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Abstract. The classical Minkowski problem for convex bodies has deeply influenced the devel-4
opment of differential geometry. During the past several decades, abundant mathematical theories5
have been developed for studying the solutions of the Minkowski problem; however, the numerical6
solution of this problem has been largely left behind, with only a few methods available to achieve7
that goal. In this article, focusing on the two–dimensional Minkowski problem with Dirichlet bound-8
ary conditions, we introduce two solution methods, both based on operator–splitting. One of these9
two methods deals directly with the Dirichlet condition, while the other one uses an approximation10
à la Robin of this Dirichlet condition. The relaxation of the Dirichlet condition makes the second11
method better suited than the first one to treat those situations where the Minkowski equation (of the12
Monge–Ampère type) and the Dirichlet condition are not compatible. Both methods are generaliza-13
tions of the solution method for the canonical Monge–Ampère equation discussed by Glowinski et al.14
(A Finite Element/Operator–Splitting Method for the Numerical Solution of the Two Dimensional15
Elliptic Monge–Ampère Equation, Journal of Scientific Computing, 79(1), 1–47, 2019); as such they16
take advantage of a divergence formulation of the Minkowski problem, which makes it well–suited17
to both a mixed finite-element approximation and the time–discretization via an operator–splitting18
scheme of an associated initial value problem. Our methodology can be easily implemented on con-19
vex domains of rather general shape (with curved boundaries, possibly). The numerical experiments20
validate both methods, showing that if one uses continuous piecewise affine finite element approx-21
imations of the solution of the Minkowski problem and of its three second order derivatives, these22
two methods provide nearly second-order accuracy for the L2 and L∞ norms of the approximation23
error, where the Minkowski–Dirichlet problem is assumed to have a smooth solution. One can extend24
easily the methods discussed in this article, to address the solution of three–dimensional Minkowski25
problems.26
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1. Introduction. The Minkowski problem (named after Hermann Minkowski30

(1864–1909)) is an important problem in Differential Geometry. It asks for the con-31

struction of a compact surface S as boundary of a convex bounded domain, knowing32

its Gaussian curvature. Given a compact strictly convex hypersurface S in the d–33

dimensional real space Rd, the Gauss map G is a diffeomorphism from S to the unit34

sphere Sd−1 of Rd. Map G is defined by G(x) = n(x), ∀x ∈ S, where n(x) denotes35

the unit outward normal of S at x. Accordingly, the Gauss-Kronecker curvature K is36

the Jacobian of the Gauss map. Minkowski stated that one has37

(1.1)

∫

Sn−1

x(K(G−1(x)))−1dσ(x) = 0,38
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where σ is the Lebesgue measure on Sd−1. Conversely, Minkowski posed the following39

(inverse) problem: Suppose that f is a strictly positive function defined over Sd−140

verifying
∫

Sn−1 xf(x)dσ(x) = 0; can one find a hypersurface S having 1/f as Gaussian41

curvature? In [41, 42], Minkowski discussed the existence and uniqueness of solutions42

to the above inverse problem. For d = 2, the solution regularity was proved by Lewy43

[33, 34], Nirenberg [44], and Pogorelov [45], while, for d > 2, the solution regularity44

was analyzed by Cheng and Yau [11] and Pogorelov [46].45

Despite being around for more than a century and being one of the most impor-46

tant problems in Differential Geometry, not much was done concerning the numerical47

solution of the Minkowski problem. The earliest attempt we could find was discussed48

in [36, 37], two publications dedicated to the solution of a related problem: namely,49

reconstructing a shape from extended Gaussian images. In [31], after generalizing50

Minkowski’s proof, Lamberg converted the Minkowski problem into an optimization51

one, the resulting algorithm solving a polyhedral version of the Minkowski problem.52

In [32], Lamberg introduced an algorithm based on Minkowski’s isoperimetric inequal-53

ity, leading to an approximate Minkowski problem taking place in a finite-dimensional54

function space spanned by truncated spherical harmonic series. In a more recent pub-55

lication [10], Cheng designed a level-set based finite-difference PDE method to drive56

an implicitly defined surface towards shapes arising from the Minkowski problem.57

In all the above cited works the hypersurface is supposed to be closed. Actu-58

ally, another type of Minkowski problem is the Minkowski–Dirichlet problem. For59

the Minkowski–Dirichlet problem, one supposes that the hypersurface is open and60

bounded, with a Dirichlet condition imposed on its boundary. The well–posedness of61

this problem has been addressed by many authors: For example, Bakelman [3], Lions62

[35] and Urbas [50, 51, 52] have proved the existence and uniqueness of a solution.63

Trudinger and Urbas [48] proved a necessary and sufficient condition for the classical64

solvability of the Minkowski–Dirichlet problem. Recently, in [30] Hamfelt designed65

a monotone finite-difference method to solve the Minkowski–Dirichlet problem; since66

the method relies on wide stencils, it is advantageous for those situations where, due67

to the lack of classical solutions, one looks for viscosity solutions.68

Here, we propose two new methods for the numerical solution of the Minkowski–69

Dirichlet problem in dimension d = 2. The first method, well suited to problems with70

classical solutions, imposes the Dirichlet condition in a strong sense. On the other71

hand, the second method imposes the Dirichlet condition in a least–squares sense (via72

a quadratic penalty technique), making it appropriate for those situations where, due73

to data incompatibility, the Minkowski–Dirichlet problem has no solution. Of course,74

the second method has also the ability to capture classical solutions, if such solutions75

do exist. The Minkowski problem we will look at can be described as follows: Let Ω76

be a bounded domain of Rd and K be a positive function defined over Ω, and let g be77

a function defined on the boundary ∂Ω; can one find a function u defined over Ω and78

verifying u|∂Ω = g, such that K is the Gauss curvature of the graph of u (a surface in79

R
d+1)? In partial differential equation form, the above Minkowski–Dirichlet problem80

reads as follows:81

(1.2)

{

det(D2u)
(1+|∇u|2)1+d/2 = K in Ω,

u = g on ∂Ω.
82

The partial differential equation in (1.2) belongs to a family of Monge–Ampère equa-83

tions. The simplest element of this family is clearly the following canonical Monge–84
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Ampère equation85

(1.3) det(D2u) = f in Ω.86

Equation (1.3) is elliptic if f > 0. The above Monge–Amperère equation (1.3) is a87

fully nonlinear second order partial differential equation; it has been drawing a lot of88

attention lately, mostly because its relations with optimal transport problems (other89

applications are described in, e.g., [19]; see also the references therein). During the90

past three decades, a variety of methods have been designed to solve numerically91

equation (1.3), completed by boundary conditions (mostly Dirichlet’s) (some of these92

methods are described in the review article [19]). As expected, most of these methods93

focus on the two–dimensional Monge–Ampère equation and cover a large variety of94

approaches. Combinations of (mixed) finite element approximations and augmented95

Lagrangian or least-squares formulations have been applied to the solution of (1.3)96

and related fully nonlinear elliptic equations such as Pucci’s (see [4, 8, 13, 15, 14, 17,97

18, 16, 26, 29, 25, 43, 9, 19] for details). Alternative finite-difference and finite-element98

methods have been developed for these fully nonlinear elliptic equations as well; see99

[1, 5, 6, 7, 21, 20, 40, 47, 28, 38, 19], this list being far from complete.100

The main goal of this article is to extend to problem (1.2) (assuming d = 2), the101

operator–splitting based methods developed in [28, 38] for the solution of equation102

(1.3) (completed by Dirichlet conditions) in dimensions 2 and 3 and in [27, 39] for103

the eigenvalue problems of (1.3). Following [28, 38], the first step in that direction is104

to take advantage of a divergence formulation of problem (1.2), better suited to finite105

element approximations. The second step is to decouple (in some sense) differential106

operators and nonlinearities by introducing as additional unknown functions p = D2u107

(as done in [27, 38]) and s = ∇u (which was not necessary in [27, 38]). At the end of108

the second step, one has replaced the highly nonlinear scalar Minkowski equation by109

an equivalent system of linear and nonlinear equations for u,p and s, whose formalism110

is simpler. In the third step, we associate an initial value problem (IVP) with the111

above system and use operator–splitting to time–discretize the above IVP, in order to112

capture its steady state solution(s). We use simple finite-element approximations of113

the mixed type to implement the above methodology: indeed, we use finite-element114

spaces of continuous piecewise affine functions to approximate u and its three second-115

order derivatives, making our methods well–suited to solve problem (1.2) on domains116

Ω with curved boundaries.117

As mentioned above we will develop two new methods for the solution of problem118

(1.2): these two methods are very close to each other, the first one dealing directly with119

the boundary condition u = g on ∂Ω, while the second one imposing the boundary120

condition in a least–squares sense.121

This article is organized as follows: In Section 2, we state some theoretical results122

on the existence and uniqueness of solutions to the Minkowski–Dirichlet problem (1.2).123

In Section 3, we provide the divergence formulation of problem (1.2) and associate124

with it two initial value problems, which differ by the way the Dirichlet boundary125

condition is treated. The time discretization of these two initial value problems by126

operator–splitting is discussed in Section 4, followed by their finite-element space127

discretization in Section 5. We address in Section 6 the initialization of the two above128

algorithms. In Section 7, we report the results of numerical experiments validating129

our methodology. Section 8 concludes the article.130

2. Problem formulation, existence, uniqueness and regularity results.131

We defined the Minkowski problem in Section 1. In this article, we will focus on the132
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numerical solution of the Minkowski–Dirichlet problem (1.2), assuming that d = 2133

(2-D). A first step to that goal is to rewrite (1.2) as134

(2.1)

{

det(D2u) = K(1 + |∇u|2)1+d/2 in Ω,

u = g on ∂Ω,
135

a Monge–Ampère type formulation, better suited for numerical solution. In (2.1), K136

(> 0) is the prescribed curvature and D2u =
(

∂2u
∂xi∂xj

)

1≤i,j≤d
is the Hessian matrix137

of function u.138

To put our computational investigations into perspective, we recall some classical139

results concerning the existence, uniqueness and regularity of classical solutions to140

problem (2.1). In [48], one proves the following results about existence and uniqueness.141

Theorem 2.1. Suppose that in (2.1), Ω is a uniformly bounded convex domain142

of Rd, its boundary ∂Ω having C1,1–regularity. Then, problem (2.1) has, for any143

g ∈ C1,1(Ω̄), a unique solution in C2(Ω) ∩ C0,1(Ω̄), if and only if144

(2.2)

∫

Ω

Kdx < ωd,145

and146

(2.3) K = 0 on ∂Ω.147

The constant ωd in (2.2) is given by ωd =
∫

Rd
dξ

(1+|ξ|2)1+d/2 (implying ω2 = π and148

ω3 = 4π/3); actually, ωd is the volumn of the unit ball of Rd.149

Condition (2.3) is required to make sure that a solution exists for arbitrary g. It150

is proved in [48] that if K does not vanish on the boundary, one can find a smooth151

function g such that problem (2.1) has no solution.152

In [50, 51, 52], one discusses regularity of the solution in the critical case defined153

by154

(2.4)

∫

Ω

Kdx = ωd,155

where the following results are proved.156

Theorem 2.2. Let Ω be a uniformly convex domain of Rd with a C2,1 smooth157

boundary, and K be a positive C2 smooth function verifying (2.4). If u is a solution158

of the Minkowski–Dirichlet (2.1), then159

(i) u ∈ C0,1/2(Ω);160

(ii) the graph of u is C2,α–smooth for some α ∈ (0, 1);161

(iii) u|∂Ω is C1,α–smooth;162

(iv) if ∂Ω is Ck+1,α and K ∈ Ck−1,α with k ≥ 2, then the graph of u is Ck+1,α–163

smooth and u|∂Ω is Ck+1,α–smooth.164

See [49] for more details on the solution of the Minkowski problem.165

Some of the conditions in the above two theorems are rather restrictive and/or166

not easy to verify. Nevertheless, the results they are reporting are very useful from167

two perspectives: on one hand, they suggest test problems, where we know in advance168

that solutions exist; on the other hand, they also suggest some other examples, where169

the answer to existence will be indicated by the results of our computations. Finally,170

we will also consider test problems with known solutions so as to check how fast and171

how accurately our methods recover them.172
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3. Divergence formulations of the 2-D Minkowski problem and relax-173

ation by penalty of the Dirichlet condition.174

3.1. Synopsis. There are cases where the data K and g do not allow the exis-175

tence of classical smooth solutions to problem (2.1). In [30], one introduces a notion of176

viscosity solution to problem (2.1), with the solution satisfying the generalized Monge-177

Ampère equation in [2], but not necessarily the Dirichlet condition. In the following178

sub-sections, we will consider two divergence formulations of problem (2.1) in dimen-179

sion two to enforce the Dirichlet condition. The first formulation keeps the Dirichlet180

condition as it is and is well-suited to those situations where problem (2.1) has clas-181

sical solutions. On the other hand, the second formulation makes use of penalty to182

relax the Dirichlet condition; for large values of the penalty parameter, one recovers183

accurately classical solutions if such solutions do exist, or generalized solutions in the184

absence of classical solutions.185

3.2. A first divergence formulation of the 2-D Minkowski-Dirichlet186

problem. If d = 2, problem (2.1) enjoys the following equivalent formulation (in187

the sense of distributions):188

(3.1)

{

−∇ ·
(

cof(D2u)∇u
)

+ 2K(1 + |∇u|2)2 = 0 in Ω,

u = g on ∂Ω,
189

where matrix cof(D2u) is the cofactor matrix of Hessian D2u, that is

cof(D2u) =

(

∂2u
∂x2

2

− ∂2u
∂x1∂x2

− ∂2u
∂x1∂x2

∂2u
∂x2

1

)

.

Problem (3.1) is equivalent to190

(3.2)



















{

−∇ · (cof(p)∇u) + 2K(1 + |s|2)2 = 0 in Ω,

u = g on ∂Ω,

p−D2u = 0 in Ω,

s = ∇u in Ω.

191

In order to avoid possible troubles at those points of Ω̄ where K may vanish, we192

approximate system (3.2) by193

(3.3)



















{

−∇ · ((εI+ cof(p))∇u) + 2K(1 + |s|2)2 = 0 in Ω,

u|∂Ω = g on Ω,

p−D2u = 0,

s−∇u = 0,

194

with ε a small positive parameter. We used successfully this type of regularization195

in [28], for the solution of the canonical Monge-Ampère equation (1.3) completed196

by Dirichlet boundary conditions. In practice, we will use a piecewise linear finite-197

element basis and take ε of the order of h2, h being a space discretization step. Such198

a choice makes the scheme stable while providing optimal second-order accuracy.199

To solve system (3.3) we are going to associate with it the following initial value200
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problem201

(3.4)































{

∂u
∂t −∇ · ((εI+ cof(p))∇u) + 2K(1 + |s|2)2 = 0 in Ω× (0,+∞),

u|∂Ω = g on ∂Ω× (0,+∞),
∂p
∂t + γ1

(

p−D2u
)

= 0 in Ω× (0,+∞),
∂s
∂t + γ2 (s−∇u) = 0 in Ω× (0,+∞),

(u(0),p(0), s(0)) = (u0,p0, s0),

202

to be time-discretized by operator-splitting (in Section 4.1). In (3.4), γ1 and γ2 are203

two positive coefficients chosen so that the smooth modes of p and s evolve in time204

roughly at the same speed as that of u. Roughly speaking, the evolution speed of u205

is controlled by the eigenvalue of −∇2u and the eigenvalue of p ≈ D2u. According206

to (2.1), if the eigenvalues of D2u are close to each other, then they are in the order207

of
√
K. Following [28], we advocate defining γ1 and γ2 by208

γ1 = β1λ0
(

ε+
√
α
)

,209

γ2 = β2λ0
(

ε+
√
α
)

,210

where λ0 is the smallest eigenvalue of operator −∇2 in H1
0 (Ω), α is the lower bound211

of K, and β1 and β2 are two constants of order one.212

We comment in passing that we have used and will continue to use the notation213

φ(t) for the function x → φ(x, t). In Section 6, we will discuss the initialization of214

system (3.4).215

3.3. A divergence formulation of the 2-D Minkowski-Dirichlet problem216

with relaxation of the boundary condition. Theorem 2.1 implies that problem217

(2.1) may have no solution, unless function K belongs to a very specific class of218

functions. In order to deal with such no-solution scenarios as well as we can, we are219

going to relax the boundary condition u = g using a penalty technique of the least-220

squares type. If problem (2.1) has a classical solution, we expect to recover it when221

the penalty parameter converges to +∞.222

The simplest way to proceed is to start from the following variational formulation223

verified (formally) by any solution u of problem (2.1):224

(3.5)















u ∈ H1(Ω),
∫

Ω

(cof(D2u)∇u) · ∇vdx+ 2

∫

Ω

K(1 + |∇u|2)2 v dx = 0, ∀v ∈ H1
0 (Ω),

u = g on ∂Ω.

225

In order to relax the Dirichlet boundary condition, we are going to apply to problem226

(3.5) the well-known penalty method discussed in [23, 24] to approximate Dirichlet’s227

problems for linear second-order elliptic operators by Robin’s ones.228

Let κ be a positive constant. We (formally) approximate the variational problem229

(3.5) by230

(3.6)















u ∈ H1(Ω),
∫

Ω

(cof(D2u)∇u) · ∇vdx+ 2

∫

Ω

K(1 + |∇u|2)2vdx +

κ
∫

∂Ω
(u− g)vdΓ = 0, ∀v ∈ H1(Ω),

231

where coefficient κ acts as a weight, controlling the level of penalization. Some remarks232

are in order.233
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Remark 3.1. Let us consider the functional j2 : H1(Ω) → R defined by234

j2(v) =
κ

2

∫

∂Ω

|v − g|2dΓ, ∀v ∈ H1(Ω).235

Functional j2 is convex and C∞ over H1(Ω), its differential Dj2(v) at v being given236

by237

〈Dj2(v), w〉 = κ

∫

∂Ω

(v − g)wdΓ, ∀v, w ∈ H1(Ω),(3.7)238

where 〈·, ·〉 denotes a duality pairing between (H1(Ω))′ (the dual space of H1(Ω))239

and H1(Ω). Consequently, we can identify Dj2(u) with κ(u|∂Ω − g) and replace240

κ
∫

∂Ω
(u− g)vdΓ in (3.6) by 〈Dj2(u), v〉.241

Remark 3.2. If a function u is a solution of the nonlinear variational problem242

(3.6), it is also a solution (in the sense of distributions) of the following (fully nonlin-243

ear) boundary value problem244

{

−∇ · (cof(D2u)∇u) + 2K(1 + |∇u|2)2 = 0 in Ω,
1
κ (cof(D

2u)∇u) · n+ u = g on ∂Ω,
(3.8)245

where, in (3.8), n denotes the unit outward normal vector at ∂Ω. The boundary246

condition in (3.8) is a (nonlinear) Robin boundary condition. When κ → +∞, prob-247

lem (3.8) ‘converges’ (formally) to problem (2.1), justifying our second divergence248

formulation of problem (2.1).249

Remark 3.3. A natural alternative to problem (3.6) is the one described by250

(3.9)















u ∈ H1(Ω),
∫

Ω

(cof(D2u)∇u) · ∇vdx+ 2

∫

Ω

K(1 + |∇u|2)2vdx +

〈∂j1(u), v〉 = 0, ∀v ∈ H1(Ω),

251

where, in (3.9), ∂j1(u) is the sub-differential at u of the convex Lipschitz continuous252

functional j1 : H1(Ω) → R, defined by253

j1(v) = κ

∫

∂Ω

|v − g|dΓ, ∀v ∈ H1(Ω).254

This type of L1 functional is very common in Non-Smooth Mechanics and increasingly255

popular in Data Science as shown by various chapters of [29].256

Proceeding as in Section 3.2, we associate with (3.6) the semi-variational system257

(3.10)








































u ∈ H1(Ω),
∫

Ω

(

( 12εI+ cof(p))∇u
)

· ∇vdx +
∫

Ω
1
2ε∇u · ∇vdx

+2
∫

Ω
K(1 + |s|2)2vdx + κ

∫

∂Ω
(u− g)vdΓ = 0, ∀v ∈ H1(Ω),

p−D2u = 0,

s−∇u = 0,

258

where in the second row,
∫

Ω
( 12εI)∇u ·∇vdx+

∫

Ω
1
2ε∇u ·∇vdx(=

∫

Ω
ε∇u ·∇vdx) is the259

regularization term with a role similar to ∇ · ((εI)∇u) in (3.3). The next step is to260
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associate with (3.10) an initial value problem, as we have done with (3.3) in Section261

3.2. The initial value problem reads as:262

(3.11)









































































u(t) ∈ H1(Ω), ∀t > 0,
∫

Ω

∂u

∂t
vdx +

∫

Ω

[

1

2
εI + cof(p)

]

∇u · ∇vdx+

∫

Ω

1

2
ε∇u · ∇vdx

+ 2

∫

Ω

K(1 + |s|2)2vdx+ κ

∫

∂Ω

(u− g)vdΓ = 0, ∀v ∈ H1(Ω),

∂p
∂t + γ1(p−D2u) = 0 in Ω× (0,+∞),
∂s
∂t + γ2(s−∇u) = 0 in Ω× (0,+∞),

(u(0),p(0), s(0)) = (u0,p0, s0).

263

As in Section 3.2, we advocate taking264

γ1 = β1λ0
(

ε+
√
α
)

,265

γ2 = β2λ0
(

ε+
√
α
)

.266

In Section 6, we will discuss the initialization of system (3.11).267

The main difference between (3.4) and (3.11) is how the boundary condition is268

implemented. Problem (3.4) enforces the Dirichlet boundary condition in a pointwise269

manner, while (3.11) enforces the Dirichlet boundary condition in a weak sense so270

that pointwise mismatch is allowed.271

4. Discretization of the IVPs (3.4) and (3.11) by operator-splitting. In272

this section, we are going to apply the Lie scheme to the time-discretization of the273

initial value problems (3.4) and (3.11); see [29] for details on the Lie scheme. In274

our splitting strategy, each evolution step is split into several fractional steps so that275

at each fractional step, we only focus on a few operators and update each variable276

implicitly and independently instead of solving a large system including all variables277

simultaneously. Another benefit is that with this strategy, p and s are updated using278

the already updated u, which, in general, will improve the convergence behavior of279

the algorithm.280

In the following, let ∆t (> 0) denote a time-discretization step, tn = n∆t, and281

let (un,pn, sn) denote an approximation of (u,p, s) at t = tn.282

4.1. Time discretization of the initial value problem (3.4). The Lie-283

scheme we employ here is a variant of the one we used in [28] to solve the Monge-284

Ampère equation (1.2) completed by a Dirichlet boundary condition. It reads as:285

(u0,p0, s0) = (u0,p0, s0).(4.1)286

For n ≥ 0, (un,pn, sn) → (un+1/2,pn+1/2, sn+1/2) → (un+1,pn+1, sn+1) as follows:287

The First Fractional Step:288

Solve289

(4.2)






























{

∂u
∂t −∇ · [(εI+ cof(pn))∇u] + 2K(1 + |sn|2)2 = 0 in Ω× (tn, tn+1),

u = g on ∂Ω× (tn, tn+1),
∂p
∂t = 0 in Ω× (tn, tn+1),
∂s
∂t = 0 in Ω× (tn, tn+1),

(u,p, s)(tn) = (un,pn, sn),

290
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and set291

(4.3) un+1/2 = u(tn+1), pn+1/2 = p(tn+1)(= pn), sn+1/2 = s(tn+1)(= sn).292

The Second Fractional Step:293

Solve294

(4.4)



















∂u
∂t = 0 in Ω× (tn, tn+1),
∂p
∂t + γ1(p−D2un+1/2) = 0 in Ω× (tn, tn+1),
∂s
∂t + γ2(s−∇un+1/2) = 0 in Ω× (tn, tn+1),

(u,p, s)(tn) = (un+1/2,pn+1/2, sn+1/2),

295

and set296

(4.5) un+1 = u(tn+1)(= un+1/2), pn+1 = P+

[

p(tn+1)
]

, sn+1 = s(tn+1).297

In (4.5), P+(·) is a (kind of) projection operator which maps the space of the 2×2298

symmetric matrices onto the closed cone of the 2× 2 symmetric positive semi-definite299

matrices; we will return to operator P+ in Section 5.6.300

We still need to solve the initial value problems that one encounters in (4.2) and
(4.4). There is no difficulty with (4.4) since the three initial value problems it contains
have closed form solutions, leading to











u(tn+1) = un+1/2,

p(tn+1) = e−γ1∆tpn +
(

1− e−γ1∆t
)

D2un+1,

s(tn+1) = e−γ2∆tsn +
(

1− e−γ2∆t
)

∇un+1.

It remains to solve the parabolic problem (4.2); for its solution, we advocate
performing just one step of the backward Euler scheme, which enables us to use a
relatively large time step while keeping the algorithm stable. We obtain then

{

un+1−un

∆t −∇ ·
[

(εI+ cof(pn))∇un+1
]

+ 2K(1 + |sn|2)2 = 0 in Ω ,

un+1 = g on ∂Ω,

a (relatively) simple Dirichlet problem for a linear self-adjoint second-order strongly301

elliptic operator with variable coefficients, well-suited to finite-element approximations302

as we shall see in Section 5.303

Collecting the above results, we will employ the following time-discretization304

scheme to solve the initial value problem (3.4):305

(4.6) (u0,p0, s0) = (u0,p0, s0).306

For n ≥ 0, (un,pn, sn) → (un+1,pn+1, sn+1) as follows:307

Solve308

{

un+1−un

∆t −∇ ·
[

(εI+ cof(pn))∇un+1
]

+ 2K(1 + |sn|2)2 = 0 in Ω,

un+1 = g on ∂Ω,
(4.7)309

and compute310

{

pn+1 = P+

[

e−γ1∆tpn +
(

1− e−γ1∆t
)

D2un+1
]

,

sn+1 = e−γ2∆tsn +
(

1− e−γ2∆t
)

∇un+1.
(4.8)311
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4.2. Time discretization of the initial value problem (3.11). As expected,312

there are many commonalities between the ways we discretize systems (3.4) and (3.11);313

we will take advantage of them. The major difference is that it is much easier to314

operate directly on the variational formulation of the Monge-Ampère part of the315

problem so as to avoid dealing explicitly with the complicated Robin condition we316

visualized in (3.8). Denote the updated boundary condition at tn by gn. The Lie317

scheme we are going to use reads as:318

(u0,p0, s0, g0) = (u0,p0, s0, g).(4.9)319

For n ≥ 0, (un,pn, sn, gn) → (un+1/3,pn+1/3, sn+1/3, gn+1/3) →320

→ (un+2/3,pn+2/3, sn+2/3, gn+2/3) → (un+1,pn+1, sn+1, gn+1),321

where we outline the three fractional steps as the following.322

The First Fractional Step:323

Solve324

(4.10)

















































































u(t) ∈ H1(Ω), ∀t ∈ (tn, tn+1),
∫

Ω

∂u

∂t
(t)vdx+

∫

Ω

[(ε

2
I+ cof(p(t))

)

∇u(t)
]

· ∇vdx

+2
∫

Ω
K(1 + |s(t)|2)2dx = 0 in Ω× (tn, tn+1), ∀v ∈ H1

0 (Ω),

u = gn on ∂Ω× (tn, tn+1),
∂p
∂t = 0 in Ω× (tn, tn+1),
∂s
∂t = 0 in Ω× (tn, tn+1),

(u,p, s)(tn) = (un,pn, sn),

325

and set326

(4.11) un+1/3 = u(tn+1), pn+1/3 = p(tn+1), sn+1/3 = s(tn+1), gn+1/3 = gn.327

The Second Fractional Step:328

Solve329

(4.12)



















∂u
∂t = 0 in Ω× (tn, tn+1) in Ω× (tn, tn+1),
∂p
∂t + γ1(p−D2un+1/3) = 0 in Ω× (tn, tn+1),
∂s
∂t + γ2(s−∇un+1/3) = 0 in Ω× (tn, tn+1),

(u,p, s)(tn) = (un+1/3,pn+1/3, sn+1/3),

330

and set331

(4.13)
un+2/3 = u(tn+1), pn+2/3 = P+

[

p(tn+1)
]

, sn+2/3 = s(tn+1), gn+2/3 = gn+1/3.332

The Third Fractional Step:333

334

(4.14)

















































u ∈ H1(Ω),
∫

Ω
∂u
∂t (t)vdx+ ε

2

∫

Ω
∇u(t) · ∇vdx+ κ

∫

∂Ω
(u(t)− g)vdΓ = 0,

∀v ∈ H1(Ω),
∂p
∂t = 0 in Ω× (tn, tn+1),
∂s
∂t = 0 in Ω× (tn, tn+1),

(u,p, s)(tn) = (un+2/3,pn+2/3, sn+2/3),

335
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and set336

(4.15) un+1 = u(tn+1),pn+1 = P+

[

p(tn+1)
]

, sn+1 = s(tn+1), gn+1 = un+1|∂Ω.337

Assuming that one uses just one step of the backward Euler scheme to solve the338

parabolic problem in (4.10) and (4.14), the Lie scheme (4.9)-(4.15) reduces to the339

following variant of scheme (4.6)-(4.8):340

(4.16) (u0,p0, s0, g0) = (u0,p0, s0, g).341

For n ≥ 0, (un,pn, sn, gn) → un+1/2 → (un+1,pn+1, sn+1, gn+1) as follows:342

Solve343


























un+1/2 ∈ H1(Ω),
∫

Ω

un+1/2 − un

∆t
+

∫

Ω

[(ε

2
I+ cof(pn)

)

∇un+1/2
]

· ∇vdx

+2
∫

Ω
K(1 + |sn|2)2vdx = 0, ∀v ∈ H1

0 (Ω),

un+1/2 = gn on ∂Ω,

(4.17)344

and compute345















































pn+1 = P+

[

e−γ1∆tpn +
(

1− e−γ1∆t
)

D2un+1/2
]

,

sn+1 = e−γ2∆tsn +
(

1− e−γ2∆t
)

∇un+1/2,


















u ∈ H1(Ω),
∫

Ω

un+1 − un+1/2

∆t
vdx+

ε

2

∫

Ω

∇un+1 · ∇vdx

+κ
∫

∂Ω
(un+1 − gn)vdΓ = 0, ∀v ∈ H1(Ω),

gn+1 = un+1|∂Ω.

(4.18)346

5. Finite elements for the new operator-splitting scheme. The divergence347

form strongly suggests that we apply a finite-element method to implement (4.7)-(4.8)348

and (4.17)-(4.18). Here we choose a mixed finite-element method: we use the same349

function space to approximate u, ∇u, D2u, s, and p. Since we will choose basis350

functions to be piecewise affine functions, the resulting approximations are continuous351

piecewise affine on Ω.352

5.1. Finite-element spaces. Let Th be the triangulation of the domain Ω, and353

let h denote the maximum edge length of the triangles in Th. Let Σh = {Qj}Nh
j=1 be354

the collection of vertices in Th, where Qi denotes a typical vertex. We define the first355

finite-element space as356

(5.1) Vh =
{

v|v ∈ C0
(

Ω̄
)

, v|T ∈ P1, ∀T ∈ Th
}

,357

where P1 denotes the space of polynomials with degree no larger than 1.358

Accordingly, we associate each vertex Qj with a shape function wj such that

wj ∈ Vh, wj(Qj) = 1, wj(Qk) = 0, ∀k = 1, . . . , Nh, k 6= j,

where the support of wj , denoted θj , is the union of triangles that have the same

common vertex Qj , and we denote the area of θj by |θj |. The set B = {wj}Nh
j=1 forms

a collection of basis functions of Vh. In other words, we have

v =

Nh
∑

j=1

v(Qj)wj , ∀v ∈ Vh.
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In addition, we define359

(5.2) Vgh = {v|v ∈ Vh, v(Qj) = g(Qj), ∀Qj ∈ Σh ∩ ∂Ω} ,360

where g can be any function which is C0 on ∂Ω. When g = 0, we have that

V0h = Vh ∩H1
0 .

Meanwhile, we define the following vector-valued spaces361

Rh =
{

r| r ∈ V 2×1
h

}

,362

Qh =
{

q| q ∈ V 2×2
h , q = qT

}

,363

so that we can use functions in Rh to approximate ∇u and s and use functions in Qh364

to approximate D2u and p.365

5.2. Approximations of the two first-order derivatives of u. For any v ∈366

Vh, we denote the first-order derivative approximation ∂v
∂xi

of v by Dih(v) for i = 1, 2,367

and this approximate derivative operator is defined in the following weak sense:368

∫

Ω

Dih(v)wdx =

∫

Ω

∂v

∂xi
wdx, i = 1, 2, ∀w ∈ H1(Ω).(5.3)369

Since Ω is partitioned by the triangulation Th, we restrict the test functions w to be370

in Vh so that we only need to test the above integral against those basis functions wk371

for k = 1, 2, · · · , Nh. Since wk is only supported on θk, we have372

(5.4)

{

Dih(v) ∈ Vh, ∀i = 1, 2,

Dih(v)(Qk) =
3

|θk|

∫

θk
∂v
∂xi

wkdx, ∀k = 1, 2, ..., Nh.
373

We remark in passing that on a regular mesh such as the one shown in Figure374

1(a), (5.4) recovers the central-difference approximation at an interior node and one-375

sided approximation at a boundary node in a finite-difference method based on this376

mesh.377

In some problems, ∇u has singularities on Ω. One challenging situation is when378

the singularities appear on the boundary. The approximation at nodes near the379

boundary can blow up, especially when the gradient of the exact solution blows up380

at the boundary of a computational domain, such as a semi-sphere. To resolve this381

problem, we need to regularize the approximation of ∇u. One possible way is to adopt382

the idea from [28, 8] which is used to approximate the second-order derivative:383

(5.5)

{

Dih(v) ∈ H1
0 ,

ε1
∫

Ω
∇Dih · ∇wdx+

∫

Ω
Dih(v)wdx =

∫

Ω
∂v
∂xi

wdx, i = 1, 2, ∀w ∈ H1
0 (Ω).

384

The error of the regularized approximation can be larger than that of the direct
approximation, but it is more robust. Moreover, we have

lim
ǫ1,h→0

Dih(v) =
∂v

∂xi
in L2(Ω).
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5.3. Approximations of second-order derivatives of u. The general idea385

to approximate the second-order derivatives is similar to the one used in [22, 12, 28].386

For completeness, we mention the details here.387

For any v ∈ Vh, we denote the approximations of ∂2v
∂xi∂xj

by D2
ijh(v) for i, j = 1, 2,388

so that the approximate operator D2
ijh(v) of second-order derivatives is defined in the389

following weak sense,390

(5.6)

∫

Ω

D2
ijh(v)wkdx =

∫

Ω

∂2v

∂xi∂xj
wkdx.391

To resolve the right hand side of (5.6), we apply the divergence theorem,392

(5.7)
∫

Ω

∂2v

∂xi∂xj
wdx =

1

2

∫

∂Ω

(

∂v

∂xi
nj +

∂v

∂xj
ni

)

wd(∂Ω)− 1

2

∫

Ω

(

∂v

∂xi

∂w

∂xj
+

∂v

∂xj

∂w

∂xi

)

dx,393

where n = (n1, n2) is the outward normal direction along ∂Ω. The above approxima-394

tion is accurate at interior nodes, but the approximation error is large at nodes on395

the boundary. For example, consider the approximate derivative operator D2
11h on396

a regular mesh of the unit square; after some derivation, we can show that there is397

always one node at one of the corners of the unit square such that D2
11h(v) = 0 at398

that node, no matter what form v takes.399

To deal with this issue, we treat interior nodes and boundary nodes separately. Let400

Σ0h = {Qk}N0

k=1 denote the set of interior nodes in Ω, where we assume that the first401

N0 nodes of Σh are in the interior of Ω. It follows that we have Σh∩∂Ω = {Qk}Nh

k=N0+1.402

For k = 1, 2, ..., N0, the approximation of (5.6)-(5.7) reduces to403

∫

Ω

D2
ijh(v)wkdx = −1

2

∫

Ω

(

∂v

∂xi

∂wk
∂xj

+
∂v

∂xj

∂wk
∂xi

)

dx.(5.8)404

To treat nodes on the boundary, the work in [8] used the zero Dirichlet boundary405

condition for the operator D2
ijh, i, j = 1, 2, though the boundary value is not needed406

in the resulting algorithm. In comparison with the numerical method in [8], ours are407

different in that the boundary value of D2
ijh is crucial for our splitting algorithm.408

Specifically, in (4.7)-(4.8) we need boundary values to update p which is in turn used409

to compute the divergence operator and to update u. Therefore, we need a better410

treatment of the boundary nodes.411

Here we adopt a strategy from [28, 38] to treat boundary nodes by committing a412

“variational crime”. First, we impose the zero Neumann boundary condition413

(5.9)
∂D2

ijh(v)

∂n
= 0.414

Multiplying (5.9) by wk for k = N0 + 1, ..., Nh and integrating along ∂Ω, we get415

0 =

∫

∂Ω

∂D2
ijh(v)

∂n
wkd(∂Ω) =

∫

Ω

∇ ·
(

∇D2
ijh(v)wk

)

dx416

=

∫

Ω

∇2D2
ijh(v)wkdx+

∫

Ω

∇D2
ijh(v) · ∇wkdx.(5.10)417

If D2
ijh(v) is harmonic, implying that ∇2D2

ijh(v) = 0, then we have418

(5.11)

∫

Ω

∇D2
ijh(v) · ∇wkdx = 0.419
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In our algorithm, although D2
ijh is only piecewise harmonic, we still use (5.11) to

update boundary values, which is the so-called variational crime. In either approxi-
mation (5.6)-(5.7) or approximation (5.8) and (5.11), since wk is only supported on
θk, the integration domain can be replaced by θk if the test function is wk. Under
certain conditions, a rough derivation shows that the variational crime introduces an
error to (5.10) of O(h). Since D2

ijh(v) ∈ Vh, ∇D2
ijh(v) is piecewise constant over Ω.

For any T ∈ Th, let ν be one of its edges. Along ν, ∇2D2
ijh(v) is a Dirac-δ function

multiplied by a factor (the difference of the values of ∇D2
ijh(v) over the two triangles

having ν as the common boundary). In the interior of T , ∇2D2
ijh(v) is 0. Thus

∫

Ω

∇2D2
ijh(v)wkdx =

∑

T∈θk

∫

ν∈∂T

∇2D2
ijh(v)wkdx = O(h)

if ∇D2
ijh(v) is bounded by a constant.420

In our numerical experiments, with the regularization mechanism introduced be-421

low, the accuracy by (5.8) and (5.11) is similar to that by (5.6)-(5.7), but (5.8) and422

(5.11) make the algorithm more robust. It is worth mentioning that as implemented423

in [28] both approximations work for two-dimensional Monge-Ampère equations; how-424

ever, as shown in [38] only the approximation based on the variational crime works425

for three-dimensional Monge-Ampère equations.426

As reported in [8, 28, 38], if we directly use the above approximations, the perfor-427

mance of our algorithm depends on triangulations; in the worst case, on a symmetric428

mesh as shown in Figure 1(b), our algorithm does not converge. To obtain an algo-429

rithm which is robust for all kinds of meshes, we need to regularize the problem by430

adding some viscosity to our formulation of second-order derivatives.431

As a first approach of regularization, we incorporate a local regularization term432

into the weak definition of second-order derivatives at interior nodes:433

(5.12)























∀i, j = 1, 2, ∀v ∈ Vh, D
2
ijh(v) ∈ Vh and

C
∑

T∈T k
h
|T |
∫

T
∇D2

ijh(v) · ∇wkdx+
∫

θk
D2
ijh(v)wkdx

= − 1
2

∫

θk

[

∂v
∂xi

∂wk

∂xj
+ ∂v

∂xj

∂wk

∂xi

]

dx, ∀k = 1, ..., N0h,
∫

θk
∇D2

ijh(v) · ∇wkdx = 0, ∀k = N0h + 1, ..., Nh,

434

where C is a positive constant of order 1, and T k
h is the set of all triangles with the435

common vertex Qk.436

If all triangles in Th are of a similar size, (5.12) can be slightly simplified to be437

(5.13)























∀i, j = 1, 2, ∀v ∈ Vh, D
2
ijh(v) ∈ Vh and

ε1
∫

θk
∇D2

ijh(v) · ∇wkdx+
∫

θk
D2
ijh(v)wkdx

= − 1
2

∫

θk

[

∂v
∂xi

∂wk

∂xj
+ ∂v

∂xj

∂wk

∂xi

]

dx, ∀k = 1, ..., N0h,
∫

θk
∇D2

ijh(v) · ∇wkdx = 0, ∀k = N0h + 1, ..., Nh,

438

where ε1 is of order O(h2).439

As a second approach of regularization, we incorporate a double-regularization440

mechanism into our weak formulation of second-order derivatives. Assuming that441

ψ ∈ H2, we consider the following linear elliptic variational problem,442

(5.14)






pεij ∈ H1
0 (Ω),

ε1
∫

Ω
∇pεij · ∇φdx+

∫

Ω
pεijφdx = − 1

2

∫

Ω

[

∂ψ

∂xi

∂φ

∂xj
+
∂ψ

∂xj

∂φ

∂xi

]

dx, ∀φ ∈ H1
0 (Ω),

443
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which yields the following relations in the weak sense444

(5.15) lim
ε1→0

pεij =
∂2ψ

∂xi∂xj
in L2(Ω),445

and446

(5.16)

{

−ε1∇2pεij + pεij =
∂2ψ

∂xi∂xj
in Ω,

pεij = 0 on ∂Ω.
447

Since, as reported in [28], this approximation is not effective in treating the zero-448

Dirichlet boundary condition, we apply the following correction step,449

(5.17)

{

−ε1∇2p̃εij + p̃εij = pεij in Ω,
∂p̃εij
∂n = 0 on ∂Ω,

450

whose variational formulation reads as451

(5.18)

{

p̃εij ∈ H1(Ω),

ε1
∫

Ω
∇p̃εij · ∇φdx+

∫

Ω
p̃εijφdx =

∫

Ω
pεijφdx, ∀φ ∈ H1(Ω).

452

It follows that p̃εij verifies limε→0 p̃
ε
ij =

∂2ψ
∂xi∂xj

in L2(Ω), and p̃εij ∈ H4(Ω).453

Consequently, the discrete analogue D2
ijh(v) of

∂2v
∂xi∂xj

(1 ≤ i, j ≤ 2) can be com-454

puted in the following way:455

Solve:456

(5.19)














pij ∈ V0h,

C
∑

T∈T k
h
|T |
∫

T
∇pij · ∇wkdx+ |θk|

3 pij(Qk) = − 1
2

∫

θk

[

∂v
∂xi

∂wk

∂xj
+ ∂v

∂xj

∂wk

∂xi

]

dx,

∀k = 1, ..., N0h,

457

and then458

(5.20)











D2
ijh(v) ∈ Vh,

C
∑

T∈T k
h
|T |
∫

T
∇D2

ijh(v) · ∇wkdx+ |θk|
3 D2

ijh(v)(Qk) =
|θk|
3 pij(Qk),

∀k = 1, ..., Nh,

459

where C is a constant of order 1. Similar to the first approach of regularization, if all460

triangles in Th are of a similar size, we can replace C
∑

T∈T k
h
|T | in (5.19) and (5.20)461

by ǫ1 which is of order O(h2).462

5.4. Implementation of scheme (4.6)-(4.8). We give a fully discretized ana-463

logue of scheme (4.6)-(4.8) as follows.464

Initialize465

(5.21) u0 = u0 ∈ Vh,p
0 = p0 ∈ Qh, s

0 = s0 ∈ Rh.466

For n ≥ 0, proceed {un,pn, sn} → {un+1,pn+1, sn+1} as the following.467

Solve468

(5.22)











un+1 ∈ Vgh,
∫

Ω
un+1vdx+∆t

∫

Ω
(εI+ cof(pn))∇un+1 · ∇vdx

=
∫

Ω
unvdx− 2∆tK

∫

Ω
(1 + |sn|2)2dx, ∀v ∈ V0h,

469
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and compute pn+1 and sn+1 via470

(5.23)






























∀k = 1, ..., Nh,

α = e−γ1∆t,

pn+
1
2 (Qk) = α pn(Qk) + (1− α)

(

D2
11h(u

n+1)(Qk) D2
12h(u

n+1)(Qk)

D2
12h(u

n+1)(Qk) D2
22h(u

n+1)(Qk)

)

,

pn+1(Qk) = P+

[

pn+1/2(Qk)
]

.

471

and472

(5.24)











∀k = 1, ..., Nh,

sn+1(Qk) = e−γ2∆tsn(Qk) +
(

1− e−γ2∆t
)

(

D1h(u
n+1(Qk)

D2h(u
n+1(Qk)

)

.
473

Here, all integrations in (5.22) are computed by the trapezoidal rule. In (5.23) and474

(5.24), D1
ih for i = 1, 2 are computed using (5.5) or (5.3); D2

ijh(u
n+1) for i, j = 1, 2475

are computed by approximation (5.12) or (5.19)-(5.20).476

5.5. Implementation of scheme (4.16)-(4.18). The discretized analogue of477

scheme (4.6)-(4.8) can be written as:478

Initialize479

(5.25) u0 = u0 ∈ Vh, p
0 = p0 ∈ Qh, s

0 = s0 ∈ Rh, g
0 = g.480

For n ≥ 0, proceed {un,pn, sn} → {un+1,pn+1, sn+1} as the following.481

Solve482

(5.26)











un+1/2 ∈ Vgnh,
∫

Ω
un+1/2vdx+∆t

∫

Ω
(εI+ cof(pn))∇un+1/2 · ∇vdx

=
∫

Ω
unvdx− 2∆tK

∫

Ω
(1 + |sn|2)2dx, ∀v ∈ Vgnh.

483

Compute pn+1 and sn+1 via484

(5.27)






























∀k = 1, ..., Nh,

α = e−γ1∆t,

pn+
1
2 (Qk) = αpn(Qk) + (1− α)

(

D2
11h

(

un+1/2
)

(Qk) D2
12h

(

un+1/2
)

(Qk)

D2
12h

(

un+1/2
)

(Qk) D2
22h

(

un+1/2
)

(Qk)

)

,

pn+1(Qk) = P+

[

pn+1/2(Qk)
]

.

485

and486

(5.28)











∀k = 1, ..., Nh,

sn+1(Qk) = e−γ2∆tsn(Qk) +
(

1− e−γ2∆t
)

(

D1h(u
n+1/2(Qk)

D2h(u
n+1/2(Qk)

)

.
487

Compute488

(5.29)











un+1 ∈ Vh,
∫

Ω
un+1vdx+∆tε

∫

Ω
∇un+1 · ∇vdx+∆t

∫

∂Ω
un+1vdx

=
∫

Ω
un+1/2vdx+∆tε

∫

∂Ω
gvdx, ∀v ∈ Vh.

489
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and update490

(5.30) gn+1 = un+1|∂Ω.491

All integrations in (5.26) and (5.29) are computed by the trapezoidal rule. In (5.27)492

and (5.28), D1
ih for i = 1, 2 are computed using (5.5) or (5.3); D2

ijh(u
n+1) for i, j = 1, 2493

are computed by approximation (5.12) or (5.19)-(5.20).494

5.6. The projection operator P+(·). Since we want to find a convex solution495

u, we need to have some mechanism to enforce convexity in our algorithm. There are496

many possible approaches to handle the issue.497

One particular approach that we discuss here is to modify one of the finite-element498

components, p, after each iteration so that the modified p satisfies some convexity-499

related properties. Since the Hessian matrix of a convex function is semi-positive500

definite and we expect p to converge to the Hessian matrix of the exact solution u∗501

which is convex, it is reasonable to enforce p to be semi-positive definite; therefore, we502

introduce a spectral projection operator to achieve this, and P+(·) is such a projector503

in our algorithm.504

Let A be a symmetric 2×2 matrix. Assume that A has a spectral decomposition,

A = SΛS−1, where the columns of S are the eigenvectors of A and Λ =

(

λ1 0
0 λ2

)

.

We define the spectral projector operator P+(·) as

P+(A) = S

(

λ+1 0
0 λ+2

)

S−1,

where λ+i = max{λi, 0} for i = 1, 2. The effect of P+(A) is to project A onto the cone505

consisting of semi-positive definite matrices. This projection during each iteration506

makes equation (4.7) an elliptic PDE of u.507

Another possible approach is to choose a convex initial condition which will be508

discussed in the next section.509

6. Initialization.510

6.1. Initial condition for scheme (4.6)-(4.8). To initialize u0 and p0 for511

scheme (4.6)-(4.8), we solve the standard Monge-Ampère equation512

(6.1)

{

det(D2u0) = K,

u0 = g on ∂Ω.
513

We will deal with (6.1) by adopting the method in [28], which solves the following514

initial value problem to steady state,515

(6.2)











{

∂u
∂t −∇ · ((εI+ cof(p))∇u) + 2K = 0,

u = g on ∂Ω,
∂p
∂t + γ(p−D2u) = 0.

516

Let {u∗,p∗} be the steady state of (6.2). Accordingly, we set u0 = u∗, p0 = D2u∗517

and s = Du∗ as the initial condition for our scheme (4.6)-(4.8). Therefore, our518

algorithm can be summarized as a two-stage method:519
Stage 1

In the algorithm in [28], set ε = ε1 = h2 and dt = 2h2. Solve (6.2) until
‖un+1 − un‖2 < tol to get u0. Compute p0 = D2u0 and s0 = Du0.
Stage 2

With the initial condition u0, p0, and s0, solve (4.6)-(4.8) to steady state.

520
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(a) (b) (c) (d)

Fig. 1. Four meshes for two different domains used in our numerical experiments. (a) A regular
mesh on a square. (b) A (highly) symmetric mesh on a square. (c) An anisotropic unstructured
mesh on a square. (d) An anisotropic unstructured mesh on a half-unit disk.

6.2. Initial condition for scheme (4.16)-(4.18). When we use scheme (4.16)-521

(4.18), the boundary value of the computed solution does not satisfy the given bound-522

ary condition, so the initial condition used for scheme (4.6)-(4.8) may not help. To523

initialize scheme (4.16)-(4.18), we use the initial condition used to solve (6.2) in [28]:524

(6.3)

{

∇2u0 = 2λ
√
K,

u0|∂Ω = g,
525

where λ (> 0) is of order O(1).526

7. Numerical experiments. In this section, we carry out a variety of numerical527

experiments in different settings to demonstrate the performance of scheme (4.6)-(4.8)528

and scheme (4.16)-(4.18). Four different meshes as shown in Figure 1 will be used529

in our experiments: (a) regular meshes on a unit square, (b) symmetric meshes on a530

unit square, (c) unstructured meshes on a unit square, and (d) unstructured meshes531

on a half-unit disk. In all of our experiments, in Stage 1 of our algorithm, we use the532

method in [28] to initialize the iteration of our algorithm, where we use tol = h2.533

There are several parameters in our algorithm: γ1 and γ2 (defined in Section534

3.2), ε (regularization parameter in the PDE (3.3)), ε1 (regularization parameter in535

the first order and second order derivative approximation in Section 5.2 and 5.3),536

and time step ∆t. In general, when a smooth solution exists, our algorithm is not537

sensitive to the choice of parameters. Setting ε and ε1 in the order of h2 and β1538

and β2 (in the formulas of γ1 and γ2) of O(1) makes the algorithm stable. The time539

step ∆t determines how fast our algorithm converges. Our algorithm converges as540

long as ∆t is small enough and other parameters are set as mentioned above. A541

large ∆t will make our algorithm converge faster, but it may destroy the stability. In542

our experiments, setting ∆t in the order of h2 makes our algorithm yield reasonable543

results. For some problems with singular solutions or derivatives blowing up along544

boundaries, we will take both ε and ε1 to be a larger value and take ∆t to be a smaller545

value in order to stabilize the algorithm.546

Without specification, we choose ∆t = 2h2 and ε = ε1 = h2 in both Stage 1 and547

2 of our algorithm. For examples with compatible boundary condition, scheme (4.6)-548

(4.8) is used. For examples with incompatible boundary condition, scheme (4.16)-549

(4.18) is used. We also compare the numerical solutions by both schemes on some550

examples. Without specification, stopping criterion ‖un+1−un‖2 < 10−6 and scheme551

(4.6)-(4.8) are used. This stopping criterion is selected so that our algorithm converges552

on all meshes. This criterion may be demanding for some coarse meshes, as many553

iterations are not necessary. Nevertheless, our current setting does not affect the554

demonstration of the performance of our proposed algorithms. A more practical way555
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Fig. 2. (Test problem (7.1) with α = 1. Scheme (4.6)-(4.8).) Graphs of the computed solutions
and the related convergence history. Roe 1: Regular triangulation of the unit square. Row 2:
Symmetric triangulation of the unit square. Row 3: Unstructured anisotropic triangulation of the
unit square. Row 4: Unstructured anisotropic triangulation of a half-unit disk. The second-order
derivatives are approximated by (5.13).

is to set the stopping criterion depending on h. Additional numerical results are556

presented in the supplementary materials.557

7.1. Example 1. For the first example, we choose the exact solution u∗ as a558

quadratic function,559

(7.1) u∗ = α (x1 − 0.5)2 + (x2 − 0.5)2/α,560

so that the Gauss curvatureK = 4
1+4α (x1−0.5)2+ 4

α (x2−0.5)2
and the boundary condition561

g = u∗|∂Ω, where α is a positive constant.562

Since the solution of this example is smooth, we use (5.4) to approximate the563
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(a)

h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 193 9.88×10−10 6.06×10−4 9.86×10−4

1/20 606 9.81×10−10 1.66×10−4 1.87 2.73×10−4 1.85
1/40 2064 9.96×10−10 4.34×10−5 1.94 7.11×10−5 1.94
1/80 7577 9.99×10−10 1.05×10−5 2.05 1.73×10−5 2.04

(b)

h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 305 9.99×10−10 1.37×10−3 2.64×10−3

1/20 1021 9.99×10−10 3.53×10−4 1.96 6.88×10−4 1.94
1/40 3961 9.99×10−10 8.98×10−5 1.97 1.75×10−4 1.98
1/80 14259 9.99×10−10 2.16×10−5 2.06 4.24×10−5 2.05

(c)

h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 180 9.38×10−10 5.70×10−4 2.04×10−3

1/20 591 9.80×10−10 1.90×10−4 1.59 5.99×10−4 1.77
1/40 2080 9.97×10−10 5.27×10−5 1.85 1.57×10−4 1.93
1/80 7690 9.99×10−10 1.42×10−5 1.89 6.22×10−5 1.34

(d)

h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 111 8.49×10−10 6.10×10−4 1.20×10−3

1/20 374 9.97×10−10 1.65×10−4 1.89 4.55×10−4 1.40
1/40 1221 9.93×10−10 3.61×10−5 2.20 1.03×10−4 2.14
1/80 4765 9.97×10−10 8.73×10−6 2.05 3.54×10−5 1.54

Table 1

(Test problem (7.1) with α = 1. Scheme (4.6)-(4.8).) Numbers of iterations necessary for
convergence, approximation errors and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. (c) Unstructured anisotropic triangulation of the
unit square. (d) Unstructured anisotropic triangulation of the half-unit disk. The second-order
derivatives are approximated by (5.13).

(a)

h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 266 9.50×10−8 1.01×10−1 1.22×10−1

1/20 512 9.87×10−8 4.02×10−2 1.33 4.63×10−2 1.40
1/40 1432 9.99×10−8 1.82×10−2 1.14 2.13×10−2 1.12
1/80 4529 9.99×10−8 8.73×10−3 1.06 1.03×10−2 1.05

(b)

h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 471 9.57×10−8 8.24×10−2 9.74×10−2

1/20 782 9.95×10−8 3.46×10−2 1.25 3.97×10−2 1.29
1/40 2581 9.99×10−8 1.60×10−2 1.11 1.80×10−2 1.14
1/80 7690 9.99×10−8 7.78×10−3 1.04 8.56×10−3 1.07

Table 2

(Test problem (7.1) with α = 1. Scheme (4.6)-(4.8).) Numbers of iterations necessary for con-
vergence, approximation errors, and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. The second-order derivatives are approximated by
(5.19)-(5.20).

first-order derivatives. In the first test, we choose α = 1 so that u∗ represents a564

family of con-centric circles which vary isotropically.565

With the second-order derivatives approximated by (5.13) and scheme (4.6)-(4.8),566

the graphs and convergence histories of numerical solutions on different meshes are567
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h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 198 9.78×10−10 1.88×10−3 2.75×10−3

1/20 604 9.80×10−10 3.72×10−4 2.34 5.91×10−4 2.22
1/40 2057 9.92×10−10 8.86×10−5 2.07 1.44×10−4 2.04
1/80 7566 9.99×10−10 2.14×10−5 2.05 3.53×10−5 2.03

Table 3

(Test problem (7.1) with α = 1. Scheme (4.16)-(4.18)) Numbers of iterations necessary for
convergence, approximation errors, and accuracy orders. The second-order derivatives are approxi-
mated by (5.13).

h Iterations ‖un+1 − un‖ L2 norm rate L∞ norm rate
1/10 309 9.67×10−10 5.01×10−4 8.07×10−4

1/20 938 9.93×10−10 1.32×10−4 1.92 2.12×10−4 1.93
1/40 2982 9.97×10−10 3.38×10−5 2.01 5.39×10−5 1.98
1/80 14565 9.99×10−11 8.51×10−6 1.99 1.36×10−5 1.99

Table 4

(Test problem (7.1) with α = 2. Scheme (4.6)-(4.8).) Numbers of iterations necessary for
convergence, approximation errors, and accuracy orders on the regular triangulation of the unit
square. The second-order derivatives are approximated by (5.13).

(a) (b) (c)
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Fig. 3. (Test problem (7.1). Scheme (4.6)-(4.8).) (a): With α = 1, ε1 = ε2 = 0 in both stages,
the convergence history on the regular triangulation of the unit square. The second-order derivatives
are approximated by (5.13). (b)-(c):The graph of the computed solution and the convergence history
on the regular triangulation of the unit square. The second-order derivatives are approximated by
(5.13).

shown in Figure 2. The numbers of iteration and accuracy orders are shown in Table568

1, where the accuracy orders in the L2 and L∞ norms are in general larger than 1.5.569

Stopping criterion ‖un+1 − un‖ < 10−9 is used. Since the time step is in the order of570

h2, we expect that the rate of convergence is close to 2. In Table 1, the rate is around571

1.8, which is slightly better than our expectation.572

With the second-order derivatives approximated by (5.19) and (5.20) and scheme573

(4.6)-(4.8), we can use a less demanding stopping criterion. Here we use ‖un+1 −574

un‖ < 10−7. The numbers of iteration, the errors of approximation, and the rates575

of convergence on regular and symmetric meshes of the unit square are shown in576

Table 2, which demonstrate that, in general, our algorithm with approximation (5.19)577

and (5.20) is first-order accurate, and in comparison with the results based on the578

approximation (5.13), the errors based on the approximation (5.19) and (5.20) are579

larger and the convergence rates are smaller.580

For comparison, we also show the results by scheme (4.16)-(4.18) with the second-581
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(a)

h Iteration ‖un+1 − un‖2 L2 error rate L∞ error rate
1/16 177 9.57×10−7 9.79×10−2 1.69×10−1

1/32 791 9.98×10−7 5.61×10−2 0.80 1.19×10−1 0.51
1/64 3360 9.97×10−7 3.12×10−2 0.85 8.39×10−2 0.50
1/128 17273 9.99×10−7 1.55×10−2 1.01 5.86×10−2 0.52

(b)

h Iteration ‖un+1 − un‖2 L2 error rate L∞ error rate
1/16 236 9.72×10−7 2.86×10−2 7.40×10−2

1/32 1179 9.98×10−7 1.13×10−2 1.34 4.53×10−2 0.71
1/64 5261 9.95×10−7 7.33×10−3 0.62 4.12×10−2 0.14

(c)

h L∞ error rate
1/16 1.61×10−1

1/32 1.28×10−1 0.33
1/64 1.09×10−1 0.23
1/128 8.80×10−2 0.31

Table 5

(Test problem (7.2). Scheme (4.6)-(4.8).) Numbers of iterations, approximation errors, and
accuracy orders with the second-order derivatives approximated by (a) (5.13) and (b) (5.19)-(5.20).
(c) shows the L∞ errors and accuracy orders from [30].

order derivatives approximated by (5.13). Since the boundary condition is compatible,582

we use a large κ = 500. The number of iteration and accuracy orders are shown in583

Table 3. Its efficiency and accuracy are similar to that of scheme (4.16)-(4.18). If κ584

goes to infinity, scheme (4.16)-(4.18) has an additional stabilization (diffusion) term585

which provides larger error but extra robustness, the same as what is observed by586

comparing Table 1(a) and Table 3.587

Since the exact solution is a quadratic function, its second-order derivatives are588

constants so that the zero Neumann boundary condition on these derivatives is exact.589

With ε = ε1 = 0 and h = 1/40, the convergence history of scheme (4.6)-(4.8) is shown590

in Figure 3(a). We can see that although approximation (5.13) is a kind of variational591

crime, the error decreases to machine precision.592

In the second test, we choose α = 2 so that u∗ represents a family of con-centric593

ellipses which vary anisotropically. We apply our algorithm to this problem on the594

unit square with regular meshes. The number of iterations necessary to satisfy the595

stopping criterion and the corresponding approximation error accuracy is shown in596

Table 4. The graph of the computed solution and the related convergence history are597

shown in Figure 3(b)-(c).598

599

7.2. Example 2. In the second example, we consider a problem with the exact600

solution601

(7.2) u = −
√

1− x21 − x22,602

which is a part of the unit sphere, and the corresponding Gauss curvature is con-603

stant: K = 1. The computational domain is chosen to be half of the unit disk,604

Ω = {(x1, x2) |x1 ≥ 0, x21+x
2
2 ≤ 1}. Accordingly, the boundary condition is given as605

(7.3) g =

{

0, x1 > 0,

−
√

1− x22, x1 = 0.
606
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Fig. 4. (Test problem (7.2). Scheme (4.6)-(4.8)) (a) The graph of the solution with h = 1/64,
where the second-order derivatives are approximated by (5.13). (b) The convergence history of (a).
(c)-(d): Graphs of the restrictions of the numerical solutions to the line x1 = 0 with different
h’s. (c) the second-order derivatives approximated by (5.13) and (d) the second-order derivatives
approximated by (5.19)-(5.20).

This problem is interesting since the gradient of the exact solution along the607

boundary where x1 > 0 is infinite (a more challenging problem is solved in Sup-608

plementary materials ??). This problem is also solved in [30]. Since the first-order609

derivatives are infinite along a part of the boundary, we have to use the regularized610

approximation (5.5) for the first-order derivatives; otherwise our solution will blow611

up. We use ε = h, ε1 = h2, ∆t = h2, and the stopping criterion ‖un+1−un‖2 < 10−6.612

Figure 4(a)-(b) shows the graph of the numerical solution for h = 1/64 and the re-613

lated convergence history with second-order derivatives approximated by (5.13). The614

cross sections of the numerical solutions along the boundary x1 = 0 with second-order615

derivatives approximated by (5.13) or (5.19)-(5.20) are shown in Figure 4(c)-(d), and616

the convergence of numerical solutions using both approximations is clearly observed.617

To further quantify both approximations of second-order derivatives, we show618

the numbers of iterations, the L2- and L∞- errors, and their corresponding rates of619

convergence in Tables 5(a) and (b). In Table 5, we can see that both approximations of620

the second-order derivatives behave reasonably well. Although the algorithm equipped621

with approximation (5.19)-(5.20) produces smaller errors than the one equipped with622

(5.13), the algorithm with approximation (5.13) is more stable as its convergence623

rate is uniformly about 0.5. As a comparison, we also list the L∞-errors and related624

convergence rates from [30] in Table 5(c). When the mesh is fine enough, our algorithm625

equipped with either approximations produces smaller L∞-errors than that of [30].626

7.3. Example 3. We end this section by considering a problem with no classical627

solution. The curvature is a constant in Ω:628

(7.4) K = 1/2 in Ω,629
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(a)

h Iter. ‖un+1 − un‖2 ‖pn − D2un‖2
‖pn−D2un‖2

‖pn‖2
min ‖pn − D2un‖2 in.

1/20 177 9.62×10−7 4.44×10−2 2.35×10−2 -0.1192 3.28× 10−3

1/40 672 9.72×10−7 1.80×10−1 7.26×10−2 -0.1263 5.98× 10−3

1/80 2149 9.98×10−7 4.94×10−1 1.67×10−1 -0.1305 9.41× 10−3

(b)

h Iter. ‖un+1 − un‖2 ‖pn − D2un‖2
‖pn−D2un‖2

‖pn‖2
min ‖pn − D2un‖2 in.

1/20 246 9.88×10−7 4.60×10−3 2.43×10−3 -0.1345 7.47× 10−4

1/40 695 9.88×10−7 7.53×10−2 2.43×10−2 -0.1359 4.77× 10−3

1/80 2468 9.99×10−7 3.52×10−1 6.82×10−2 -0.1376 6.54× 10−3

Table 6

(Test problem (7.4). Scheme (4.6)-(4.8).) Numbers of iterations, iteration errors and minimum
values. The second-order derivatives are approximated by (a) (5.13) and (b) (5.19)-(5.20).

where Ω = [0, 1]2. We use the boundary condition g = 0 on ∂Ω. This problem has630

no classical solution since det(D2u) vanishes on ∂Ω. In other words, this problem is631

incompatible. In our experiment, we first use scheme (4.6)-(4.8) with ε = ε1 = ε2 = h2632

and ∆t = 2h2. The second-order derivatives are approximated by (5.13). The number633

of iterations, convergence errors, and minimum values are shown in Table 6. The634

graphs and contour of the numerical solution with h = 1/80 are shown in Figure 5635

Row 1. The comparisons of the restriction of the numerical solution with different h636

along x1 = 1/2 and x1 = x2 are shown in Figure 5 Row 2. Our solution is smooth637

and almost convex, except for the region near the corners of the domain.638

Then we use scheme (4.16)-(4.18) with ε = ε1 = ε2 = h2 and ∆t = 8h2 to solve639

it. With h = 1/80, the graph and contour of the computed solution are shown in640

Figure 5 Row 3. We can see the boundary value of the computed solution is no641

longer constant. At the middle segment on each edge, its value is away from 0 to be642

compatible with its interior value. The comparisons of the restriction of the numerical643

solution with different h along x1 = 1/2 and x1 = x2 are shown in the fourth row644

of Figure 5. Compared to the graph in the second row of Figure 5, we observe the645

deviation of the boundary value from 0. The same problem is solved on an ellipse646

domain in Supplementary materials ??.647

8. Conclusion. In this work, we have proposed two operator splitting/mixed648

finite-element methods to solve the Dirichlet Minkowski problem in dimension two.649

Our algorithms are easy to implement since only a system of PDEs is to be solved650

and the basis functions are chosen to be piecewise linear. When the problem has651

a classical solution, scheme (4.6)-(4.8) using approximation (5.19)-(5.20) for second-652

order derivatives is first-order accurate while using approximation (5.13) it is almost653

second-order accurate. For an incompatible problem, scheme (4.16)-(4.18) can adjust654

the boundary value of the computed solution to make it compatible with its interior655

values. Our algorithm can solve the Minkowski problem on arbitrary shaped domains656

and can also solve problems with singularities in the solution gradient. Our algorithm657

can be easily extended to high dimensions, which constitutes an ongoing work.658
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Fig. 5. (Test problem (7.4).) Row 1-2: Scheme (4.6)-(4.8). Row 1: Graphs and contour of
the numerical solution with h = 1/80. Row 2: Graphs of the restrictions of numerical solutions
along x1 = 1/2 (left) and x1 = x2 (right) with h = 1/20, 1/40, and 1/80. Row 3-4: Scheme (4.16)-
(4.18).) Row 3: Graphs and contour of the numerical solution with h = 1/80. Row 4: Graphs of
the restrictions of numerical solutions along x1 = 1/2 (left) and x1 = x2 (right) with h = 1/20,
1/40, and 1/80. The second-order derivatives are approximated by (5.13).

memory. Roland’s creativity, generosity, and friendship will be remembered.663

REFERENCES664

[1] G. Awanou, Standard finite elements for the numerical resolution of the elliptic Monge-Ampère665
equation: classical solutions, IMA Journal of Numerical Analysis, 35 (2014), pp. 1150–1166.666

[2] I. Bakelman, Generalized elliptic solutions of the dirichlet problem for the Monge-Ampère667
equations, in Proc. Symp. Pure Math., AMS, vol. 44, 1986, pp. 1–30.668

[3] I. J. Bakel’Man, The Dirichlet problem for the elliptic n-dimensional Monge-Ampère equa-669
tions and related problems in the theory of quasilinear equations, in Proceedings of Seminar670

This manuscript is for review purposes only.



26 H. LIU, S. LEUNG AND J. QIAN

on Monge-Ampère Equations and Related Topics, Firenze, 1980, pp. 1–78.671
[4] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-672

Kantorovich mass transfer problem, Numerische Mathematik, 84 (2000), pp. 375–393.673
[5] J. D. Benamou, B. D. Froese, and A. M. Oberman, Two numerical methods for the elliptic674

Monge–Ampère equation, ESAIM: Mathematical Modelling and Numerical Analysis, 44675
(2010), pp. 737–758.676

[6] S. Brenner, T. Gudi, M. Neilan, and L. Sung, C0 penalty methods for the fully nonlinear677
Monge-Ampère equation, Mathematics of Computation, 80 (2011), pp. 1979–1995.678

[7] S. C. Brenner and M. Neilan, Finite element approximations of the three dimensional679
Monge-Ampère equation, ESAIM: Mathematical Modelling and Numerical Analysis, 46680
(2012), pp. 979–1001.681

[8] A. Caboussat, R. Glowinski, and D. C. Sorensen, A least-squares method for the numerical682
solution of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension two,683
ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), pp. 780–810.684

[9] L. Caffarelli and R. Glowinski, Numerical solution of the Dirichlet problem for a Pucci685
equation in dimension two. Application to homogenization, J. Numer. Math., 16 (2008),686
pp. 185–216.687

[10] L. T. Cheng, Construction of shapes arising from the Minkowski problem using a level set688
approach, Journal of Scientific Computing, 19 (2003), pp. 123–138.689

[11] S. Y. Cheng and S. T. Yau, On the regularity of the solution of the n-dimensional Minkowski690
problem, Communications on Pure and Applied Mathematics, 29 (1976), pp. 495–516.691

[12] P. G. Ciarlet and P.-A. Raviart, A mixed finite element method for the biharmonic equation,692
in Mathematical aspects of finite elements in partial differential equations, Elsevier, 1974,693
pp. 125–145.694

[13] E. J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge–695
Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach,696
Comptes Rendus Mathematique, 336 (2003), pp. 779–784.697

[14] E. J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge–698
Ampère equation with Dirichlet boundary conditions: a least-squares approach, Comptes699
Rendus Mathematique, 339 (2004), pp. 887–892.700

[15] E. J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solu-701
tion of the Dirichlet problem for the elliptic Monge–Ampère equation in two dimensions,702
Electronic Transactions on Numerical Analysis, 22 (2006), pp. 71–96.703

[16] E. J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of704
the Monge–Ampère type, Computer Methods in Applied Mechanics and Engineering, 195705
(2006), pp. 1344–1386.706

[17] E. J. Dean and R. Glowinski, On the numerical solution of the elliptic Monge–Ampère707
equation in dimension two: A least-squares approach, in Partial Differential Equations,708
Springer, 2008, pp. 43–63.709

[18] E. J. Dean, R. Glowinski, and T. W. Pan, Operator-splitting methods and applications710
to the direct numerical simulation of particulate flow and to the solution of the elliptic711
Monge–Ampère equation, in Control and Boundary Analysis, CRC Press, 2005, pp. 1–27.712

[19] X. Feng, R. Glowinski, and M. Neilan, Recent developments in numerical methods for fully713
nonlinear second order partial differential equations, SIAM Review, 55 (2013), pp. 205–267.714

[20] B. D. Froese and A. M. Oberman, Convergent finite difference solvers for viscosity solutions715
of the elliptic Monge–Ampère equation in dimensions two and higher, SIAM Journal on716
Numerical Analysis, 49 (2011), pp. 1692–1714.717

[21] B. D. Froese and A. M. Oberman, Fast finite difference solvers for singular solutions of the718
elliptic Monge–Ampère equation, Journal of Computational Physics, 230 (2011), pp. 818–719
834.720

[22] R. Glowinski, Approximations externes par éléments finis d’ordre un et deux du problème de721
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