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OPTIMAL RATE OF CONVERGENCE IN PERIODIC HOMOGENIZATION OF
VISCOUS HAMILTON-JACOBI EQUATIONS *

JIANLIANG QIANT, TIMO SPREKELER}, HUNG V. TRANS, AND YIFENG YUY

Abstract. We study the optimal rate of convergence in periodic homogenization of the viscous Hamilton-
Jacobi equation uj + H(Z, Du®) = eAu® in R™ x (0,00) subject to a given initial datum. We prove that ||u® —
ullpeomnxpo,r)) < C(1+ T)y/E for any given T' > 0, where u is the viscosity solution of the effective problem.
Moreover, we show that the O(y/€) rate is optimal for a natural class of H and a Lipschitz continuous initial datum,
both theoretically and through numerical experiments. It remains an interesting question to investigate whether
the convergence rate can be improved when H is uniformly convex. Finally, we propose a numerical scheme for
the approximation of the effective Hamiltonian based on a finite element approximation of approximate corrector
problems.
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1. Introduction.

1.1. Settings. For each € > 0, let v € C(R™ x [0,00)) be the viscosity solution to

(1.1) u; + H (f,DuE) =ecAu® in R x (0, 00),
’ u®(z,0) = g(x) on R™.

Here, g € C%(R") is a given initial datum and H = H(y,p) € Lip,.(R" x R") is a given
Hamiltonian that is Z"-periodic in its y-variable and satisfies

(1.2) ess inf {|H(y,p)]> + (n+1)DyH(y,p) - p} — 0o as |p| = <.
ssin

Then, it is known that u® converges to u € C'(R™ x [0,00)) locally uniformly on R™ x [0,00) as
€ — 0™, where u is the viscosity solution to the effective problem

(13) us + H (Du) =0 in R™ x (0, 00),
. u(z,0) = g(x) on R™;

see [21, 8]. Here, the effective Hamiltonian H € C(R"™) is determined by H in a nonlinear way
through cell problems. It is worth noting that if H = H(y,p) is independent of y, that is,
H(y,p) = F(p), then (1.1) becomes the usual vanishing viscosity problem

uf + F (Du®) = eAu® in R™ x (0, 00),

(1.4) u®(z,0) = g(x) on R™,

in which case we have H = F. Both (1.1) and (1.4) are basic and fundamentally important
problems in the theory of viscosity solutions. o
Introducing the notation T" := R™/Z"™, we now give a precise definition of H.
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2 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

DEFINITION 1 (Effective Hamiltonian). Assume (A1)-(A2). For each p € R", there ezists a
unique constant H(p) € R such that the cell (ergodic) problem

(1.5) H(y,p+ Dv) = H(p) + Av for y € T"

has a continuous viscosity solution v. If needed, we write v = v(y,p) or v = v,(y) to clearly
demonstrate the nonlinear dependence of v on p. In the literature, v(-,p) is often called a corrector.
1t is worth mentioning that v(-,p) is unique up to additive constants.

From now on, we normalize the corrector v so that v(0,p) = 0 for all p € R"™. In fact, v(-,p) €
C?(T™) and p +~ v(-,p) is locally Lipschitz. Further, the effective Hamiltonian H is locally
Lipschitz.

Our main goal in this paper is to obtain the optimal rate for the convergence of u® to u, that
is, an optimal bound for ||u® —ul| Lo (mn x [0,77) for any given T' > 0 as ¢ — 0F. Heuristically, thanks
to the two-scale asymptotic expansion,

(1.6) u®(z,t) = u(z,t) +ev (g, Du(a:,t)) +0(£?).

However, this is just a formal local expansion, and it is not clear at all how to obtain the optimal
global bound in the L*°-norm from this.

1.2. Main results. We now describe our main results. Let us introduce the set of assump-
tions (A1)—(A3) given by
(Al) H € Lip,o(R™ x R™), and H(:,p) is Z™-periodic for each p € R™;
(A2) H satisfies (1.2);
(A?)) g € Lip (Rn) with ||g||CD,1(Rn) < 0.

THEOREM 1.1. Assume (A1)—(A3) and fit T > 0. Then, there exists a constant C > 0
depending only on H, n, and ||g||co1(wny such that for € € (0,1) there holds

[u® = ull Lo rxfo,1) < C(1+T)Ve,

where u¢ and u denote the viscosity solutions to (1.1) and (1.3), respectively.

The above rate O(/€) turns out to be optimal in the sense that there exist particular choices
of H and g satisfying (A1)—(A3) such that the convergence rate is exactly O(y/€). Quantitative
homogenization for Hamilton-Jacobi equations in the periodic setting has received quite a lot of
attention in the past twenty years. The convergence rate O(sl/ %) was obtained for first-order
equations first in [5]. In [3], the authors generalized the method in [5] to get the same convergence
rate O(EI/ %) for the viscous case considered in this paper. For weakly coupled systems of first-order
equations, see [25]. For other related works, see the references in [5, 3, 25]. Of course, the rate
O(e"?) is not known to be optimal in general.

The optimal rate of convergence O(e) for convex first-order equations was recently obtained
in [35]. Moreover, we expect that for any given uniformly convex H, the convergence rate is O(¢)
for (1.1) for generic initial data, which is stronger than the notion of optimality in this paper. We
refer to [17] for the multi-scale setting. For earlier progress in this direction with nearly optimal
rates of convergence, we refer the reader to [26, 36, 24, 6] and the references therein. To date,
optimal rates of convergence for general nonconvex first-order cases have not been established.

To the best of our knowledge, the optimal rate of convergence for periodic homogenization of
viscous Hamilton-Jacobi equations has not been obtained in the current literature. The rate O(c"/?)
was obtained in [5, 3] by using the doubling variable technique, the perturbed test function method
[8], and the approximate cell problems. The usage of the approximate cell problems introduces
another parameter in the analysis, and as a result, the rate O(sl/ %) was the best one can obtain
through this route by optimizing over all parameters.

In this paper, we are able to obtain the O(y/¢) convergence rate by dealing directly with
the correctors. A key point is that after normalizing v(0,p) = 0, we have that v(-,p) is unique,
and p — v(+,p) is locally Lipschitz. It is worth noting that we do not require convexity of the
Hamiltonian in Theorem 1.1.
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 3

Here, we will use H(y,p) = F(p) for some choices of nonlinear F to construct computable
sharp examples. Similar results were known for linear F' in the context of conservation laws [31].
The connection between scalar conservation laws and Hamilton-Jacobi equations is well known to
experts. Precisely speaking, in one dimension, if u = u(z, t) is a viscosity solution to u;+F(u,) = 0,
then v = u, is an entropy solution to v; + (F'(v)), = 0. The convergence rate of vanishing viscosity
in scalar conservation laws has been well studied and the convergence rate of O(y/z) was known
under suitable assumptions [19].

THEOREM 1.2. Letn=1. Let F € Lip,.(R) be such that

Fp)=p for p €0,1],
F(p)<p for p € [-1,0],
and suppose that g(z) = max{1 — |z[,0} for x € R. Then, for any € € (0, 1) there holds

e—1

ﬁe\/g’

|u®(0,1) — u(0,1)] >

where u® denotes the viscosity solution to (1.4) and u denotes the viscosity solution to (1.3) with
H=F.

We would like to point out that the above g can be replaced by a smooth function (Remark
1). Also, the proof of Theorem 1.2 leads to the following corollary.

COROLLARY 1.3. Let n = 1. Assume that F € Lip,,.(R) and that F is linear in (a,b) C R
for some given a < b. Then, there exists an initial datum g € Lip (R) such that for any € € (0, 1)
we have that

[u(0,1) — u(0,1)| > cov/e
for some constant co > 0 depending only on F and g, where u® denotes the viscosity solution to
(1.4) and u denotes the viscosity solution to (1.3) with H = F.

It is also straightforward to generalize Theorem 1.2 to any dimension in the corollary below,
whose proof is essentially the same as that of Theorem 1.2.

COROLLARY 1.4. Let F' € Lip,.(R™) be such that

F(se1)=s for s €10,1],
s for s € [—1,0],

and suppose that g(x) = max{1l — |z1|,0} for x € R™. Then, for any ¢ € (0, %) there holds

e—1

|u8(07 1) - U’(O’ 1)| > ﬁe \ﬁa

where u denotes the viscosity solution to (1.4) and u denotes the viscosity solution to (1.3) with
H=F.

The bound O(v/Te) for |Ju® — ul|Loo (R x[0,77) for the vanishing viscosity process of (1.4) was
obtained in [12, 7, 9]. In this situation, we only need to assume that F' is locally Lipschitz on
R™ and g is bounded and Lipschitz on R™ (see e.g., [7, Theorem 5.1]). For the static cases, see
[33, 34].

Thus, the results of Theorem 1.2 and Corollaries 1.3-1.4 confirm both the optimality of the
convergence rate of the vanishing viscosity process of (1.4) with optimal conditions, and the
optimality of the O(y/€) bound in Theorem 1.1. See Remark 1 for Theorem 1.2 with a C? initial
condition for each € > 0. Besides, we provide a generalization of Theorem 1.2 in Proposition 4.2
in which for each fixed € € (0, i)7 the Hamiltonian F' needs not to be linear in any interval in one
dimension at the price of nonconvexity. Note also that in Corollary 1.4, F' does not need to be
linear in any open set in multiple dimensions.
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Note that all the Hamiltonians in Theorem 1.2 and Corollaries 1.3—1.4 are not strictly convex
and do not have y-dependence (i.e., no homogenization effect is involved). Hence, it is natural to
ask (I) whether the convergence rate can be improved for strictly /uniformly convex H and (II)
how the y-dependence impacts the convergence rate.

(I) has been investigated in the context of one dimensional conservation laws for the vanishing
viscosity process of (1.4). It was proved that the convergence rate can be improved to O(e|loge|)
for uniformly convex F under some technical assumptions [32]. In Section 4.3, we demonstrate this
fact for the quadratic Hamiltonian F(p) = |p|® in any dimension for general Lipschitz continuous
initial data. More interestingly, we showed that for any C? initial datum g, the convergence rate is
O(e) for a.e. (z,t) € R™ x (0,00). For strictly but not uniformly convex F', numerical computation
shows that the convergence rate could be various fractions. For instance, for F(p) = i|p|4 in
Example 5, the rate of convergence for the vanishing viscosity process of (1.4) seems to be O(e2/3).
This suggests that there might be a variety of rates O(¢®) for 1 < s < 1 for (1.4), which is a
new phenomenon. It will be an interesting project to find an example where a convergence rate
a € (3, 1) can be established rigorously.

As for (II), it is quite challenging to conduct a theoretical analysis beyond Theorem 1.1 when
y is present. In this paper, we will focus on numerical computations to get some rough ideas and
inspire interested readers to work on this subject. Our numerical Examples 10 and 11 show that
when H = H(y, p) is strictly convex in p and smooth in y, the convergence rate is similar to O(e)
or O(e|loge|). Meanwhile, when the regularity in y is merely Lipschitz continuity, the convergence
rate seems to be reduced; see Examples 6-9.

Finally, we discuss the construction of numerical methods for the approximation of the effective
Hamiltonian H. In particular, we provide a simple scheme to approximate H at a fixed point based
on a finite element approximation of approximate corrector problems. For related work on the
numerical approximation of effective Hamiltonians we refer to [1, 11, 15, 16, 23, 27] for first-order
Hamilton-Jacobi equations without viscosity term, and to [14, 18] for second-order Hamilton-
Jacobi-Bellman and Isaacs equations.

Organization of the paper. In Section 2, we use a priori estimates to simplify the settings
of the problems. The proof of the bound in Theorem 1.1 is given in Section 3. In Section 4, we
consider (1.4) with various choices of F' and g, and obtain the optimality of the bound in Theorem
1.1. In particular, this section includes a proof of Theorem 1.2. Numerical results for both (1.1)
and (1.4) are studied in Section 5. The approximation of the effective Hamiltonian is studied in
Section 6.

2. Settings and simplifications. Assume (A1)—(A3). For ¢ € (0,1), let u® denote the
viscosity solution to (1.1). Let u denote the viscosity solution to (1.3). By the comparison
principle, we have that

(2.1) llwell oo x[0,00)) + [1DU| Loo R x[0,00)) < M

for M := Ry + Maxg o ) ‘F| < Ro + maxg. B0, ry) |H|, where Rg := || Dg| o ®n)-
Let us further assume that

(2.2) ||Uf|\Loo(Rnx[0,oo)) + | Du|[ Lo R x[0,00)) < Co

for a constant Cp > M that is independent of e.  Note that (2.2) is satisfied if ||Dg||pec®n) +
el|Agl| oo @y < C for some C' > 0 independent of ¢ € (0,1) thanks to the classical Bernstein
method based on (A1)—(A2) (see, e.g., [34, Chapter 1]). In particular, (2.2) holds if g € C?*(R")
with || Dg| peo@n) + | Ag| Lo ®ny < 00. Since g is merely assumed to be in C%'(R™) in Theorem
1.1, we will employ a suitable mollification of g in Section 3.2 to remove the assumption (2.2).

Accordingly, values of H(y,p) for |p| > Cy are irrelevant. Indeed, letting & € C*>°(R", [0, 1])
be a cut-off function satisfying

£(p) = 1if p| < Co + 1, &(p) = 0if [p| > 2(Co + 1),
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 5

and introducing

H(y,p) :=&p)H(y,p) + (1 —£(p)|pl*  for (y,p) € T" x R™,

we have that H satisfies (A1)—(A2) and u¢ solves (1.1) with H in place of H. Therefore, from now
on, we can assume that H takes the form of H , that is, H satisfies

(A4) H(y,p) = [p|* for y € T" and [p| > 2(Co + 1).
Assumption (A4) helps us simplify the situation quite a bit as follows. For |p| > 2(Cy + 1), it is
clear that v(-,p) = 0 and H(p) = |p|>. Hence, we obtain that p ~ v(-, p) is bounded and globally
Lipschitz, that is, there exists C' > 0 such that

(2.3) lo(, Pl < C,  lv(,p) =v( D)L <Clp—pl  Vp,peR™

If a function h : R™ — R is Z™-periodic, we can think of i as a function from T™ to R as well,
and vise versa. In this paper, we switch freely between the two interpretations.

3. Proof of Theorem 1.1.

3.1. Part 1: Proof based on (2.2). Assumptions (Al)—(A4) are always in force in this
section. Let T" > 0 be fixed. Our goal is to show that there exists a constant C > 0 depending
only on ||HHCOv1(']I‘"><§(O 2(Cot1)))? T and Cj from (2.2) such that for any € € (0,1) there holds

(3.1) [ — ull Loo gr xjo,r) < C(1+T)VE.
The approach here is inspired by that in [34, Theorem 4.40]. We first show that

(3.2) u®(z,t) —u(x,t) <C(1+T)yve  V(x,t) € R" x [0,T].

Proof of (3.2). We divide the proof into several steps.

Step 0: We write A := R" x R" x R™ x [0,00) x [0,00). For K > 0 to be chosen and v € (0, 1),
we introduce the auxiliary function ®; : A — R given by

®y(a) :=u(z,t) —u(y,s) —ev (Z, Z\ky> —w(a) fora=(z,y,2,t5s) € A,

where

r—y>+ |z -2+t —s?
(3.3) w(z,y,2,t,8) ::| yl |2\£| | | + K(t+s)+vv1+ |z|.

Note that there exist @,9,2 € R™ and £, 5 € [0,00) such that ®; has a global maximum at the
point a := (Z,9, 2,t,5) € A. We fix such a choice of & and introduce ® : A — R given by

la —af?

5 for a € A.

B(a) = B1(a) — 5

Observe that ® has a strict global maximum at the point a.

Step 1: We show that
(3.4) |2 —2[<Ce,  |2—gl+|§—2<CVe,  |I—3<C(1+K)Ve.

To this end, we first use that ®(a) > ®(z,9,1,t,$) and (2.3) to obtain

-l e [o(220) o (20 <ovee-4
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200 which yields |2 — 2| < Ce as yy/2 < 3. Then, we use that ®(a) > ®(2, 2, 4,1, ), (2.1), and (2.3)
201 to find that

55 2 53 2 A A 5 _ &
202 (1—ye)E y|2+\[€|x P (3, 8) — u(,8) 4 {v <"Zo) — <: Zﬁyﬂ
203 < Clz — 4|+ CVelg — 2|
204 < Clé — g+ Ce™?,

205 which yields |& — | < Cy/e. Finally, using ®(a) > ®(,9, 2,t,t) and (2.1), we find

206 (1—7ve) u(g,t) —u(g,8) + K(l = 8) < (C+ K)[i - 3],

207 which yields |£ — 8] < C(1 4 K)4/e.
208 Step 2: For the case t,§ > 0, we show that

i—s _(2-9
209 (3.5 K H <C CH.
(35) P H () <overen
210 Introducing ¢ : R™ x [0,00) — R defined by ¢(z,t) := u®(x,t) — ®(z, 9, 2,1, §), we see that u® — ¢
211 has a global maximum at (#,7). We compute o (#,1) = K + t\;f and
A e A R BN
212 Dy(z,t) = Dv | —, + + ,
P(&:1) (5 NG > NG ViearE
, - ] n+(n— 1)z

213 A t)y=Av |- 2 _— .

eAp(2,1) U(E’ NG >+ ny/e + e (1+ [2]2)7> + yne

214 Writing yo == £ and pg := Z;\/g, we can use the viscosity subsolution test, (1.5), (3.4), and local

215 Lipschitz continuity of H to find that

t—5 __[3—4 R
216 K+Vg+H<:£)=%@ﬂ+H%)
217 < [eAp(&,E) — Av(yo, po)] + [H (Yo, po + Dv(yo, po)) — H(yo, Dp(&,1))]
n+ (n—1)|2? 32— z
218 <2nye+vye——m—— + e+ C|2 —
<PV R 7 Ve iT e

219 < Cye+ Cx;
220 i.e., (3.5) holds.
221 Step 3: For the case t,5 > 0, we show that

1;;\7 ~ . 8o
222 (3.6) K- ﬁs - H (mﬁy) < Cy/e.

223 For o > 0, we introduce the auxiliary function ¥ : R” x R™ x [0,00) — R given by

& o2&\  lE—yPHli-s? | |y—¢P
224 )\ = — K
(y,&,5) u(y,s)+sv(€, ﬁ>+ NG + g K
A2 A o2
- spllult sl

226 Note that there exist yq, &, € R™ and s, € [0, 00) such that the function ¥ has a global minimum
227 at the point (yqa,&a, Sa)-
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Step 8.1: We first show that
(3.7) Yo — Sal SCave, |E—yol SCVI+ave, |i—sal <C(1+K)VE

We use ¥(Ya, €ar Sa) < ¥(Ya, Ya, So) and (2.3) to obtain

Yo — &al? T Z—Ya & 2—-&a
Wa —&al” _ TE27Ya)_ (2 <cC -
7% <elv > \/g v e’ \/E > \/5|ya &al,
which yields |y, — a| < Cay/e. Then, using ¥(ya,&a, o) < V(E,E,84), (2.1), and (2.3), we
obtain
Z— goz |§j - g|2
|

& _ya|2

2\/e

<u(Z, $a) — W(Ya, Sa) + € [v (i, 2\_[;2) —v (

S C|i'_ya| +C\/g|§j _ga‘ +C€
< ClE = yo| + C(1 + a)e,

M| &

which yields |& — yo| < Cv/T + ay/e. Finally, |t — so| < C(1 4+ K)4/€ follows from ¥ (yq, £a, Sa) <
U (Yo, €ay 1), (2.1), and (3.4).
Step 3.2: We now show that, upon passing to a subsequence, there holds

(38) (yaagaa Sa) — (@Z), «§) asa — 07,

In view of (3.7), there exists (3,5) € R™ x [0,00) such that, upon passing to a subsequence,
(Yors s 80) = (5,5,5) a8 @ = 0%, As W(§,§,5) = lima 0+ ¥ (Yo, Eas 5a) < U(§,§,5) and using
that, by (Step 0), the point (g, 8) is a strict global minimum of the map (y,s) — ¥(y,y,s), we
find that (g, 8) = (g, 9).

Step 3.3: Introducing ¢ : R™ x [0,00) — R defined by ¢(x,t) := u(z,t) — U(x, &y, t), we see that
u — 1 has a global minimum at the point (ya, So). We compute

t_% —K"_’V(g_ Sa)7 Dw(yavsa) =

By the viscosity supersolution test, local Lipschitz continuity of H, and (3.7), we have for any
a € (0,1) that

2= Yo o — Ya .
7 + + (Y = Ya)-

wt(yav Sa) =

— (3 = 54 —H(zya +7(ﬂ—ya)>

)
= (s 50) ~ H (pw(ya, 5) — f-%)

«
< H(DU0r50)) ~ B (Ditnsa) - 22 ) < 0V,
In view of (3.8), passing to the limit & — 07 in the above inequality yields (3.6).

Step 4: For the case £, § > 0, we combine (3.5) and (3.6), use local Lipschitz continuity of H, and
(3.4), to find that

(B0 (2o
2K < H - H <
< <\@> (\/g>+0\/§+0'y_0\@+07,

which is a contradiction if v < % ¢ and K = K;/z for K; > 0 sufficiently large. Thus, £ = 0 or
§ = 0. In either scenario, using the definition of ®, the fact that u*(-,0) = u(-,0), (2.1) and (2.3),
we have for any (z,t) € R" x [0, T] that

T Z—q

O(z,z,x,t,t) < ®(a) < u(2,t) —u(y,8) —ev (s’ ﬁA> < Cye.
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In view of the definition of ®, letting v — 07 in the above inequality yields
W (2, 1) — u(z,t) — ev (go) K Vet < CVE Yz, t) € R x [0,T].
Finally, by (2.3), we conclude that
u¥(z,t) —u(x,t) <C(A1+T)ve  V(x,t) € R" x [0,T]. O
To complete the proof of (3.1), it remains to show that
(3.9) u¥(z,t) —u(x,t) > —C(1+T)vVe  V(z,t) € R" x [0,T].

Proof of (3.9). For K > 0 to be chosen and > 0 small, we introduce the auxiliary function
®p :R" X R" X R™ x [0,00) X [0,00) = R given by

~ r z—=Y
®1(x,yaz7tvs) = us(xat) - u(yas) —&v <€a \E) +U)(l’,y,2,t,$),

where w is defined as in (3.3). By following closely and carefully the proof of (3.2), we obtain the
desired result. O

3.2. Part II: Removal of assumption (2.2). Let T" > 0 be fixed, ¢ € (0,1), and sup-
pose that we are in the situation (A1)-(A3), i.e., (A1)~(A2) hold and g € C%'(R"). Let
p € CX(R",[0,00)) be a standard mollifier, i.e.,

/ p(z)dz =1, supp(p) C {z € R™ : |z| <1}, p(z) = p(—zx) for z € R",
We set p® := —-p(£) and g° := p° * g. Then, ¢g° € C?*(R™) and we have the bounds
(3.10) 19° = gllLe@n) < Ce, Dy |l @n) + ellD?¢% || oo (rry < C.
Let u® denote the viscosity solution to

(311) {ag + H (£, D) = eAT in R" x (0, 00),

a(z,0) = ¢°(x) on R™,
and let u denote the viscosity solution to
{ﬁtJrH(Dﬂ) =0 in R" x (0, 00),
(z,0) = g°(x) on R”.
By (3.10) and the comparison principle, we have that
(3.12) 175 — u®|| oo (mn x[0,00)) T+ 1T — Ul Loo (R x[0,00)) < CE-

On the other hand, in view of (3.10) we have |H(%, Dg®(x)) — eAg®(x)| < C for € R, which
yields that (z,t) — ¢%(x)+ Ct is a supersolution to (3.11), and (x,t) — ¢°(z) — Ct is a subsolution
to (3.11). By the comparison principle,

g (x) — Ct <a°(x,t) < g°(z) + Ct V(x,t) € R" x [0, 00),

which implies that || (-,0)||z~®») < C. As uj solves a linear parabolic equation, we find that
[|4 || Loo (R x[0,00)) < C by the maximum principle. Then, by the classical Bernstein method (see,
e.g., [34, Chapter 1]),

%5 [ oo (Rn x [0,00)) F DT || oo (R x[0,00)) < C-



293

294

295

296

298
299
300
301
302

310

311
312

314

319

322

OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 9

Thus, we can assume that (A4) holds, and the proof from Section 3.1 yields

(3.13) 45 — ]| oo mm x[0,7)) < C(1 +T)V/e.

Finally, combining (3.12) and (3.13), we see that

[[u® = u|| Lo mnxfo,r) < C(1+T)Ve,
which concludes the proof.

4. Optimality of the bound in Theorem 1.1. In this section, we consider the vanishing
viscosity problem (1.4) with particular choices of F' and g. For € > 0, let u® denote the viscosity
solution to (1.4), and let u denote the viscosity solution to (1.3) with H = F. If F € Lip,.(R")
and g € Lip (R"), then ||Duf||po®nx[0,00)) < [[DgllLo(rn). Besides, it was obtained in [12, 7, 9]
that

(4.1) ||’uE - U”Loo(RnX[O’T]) < CVTe,
where the constant C' > 0 depends only on n, Ry := ||g||vip (rr), and || F'[|Lip (B(0,R0))-

Below, we study both Cauchy problems and Dirichlet problems.

4.1. A linear Cauchy problem. We first consider the case that F' is linear in one dimension.

PROPOSITION 4.1. Let n = 1 and assume that H(y,p) = F(p) = p for y,p € R. Let g €
Lip (R) and suppose that g > g(—1) on R and g(x) > x4+ 14 g(—1) for any x € [-1,0]. Then, for
any € € (0, 1) there holds

—1
> Ve,

e

[u?(0,1) = u(0, )] = u*(0,1) — g(—1)

where u® denotes the viscosity solution to (1.4) and u denotes the viscosity solution to (1.3) with
H=F.

Proof. In this situation, the problem (1.4) becomes

ui +us =eus, in R x (0, 00),
(@,0) = g(x)  onR,

and the problem (1.3) becomes

(4.2)

U+ Uy =0 in R x (0, 00),
u(z,0) = g(x) on R.

Note that the solution to (4.2) is given by u(z,t) = g(x — t) for (z,t) € R x [0,00). We introduce
v : R x [0,00) — R given by v°(z,t) := u®(x + ¢,¢). Then, v° solves

v = €evs, in R x (0, c0),
(2,00 = g(x)  onR,

and hence, v° is given by

This implies that
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Using g( ) :=g(z) —g(-=1) > 0forall z € Rand gly — 1) > y if y € [0,1], we have for any
e € (0, %) that

u(0,1 0,1) e4s y—1)dy —g(—1
(0,1) = u( \/ZF g9y —1)dy —g(-1)
e T gy —1)d
2 e—1
wydy = .
F e HEydy = o Ve
Noting that w(0,1) = g(—1) yields the desired result. 0
4.2. Proof of Theorem 1.2. Recall that we consider (1.4) in one dimension, i.e.,
(4.3) uf + F (uS) = eus, in R x (0, 00),
. uf(z,0) = g(x) on R.
As e — 0T, we have that u® — u locally uniformly on R x [0, c0), where u solves
(4.4) ur + F (ug) =0 in R x (0, 00),
u(z,0) = g(x) on R.

Proof of Theorem 1.2. We first show that u(0,1) = 0. As F(0) = 0 and g > 0 on R, the
function ¢ = 0 is a subsolution to (4.4), which yields u(0,1) > 0. In order to show that also
u(0,1) < 0, let us introduce h,h : R — R given by h(z) := = + 1 and h(z) := max{h(z),0} for
z € R. Let p € C°(R, [0,00)) be a standard mollifier, i.e.,

/jo plx)dz =1, supp(p) C [-1,1], and p(z)=p(—x) for z € R.

For § € (0,1), let p° := %p(g) and set h? := p?xh. Note that h® > 0as h > 0, and h? > p‘S*}Nz = has
h > h. Hence, h’ > h > g on R. Besides, 0 < (h%)" < 1 on R which follows from (h%)" = p®*h/ and
0 < h' <1la.e. onR. Introducing ¢(z,t) := h(z—t) and ¥°(z,t) := h®(z—t) for (x,t) € Rx [0, 00),
we have that 4°(-,0) = h% > g on R and, using that F(p) = p for p € [0, 1],

U] (2,t) + F(5 (2, 1)) = =(h°) (z — t) + F((°) (z — )) = 0,

i.e., ¥° is a supersolution to (4.4). Since ¢° — 1) locally uniformly on R x [0,00) as § — 0T, we
deduce that 1 is also a supersolution to (4.4). In particular,

u(0,1) < (0,1) = h(~1) = 0.

Thus, u(0,1) = 0.
Next, we construct a subsolution to (4.3). We set

_lz—yl?

\/R / gy —

and recall from the proof of Proposition 4.1 that ¢f + ¢S = €¢%, in R x (0,00) and ¢°(-,0) = g
on R. Since |¢’| < 1 a.e. on R, we note that |¢S] < 1in R x (0,00). Using that by assumption
F(p) <pif |p| <1, we find that

¢p + F(07) — edhy < 9 + ¢ — 07, =0 in R x (0,00).

Therefore, ¢° is a subsolution to (4.3) and by the comparison principle we have that u® > ¢°.
Hence, for € € (0, 1) there holds

(4.5) o (x, 1) t)dy

R . e—1
w0, 2 6°0.1) > T

where the second inequality follows from Proposition 4.1 applied to ¢°. O
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Remark 1. Fize € (0,%) and o € (0, 551/€). In the situation of Theorem 1.2, if we replace
the initial condition g by
g% =p*xg € CT(R),
where p* 1= ép(a) with p as in the proof of Theorem 1.2, then we still have that

. e—1
u®(0,1) — u(0,1) > Qﬁe\/g'

Indeed, as g*(—1) € (0,a) and g*(z) > 1+ z for all 6 [-1,—-1+ 2v¢] C [-1,—a), we. have
in view of the proof of Proposition 4.1 that u®(0,1) > = € and that u(0,1) = ( 1) < €.
Note that we still have g* € Lip (R) with ||g%| g ®) < 1 and 1(9%) | Loy < 1.

We now provide a generalization of Theorem 1.2.

PROPOSITION 4.2. Let n =1 and ¢ € (0, i) Let m > 1 be a constant such that

1-—< .
m 2ﬁe\/g
Let F € Lip ,.(R) be such that
F(p) = 5o forp € (0,1,
F(p)<p forp € [-1,0].

Assume that g(z) = max{1l — |z|,0} for x € R. Let u® denote the viscosity solution to (1.4) and
let u denote the viscosity solution to (1.3) with H = F. Then,

|wmn—MQMZ%%g@

Proof. First, we note that F(p) < pif |p| < 1. Thus, by the last part of the proof of Theorem
1.2, we still have u® > ¢, and hence,

e—1
4.6 £(0,1) > ¢°(0,1) >
(1.6 w0, 2 070.1) 2 £
where ¢° is defined in (4.5). Now, let h® = p®xh for § € (0,1) be defined as in the proof of Theorem
1.2. We recall that h® > h > g and 0 < (h°)’ < 1 on R. Introducing ¢(z,t) := h(z —t) + (1 — L)t
and

&,

CO(x,t) =R’ (x —t) + (1 - 131) t for (x,t) € R x [0, 00),

we claim that ¢ is a supersolution to (4.4). Indeed, we have that ¢°(-,0) = h® > g on R, and
using F'(p) = %pm for p € [0,1] and Bernoulli’s inequality, there holds

Q)+ PG 1) = 1= — — (1) (& — 1) + F((W) (2 = )

_ () (@ =)™ = [ +m((h*)(x —t) — 1)] > 0.

Since ¢® — ¢ locally uniformly on R x [0,00) as § — 0%, we deduce that ( is also a supersolution
o (4.4). Hence, we have that

1

“(0»1)SC(O,l)Zh(—1)+1_a:1_ e—1

Ve

which completes the proof in view of (4.6). O

<

\Ea

N}

1
m

It is important to note that in the above proposition, although F' depends on m and hence ¢, the
value ||F||Lip, . (r) does not depend on m and e.
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4.3. Quadratic Hamiltonian. Next, we consider the case where F is quadratic in one
dimension. First, we construct an example that complements (4.1) when T is very small.

PROPOSITION 4.3. Let n = 1 and assume that H(y,p) = F(p) = %|p\2 for y,p € R, and
g(x) = —|z| for x € R. Fore >0, let u® be the viscosity solution to (1.4) and let u be the viscosity
solution to (1.3). Then, for e € (0,1) and T > 0, there holds

lu — ul|poo mxo,r)) < CVTe,
and this upper bound O(V/Te) is sharp in the sense that
€ —
lim Y (0,t) —u(0,¢) _ _i.
t—0+ Vie T

It is important to note that we also obtain a rigorous asymptotic expansion of u¢(0,¢) for 0 < t < €
in the proof of Proposition 4.3. We then give a finer bound of u®* — u in Proposition 4.4 under
some appropriate conditions on g.

In this subsection, we assume the setting of Proposition 4.3. Then, the problem (1.4) reads

uf + glugl? = eus, in R x (0, 00),
u(z,0) = g(x) on R.

We have that u® — u locally uniformly on R x [0,00) as € — 0", and u solves

(47) up + lug? =0 in R x (0, 00),
u(z,0) = g(x) on R.

Proof of Proposition 4.3. The bound O(v/Te) was obtained in [12, 9]. We only need to show
that this bound is optimal here. As g(z) = —|z| for € R, we see that the solution to (4.7) is
given by

t
u(z,t) = —|x| — 3 for (z,t) € R x [0,00).
In particular, u(0,t) = —% for all t > 0. For ¢ € (0,1), we have the following representation
formula for u® (see, e.g., [10, Chapter 4])
\I y\ 9(w)
4.8 u®(xz,t) = —2¢lo / T2 .
(48) (2,1) ¢| s y

In particular, for any ¢ > 0 we have that

1 [ gl
u®(0,t) = —2¢log [\F/ o IR dz]
™ —00

2 (o
= —2¢log [efs/ e (2 dz}
0

NS
Vit
2 2V _s2 . \/7
+ﬁ/@ e ds] ——2—2510g [1+erf(2\[>}
erf(z

t
=5~ 2¢elog

Note that we have
k 52k+1

\FZ k:'2k+)

For z = YL < 1, we have that 0 < erf(z) < 1 and

24/
2 2
log(1+erf(z)):1og<1+ﬁz+-~-) zﬁz+---,

and thus,
t 2 t 24/t
wF(0,t) = —= — 2 VIt e
2 NCEN A 2 T

which gives us the desired result. |
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4.3.1. Improvement of convergence rates.. It was shown in [32] that if the Hamiltonian
F is uniformly convex, i.e., F”/ > « on R for some constant o > 0, then the convergence rate of the
vanishing viscosity limit can be improved to O(e|loge|) when the initial datum satisfies certain
technical assumptions. Below we show that for F(p) = %|p|2, the rate is almost everywhere O(¢)
when the initial datum is C2, although O(e|loge|) could happen at some points. For F(p) = %|p|2,
we have by the Hopf-Lax formula (see e.g., [10, 34]) that

ety = it {at) +2 (7Y) o where £(0) = sup (oo = Flp)} = gl

In particular, for any (z,¢) € R x (0, 00) there holds

1'2 2 i
(4.9) a(zst) — 20 {g(y) 4 y} ,

2t yeR 2t t

2
which yields that x — u(z,t) — % is concave for any fixed ¢ > 0. Hence, for any fixed ¢ > 0, we

have that u(-,t) is twice differentiable a.e. on R. For ¢ > 0, we set
(4.10) St :={x € R : u(-,t) is twice differentiable at z},

and note that R\S; has Lebesgue measure zero. Assume now that g € C?(R). We know that for
each z € S;, there exists a unique y, ; € R such that

1 1
4.11 +) = inf _ a2\ = . —ys]?
(4.11) u(z,t) inf {g(y)+ 2tlx Yl } 9(Yat) + 2t|x Yt |7

and we have that

(4.12) Ug(2,t) = g’ (Yo,t) =

T — Yzt
P g ) >

where the first equality in (4.12) follows from the method of characteristics. We obtain that
ug(z,t) = g'(x — tuy(z,t)) and hence,

Uz (T, 1) = (1 — tuge (2, 1)) ¢" (x — tug(z,t) = (1 — tuge(2,1)) §" (Yurt)-

In view of (4.12), we deduce that

1
(413) 7 o) >~

We are now in a position to prove the following result:

PROPOSITION 4.4. Let n = 1 and assume that H(y,p) = F(p) = %|p|2 fory,p € R. Assume
that g € Lip(R). For e € (0,1), let u® denote the viscosity solution to (1.4) and let u denote the
viscosity solution to (1.3) with H = F. Then, the following assertions hold true.

(i) For fized (z,t) € R x [0,00), there holds

|u®(z,t) — u(x,t)] < 2e|loge|

for e > 0 sufficiently small.
(ii) If we further assume that g € C*(R), then for each fived t > 0 we have that

|u(z,t) —u(x,t)] < Ce  for a.e. v €R,

where C' = C(z,t) > 0 is independent of € € (0,1).
(iii) If g(x) = —3a? for all z € [-1,1] and g(x) > —1a? for all x € R, then

1
[0(0, 1) = u(0,1)] > Sl loge]

for e > 0 sufficiently small.
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Proof. Without loss of generality, let (x,¢) = (0,1). Introducing h(y) := g(y)+3|y|* fory € R,
we have by (4.8) and (4.9) that

1 o0 y
u®(0,1) = —2¢log {\/éﬁs/ o dy] , u(0,1) = ijnh = h(y),

where § € R is a fixed point for which there holds h(§) = ming h. Note that

1 RN TO) B 1C)
414 wf(0,1) — u(0,1) = —2¢1o / et g } .
(.19 (0.1) = u(0,1) = ~21og | [ y

We first prove (i). Since g € Lip(R), there exists M > 0 such that for any y € R with [y —g| > M
there holds h(y) — h(y) > |y — 7|*. For £ € (0,1), we have that

g+M o G+M -
oM > / - h(w)=h(@) dy > / e7A|.gs gl dy = é (1 e A21;4> e> Be
g—M g—M A

for some A = A(L,|y|, M) > 0 and B = B(A, M) > 0. Moreover,

_h(»)=h(@) _ly—al My 16
e 2= dy < e 8 dy<2 e 8 dy < —e.
R\ (§—M,y+M) R\ (§—M,y+M) M M

Combining the two inequalities stated above, we find that

_hy)—h(@)
2¢e

B</Oo 2 d<2]\4—i—16
e < e y < Ms.

—00
Thus, in view of (4.14), we obtain that
|u®(0,1) — u(0,1)| < 2¢|loge]

for € > 0 sufficiently small.

Next we prove (ii). Assume that 0 € S7, where S; C R is defined in (4.10). Then, § = yo1
(recall (4.11)—(4.12)) is the unique minimum point of h and, using (4.13), we have that h”(y) =
g"(y) +1 > 0. Combining with the fact that g € C?(R) N Lip (R), there exists a > 0 such that
aly —9)? < h(y) — h(y) < é\y — g|? for any y € R. Thus, there exists C = C(a) > 0 such that

o0 \(y)—h(F 1
C\@s/ - )23”dy§5¢5,

and hence, in view of (4.14),
|u®(0,1) —u(0,1)| < Ce.

Finally, (iii) follows immediately from (4.14) in combination with the fact that due to h > 0
on R, hf_; ;; =0, and h(y) = 0, there holds

e8] 1
_hy)=h@) _h)—h(@)
/ e 2e dy > / e 2e dy = 2.
—0 -1 a

It is not clear to us whether Proposition 4.4 holds for other uniformly convex F'. For strictly
but not uniformly convex F (e.g., F(p) = |p|*), the convergence rate for the vanishing viscosity
process might be O(¢®) for some exponent a € (3,1); see the numerical Example 5. A natural
question is whether we will see a similar convergence rate when the homogenization process is
involved for the quadratic case as numerical Example 10 suggests. Let us briefly demonstrate
the technical difficulty in extending the proof of Proposition 4.4 to the homogenization problem.
Consider H(y,p) = 3|p|> + V(y) for a smooth Z"-periodic potential function V. Then, by the
Hopf-Cole transformation, we have that

W (z,t) = —2¢ log [h (“: zﬂ ,
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where h = h(z,t) is the solution to the problem

g(ex)

h(z,0) =e "2 on R™.

{ht—Am;Vh:o in R x (0, 00),

Therefore, we have that

t .
u®(z,t) = —2¢log [/ K (9: % 5) -5y dy] )

where K = K (z,y,t) denotes the fundamental solution corresponding to the operator 0; — A+ %V.
Obtaining the convergence rate requires a sharp estimate of the homogenization of K, which is a
highly nontrivial subject. Let us further point out that the convergence rate might also depend
on the regularity of V' as the numerical Example 6 suggests.

4.4. A Dirichlet problem. We are again in one dimension. For € > 0, we consider the
Dirichlet problem

(115) {2 u)3 = e(uf)” in (0,00),

It is quickly seen that the solution is given by

NG

u®(z) = for z > 0.

T4 \/e

In particular, we have u* — u = 0 locally uniformly in (0,00). Of course, there is a boundary
layer of size O(y/g) at * = 0, but let us ignore this boundary layer in our discussion here. We
observe that for any ¢ € (0,1) there holds

() - ()] = Y > Ve

Thus, once again, we see that the O(,/¢) rate occurs naturally here. We record this in the following

lemma.

LEMMA 4.5. For € € (0,1), let u® denote the solution to (4.15). Then, u® — u = 0 locally
uniformly in (0,00), and there holds

e _ Ve
lu (x)fu(x)\fx_’_\[ f Vo > 1.

In particular, for any d > 1, the optimal rate for the convergence of u¢ to u in the L>°((1, d))-norm
is O(\/z).

5. Numerical results for the vanishing viscosity process and the homogenization
problem.

5.1. Vanishing viscosity process. We consider (1.4) in one dimension, that is,

(5.1) uf + F (uS) = eus, in R x (0,00),
' uf(z,0) = g(x) on R.
Recall that, as ¢ — 0T, u® — w locally uniformly on R x [0, 00), where u solves

{ut—i—F(ux):O in R x (0, 00),
u(z,0) = g(z) on R.
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We now verify numerically that, in some particular examples,
[ (- 1) = u( D= > CVE,

for some C > 0 independent of ¢ € (0,1), which confirms again that the bound O(v/¢) is optimal
in general. To do so, we consider various choices of F and g and compute |[u®(-,1) —u(-,1)||L= for
different values of ¢ > 0. Specifically, Examples 3, 7, 9 give the order of convergence %, and the
other examples give convergence orders between % and 1. In particular, Examples 3, 7, 9 confirm
the optimality of Theorem 1.1.

Let us describe our methodology. We partition a spatial interval [a, b] by a uniform mesh with
mesh size Az and choose adaptive time steps At to march through a given time interval [0, 7T].
Accordingly, we discretize equation (5.1) as follows:

ul' ; —ul ul' = 2ul + ul
n+1 n 141 1—1 141 [ -1 _ . n n n
u; T =uy — At [F < N > —€ N =: G(uiy, uif, uiyy).

Monotonicity of the scheme requires that G is nondecreasing in each of its arguments; consequently,
we have

(5.2) e> %Am max |F'(p)],
P
Az?
. < —.
(5.3) At < 5

The condition (5.2) requires a minimum viscosity to be imposed on the numerical scheme, and the
time step has to be chosen according to (5.3). To check the effect of vanishing viscosity, we will
set

1
E€min = 7A1’I1’1&X|F/(p)|,
2 P
e=2%m fork=09,---,1,0,
Az?

At = can—

where c.q < 1 is the CFL number. We note that it is extremely hard to verify rigorously the
examples considered below.

EXAMPLE 1. Assume F(p) = |p|”? for p € R, and g(x) = —|x| for € R. Then,
u(z,t) = —|z| =t for all (z,t) € R x [0, 00).

Numerical results are shown in Figure 5.1 (A). We observe that the convergence rate is O(e) in
this example.

EXAMPLE 2. Assume F(p) = |p|* for p € R, and g(z) = —|z| for x € R. Then,
u(z,t) = —|z| =t for all (z,t) € R x [0, 00).

Numerical results are shown in Figure 5.1 (B). We observe that the convergence rate is O(e) in
this example.

EXAMPLE 3. Assume F(p) = |p| for p € R, and g(x) = max{1l — |z|,0} for x € R. Then,
u(z,t) = max{l — |z| —¢,0}  for all (x,t) € R x [0,00).

Numerical results are shown in Figure 5.1 (C). We observe that the convergence rate is O(y/€) in
this example.
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EXAMPLE 4. We consider (5.1) only on a quadrant U = (—o0,0) x (0,00). Assume F(p) = p3
forpeR, and g(z) = %(—x)‘o’/2 for x < 0. The limiting PDE s

ug + (ug)? =0 in (—00,0) x (0, 00),
u(0,t) =0 fort € (0,00),
u(z,0) = g(x) for z € (—o0,0].

Then, for 0 <t <1,
22\ 7
u(z,t) = (3> (3—2t)""2  for all x € (—00,0).
Numerical results are shown in Figure 5.1 (D). Numerically, we observe that the convergence rate

is O(e%/*) in this example.

EXAMPLE 5. Assume F(p) = ;|p/* for p € R, and g(z) = M min(|z|,|z — | — 1) forz € R
and some scaling constant M. We choose M € {i, %, 1,2} to perform our tests. Then, we can use
the Hopf-Lax formula to obtain

. r — 3, 3
u(z,t) = inf {g(y) +tL <ty> } , where L(v):= Sup {pv = F(p)} = Il /
p

for (z,t) € R x (0,00). Numerical results are shown in Figure 5.1 (E). Numerically, we observe
that the convergence rate is O(e”?) in this example.

5.2. A simple homogenization test. Consider (1.1) in one dimension, that is,

uf + H (£,u5) = eus, in R x (0, 00),
u®(z,0) = g(x) on R.
We take g(x) = min(|z|, |z — 4| — 7) for z € R, and we consider six different choices for the

Hamiltonian H. Since the exact solution to the homogenized problem (1.3) is unknown, we
compute |[uf(-,T) — u”?(-, T)||zo= () for some chosen T' > 0 and computational domain 2.

EXAMPLE 6. Assume H(y,p) = %\p|2 + mingez |y — k| for y,p € R. Numerical results are
shown in Figure 5.2 (A). The order of convergence seems to be in [, 2].

EXAMPLE 7. Assume H(y,p) = i\p|4 + mingez |y — k| for y,p € R. Numerical results are
shown in Figure 5.2 (B), and the order of convergence seems to be %

EXAMPLE 8. Assume H(y,p) = %|p|2 + mingez |y — k|? for y,p € R. Numerical results are
shown in Figure 5.2 (C). We observe the same as for Example 6.

EXAMPLE 9. Assume H(y,p) = i|p|4 + mingez |y — k|? for y,p € R. Numerical results are
shown in Figure 5.2 (D). We observe the same as for Example 7.

EXAMPLE 10. Assume H(y,p) = %|p|2 + sin(y) for y,p € R. Numerical results are shown in
Figure 5.2 (E), and the order of convergence seems to be close to 1.

EXAMPLE 11. Assume H(y,p) = 1|p|* + sin(y) for y,p € R. Numerical results are shown in
Figure 5.2 (F), and the order of convergence seems to be close to 1.

6. Numerical approximation of effective Hamiltonians. In this section, we would like
to gain a better understanding of the effective Hamiltonian H. Let us recall that for p € R", the
value H(p) € R is the unique constant for which there exists a viscosity solution v(-,p) € C(T™)
to

H(y,p+Dv)=H(p)+Av  foryeT"
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104 ?1
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3
— Inl3 )4
(a) F(p) = |p|2 for p € R, (b) F(p) = [p|" for p €R,
g(z) = —|z| for z € R. g(x) = —|z| for z € R.
—f— = [-L.1,11], Az = 0.00022 -7
1 —o— 1 = [-L1. 11, Ar = 0.00011 -
10 Ve -
= =
h |
=107 3
3
103 L L L 10°° | |
10 103 102 10! 10° 10" 107
= (d) F(p) =p® forpc R
(c) F(p) = |p| for p € R, p)=p P )
_ _2V/2 3/2
g(x) = max{1 — |z|,0} for z € R. g(z) = 2 (—x)°/* for x € (—o0,0].
10°
—a— M =025, 1 =[-11,L1. Ax=0.00011
—— M =05, 2 | 111 ]‘. Arx = 0.00011 -
M=10=[-1111], Az = 0.00011 -
—— M =20 | 111 ]‘ Az = 0.00011 -
107 =
=
T 102
5
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10 4 L L L L L
10° 10 104 103 102 10t 10

(e) F(p) = 1lp|* for p € R,
g(z) = M min{|z], |z — %| — i} for x € R.

Fig. 5.1: Illustration of the error ||u%, (-, 1)

—u(+, 1)|| Lo (qy for Examples 1-5.
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(C) H(yap):%‘p|2+mink€z|y - k|27 Y,p € R.
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(e) H(y,p) = 5lp|” + sin(y) for y,p € R.

Fig. 5.2: Tllustration of ||us, (-, 7) —uZ’ (-, T)

for (E)-(F).
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(d) H(y,p)=%|p|*+minkezly — k% y,p € R.
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o £ 0.5) — 52 0.5) [l (61)
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() H(y,p) = flp|* +sin(y) for y,p € R.

| o< () for Examples 6-11 with initial datum g(z)
min(|z|, |z — 3| — 1) for z € R. Here, @ = [-3,3], T =1 for (A)-(D), and Q = [, U] T =

19
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6.1. Framework. Let us focus on a Hamilton-Jacobi-Bellman nonlinearity
(61) H:T"xR" — R? H(yap) = SUR {7b(y7a) P - f(ya Oé)},
aec

where A is a compact metric space, b € C(T™ x A;R™), f € C(T"™ x A), and we assume that b =
b(y, ), f = f(y, «) are Lipschitz continuous in y, uniformly in «. In this setting, H € Lip (T xR")
and H = H(y,p) is convex in p. See [22] and the references therein for the homogenization of
viscous G-equations.

6.2. Approximation of the effective Hamiltonian. Let p € R" be fixed. Our goal is to
approximate the value H(p), and we begin by introducing approximate correctors.

6.2.1. Approximate correctors. For o > 0, introducing the approximate corrector v’ &
C(T™) to be the unique viscosity solution to the problem

(6.2) ov? + H(y,p+ Dv7) = Av® for y € T,

it is known that {—ov7},~¢ converges uniformly to the constant H(p) as ¢ — 07; see [20, Chapter
4].

LEMMA 6.1. For o > 0, let v7 denote the unique viscosity solution to (6.2). Then, v €
C?7(T™) for any v € (0,1). Moreover, for any o > 0 there holds

|ov” + H(p)|| Lo (1) < Co,

where C' > 0 is a constant independent of o.

Proof. As H € Lip (T" x R"), we have that v7 € W2P(T") for any p > 1; see [2]. Hence,
Dv° € C%Y(T™) for any v € (0, 1), and hence, H(-, Dv°(-)) € C%7(T"). By the standard Schauder
estimates, we obtain that v® € C?7(T").

Let v = v(-,p) € C(T™) be a solution to the cell problem (1.5). Then, the function v —

H(p) H(p)

llv]| oo (Tn) — =, is a subsolution to (6.2) and the function v+ [|v||pec (pny) — =% is a supersolution
to (6.2). By the comparison principle, we have that
H(p H(p) .
v — HU”LO@(Tn) — () <07 <o+ ||UHLOC(’]I‘1L) — L in T,
o o
and hence, o
HJ’UU —+ H(p)”th)(’H‘n) S 2||’l)||Loo('H*n)O'7
which completes the proof. |

Therefore, a natural idea is to obtain a numerical approximation of H(p) based on the fact
that

H(p) = lim —ov?),
)= Jim_ [ (-ov)
where Y := (0,1)", in combination with a numerical approximation vy of v” with |[v7 —v7 || 1 (y) —
0 as h — 0 for o fixed. Let us briefly address a possible numerical approximation for ||b||s small.
To ensure strong monotonicity of the finite element schemes proposed below, we assume that

1113
(6.3) o> ==,

requiring a minimum discount to be imposed for the numerical scheme. Here, we follow the
idea of the small-6 method (see, e.g., [27]) in combination with a finite element approximation of
(6.2). We note that the effective Hamiltonian can also be approximated by the large-T method;
see [27, 28] and the references therein. Since the large-T method and the small-6 method (see,
e.g., [27]) are mathematically equivalent, we just use the small-§ method to illustrate the new
formulation for convenience.
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6.2.2. H! (Y)-conforming finite element approximation of (6.2). We have that v7 is

per

the unique element in H:_ (Y) such that

per
a(?, ) =0 Vo€ Hy(Y),

per

where a : H!, (V) x H.,.(Y) — R is given by

per per

a(w, @) == (Dw, Do) 2y + (Slé]j)\ {=b(-, ) - Dw —g(-, )}, 0) L2(v) + o(w, ©) L2 (v)
[e3

with g(-, @) := b(-, @) - p+ f(-,a). Indeed, assuming (6.3), a : H: (Y) x H!, (Y) — R is strongly

per per
2
1122138

monotone since for any uq,us € H;er(Y) and s € (322, 1), writing 0, := u; — ug,

a(u1, 0u) — a(uz, 8u) > [Ddulliz(yy + olldullis vy = (sup [b(-> @) - Ddul, |0ul)r2(v)

> (1= 1Dy + (o - o101 ) Wl
> Cll0ullFrr (v)-
It is also quickly checked that we have the Lipschitz property
la(ur, @) = aluz, )| < Cilluy = wzllm vy lella vy Yur,uz, ¢ € Hyep (Y).

Let Vi, € H},(Y) be a closed linear subspace of H}. (Y). By the Browder-Minty theorem and
standard conforming Galerkin arguments, there exists a unique vy € V}, such that

(6.4) a(vp,on) =0 Vop € Vp,

and we have the near-best approximation bound

o)
o g < 2L inf o — .
107 =il < G- il {107 = wnllm e

Choosing for Vj, a Lagrange finite element space over a shape-regular triangulation 75 of Y with
mesh-size h > 0, consistent with the periodicity requirement, leads to a convergent method un-
der mesh refinement. The discrete nonlinear system can be solved numerically using Howard’s
algorithm (see e.g., [29]).

Introducing the approximate effective Hamiltonian

(6.5) Honlo) = [ (-0,
Y
we then have that

() — Ton(p)] < \H@) ~ [ o]+ ol = s,

where |[v7 —vf||L1(y)y — 0 as h — 0 and the first term on the right-hand side is of order O(c) by
Lemma 6.1.

6.2.3. Fourth-order-type variational formulation for (6.2). If information on second-
order derivatives of v is desired, it is interesting to see that inspired by arguments based on
Cordes-type conditions (see e.g., [4, 13, 14, 29, 30]), we can derive a fourth-order-type varia-
tional formulation for v”, allowing for the construction of H2-conforming finite element schemes.
Introducing v := \blslﬁ € C(T™ x A, (0,1]), note that v7 is the Y-periodic solution to

G[v?] =0, where Glw]:= ilég {7(,a) (—Aw = b(-,a)) - Dw 4+ ow — g(-, ) },
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and v is the unique element in H2_ (V) satisfying

a(v?,9) = (G700 = Ap)ray) =0 Ve € Ho (V).
Indeed, note that due to (6.3) we have that a is strongly monotone: For any ui,us € HZ. (Y),

4o—|b]|%
W (O, 1], we have

G[u] — Glus] — (06, — Ad,)|?
< sup |—(v(; @) = 1)AS, — Y] (-, @) - Dy + (v(-, @) = 1)aby, |

writing d,, := u; — ug and 7 :=

< (1= n)(|A8u)* + 20|D6, > + 026, 1%)
almost everywhere (note 2|y — 1|2 + 5=|7b|> =2 — 2y < 1 — ), and
||A5u||%2(y) + 20||D5u||2L2(y) + 02||5u||2i2(y) = [lody — A(SHH%Z(Y)v

which in combination yields

alur,8,) = a(uz, 80) = (1= V1= 1) b = Abull3ay)

Further, a satisfies the Lipschitz property
a1, ) = aluz, @)| < (14 VT=1) l06u = Adull 2 llow = Al 2.

Let Vi, € HZ,(Y) be a closed linear subspace of HZ,(Y). By the Browder-Minty theorem and
standard conforming Galerkin arguments, there exists a unique vy € V}, such that

a(vp,on) =0 Vop € V,

and, introducing the norm |[|wl|| := [[ow — Aw]|p2(yy for w € HZ,(Y), we have the near-best
approximation bound

o — ol < =5V np 107 — ]
v — U ln v —w
h T 1—/1—nwnew h

Choosing for V}, an Argyris or HCT finite element space over a shape-regular triangulation 7, of Y’
with mesh-size h > 0, consistent with the periodicity requirement, leads to a convergent method
under mesh refinement. The discrete nonlinear system can again be solved numerically using
Howard’s algorithm. With the observations of this subsection at hand, one can also construct
mixed finite element schemes and discontinuous Galerkin finite element schemes for (6.2) similarly
o [14, 18].

6.2.4. Numerical experiments. For our numerical tests, we consider one linear example
with known effective Hamiltonian and one nonlinear example with unknown effective Hamiltonian.
For both tests, we use the method from Section 6.2.2.

EXAMPLE 12. Consider H : T? x R?* — R given by (6.1) with n = 2 and A := {0}. We set
by, @) := by) = (55 cos(2my1),0) and f(y,a) == f(y) = 1 +sin(2my1) for y = (y1,y2) € T”
and o € A. Our goal is to approzimate the value of the effective Hamiltonian H at the point
p = (3,1), and compute the approximation error |H(p) — H, n(p)|, where the true value can be
explicitly computed as

Jy sin(2t) exp( 7L sin(2rt)) dt
f exp(; 2s1n( s))ds

In our numerical experiment, we compute H, j,(p) via (6.4)—(6.5), where we choose Vj, to consist
of continuous Y -periodic piecewise affine functions on a periodic shape-regular triangulation Tp,
of Y ‘into triangles with vertices {(ih, jh)}1<ij<n where N = + € N. We choose o = 107° for

€[-3,2lNZ and h =277 for j € [1,10] N Z. The results are shown in Figure 6.1. Numerically,
we can observe that the rate O(o) in Lemma 6.1 is optimal.

H(p)=1+
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o= 1000 —5—a =100 a=10 —¢— |H(p) — Haulp)| for fixed b = 1/1024
——o0=1 ——a=01 & =0.01 — — — /1000

10 6 1 1 1 10 6 ! 1 1 !
103 102 10t 102 10t 10° 10t 10? 103
h @

(a) b+ |H(p) — Hyn(p)| for fixed o (b) o~ [H(p) — Hon(p)| for fixed h = 271°

Fig. 6.1: Approximation of H(p) at p = (3,1) for Example 12.

102

—— |[H,(p) = Hoppn(p)| for fixed fo = 171024 and p = (-1, -1)
11000

— — —a/

Fig. 6.2: Approximation of H for Example 13.

EXAMPLE 13. We consider H : T? x R* — R given by (6.1) with n = 2 and A := {o € R* :
la| <1}, We set by, o) == b(y) + « and f(y,a) := f(y) for (y,a) € T> x A, where b and f are
defined as in Evample 12. Note that H(y,p) = |p| — b(y) - p — f(y) for (y,p) € T? x R%. Our goal

is to approzimate the unknown effective Hamiltonian H on [—1,1]2. To this end, we approzimate
H(p) at all points p in S = {il,i%,i%,i%,i%,iéﬂ}g, where we chose a finer resolution
around the origin. In our numerical experiment, we compute H, n(p) via (6.4)—(6.5), where we
choose Vi, to consist of continuous Y -periodic piecewise affine functions on a periodic shape-reqular
triangulation Ty, of Y into triangles with vertices {(ih,jh)}1<i j<n where N = % e N. We fized
a fine mesh, i.e., h = 2710 and produced convergence histories with respect to o at each point
p € S. The nonlinear discrete problems were solved using Howard’s algorithm. For the plot of the
numerical effective Hamiltonian we used o = 2=%; see Figure 6.2 (A). An exzemplary convergence
history of [Hen(p) — Hg n(p)| with respect to o, for p = (=1,-1), is shown in Figure 6.2 (B)
and we observe the rate O(o), as expected. We note that the scheme performs nicely even beyond
(6.3).
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