g‖Lip (Rn), and ‖F‖Lip (B(0,R0)).304

Below, we study both Cauchy problems and Dirichlet problems.305

4.1. A linear Cauchy problem. We first consider the case that F is linear in one dimension.306

Proposition 4.1. Let n = 1 and assume that H(y, p) = F (p) = p for y, p ∈ R. Let g ∈307

Lip (R) and suppose that g ≥ g(−1) on R and g(x) ≥ x+1+ g(−1) for any x ∈ [−1, 0]. Then, for308

any ε ∈ (0, 14 ) there holds309

|uε(0, 1)− u(0, 1)| = uε(0, 1)− g(−1) ≥ e− 1√
πe

√
ε,310

where uε denotes the viscosity solution to (1.4) and u denotes the viscosity solution to (1.3) with311

H = F .312

Proof. In this situation, the problem (1.4) becomes313

{
uεt + uεx = εuεxx in R× (0,∞),

uε(x, 0) = g(x) on R,
314

and the problem (1.3) becomes315

(4.2)

{
ut + ux = 0 in R× (0,∞),

u(x, 0) = g(x) on R.
316

Note that the solution to (4.2) is given by u(x, t) = g(x− t) for (x, t) ∈ R× [0,∞). We introduce317

vε : R× [0,∞) → R given by vε(x, t) := uε(x+ t, t). Then, vε solves318

{
vεt = εvεxx in R× (0,∞),

vε(x, 0) = g(x) on R,
319

and hence, vε is given by320

vε(x, t) =
1√
4πεt

∫ ∞

−∞
e−

|x−y|2
4εt g(y) dy.321

This implies that322

uε(x, t) = vε(x− t, t) =
1√
4πεt

∫ ∞

−∞
e−

|x−y|2
4εt g(y − t) dy.323
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Using g̃(x) := g(x) − g(−1) ≥ 0 for all x ∈ R and g̃(y − 1) ≥ y if y ∈ [0, 1], we have for any324

ε ∈ (0, 14 ) that325

uε(0, 1)− u(0, 1) =
1√
4πε

∫ ∞

−∞
e−

y2

4ε g(y − 1) dy − g(−1)326

=
1√
4πε

∫ ∞

−∞
e−

y2

4ε g̃(y − 1) dy327

≥ 1√
4πε

∫ 2
√
ε

0

e−
y2

4ε y dy =
e− 1√
πe

√
ε.328

Noting that u(0, 1) = g(−1) yields the desired result.329

4.2. Proof of Theorem 1.2. Recall that we consider (1.4) in one dimension, i.e.,330

(4.3)

{
uεt + F (uεx) = εuεxx in R× (0,∞),

uε(x, 0) = g(x) on R.
331

As ε→ 0+, we have that uε → u locally uniformly on R× [0,∞), where u solves332

(4.4)

{
ut + F (ux) = 0 in R× (0,∞),

u(x, 0) = g(x) on R.
333

Proof of Theorem 1.2. We first show that u(0, 1) = 0. As F (0) = 0 and g ≥ 0 on R, the334

function ϕ ≡ 0 is a subsolution to (4.4), which yields u(0, 1) ≥ 0. In order to show that also335

u(0, 1) ≤ 0, let us introduce h, h̃ : R → R given by h̃(x) := x + 1 and h(x) := max{h̃(x), 0} for336

x ∈ R. Let ρ ∈ C∞
c (R, [0,∞)) be a standard mollifier, i.e.,337

∫ ∞

−∞
ρ(x) dx = 1, supp(ρ) ⊂ [−1, 1], and ρ(x) = ρ(−x) for x ∈ R.338

For δ ∈ (0, 1), let ρδ := 1
δρ(

·
δ ) and set hδ := ρδ∗h. Note that hδ ≥ 0 as h ≥ 0, and hδ ≥ ρδ∗h̃ = h̃ as339

h ≥ h̃. Hence, hδ ≥ h ≥ g on R. Besides, 0 ≤ (hδ)′ ≤ 1 on R which follows from (hδ)′ = ρδ ∗h′ and340

0 ≤ h′ ≤ 1 a.e. on R. Introducing ψ(x, t) := h(x−t) and ψδ(x, t) := hδ(x−t) for (x, t) ∈ R×[0,∞),341

we have that ψδ(·, 0) = hδ ≥ g on R and, using that F (p) = p for p ∈ [0, 1],342

ψδ
t (x, t) + F (ψδ

x(x, t)) = −(hδ)′(x− t) + F ((hδ)′(x− t)) = 0,343

i.e., ψδ is a supersolution to (4.4). Since ψδ → ψ locally uniformly on R × [0,∞) as δ → 0+, we344

deduce that ψ is also a supersolution to (4.4). In particular,345

u(0, 1) ≤ ψ(0, 1) = h(−1) = 0.346

Thus, u(0, 1) = 0.347

Next, we construct a subsolution to (4.3). We set348

φε(x, t) :=
1√
4πεt

∫ ∞

−∞
e−

|x−y|2
4εt g(y − t) dy(4.5)349

and recall from the proof of Proposition 4.1 that φεt + φεx = εφεxx in R × (0,∞) and φε(·, 0) = g350

on R. Since |g′| ≤ 1 a.e. on R, we note that |φεx| ≤ 1 in R × (0,∞). Using that by assumption351

F (p) ≤ p if |p| ≤ 1, we find that352

φεt + F (φεx)− εφεxx ≤ φεt + φεx − εφεxx = 0 in R× (0,∞).353

Therefore, φε is a subsolution to (4.3) and by the comparison principle we have that uε ≥ φε.354

Hence, for ε ∈ (0, 14 ) there holds355

uε(0, 1) ≥ φε(0, 1) ≥ e− 1√
πe

√
ε,356

where the second inequality follows from Proposition 4.1 applied to φε.357
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Remark 1. Fix ε ∈ (0, 15 ) and α ∈ (0, 1
10

√
ε). In the situation of Theorem 1.2, if we replace358

the initial condition g by359

gα := ρα ∗ g ∈ C∞(R),360

where ρα := 1
αρ(

·
α ) with ρ as in the proof of Theorem 1.2, then we still have that361

uε(0, 1)− u(0, 1) ≥ e− 1

2
√
πe

√
ε.362

Indeed, as gα(−1) ∈ (0, α) and gα(x) ≥ 1 + x for all x ∈ [−1,−1 + 2
√
ε] ⊂ [−1,−α), we have363

in view of the proof of Proposition 4.1 that uε(0, 1) ≥ e−1√
πe

√
ε and that u(0, 1) = gα(−1) < 1

10

√
ε.364

Note that we still have gα ∈ Lip (R) with ‖gα‖L∞(R) ≤ 1 and ‖(gα)′‖L∞(R) ≤ 1.365

We now provide a generalization of Theorem 1.2.366

Proposition 4.2. Let n = 1 and ε ∈ (0, 14 ). Let m > 1 be a constant such that367

1− 1

m
≤ e− 1

2
√
πe

√
ε.368

Let F ∈ Lip loc(R) be such that369

{
F (p) = 1

mp
m for p ∈ [0, 1],

F (p) ≤ p for p ∈ [−1, 0].
370

Assume that g(x) = max{1 − |x|, 0} for x ∈ R. Let uε denote the viscosity solution to (1.4) and371

let u denote the viscosity solution to (1.3) with H = F . Then,372

|uε(0, 1)− u(0, 1)| ≥ e− 1

2
√
πe

√
ε.373

Proof. First, we note that F (p) ≤ p if |p| ≤ 1. Thus, by the last part of the proof of Theorem374

1.2, we still have uε ≥ φε, and hence,375

uε(0, 1) ≥ φε(0, 1) ≥ e− 1√
πe

√
ε,(4.6)376

where φε is defined in (4.5). Now, let hδ = ρδ∗h for δ ∈ (0, 1) be defined as in the proof of Theorem377

1.2. We recall that hδ ≥ h ≥ g and 0 ≤ (hδ)′ ≤ 1 on R. Introducing ζ(x, t) := h(x− t) + (1− 1
m )t378

and379

ζδ(x, t) := hδ(x− t) +

(
1− 1

m

)
t for (x, t) ∈ R× [0,∞),380

we claim that ζδ is a supersolution to (4.4). Indeed, we have that ζδ(·, 0) = hδ ≥ g on R, and381

using F (p) = 1
mp

m for p ∈ [0, 1] and Bernoulli’s inequality, there holds382

ζδt (x, t) + F (ζδx(x, t)) = 1− 1

m
− (hδ)′(x− t) + F ((hδ)′(x− t))383

=
((hδ)′(x− t))m − [1 +m((hδ)′(x− t)− 1)]

m
≥ 0.384

Since ζδ → ζ locally uniformly on R× [0,∞) as δ → 0+, we deduce that ζ is also a supersolution385

to (4.4). Hence, we have that386

u(0, 1) ≤ ζ(0, 1) = h(−1) + 1− 1

m
= 1− 1

m
≤ e− 1

2
√
πe

√
ε,387

which completes the proof in view of (4.6).388

It is important to note that in the above proposition, although F depends on m and hence ε, the389

value ‖F‖Lip loc(R)
does not depend on m and ε.390
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4.3. Quadratic Hamiltonian. Next, we consider the case where F is quadratic in one391

dimension. First, we construct an example that complements (4.1) when T is very small.392

Proposition 4.3. Let n = 1 and assume that H(y, p) = F (p) = 1
2 |p|2 for y, p ∈ R, and393

g(x) = −|x| for x ∈ R. For ε > 0, let uε be the viscosity solution to (1.4) and let u be the viscosity394

solution to (1.3). Then, for ε ∈ (0, 1) and T > 0, there holds395

‖uε − u‖L∞(R×[0,T ]) ≤ C
√
Tε,396

and this upper bound O(
√
Tε) is sharp in the sense that397

lim
t→0+

uε(0, t)− u(0, t)√
tε

= − 2√
π
.398

It is important to note that we also obtain a rigorous asymptotic expansion of uε(0, t) for 0 < t≪ ε399

in the proof of Proposition 4.3. We then give a finer bound of uε − u in Proposition 4.4 under400

some appropriate conditions on g.401

In this subsection, we assume the setting of Proposition 4.3. Then, the problem (1.4) reads402

{
uεt +

1
2 |uεx|2 = εuεxx in R× (0,∞),

uε(x, 0) = g(x) on R.
403

We have that uε → u locally uniformly on R× [0,∞) as ε→ 0+, and u solves404

(4.7)

{
ut +

1
2 |ux|2 = 0 in R× (0,∞),

u(x, 0) = g(x) on R.
405

Proof of Proposition 4.3. The bound O(
√
Tε) was obtained in [12, 9]. We only need to show406

that this bound is optimal here. As g(x) = −|x| for x ∈ R, we see that the solution to (4.7) is407

given by408

u(x, t) = −|x| − t

2
for (x, t) ∈ R× [0,∞).409

In particular, u(0, t) = − t
2 for all t ≥ 0. For ε ∈ (0, 1), we have the following representation410

formula for uε (see, e.g., [10, Chapter 4])411

uε(x, t) = −2ε log

[
1√
4πεt

∫ ∞

−∞
e−

|x−y|2
4εt − g(y)

2ε dy

]
.(4.8)412

In particular, for any t > 0 we have that413

uε(0, t) = −2ε log

[
1√
π

∫ ∞

−∞
e
−|z|2+ |z|

√
t√

ε dz

]
414

= −2ε log

[
2√
π
e

t
4ε

∫ ∞

0

e
−(z−

√
t

2
√

ε
)2
dz

]
415

= − t

2
− 2ε log

[
1 +

2√
π

∫ √
t

2
√

ε

0

e−s2 ds

]
= − t

2
− 2ε log

[
1 + erf

( √
t

2
√
ε

)]
.416

Note that we have417

erf(z) =
2√
π

∞∑

k=0

(−1)kz2k+1

k!(2k + 1)
.418

For z =
√
t

2
√
ε
≪ 1, we have that 0 < erf(z) ≪ 1 and419

log(1 + erf(z)) = log

(
1 +

2√
π
z + · · ·

)
=

2√
π
z + · · · ,420

and thus,421

uε(0, t) = − t

2
− 2ε

2√
π

√
t

2
√
ε
+ · · · = − t

2
− 2

√
tε√
π

+ · · · ,422

which gives us the desired result.423



OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 13

4.3.1. Improvement of convergence rates.. It was shown in [32] that if the Hamiltonian424

F is uniformly convex, i.e., F ′′ ≥ α on R for some constant α > 0, then the convergence rate of the425

vanishing viscosity limit can be improved to O(ε| log ε|) when the initial datum satisfies certain426

technical assumptions. Below we show that for F (p) = 1
2 |p|2, the rate is almost everywhere O(ε)427

when the initial datum is C2, although O(ε| log ε|) could happen at some points. For F (p) = 1
2 |p|2,428

we have by the Hopf-Lax formula (see e.g., [10, 34]) that429

u(x, t) = inf
y∈R

{
g(y) + t L

(
x− y

t

)}
, where L(v) := sup

p∈R

{pv − F (p)} =
1

2
|v|2.430

In particular, for any (x, t) ∈ R× (0,∞) there holds431

u(x, t)− |x|2
2t

= inf
y∈R

{
g(y) +

|y|2
2t

− xy

t

}
,(4.9)432

which yields that x 7→ u(x, t)− |x|2
2t is concave for any fixed t > 0. Hence, for any fixed t > 0, we433

have that u(·, t) is twice differentiable a.e. on R. For t > 0, we set434

St := {x ∈ R : u(·, t) is twice differentiable at x} ,(4.10)435

and note that R\St has Lebesgue measure zero. Assume now that g ∈ C2(R). We know that for436

each x ∈ St, there exists a unique yx,t ∈ R such that437

u(x, t) = inf
y∈R

{
g(y) +

1

2t
|x− y|2

}
= g(yx,t) +

1

2t
|x− yx,t|2,(4.11)438

and we have that439

ux(x, t) = g′(yx,t) =
x− yx,t

t
, g′′(yx,t) ≥ −1

t
,(4.12)440

where the first equality in (4.12) follows from the method of characteristics. We obtain that441

ux(x, t) = g′(x− tux(x, t)) and hence,442

uxx(x, t) = (1− tuxx(x, t)) g
′′(x− tux(x, t)) = (1− tuxx(x, t)) g

′′(yx,t).443

In view of (4.12), we deduce that444

g′′(yx,t) > −1

t
.(4.13)445

We are now in a position to prove the following result:446

Proposition 4.4. Let n = 1 and assume that H(y, p) = F (p) = 1
2 |p|2 for y, p ∈ R. Assume447

that g ∈ Lip(R). For ε ∈ (0, 1), let uε denote the viscosity solution to (1.4) and let u denote the448

viscosity solution to (1.3) with H = F . Then, the following assertions hold true.449

(i) For fixed (x, t) ∈ R× [0,∞), there holds450

|uε(x, t)− u(x, t)| ≤ 2ε| log ε|451

for ε > 0 sufficiently small.452

(ii) If we further assume that g ∈ C2(R), then for each fixed t > 0 we have that453

|uε(x, t)− u(x, t)| ≤ Cε for a.e. x ∈ R,454

where C = C(x, t) > 0 is independent of ε ∈ (0, 1).455

(iii) If g(x) = − 1
2x

2 for all x ∈ [−1, 1] and g(x) ≥ − 1
2x

2 for all x ∈ R, then456

|uε(0, 1)− u(0, 1)| ≥ 1

2
ε| log ε|457

for ε > 0 sufficiently small.458
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Proof. Without loss of generality, let (x, t) = (0, 1). Introducing h(y) := g(y)+ 1
2 |y|2 for y ∈ R,459

we have by (4.8) and (4.9) that460

uε(0, 1) = −2ε log

[
1√
4πε

∫ ∞

−∞
e−

h(y)
2ε dy

]
, u(0, 1) = min

R

h = h(ȳ),461

where ȳ ∈ R is a fixed point for which there holds h(ȳ) = minR h. Note that462

uε(0, 1)− u(0, 1) = −2ε log

[
1√
4πε

∫ ∞

−∞
e−

h(y)−h(ȳ)
2ε dy

]
.(4.14)463

We first prove (i). Since g ∈ Lip(R), there exists M > 0 such that for any y ∈ R with |y− ȳ| ≥M464

there holds h(y)− h(ȳ) ≥ 1
4 |y − ȳ|2. For ε ∈ (0, 1), we have that465

2M ≥
∫ ȳ+M

ȳ−M

e−
h(y)−h(ȳ)

2ε dy ≥
∫ ȳ+M

ȳ−M

e−
A|y−ȳ|

2ε dy =
4

A

(
1− e−

AM
2ε

)
ε ≥ Bε466

for some A = A(L, |ȳ|,M) > 0 and B = B(A,M) > 0. Moreover,467

∫

R\(ȳ−M,ȳ+M)

e−
h(y)−h(ȳ)

2ε dy ≤
∫

R\(ȳ−M,ȳ+M)

e−
|y−ȳ|2

8ε dy ≤ 2

∫ ∞

M

e−
My
8ε dy ≤ 16

M
ε.468

Combining the two inequalities stated above, we find that469

Bε ≤
∫ ∞

−∞
e−

h(y)−h(ȳ)
2ε dy ≤ 2M +

16

M
ε.470

Thus, in view of (4.14), we obtain that471

|uε(0, 1)− u(0, 1)| ≤ 2ε| log ε|472

for ε > 0 sufficiently small.473

Next we prove (ii). Assume that 0 ∈ S1, where S1 ⊂ R is defined in (4.10). Then, ȳ = y0,1474

(recall (4.11)–(4.12)) is the unique minimum point of h and, using (4.13), we have that h′′(ȳ) =475

g′′(ȳ) + 1 > 0. Combining with the fact that g ∈ C2(R) ∩ Lip (R), there exists α > 0 such that476

α|y − ȳ|2 ≤ h(y)− h(ȳ) ≤ 1
α |y − ȳ|2 for any y ∈ R. Thus, there exists C = C(α) > 0 such that477

C
√
ε ≤

∫ ∞

−∞
e−

h(y)−h(ȳ)
2ε dy ≤ 1

C

√
ε,478

and hence, in view of (4.14),479

|uε(0, 1)− u(0, 1)| ≤ Cε.480

Finally, (iii) follows immediately from (4.14) in combination with the fact that due to h ≥ 0481

on R, h|[−1,1] ≡ 0, and h(ȳ) = 0, there holds482

∫ ∞

−∞
e−

h(y)−h(ȳ)
2ε dy ≥

∫ 1

−1

e−
h(y)−h(ȳ)

2ε dy = 2.
483

It is not clear to us whether Proposition 4.4 holds for other uniformly convex F . For strictly484

but not uniformly convex F (e.g., F (p) = 1
4 |p|4), the convergence rate for the vanishing viscosity485

process might be O(εα) for some exponent α ∈ ( 12 , 1); see the numerical Example 5. A natural486

question is whether we will see a similar convergence rate when the homogenization process is487

involved for the quadratic case as numerical Example 10 suggests. Let us briefly demonstrate488

the technical difficulty in extending the proof of Proposition 4.4 to the homogenization problem.489

Consider H(y, p) = 1
2 |p|2 + V (y) for a smooth Z

n-periodic potential function V . Then, by the490

Hopf-Cole transformation, we have that491

uε(x, t) = −2ε log

[
h

(
x

ε
,
t

ε

)]
,492
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where h = h(x, t) is the solution to the problem493

{
ht −∆h+ 1

2V h = 0 in R
n × (0,∞),

h(x, 0) = e−
g(εx)
2ε on R

n.
494

Therefore, we have that495

uε(x, t) = −2ε log

[∫

Rn

K

(
x

ε
,
y

ε
,
t

ε

)
e−

g(y)
2ε dy

]
,496

where K = K(x, y, t) denotes the fundamental solution corresponding to the operator ∂t−∆+ 1
2V .497

Obtaining the convergence rate requires a sharp estimate of the homogenization of K, which is a498

highly nontrivial subject. Let us further point out that the convergence rate might also depend499

on the regularity of V as the numerical Example 6 suggests.500

4.4. A Dirichlet problem. We are again in one dimension. For ε > 0, we consider the501

Dirichlet problem502

(4.15)

{
2(uε)3 = ε(uε)′′ in (0,∞),

uε(0) = 1.
503

It is quickly seen that the solution is given by504

uε(x) =

√
ε

x+
√
ε

for x ≥ 0.505

In particular, we have uε → u ≡ 0 locally uniformly in (0,∞). Of course, there is a boundary506

layer of size O(
√
ε) at x = 0, but let us ignore this boundary layer in our discussion here. We507

observe that for any ε ∈ (0, 1) there holds508

|uε(1)− u(1)| =
√
ε

1 +
√
ε
≥ 1

2

√
ε.509

Thus, once again, we see that the O(
√
ε) rate occurs naturally here. We record this in the following510

lemma.511

Lemma 4.5. For ε ∈ (0, 1), let uε denote the solution to (4.15). Then, uε → u ≡ 0 locally512

uniformly in (0,∞), and there holds513

|uε(x)− u(x)| =
√
ε

x+
√
ε
≥ 1

2x

√
ε ∀x ≥ 1.514

In particular, for any d > 1, the optimal rate for the convergence of uε to u in the L∞((1, d))-norm515

is O(
√
ε).516

5. Numerical results for the vanishing viscosity process and the homogenization517

problem.518

5.1. Vanishing viscosity process. We consider (1.4) in one dimension, that is,519

(5.1)

{
uεt + F (uεx) = εuεxx in R× (0,∞),

uε(x, 0) = g(x) on R.
520

Recall that, as ε→ 0+, uε → u locally uniformly on R× [0,∞), where u solves521

{
ut + F (ux) = 0 in R× (0,∞),

u(x, 0) = g(x) on R.
522
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We now verify numerically that, in some particular examples,523

‖uε(·, 1)− u(·, 1)‖L∞ ≥ C
√
ε,524

for some C > 0 independent of ε ∈ (0, 1), which confirms again that the bound O(
√
ε) is optimal525

in general. To do so, we consider various choices of F and g and compute ‖uε(·, 1)−u(·, 1)‖L∞ for526

different values of ε > 0. Specifically, Examples 3, 7, 9 give the order of convergence 1
2 , and the527

other examples give convergence orders between 1
2 and 1. In particular, Examples 3, 7, 9 confirm528

the optimality of Theorem 1.1.529

Let us describe our methodology. We partition a spatial interval [a, b] by a uniform mesh with530

mesh size ∆x and choose adaptive time steps ∆t to march through a given time interval [0, T ].531

Accordingly, we discretize equation (5.1) as follows:532

un+1
i = uni −∆t

[
F

(
uni+1 − uni−1

2∆x

)
− ε

uni+1 − 2uni + uni−1

∆x2

]
=: G(uni−1, u

n
i , u

n
i+1).533

Monotonicity of the scheme requires that G is nondecreasing in each of its arguments; consequently,534

we have535

ε ≥ 1

2
∆xmax

p
|F ′(p)|,(5.2)536

∆t ≤ ∆x2

2ε
.(5.3)537

The condition (5.2) requires a minimum viscosity to be imposed on the numerical scheme, and the538

time step has to be chosen according to (5.3). To check the effect of vanishing viscosity, we will539

set540

εmin =
1

2
∆xmax

p
|F ′(p)|,541

ε = 2kεmin for k = 9, · · · , 1, 0,542

∆t = ccfl
∆x2

2ε
,543

where ccfl ≤ 1 is the CFL number. We note that it is extremely hard to verify rigorously the544

examples considered below.545

Example 1. Assume F (p) = |p|3/2 for p ∈ R, and g(x) = −|x| for x ∈ R. Then,546

u(x, t) = −|x| − t for all (x, t) ∈ R× [0,∞).547

Numerical results are shown in Figure 5.1 (A). We observe that the convergence rate is O(ε) in548

this example.549

Example 2. Assume F (p) = |p|4 for p ∈ R, and g(x) = −|x| for x ∈ R. Then,550

u(x, t) = −|x| − t for all (x, t) ∈ R× [0,∞).551

Numerical results are shown in Figure 5.1 (B). We observe that the convergence rate is O(ε) in552

this example.553

Example 3. Assume F (p) = |p| for p ∈ R, and g(x) = max{1− |x|, 0} for x ∈ R. Then,554

u(x, t) = max{1− |x| − t, 0} for all (x, t) ∈ R× [0,∞).555

Numerical results are shown in Figure 5.1 (C). We observe that the convergence rate is O(
√
ε) in556

this example.557
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Example 4. We consider (5.1) only on a quadrant U = (−∞, 0)×(0,∞). Assume F (p) = p3558

for p ∈ R, and g(x) = 2
√
2

9 (−x)3/2 for x ≤ 0. The limiting PDE is559





ut + (ux)
3 = 0 in (−∞, 0)× (0,∞),

u(0, t) = 0 for t ∈ (0,∞),

u(x, 0) = g(x) for x ∈ (−∞, 0].

560

Then, for 0 ≤ t ≤ 1,561

u(x, t) =

(
−2x

3

)3/2

(3− 2t)−
1/2 for all x ∈ (−∞, 0].562

Numerical results are shown in Figure 5.1 (D). Numerically, we observe that the convergence rate563

is O(ε3/4) in this example.564

Example 5. Assume F (p) = 1
4 |p|4 for p ∈ R, and g(x) = M min(|x|, |x − 1

2 | − 1
4 ) for x ∈ R565

and some scaling constant M . We choose M ∈ { 1
4 ,

1
2 , 1, 2} to perform our tests. Then, we can use566

the Hopf-Lax formula to obtain567

u(x, t) = inf
y∈R

{
g(y) + t L

(
x− y

t

)}
, where L(v) := sup

p∈R

{pv − F (p)} =
3

4
|v|4/3568

for (x, t) ∈ R × (0,∞). Numerical results are shown in Figure 5.1 (E). Numerically, we observe569

that the convergence rate is O(ε2/3) in this example.570

5.2. A simple homogenization test. Consider (1.1) in one dimension, that is,571

{
uεt +H

(
x
ε , u

ε
x

)
= εuεxx in R× (0,∞),

uε(x, 0) = g(x) on R.
572

We take g(x) = min(|x|, |x − 1
2 | − 1

4 ) for x ∈ R, and we consider six different choices for the573

Hamiltonian H. Since the exact solution to the homogenized problem (1.3) is unknown, we574

compute ‖uε(·, T )− uε/2(·, T )‖L∞(Ω) for some chosen T > 0 and computational domain Ω.575

Example 6. Assume H(y, p) = 1
2 |p|2 + mink∈Z |y − k| for y, p ∈ R. Numerical results are576

shown in Figure 5.2 (A). The order of convergence seems to be in [ 12 ,
2
3 ].577

Example 7. Assume H(y, p) = 1
4 |p|4 + mink∈Z |y − k| for y, p ∈ R. Numerical results are578

shown in Figure 5.2 (B), and the order of convergence seems to be 1
2 .579

Example 8. Assume H(y, p) = 1
2 |p|2 + mink∈Z |y − k|2 for y, p ∈ R. Numerical results are580

shown in Figure 5.2 (C). We observe the same as for Example 6.581

Example 9. Assume H(y, p) = 1
4 |p|4 + mink∈Z |y − k|2 for y, p ∈ R. Numerical results are582

shown in Figure 5.2 (D). We observe the same as for Example 7.583

Example 10. Assume H(y, p) = 1
2 |p|2 + sin(y) for y, p ∈ R. Numerical results are shown in584

Figure 5.2 (E), and the order of convergence seems to be close to 1.585

Example 11. Assume H(y, p) = 1
4 |p|4 + sin(y) for y, p ∈ R. Numerical results are shown in586

Figure 5.2 (F), and the order of convergence seems to be close to 1.587

6. Numerical approximation of effective Hamiltonians. In this section, we would like588

to gain a better understanding of the effective Hamiltonian H. Let us recall that for p ∈ R
n, the589

value H(p) ∈ R is the unique constant for which there exists a viscosity solution v(·, p) ∈ C(Tn)590

to591

H(y, p+Dv) = H(p) + ∆v for y ∈ T
n.592
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(a) F (p) = |p|
3
2 for p ∈ R,

g(x) = −|x| for x ∈ R.
(b) F (p) = |p|4 for p ∈ R,
g(x) = −|x| for x ∈ R.

(c) F (p) = |p| for p ∈ R,
g(x) = max{1− |x|, 0} for x ∈ R.

(d) F (p) = p3 for p ∈ R,

g(x) = 2
√
2

9
(−x)3/2 for x ∈ (−∞, 0].

(e) F (p) = 1
4
|p|4 for p ∈ R,

g(x) = M min{|x|, |x− 1
2
| − 1

4
} for x ∈ R.

Fig. 5.1: Illustration of the error ‖uε∆x(·, 1)− u(·, 1)‖L∞(Ω) for Examples 1–5.
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(a) H(y, p)= 1
2
|p|2+mink∈Z|y − k|, y, p ∈ R. (b) H(y, p)= 1

4
|p|4+mink∈Z|y − k|, y, p ∈ R.

(c) H(y, p)= 1
2
|p|2+mink∈Z|y − k|2, y, p ∈ R. (d) H(y, p)= 1

4
|p|4+mink∈Z|y − k|2, y, p ∈ R.

(e) H(y, p) = 1
2
|p|2 + sin(y) for y, p ∈ R. (f) H(y, p) = 1

4
|p|4 + sin(y) for y, p ∈ R.

Fig. 5.2: Illustration of ‖uε∆x(·, T )−u
ε/2
∆x(·, T )‖L∞(Ω) for Examples 6–11 with initial datum g(x) =

min(|x|, |x− 1
2 | − 1

4 ) for x ∈ R. Here, Ω = [− 5
2 ,

5
2 ], T = 1 for (A)–(D), and Ω = [− 11

2 ,
11
2 ], T = 1

2
for (E)–(F).
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6.1. Framework. Let us focus on a Hamilton-Jacobi-Bellman nonlinearity593

H : Tn × R
n → R, H(y, p) := sup

α∈Λ
{−b(y, α) · p− f(y, α)} ,(6.1)594

where Λ is a compact metric space, b ∈ C(Tn × Λ;Rn), f ∈ C(Tn × Λ), and we assume that b =595

b(y, α), f = f(y, α) are Lipschitz continuous in y, uniformly in α. In this setting, H ∈ Lip (Tn×R
n)596

and H = H(y, p) is convex in p. See [22] and the references therein for the homogenization of597

viscous G-equations.598

6.2. Approximation of the effective Hamiltonian. Let p ∈ R
n be fixed. Our goal is to599

approximate the value H(p), and we begin by introducing approximate correctors.600

6.2.1. Approximate correctors. For σ > 0, introducing the approximate corrector vσ ∈601

C(Tn) to be the unique viscosity solution to the problem602

σvσ +H(y, p+Dvσ) = ∆vσ for y ∈ T
n,(6.2)603

it is known that {−σvσ}σ>0 converges uniformly to the constant H(p) as σ → 0+; see [20, Chapter604

4].605

Lemma 6.1. For σ > 0, let vσ denote the unique viscosity solution to (6.2). Then, vσ ∈606

C2,γ(Tn) for any γ ∈ (0, 1). Moreover, for any σ > 0 there holds607

‖σvσ +H(p)‖L∞(Tn) ≤ Cσ,608

where C > 0 is a constant independent of σ.609

Proof. As H ∈ Lip (Tn × R
n), we have that vσ ∈ W 2,p(Tn) for any p > 1; see [2]. Hence,610

Dvσ ∈ C0,γ(Tn) for any γ ∈ (0, 1), and hence, H(·, Dvσ(·)) ∈ C0,γ(Tn). By the standard Schauder611

estimates, we obtain that vσ ∈ C2,γ(Tn).612

Let v = v(·, p) ∈ C(Tn) be a solution to the cell problem (1.5). Then, the function v −613

‖v‖L∞(Tn)− H(p)
σ is a subsolution to (6.2) and the function v+‖v‖L∞(Tn)− H(p)

σ is a supersolution614

to (6.2). By the comparison principle, we have that615

v − ‖v‖L∞(Tn) −
H(p)

σ
≤ vσ ≤ v + ‖v‖L∞(Tn) −

H(p)

σ
in T

n,616

and hence,617

‖σvσ +H(p)‖L∞(Tn) ≤ 2‖v‖L∞(Tn)σ,618

which completes the proof.619

Therefore, a natural idea is to obtain a numerical approximation of H(p) based on the fact620

that621

H(p) = lim
σ→0+

∫

Y

(−σvσ),622

where Y := (0, 1)n, in combination with a numerical approximation vσh of vσ with ‖vσ−vσh‖L1(Y ) →623

0 as h→ 0 for σ fixed. Let us briefly address a possible numerical approximation for ‖b‖∞ small.624

To ensure strong monotonicity of the finite element schemes proposed below, we assume that625

σ >
‖b‖2∞
4

,(6.3)626

requiring a minimum discount to be imposed for the numerical scheme. Here, we follow the627

idea of the small-δ method (see, e.g., [27]) in combination with a finite element approximation of628

(6.2). We note that the effective Hamiltonian can also be approximated by the large-T method;629

see [27, 28] and the references therein. Since the large-T method and the small-δ method (see,630

e.g., [27]) are mathematically equivalent, we just use the small-δ method to illustrate the new631

formulation for convenience.632
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6.2.2. H1
per(Y )-conforming finite element approximation of (6.2). We have that vσ is633

the unique element in H1
per(Y ) such that634

a(vσ, ϕ) = 0 ∀ϕ ∈ H1
per(Y ),635

where a : H1
per(Y )×H1

per(Y ) → R is given by636

a(w,ϕ) := (Dw,Dϕ)L2(Y ) + (sup
α∈Λ

{−b(·, α) ·Dw − g(·, α)} , ϕ)L2(Y ) + σ(w,ϕ)L2(Y )637

with g(·, α) := b(·, α) · p+ f(·, α). Indeed, assuming (6.3), a : H1
per(Y )×H1

per(Y ) → R is strongly638

monotone since for any u1, u2 ∈ H1
per(Y ) and s ∈ (

‖b‖2
∞

4σ , 1), writing δu := u1 − u2,639

a(u1, δu)− a(u2, δu) ≥ ‖Dδu‖2L2(Y ) + σ‖δu‖2L2(Y ) − (sup
α∈Λ

|b(·, α) ·Dδu|, |δu|)L2(Y )640

≥ (1− s)‖Dδu‖2L2(Y ) +

(
σ − 1

4s
‖b‖2∞

)
‖δu‖2L2(Y )641

≥ Cm‖δu‖2H1(Y ).642

It is also quickly checked that we have the Lipschitz property643

|a(u1, ϕ)− a(u2, ϕ)| ≤ Cl‖u1 − u2‖H1(Y )‖ϕ‖H1(Y ) ∀u1, u2, ϕ ∈ H1
per(Y ).644

Let Vh ⊂ H1
per(Y ) be a closed linear subspace of H1

per(Y ). By the Browder-Minty theorem and645

standard conforming Galerkin arguments, there exists a unique vσh ∈ Vh such that646

a(vσh , ϕh) = 0 ∀ϕh ∈ Vh,(6.4)647

and we have the near-best approximation bound648

‖vσ − vσh‖H1(Y ) ≤
Cl

Cm
inf

wh∈Vh

‖vσ − wh‖H1(Y ).649

Choosing for Vh a Lagrange finite element space over a shape-regular triangulation Th of Y with650

mesh-size h > 0, consistent with the periodicity requirement, leads to a convergent method un-651

der mesh refinement. The discrete nonlinear system can be solved numerically using Howard’s652

algorithm (see e.g., [29]).653

Introducing the approximate effective Hamiltonian654

Hσ,h(p) :=

∫

Y

(−σvσh),(6.5)655

we then have that656

|H(p)−Hσ,h(p)| ≤
∣∣∣∣H(p)−

∫

Y

(−σvσ)
∣∣∣∣+ σ‖vσ − vσh‖L1(Y ),657

where ‖vσ − vσh‖L1(Y ) → 0 as h→ 0 and the first term on the right-hand side is of order O(σ) by658

Lemma 6.1.659

6.2.3. Fourth-order-type variational formulation for (6.2). If information on second-660

order derivatives of vσ is desired, it is interesting to see that inspired by arguments based on661

Cordes-type conditions (see e.g., [4, 13, 14, 29, 30]), we can derive a fourth-order-type varia-662

tional formulation for vσ, allowing for the construction of H2-conforming finite element schemes.663

Introducing γ := 4σ
|b|2+4σ ∈ C(Tn × Λ, (0, 1]), note that vσ is the Y-periodic solution to664

G[vσ] = 0, where G[w] := sup
α∈Λ

{γ(·, α) (−∆w − b(·, α) ·Dw + σw − g(·, α))} ,665
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and vσ is the unique element in H2
per(Y ) satisfying666

ã(vσ, ϕ) := (G[vσ], σϕ−∆ϕ)L2(Y ) = 0 ∀ϕ ∈ H2
per(Y ).667

Indeed, note that due to (6.3) we have that ã is strongly monotone: For any u1, u2 ∈ H2
per(Y ),668

writing δu := u1 − u2 and η :=
4σ−‖b‖2

∞
4σ+‖b‖2

∞
∈ (0, 1], we have669

|G[u1]−G[u2]− (σδu −∆δu)|2670

≤ sup
α∈Λ

|−(γ(·, α)− 1)∆δu − [γb](·, α) ·Dδu + (γ(·, α)− 1)σδu|2671

≤ (1− η)(|∆δu|2 + 2σ|Dδu|2 + σ2|δu|2)672

almost everywhere (note 2|γ − 1|2 + 1
2σ |γb|2 = 2− 2γ ≤ 1− η), and673

‖∆δu‖2L2(Y ) + 2σ‖Dδu‖2L2(Y ) + σ2‖δu‖2L2(Y ) = ‖σδu −∆δu‖2L2(Y ),674

which in combination yields675

ã(u1, δu)− ã(u2, δu) ≥
(
1−

√
1− η

)
‖σδu −∆δu‖2L2(Y ).676

Further, ã satisfies the Lipschitz property677

|ã(u1, ϕ)− ã(u2, ϕ)| ≤
(
1 +

√
1− η

)
‖σδu −∆δu‖L2(Y )‖σϕ−∆ϕ‖L2(Y ).678

Let Vh ⊂ H2
per(Y ) be a closed linear subspace of H2

per(Y ). By the Browder-Minty theorem and679

standard conforming Galerkin arguments, there exists a unique vσh ∈ Vh such that680

ã(vσh , ϕh) = 0 ∀ϕh ∈ Vh,681

and, introducing the norm |||w||| := ‖σw − ∆w‖L2(Y ) for w ∈ H2
per(Y ), we have the near-best682

approximation bound683

|||vσ − vσh ||| ≤
1 +

√
1− η

1−√
1− η

inf
wh∈Vh

|||vσ − wh|||.684

Choosing for Vh an Argyris or HCT finite element space over a shape-regular triangulation Th of Y685

with mesh-size h > 0, consistent with the periodicity requirement, leads to a convergent method686

under mesh refinement. The discrete nonlinear system can again be solved numerically using687

Howard’s algorithm. With the observations of this subsection at hand, one can also construct688

mixed finite element schemes and discontinuous Galerkin finite element schemes for (6.2) similarly689

to [14, 18].690

6.2.4. Numerical experiments. For our numerical tests, we consider one linear example691

with known effective Hamiltonian and one nonlinear example with unknown effective Hamiltonian.692

For both tests, we use the method from Section 6.2.2.693

Example 12. Consider H : T2 × R
2 → R given by (6.1) with n = 2 and Λ := {0}. We set694

b(y, α) := b̃(y) :=
(

1
2π cos(2πy1), 0

)
and f(y, α) := f̃(y) = 1 + sin(2πy1) for y = (y1, y2) ∈ T

2695

and α ∈ Λ. Our goal is to approximate the value of the effective Hamiltonian H at the point696

p := (3, 1), and compute the approximation error |H(p) − Hσ,h(p)|, where the true value can be697

explicitly computed as698

H(p) = 1 +

∫ 1

0
sin(2πt) exp( 1

4π2 sin(2πt)) dt∫ 1

0
exp( 1

4π2 sin(2πs)) ds
.699

In our numerical experiment, we compute Hσ,h(p) via (6.4)–(6.5), where we choose Vh to consist700

of continuous Y -periodic piecewise affine functions on a periodic shape-regular triangulation Th701

of Y into triangles with vertices {(ih, jh)}1≤i,j≤N where N = 1
h ∈ N. We choose σ = 10−i for702

i ∈ [−3, 2] ∩ Z and h = 2−j for j ∈ [1, 10] ∩ Z. The results are shown in Figure 6.1. Numerically,703

we can observe that the rate O(σ) in Lemma 6.1 is optimal.704



OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 23

(a) h 7→ |H(p)−Hσ,h(p)| for fixed σ (b) σ 7→ |H(p)−Hσ,h(p)| for fixed h = 2−10

Fig. 6.1: Approximation of H(p) at p = (3, 1) for Example 12.

(a) p 7→ Hσ,h(p) for σ = 2−4, h = 2−10.
(b) σ 7→ |Hσ,h(p) −H σ

2
,h(p)| for h = 2−10 and p =

(−1,−1).

Fig. 6.2: Approximation of H for Example 13.

Example 13. We consider H : T2 × R
2 → R given by (6.1) with n = 2 and Λ := {α ∈ R

2 :705

|α| ≤ 1}. We set b(y, α) := b̃(y) + α and f(y, α) := f̃(y) for (y, α) ∈ T
2 × Λ, where b̃ and f̃ are706

defined as in Example 12. Note that H(y, p) = |p| − b̃(y) · p− f̃(y) for (y, p) ∈ T
2 × R

2. Our goal707

is to approximate the unknown effective Hamiltonian H on [−1, 1]2. To this end, we approximate708

H(p) at all points p in S := {±1,± 3
4 ,± 1

2 ,± 3
8 ,± 1

4 ,± 1
8 , 0}2, where we chose a finer resolution709

around the origin. In our numerical experiment, we compute Hσ,h(p) via (6.4)–(6.5), where we710

choose Vh to consist of continuous Y -periodic piecewise affine functions on a periodic shape-regular711

triangulation Th of Y into triangles with vertices {(ih, jh)}1≤i,j≤N where N = 1
h ∈ N. We fixed712

a fine mesh, i.e., h = 2−10, and produced convergence histories with respect to σ at each point713

p ∈ S. The nonlinear discrete problems were solved using Howard’s algorithm. For the plot of the714

numerical effective Hamiltonian we used σ = 2−4; see Figure 6.2 (A). An exemplary convergence715

history of |Hσ,h(p) − H σ
2 ,h(p)| with respect to σ, for p = (−1,−1), is shown in Figure 6.2 (B)716

and we observe the rate O(σ), as expected. We note that the scheme performs nicely even beyond717

(6.3).718
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