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OPERATOR SPLITTING/FINITE ELEMENT METHODS FOR THE
MINKOWSKI PROBLEM*

HAO LIUt, SHINGYU LEUNG#, AND JIANLIANG QIANS

Abstract. The classical Minkowski problem for convex bodies has deeply influenced the devel-
opment of differential geometry. During the past several decades, abundant mathematical theories
have been developed for studying the solutions of the Minkowski problem; however, the numerical
solution of this problem has been largely left behind, with only a few methods available to achieve
that goal. In this article, focusing on the two—dimensional Minkowski problem with Dirichlet bound-
ary conditions, we introduce two solution methods, both based on operator—splitting. One of these
two methods deals directly with the Dirichlet condition, while the other one uses an approximation
a la Robin of this Dirichlet condition. The relaxation of the Dirichlet condition makes the second
method better suited than the first one to treat those situations where the Minkowski equation (of the
Monge—Ampére type) and the Dirichlet condition are not compatible. Both methods are generaliza-
tions of the solution method for the canonical Monge-Ampere equation discussed by Glowinski et al.
(A Finite Element/Operator—Splitting Method for the Numerical Solution of the Two Dimensional
Elliptic Monge-Ampere Equation, Journal of Scientific Computing, 79(1), 1-47, 2019); as such they
take advantage of a divergence formulation of the Minkowski problem, which makes it well-suited
to both a mixed finite-element approximation and the time—discretization via an operator—splitting
scheme of an associated initial value problem. Our methodology can be easily implemented on con-
vex domains of rather general shape (with curved boundaries, possibly). The numerical experiments
validate both methods, showing that if one uses continuous piecewise affine finite element approx-
imations of the solution of the Minkowski problem and of its three second order derivatives, these
two methods provide nearly second-order accuracy for the L? and L° norms of the approximation
error, where the Minkowski—Dirichlet problem is assumed to have a smooth solution. One can extend
easily the methods discussed in this article, to address the solution of three—dimensional Minkowski
problems.

Key words. operator-splitting methods, Minkowski problem, Monge-Ampére equation, mixed
finite element methods

MSC codes. 65N30,65M60

1. Introduction. The Minkowski problem (named after Hermann Minkowski
(1864-1909)) is an important problem in Differential Geometry. It asks for the con-
struction of a compact surface S as boundary of a convex bounded domain, knowing
its Gaussian curvature. Given a compact strictly convex hypersurface S in the d—
dimensional real space R%, the Gauss map G is a diffeomorphism from S to the unit
sphere S~ of RY. Map G is defined by G(x) = n(x),Vx € S, where n(x) denotes
the unit outward normal of S at x. Accordingly, the Gauss-Kronecker curvature K is
the Jacobian of the Gauss map. Minkowski stated that one has

(1) [ XK@ ) o) = 0,
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2 H. LIU, S. LEUNG AND J. QIAN

where ¢ is the Lebesgue measure on S4~1. Conversely, Minkowski posed the following
(inverse) problem: Suppose that f is a strictly positive function defined over S94—1
verifying fsn_l x f(x)do(x) = 0; can one find a hypersurface S having 1/ f as Gaussian
curvature? In [41, 42], Minkowski discussed the existence and uniqueness of solutions
to the above inverse problem. For d = 2, the solution regularity was proved by Lewy
[33, 34], Nirenberg [44], and Pogorelov [45], while, for d > 2, the solution regularity
was analyzed by Cheng and Yau [11] and Pogorelov [46].

Despite being around for more than a century and being one of the most impor-
tant problems in Differential Geometry, not much was done concerning the numerical
solution of the Minkowski problem. The earliest attempt we could find was discussed
in [36, 37], two publications dedicated to the solution of a related problem: namely,
reconstructing a shape from extended Gaussian images. In [31], after generalizing
Minkowski’s proof, Lamberg converted the Minkowski problem into an optimization
one, the resulting algorithm solving a polyhedral version of the Minkowski problem.
In [32], Lamberg introduced an algorithm based on Minkowski’s isoperimetric inequal-
ity, leading to an approximate Minkowski problem taking place in a finite-dimensional
function space spanned by truncated spherical harmonic series. In a more recent pub-
lication [10], Cheng designed a level-set based finite-difference PDE method to drive
an implicitly defined surface towards shapes arising from the Minkowski problem.

In all the above cited works the hypersurface is supposed to be closed. Actu-
ally, another type of Minkowski problem is the Minkowski—Dirichlet problem. For
the Minkowski—Dirichlet problem, one supposes that the hypersurface is open and
bounded, with a Dirichlet condition imposed on its boundary. The well-posedness of
this problem has been addressed by many authors: For example, Bakelman [3], Lions
[35] and Urbas [50, 51, 52] have proved the existence and uniqueness of a solution.
Trudinger and Urbas [48] proved a necessary and sufficient condition for the classical
solvability of the Minkowski-Dirichlet problem. Recently, in [30] Hamfelt designed
a monotone finite-difference method to solve the Minkowski—Dirichlet problem; since
the method relies on wide stencils, it is advantageous for those situations where, due
to the lack of classical solutions, one looks for viscosity solutions.

Here, we propose two new methods for the numerical solution of the Minkowski—
Dirichlet problem in dimension d = 2. The first method, well suited to problems with
classical solutions, imposes the Dirichlet condition in a strong sense. On the other
hand, the second method imposes the Dirichlet condition in a least—squares sense (via
a quadratic penalty technique), making it appropriate for those situations where, due
to data incompatibility, the Minkowski—Dirichlet problem has no solution. Of course,
the second method has also the ability to capture classical solutions, if such solutions
do exist. The Minkowski problem we will look at can be described as follows: Let €2
be a bounded domain of R? and K be a positive function defined over €2, and let g be
a function defined on the boundary 02; can one find a function u defined over €2 and
verifying u|gpq = g, such that K is the Gauss curvature of the graph of u (a surface in
R4*1H)? In partial differential equation form, the above Minkowski-Dirichlet problem
reads as follows:

(T [VuP) 72

_det@w) 50
(1.2) ’
u=g on 0f).

The partial differential equation in (1.2) belongs to a family of Monge-Ampere equa-
tions. The simplest element of this family is clearly the following canonical Monge—
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OPERATOR SPLITTING FOR MINKOWSKI 3

Ampere equation
(1.3) det(D?*u) = f in Q.

Equation (1.3) is elliptic if f > 0. The above Monge-Amperere equation (1.3) is a
fully nonlinear second order partial differential equation; it has been drawing a lot of
attention lately, mostly because its relations with optimal transport problems (other
applications are described in, e.g., [19]; see also the references therein). During the
past three decades, a variety of methods have been designed to solve numerically
equation (1.3), completed by boundary conditions (mostly Dirichlet’s) (some of these
methods are described in the review article [19]). As expected, most of these methods
focus on the two—dimensional Monge-Ampere equation and cover a large variety of
approaches. Combinations of (mixed) finite element approximations and augmented
Lagrangian or least-squares formulations have been applied to the solution of (1.3)
and related fully nonlinear elliptic equations such as Pucci’s (see [4, 8, 13, 15, 14, 17,
18, 16, 26, 29, 25, 43, 9, 19] for details). Alternative finite-difference and finite-element
methods have been developed for these fully nonlinear elliptic equations as well; see
[1, 5, 6, 7, 21, 20, 40, 47, 28, 38, 19], this list being far from complete.

The main goal of this article is to extend to problem (1.2) (assuming d = 2), the
operator—splitting based methods developed in [28, 38| for the solution of equation
(1.3) (completed by Dirichlet conditions) in dimensions 2 and 3 and in [27, 39] for
the eigenvalue problems of (1.3). Following [28, 38], the first step in that direction is
to take advantage of a divergence formulation of problem (1.2), better suited to finite
element approximations. The second step is to decouple (in some sense) differential
operators and nonlinearities by introducing as additional unknown functions p = D?u
(as done in [27, 38]) and s = Vu (which was not necessary in [27, 38]). At the end of
the second step, one has replaced the highly nonlinear scalar Minkowski equation by
an equivalent system of linear and nonlinear equations for u, p and s, whose formalism
is simpler. In the third step, we associate an initial value problem (IVP) with the
above system and use operator—splitting to time-discretize the above IVP, in order to
capture its steady state solution(s). We use simple finite-element approximations of
the mixed type to implement the above methodology: indeed, we use finite-element
spaces of continuous piecewise affine functions to approximate u and its three second-
order derivatives, making our methods well-suited to solve problem (1.2) on domains
Q with curved boundaries.

As mentioned above we will develop two new methods for the solution of problem
(1.2): these two methods are very close to each other, the first one dealing directly with
the boundary condition © = g on 952, while the second one imposing the boundary
condition in a least—squares sense.

This article is organized as follows: In Section 2, we state some theoretical results
on the existence and uniqueness of solutions to the Minkowski-Dirichlet problem (1.2).
In Section 3, we provide the divergence formulation of problem (1.2) and associate
with it two initial value problems, which differ by the way the Dirichlet boundary
condition is treated. The time discretization of these two initial value problems by
operator—splitting is discussed in Section 4, followed by their finite-element space
discretization in Section 5. We address in Section 6 the initialization of the two above
algorithms. In Section 7, we report the results of numerical experiments validating
our methodology. Section 8 concludes the article.

2. Problem formulation, existence, uniqueness and regularity results.
We defined the Minkowski problem in Section 1. In this article, we will focus on the
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4 H. LIU, S. LEUNG AND J. QIAN

numerical solution of the Minkowski-Dirichlet problem (1.2), assuming that d = 2
(2-D). A first step to that goal is to rewrite (1.2) as

2.1
1) u=g on 0},

{det(D2u) = K(1+4|Vul>)*%2  in Q,
a Monge-Ampere type formulation, better suited for numerical solution. In (2.1), K
8%y

5D ) is the Hessian matrix
Tt J1<ij<d

(> 0) is the prescribed curvature and D?u = (

of function u.

To put our computational investigations into perspective, we recall some classical
results concerning the existence, uniqueness and regularity of classical solutions to
problem (2.1). In [48], one proves the following results about existence and uniqueness.

THEOREM 2.1. Suppose that in (2.1), Q is a uniformly bounded conver domain
of RY, its boundary 0 having Cl’lfregularity,i Then, problem (2.1) has, for any
g € CH1(Q), a unique solution in C?(Q) N C%Y(Q), if and only if

(2.2) / Kdr < wg,
Q

and

(2.3) K =0 on 0.

The constant wy in (2.2) is gien by wq = [pa W (implying we = m and
w3 = 47/3); actually, wy is the volumn of the unit ball of R.

Condition (2.3) is required to make sure that a solution exists for arbitrary g. It
is proved in [48] that if K does not vanish on the boundary, one can find a smooth
function g such that problem (2.1) has no solution.

In [50, 51, 52|, one discusses regularity of the solution in the critical case defined
by

(2.4) / Kdz = wy,
Q

where the following results are proved.

THEOREM 2.2. Let Q be a uniformly convex domain of R? with a C*' smooth
boundary, and K be a positive C* smooth function verifying (2.4). If u is a solution
of the Minkowski—Dirichlet (2.1), then

(i) u € COY2(Q);
(ii) the graph of u is C*%—smooth for some o € (0,1);
(iii) ulpq is CH*—smooth;
(iv) if O is CF+1 and K € CF=1 with k > 2, then the graph of u is CFF1e—
smooth and ulaq is Ck+12 _gmooth.

See [49] for more details on the solution of the Minkowski problem.

Some of the conditions in the above two theorems are rather restrictive and/or
not easy to verify. Nevertheless, the results they are reporting are very useful from
two perspectives: on one hand, they suggest test problems, where we know in advance
that solutions exist; on the other hand, they also suggest some other examples, where
the answer to existence will be indicated by the results of our computations. Finally,
we will also consider test problems with known solutions so as to check how fast and
how accurately our methods recover them.
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OPERATOR SPLITTING FOR MINKOWSKI 5

3. Divergence formulations of the 2-D Minkowski problem and relax-
ation by penalty of the Dirichlet condition.

3.1. Synopsis. There are cases where the data K and g do not allow the exis-
tence of classical smooth solutions to problem (2.1). In [30], one introduces a notion of
viscosity solution to problem (2.1), with the solution satisfying the generalized Monge-
Ampere equation in [2], but not necessarily the Dirichlet condition. In the following
sub-sections, we will consider two divergence formulations of problem (2.1) in dimen-
sion two to enforce the Dirichlet condition. The first formulation keeps the Dirichlet
condition as it is and is well-suited to those situations where problem (2.1) has clas-
sical solutions. On the other hand, the second formulation makes use of penalty to
relax the Dirichlet condition; for large values of the penalty parameter, one recovers
accurately classical solutions if such solutions do exist, or generalized solutions in the
absence of classical solutions.

3.2. A first divergence formulation of the 2-D Minkowski-Dirichlet
problem. If d = 2, problem (2.1) enjoys the following equivalent formulation (in
the sense of distributions):

(3.1) {—V < (cof(D?u)Vu) + 2K (1 + [Vu?)2 =0 in Q,

u=gq on 01},

where matrix cof(D?u) is the cofactor matrix of Hessian D?u, that is

83}1 8%2 8wf

8215 _ %
cof (D*u) = < aggu 85;5”) :
Problem (3.1) is equivalent to

{v (cof (p)Vu) + 2K (1+[s2)2 =0 in Q,

u=g on 0f),
(3.2) ) )
p—D“u=0 inQ,
s=Vu in Q.

In order to avoid possible troubles at those points of Q where K may vanish, we
approximate system (3.2) by

—V - ((eI+cof(p)) Vu) + 2K(1 + [s[*)> =0 in Q,
ulog =g on €,
p—D2u=0,
s—Vu=0,

(3.3)

with € a small positive parameter. We used successfully this type of regularization
n [28], for the solution of the canonical Monge-Ampeére equation (1.3) completed
by Dirichlet boundary conditions. In practice, we will use a piecewise linear finite-
element basis and take ¢ of the order of h2, h being a space discretization step. Such
a choice makes the scheme stable while providing optimal second-order accuracy.

To solve system (3.3) we are going to associate with it the following initial value

This manuscript is for review purposes only.
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6 H. LIU, S. LEUNG AND J. QIAN

problem

% — V- ((eI +cof(p)) Vu) + 2K (1 + |s|>)2 =0 in Q x (0, +0o0),
ulon =g on 082 x (0,+00),
(3.4) %—‘t’ + 7 (p—D?u) =0in Q x (0, 400),
%+’YQ(S—VU) =01in Q x (0, 4+00),
(u(0)7p(0),s(0)) = (u07p0750>7

to be time-discretized by operator-splitting (in Section 4.1). In (3.4), 1 and v are
two positive coefficients chosen so that the smooth modes of p and s evolve in time
roughly at the same speed as that of u. Roughly speaking, the evolution speed of u
is controlled by the eigenvalue of —V?u and the eigenvalue of p ~ D?u. According
o (2.1), if the eigenvalues of D?u are close to each other, then they are in the order
of VK. Following [28], we advocate defining v, and 7, by

71 =P (e +Va),
Y2 = B2Xo (e +Va),

where )¢ is the smallest eigenvalue of operator —V? in H}(Q2), « is the lower bound
of K, and 8 and 5 are two constants of order one.

We comment in passing that we have used and will continue to use the notation
¢(t) for the function z — ¢(z,t). In Section 6, we will discuss the initialization of
system (3.4).

3.3. A divergence formulation of the 2-D Minkowski-Dirichlet problem
with relaxation of the boundary condition. Theorem 2.1 implies that problem
(2.1) may have no solution, unless function K belongs to a very specific class of
functions. In order to deal with such no-solution scenarios as well as we can, we are
going to relax the boundary condition u = ¢ using a penalty technique of the least-
squares type. If problem (2.1) has a classical solution, we expect to recover it when
the penalty parameter converges to +oo.

The simplest way to proceed is to start from the following variational formulation
verified (formally) by any solution u of problem (2.1):

u € HY(Q),
(3.5) /(COf(DQU)VU) - Vudz + 2/ K+ |Vu*)?vdr =0, Yo € H3(Q),
Q Q
u = g on 0.

In order to relax the Dirichlet boundary condition, we are going to apply to problem
(3.5) the well-known penalty method discussed in [23, 24] to approximate Dirichlet’s
problems for linear second-order elliptic operators by Robin’s ones.

Let k be a positive constant. We (formally) approximate the variational problem
(3.5) by

u € H'(Q),
(3.6) / (cof (D) V) - Voda +2 / K(1 + [Vu2)udz +
Q Q
K [oo(u—g)vdl =0, Yo € H'(Q),

where coefficient k acts as a weight, controlling the level of penalization. Some remarks
are in order.

This manuscript is for review purposes only.
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OPERATOR SPLITTING FOR MINKOWSKI 7

Remark 3.1. Let us consider the functional j : H'(Q) — R defined by

i) =5 [ o= gar, voe (@),
2 o0

Functional js is convex and C* over H'(Q), its differential Djs(v) at v being given
by

(3.7 (Dja(v),w) = /1/89(1) — g)wdl, Yv,w € H(Q),

where (-,-) denotes a duality pairing between (H'(2))" (the dual space of H'(2))
and H'(Q2). Consequently, we can identify Djs(u) with x(u|aq — g) and replace
K [50(uw — g)vdl in (3.6) by (Dja(u),v).

Remark 3.2. If a function u is a solution of the nonlinear variational problem
(3.6), it is also a solution (in the sense of distributions) of the following (fully nonlin-
ear) boundary value problem

(33) {—V - (cof(DPu)Vu) + 2K(1 + (Va2 =0 in 0,

L(cof(D?u)Vu) -n+u=g on 09,

where, in (3.8), n denotes the unit outward normal vector at 9€2. The boundary
condition in (3.8) is a (nonlinear) Robin boundary condition. When x — +o0, prob-
lem (3.8) ‘converges’ (formally) to problem (2.1), justifying our second divergence
formulation of problem (2.1).

Remark 3.3. A natural alternative to problem (3.6) is the one described by
u € HY(Q),
(3.9) /(cof(Dzu)Vu) - Vovdzr + 2/ K(1+ |Vu|?)?vdz +
Q Q
(071 (u),v) =0, Vv € H(Q),

where, in (3.9), 971 (u) is the sub-differential at u of the convex Lipschitz continuous
functional j; : H1(Q) — R, defined by

Jilv) = H/ |v — g|dT, Yv € H'(Q).
o0

This type of L' functional is very common in Non-Smooth Mechanics and increasingly
popular in Data Science as shown by various chapters of [29].

Proceeding as in Section 3.2, we associate with (3.6) the semi-variational system
(3.10)
u€ HY(Q),
Jo (Gl + cof(p))Vu) - Vudz + [, 36Vu - Vodz
+2 [ K1+ |s]*)?vdz + & [y,(u—g)vdl =0, Yve H(Q),
p—-D?u=0,
s—Vu=0,

where in the second row, [, (3eI)Vu-Vudz + [, $eVu-Vodz(= [, eVu-Vudz) is the
regularization term with a role similar to V - ((eI)Vu) in (3.3). The next step is to
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associate with (3.10) an initial value problem, as we have done with (3.3) in Section
3.2. The initial value problem reads as:

)€ HY(Q), Vt >0,
/—vd:ﬂ + / [1EI+cof(p)] Vu - Vudz + / %sVzerd:v
Q Q
(3.11) / K(1+|s]) vdx—l—ﬁa/ (u—g)vdl' =0, Yo € H(Q),
Q G19)

P 4 yp— D2u) =0 in Q x (0, +0c0),
95 | (s — Vi) = 0 in Q x (0, +00),
(u(0),p(0),s(0)) = (uo, Po,S0)-

As in Section 3.2, we advocate taking

Y1 = Bido (e + V),
Y2 = BaXo (e +Va) .

In Section 6, we will discuss the initialization of system (3.11).

The main difference between (3.4) and (3.11) is how the boundary condition is
implemented. Problem (3.4) enforces the Dirichlet boundary condition in a pointwise
manner, while (3.11) enforces the Dirichlet boundary condition in a weak sense so
that pointwise mismatch is allowed.

4. Discretization of the IVPs (3.4) and (3.11) by operator-splitting. In
this section, we are going to apply the Lie scheme to the time-discretization of the
initial value problems (3.4) and (3.11); see [29] for details on the Lie scheme. In
our splitting strategy, each evolution step is split into several fractional steps so that
at each fractional step, we only focus on a few operators and update each variable
implicitly and independently instead of solving a large system including all variables
simultaneously. Another benefit is that with this strategy, p and s are updated using
the already updated wu, which, in general, will improve the convergence behavior of
the algorithm.

In the following, let At (> 0) denote a time-discretization step, t" = nAt, and
let (u™,p™,s™) denote an approximation of (u,p,s) at t = t™.

4.1. Time discretization of the initial value problem (3.4). The Lie-
scheme we employ here is a variant of the one we used in [28] to solve the Monge-
Ampere equation (1.2) completed by a Dirichlet boundary condition. It reads as:

(41) (uoapovso) = (u07p0aSO)'

For n > 0, (un7pn’ sn) N (un+1/27 pn+1/2’ Sn+1/2) N (un+17pn+1’sn+1) as follows:
The First Fractional Step:

Solve
(4.2)
9u _ V- [(eI + cof(p")) Vu] + 2K (1 + [s"[2)2 =0 in Q x (¢",¢"F1),
“=9 on 90 x (¢, ¢+,
%’Z =0in Q x (", "),
& om0 (e,

(u,p,s)(t") = (u",p",s"),

This manuscript is for review purposes only.
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and set
(43) un+1/2 _ u(thrl), pn+1/2 _ p(thrl)(: pn)’ Sn+1/2 _ S(thrl)(: Sn)'

The Second Fractional Step:

Solve
% =0 in Q x (t”,t”+1),
(44) & +m(p - DX =0 in Q2 x (17, ¢4,
| 5 +72(s = Va2 =0 in Qx (7, "),
(u’ b, S) (tn) = (un+1/27 pn+1/2’ Sn+1/2)7
and set
(45) ’un+1 = u(tn+1)(: un+1/2)’ pn+1 — P+ [p(tn+1):| , Sn+1 _ S(tn+1).

In (4.5), P4 (+) is a (kind of) projection operator which maps the space of the 2 x 2
symmetric matrices onto the closed cone of the 2 x 2 symmetric positive semi-definite
matrices; we will return to operator Py in Section 5.6.

We still need to solve the initial value problems that one encounters in (4.2) and
(4.4). There is no difficulty with (4.4) since the three initial value problems it contains
have closed form solutions, leading to

u(tn+1) — un+1/27
p(tn+1) — ef'ylAtpn 4 (1 _ efﬂylAt) D2un+1’
(") = e7 728" 4 (1 — e 2A0) Yyt

It remains to solve the parabolic problem (4.2); for its solution, we advocate
performing just one step of the backward Euler scheme, which enables us to use a
relatively large time step while keeping the algorithm stable. We obtain then

w7 (el + cof (p") Vurt!] 4 2K(1+ [s"2)2 =0 in Q,
utt =g on 092,

a (relatively) simple Dirichlet problem for a linear self-adjoint second-order strongly
elliptic operator with variable coeflicients, well-suited to finite-element approximations
as we shall see in Section 5.

Collecting the above results, we will employ the following time-discretization
scheme to solve the initial value problem (3.4):

(46) (uoapovso) = (u07p0aSO)'
For n >0, (u™,p",s") — (u™!, p"Tt s"*1) as follows:
Solve

Wl . [(el+ cof(p")) Vurt] 42K (1 4 [s*[2)2 =0 in Q,
(4.7)
uttt =g on 99,

and compute

(4 8) {pn—i-l — PJr [e—wlAtpn + (1 _ e—'ylAt) D2un+1] ;

Sn+1 — e—'ygAtSn + (1 _ e—'ygAt> Vun+1_

This manuscript is for review purposes only.
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10 H. LIU, S. LEUNG AND J. QIAN

4.2. Time discretization of the initial value problem (3.11). As expected,
there are many commonalities between the ways we discretize systems (3.4) and (3.11);
we will take advantage of them. The major difference is that it is much easier to
operate directly on the variational formulation of the Monge-Ampeére part of the
problem so as to avoid dealing explicitly with the complicated Robin condition we
visualized in (3.8). Denote the updated boundary condition at t" by ¢g™. The Lie
scheme we are going to use reads as:

(49) (uo’p07S07gO) = (u03p0>50,g)~
For n 2 07 (una pn7sn7gn) - (un+1/37pn+1/37 Sn+1/3;gn+1/3) —

+2/3 +2/3 +2/3 +2/3 1 —+1 +1 1
— (un /3 pntR/B gnt2/3 g[8y, (yntl prtl gntl gntly

where we outline the three fractional steps as the following.
The First Fractional Step:

Solve
eHl( ), Yt e (t",tnth),
/ pr tyvdx + / Kil + cof(p(t))) Vu(t)} - Vudz
+2 [o K1+ |s(t)]*)?de = 01in Q x (t",t"*1), Yo € Hi (),

(4.10) u=g" on 89 X (tm, gL,

9 —0in Qx (1", t"HY),

98 = 0in Q x (¢, "),

(u,p,8)(t") = (u",p",8"),
and set

(4.11) un+1/3 _ u(t"“), pn+1/3 — p(tn+1), Sn+1/3 — S(tn+1), gn+1/3 — gn-

The Second Fractional Step:

Solve
9u — 0 in Q x (", ") in Qx (7, "),

(4.12) P + 71 (p - D2 HE) =0 in Q x (", 1"+,
5 4 (s — Vurtl/3) =0 in Q x (t", "),
(u,p,s)(t") = (u+1/3, pnHl/3 gntl/3),

and set

(4.13)

un+2/3 — ’U,(thrl), pn+2/3 — P+ [p(tn+1)] , Sn+2/3 _ S(thrl), gn+2/3 _ gn+1/3'

The Third Fractional Step:

u € Hl(Q)
0 Zu(tyde + 5 [, Vu(t) - Vvdz + K [o, (u(t) — g)vdl =0,
Vo € HY(Q),
% = 0in Q x (7, t"F1),

gi =0in Q x (", "),

(u,p,8)(t") = (un+2/3, pr+2/3 gn+2/3),

(4.14)
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336

338
339
340

341

344

ot

346

347
348
349
350
351

352

w W

ot o W

w W
ot v Ov Ot
(=2

w
ot
~J

ZL"
o

OPERATOR SPLITTING FOR MINKOWSKI 11

and set
(415) un+l _ u(tn—i-l)’pn—&-l _ 13+ [p(tn-ﬁ—l)] ’Sn—i-l _ S(tn—i-l)’gn-i-l — Un+1|aﬂ~

Assuming that one uses just one step of the backward Euler scheme to solve the
parabolic problem in (4.10) and (4.14), the Lie scheme (4.9)-(4.15) reduces to the
following variant of scheme (4.6)-(4.8):

(416) (,LLO’pO’SO,gO) = (U07P075079)-

For n >0, (u™, p”,s",¢") — u" T2 — (u"+! prtt g7t g1 as follows:
Solve

unt1/2 ¢ Hl(Q),

un+l/2 —um € 1
. b n n+1/2|

(4.17) /Q AL +/Q {(2I+cof(p )) Vu } Vudz
+2 [ K1+ [s"*)*vdz =0, VYve Hi(Q),

u™t/2 = g™ on 99,
and compute
pitl = Py [emAipn 4 (1 — e~MAY) D2y /2] |
gntl = g=n2ltgn 4 (1 — 6_72“) Vut/2,
ue HY(Q),

4.18 n+l _ , nt+1/2
( ) / %de + %/ Vo™t . Vodz
Q Q

+ 5 [ —g"M)vdl =0, Vv e H'(Q),
g7z+1 — u"+1\3g.

5. Finite elements for the new operator-splitting scheme. The divergence
form strongly suggests that we apply a finite-element method to implement (4.7)-(4.8)
and (4.17)-(4.18). Here we choose a mixed finite-element method: we use the same
function space to approximate u, Vu, D?u, s, and p. Since we will choose basis
functions to be piecewise affine functions, the resulting approximations are continuous
piecewise affine on ).

5.1. Finite-element spaces. Let T}, be the triangulation of the domain 2, and

let h denote the maximum edge length of the triangles in 75. Let £; = {Q; }jV:’“”l be

the collection of vertices in T, where @); denotes a typical vertex. We define the first
finite-element space as

(5.1) th{U|U€CO (Q),U|T€P1,VT67?L},

where P; denotes the space of polynomials with degree no larger than 1.
Accordingly, we associate each vertex (); with a shape function w; such that

wj € Vi, w;j(Qy) = 1L, w;(Qr) =0, Vk=1, ..., Ny, k#j,

where the support of w;, denoted 0;, is the union of triangles that have the same
common vertex @;, and we denote the area of 6; by |6;|. The set B = {w; };Vz"l forms
a collection of basis functions of V},. In other words, we have

Ny,

v = Zv(Qj)wj, Yv € V.

j=1

This manuscript is for review purposes only.
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12 H. LIU, S. LEUNG AND J. QIAN
In addition, we define
(5.2) Vo = {vlv € Vi, v(Q;) = 9(Q;), YVQ; € £, NN},
where g can be any function which is C° on 9. When g = 0, we have that
Vor = Vi N H}.
Meanwhile, we define the following vector-valued spaces

Ry, = {r|r e V;2*'},
Qn={dlqeV?** a=q"},

so that we can use functions in Ry, to approximate Vu and s and use functions in Qj,
to approximate D?u and p.

5.2. Approximations of the two first-order derivatives of u. For any v €

Vi, we denote the first-order derivative approximation % of v by D;p(v) for i = 1,2,

and this approximate derivative operator is defined in the following weak sense:

(5.3) / Djp(v)wdz = / Ov wdr, i=1,2, Vw € H(Q).
Q o Oz

Since € is partitioned by the triangulation 7, we restrict the test functions w to be
in V}, so that we only need to test the above integral against those basis functions wg

for k=1,2,--- | Np. Since wy is only supported on 6y, we have
(5 4) Dih('l}) €V, Vi=1,2,
. Din(v)(Qr) = % Jo, é%”iwkda?, Vk=1,2,...,Np.

We remark in passing that on a regular mesh such as the one shown in Figure
1(a), (5.4) recovers the central-difference approximation at an interior node and one-
sided approximation at a boundary node in a finite-difference method based on this
mesh.

In some problems, Vu has singularities on 2. One challenging situation is when
the singularities appear on the boundary. The approximation at nodes near the
boundary can blow up, especially when the gradient of the exact solution blows up
at the boundary of a computational domain, such as a semi-sphere. To resolve this
problem, we need to regularize the approximation of Vu. One possible way is to adopt
the idea from [28, 8] which is used to approximate the second-order derivative:

Dih(’l}) S H&,
(5.5) o o )
€1 [o VDin - Vwdz + [ Dip(v)wdz = [, bowdz, i=1,2, Yw € Hy (Q).

The error of the regularized approximation can be larger than that of the direct
approximation, but it is more robust. Moreover, we have

lim D;p(v)

_ 72
e1.h—0 T Oxy in L().
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5.3. Approximations of second-order derivatives of u. The general idea
to approximate the second-order derivatives is similar to the one used in [22, 12, 28].
For completeness, we mention the details here.

For any v € V},, we denote the approximations of % by ij L) fori,j=1,2,
so that the approximate operator D2, (v) of second-order derivatives is defined in the

following weak sense,

32
(5.6) /D”h wkdz—/ axi(?a:jwkdm'

To resolve the right hand side of (5.6), we apply the divergence theorem,
(5.7)

0%v 1 ov ov v Jw v Jw

q 0z;0x; wd = 2 /39 (5‘:@- "t b, 5‘% ) wd(D5) ~ / (8331 Ox; * Ox; 8xi> 4,

where n = (n1,ns) is the outward normal direction along 9. The above approxima-
tion is accurate at interior nodes, but the approximation error is large at nodes on
the boundary. For example, consider the approximate derivative operator D%, on
a regular mesh of the unit square; after some derivation, we can show that there is
always one node at one of the corners of the unit square such that D%, (v) = 0 at
that node, no matter what form v takes.

To deal with this issue, we treat interior nodes and boundary nodes separately. Let
Yon = {Qk}gil denote the set of interior nodes in €2, where we assume that the first

Ny nodes of ¥}, are in the interior of Q. It follows that we have ;N9 = {Qk}g:hNOH.
For k = 1,2, ..., Ny, the approximation of (5.6)-(5.7) reduces to

2 _ L / 9v Jwg | Ov Jwk
(5.8) /QDijh(v)wkd:r— 2 Jo \ 5z s, + 9z, O dz.

To treat nodes on the boundary, the work in [8] used the zero Dirichlet boundary
condition for the operator ijh, 1,7 = 1,2, though the boundary value is not needed
in the resulting algorithm. In comparison with the numerical method in [8], ours are
different in that the boundary value of D? ijn is crucial for our splitting algorithm.
Specifically, in (4.7)-(4.8) we need boundary values to update p which is in turn used
to compute the divergence operator and to update u. Therefore, we need a better
treatment of the boundary nodes.

Here we adopt a strategy from [28, 38] to treat boundary nodes by committing a
“variational crime”. First, we impose the zero Neumann boundary condition

(5.9) aDgir”l() =0

Multiplying (5.9) by wy, for k = Ny + 1, ..., N;, and integrating along 0f2, we get

o oD Uh( ) o
O—AQT kd(&‘Q)_/QV (VDz]h( )wk) dx

Z]h

(5.10) /V2D”h( )wkder/ VD3, (v) - Vwgds.
If D, (v) is harmonic, implying that V>D7,;, (v) = 0, then we have

(5.11) /VD”h( ) - Vwgdr = 0.

This manuscript is for review purposes only.
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14 H. LIU, S. LEUNG AND J. QIAN

In our algorithm, although D? L1, is only piecewise harmonic, we still use (5.11) to
update boundary values, Wthh is the so-called variational crime. In either approxi-
mation (5.6)-(5.7) or approximation (5.8) and (5.11), since wy, is only supported on
0k, the integration domain can be replaced by 6 if the test function is wg. Under
certain conditions, a rough derivation shows that the variational crime introduces an
error to (5.10) of O(h). Since ijh( v) € Wy, VD”h(U) is piecewise constant over .
For any T € Ty, let v be one of its edges. Along v, V2 D”h
multiplied by a factor (the difference of the values of VD ,»(v) over the two triangles

having v as the common boundary). In the interior of T, V D”h( v) is 0. Thus

/ VD3, (v)wyds =
Q

(v) is a Dirac-0 function

> /ueaTVQ D%, (v)wydx = O(h)

TebOy

if VDZ-zjh(v) is bounded by a constant.

In our numerical experiments, with the regularization mechanism introduced be-
low, the accuracy by (5.8) and (5.11) is similar to that by (5.6)-(5.7), but (5.8) and
(5.11) make the algorithm more robust. It is worth mentioning that as implemented
in [28] both approximations work for two-dimensional Monge-Ampeére equations; how-
ever, as shown in [38] only the approximation based on the variational crime works
for three-dimensional Monge-Ampeére equations.

As reported in [8, 28, 38], if we directly use the above approximations, the perfor-
mance of our algorithm depends on triangulations; in the worst case, on a symmetric
mesh as shown in Figure 1(b), our algorithm does not converge. To obtain an algo-
rithm which is robust for all kinds of meshes, we need to regularize the problem by
adding some viscosity to our formulation of second-order derivatives.

As a first approach of regularization, we incorporate a local regularization term
into the weak definition of second-order derivatives at interior nodes:

Vij=1,2, Yo € Vi, D, (v) € Vi and
CZTGT" ‘T|fT Vngh( v) - Vwkdx-i-fg ”h v)wydx
=3 Jo, | B G + B G da, VR =1, Now,

Ox; Oxj
fo VDZQJh -Vwgdr =0, Vk = Nop, + 1, ..., Ny,

(5.12)

where C is a positive constant of order 1, and ’7;5 is the set of all triangles with the
common vertex Q.
If all triangles in Ty are of a similar size, (5.12) can be slightly simplified to be
Vi,j =1,2, Vv € Vi, D, (v) € Vh and
(5 13) €1 f9k VDlQJh( ) Vwkdx—i—fe wh )wkdx
’ =1, [§E%+§T%%] dz, Yk =1, .., Non,
fg szyh( ) Vwidr =0, Yk = Nop, + 1, ..., Np,

where ¢ is of order O(h?).

As a second approach of regularization, we incorporate a double-regularization
mechanism into our weak formulation of second-order derivatives. Assuming that
1 € H?, we consider the following linear elliptic variational problem,

(5.14)

p?j € H&(Q)a
&1 fQ Vplj V¢d$ + fQ pf](bdl‘

/[W 99  HWXR|,, Vo € HL(Q),

Ox; Ox;  Ox; Oz,
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which yields the following relations in the weak sense

. 5 aQw 2
(5.15) 511121017” = u0a,; in L*(Q),
and
(5 ].6) _€1v2pfj +pfj = agi(’;pa:j in Q’
p;; =0 on 9.

Since, as reported in [28], this approximation is not effective in treating the zero-
Dirichlet boundary condition, we apply the following correction step,

{—glv%afj + 55 =pf; inQ,

5.17 “‘E‘
(5:17) %5 -0 onoQ,

whose variational formulation reads as

{ﬁfj € Hl(Q)7

(5.18) ) ]
e1 Jo VI - Vodr + [, p5;0de = [ p5;bde, Vo € H'(Q).

It follows that pf; verifies lim._, p§; = %awzj in L2(Q), and p;j € H(Q).
2

Consequently, the discrete analogue ijh(v) of ﬁ(l <4,j < 2) can be com-
puted in the following way:
Solve:
(5.19)

pij € Von,

[4 v dw v wy
C S rers IT| f7 Vi - Vwde + elpy; (Qr) = =1 [, [aagg,- o+ S G | da,
Yk =1,..., Nop,

and then
ijh(v) € Vh,

(5.20) c X:TeTh’c T [ VDizjh(U) - Vwgdx + @D?jh(v)(QIJ = @pij (Qr),
Vk=1,...,Np,

where C' is a constant of order 1. Similar to the first approach of regularization, if all
triangles in 7}, are of a similar size, we can replace C ZTeTf |7 in (5.19) and (5.20)

by €1 which is of order O(h?).

5.4. Implementation of scheme (4.6)-(4.8). We give a fully discretized ana-
logue of scheme (4.6)-(4.8) as follows.
Initialize

(5.21) u = Uy € Vh,po =Ppo € Qh,SO =so € Ry,.

For n > 0, proceed {u™,p",s"} — {u"t1, p"*tl s"t1} as the following.
Solve
untl € Vgh,
(5.22) Jou" T tudx + At [, (eI + cof(p™)) Vu" T - Vudzx
= [qutvde — 2AtK [ (1 + [s"[?)?dx, Vv € Vo,
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and compute p”*! and s”t! via
(5.23)
Yk =1,.. Ny,

a=e MAL

n+i —ap” “a Dy (u™)(Qr) Doy (u™*1)(Qk)
prH@) = pt(@) + (1 ) (szh(unﬂ)(Qk) D%zn(“”“)(@k)) 7
P T (Qr) = Py [p"T2(Qr)]

and

Vk=1,..,Np,

(5.24) sHL(Qp) = e~ 128 (Qy) + (1 _ 6*’)/2At) (

Dip(u™*(Qr)
Dan(u"*(Qr)
Here, all integrations in (5.22) are computed by the trapezoidal rule. In (5.23) and

5.24), D}, for i = 1,2 are computed using (5.5) or (5.3); D2, (u"*1) for i,j = 1,2
ih ijh
are computed by approximation (5.12) or (5.19)-(5.20).

5.5. Implementation of scheme (4.16)-(4.18). The discretized analogue of
scheme (4.6)-(4.8) can be written as:
Initialize

(525) UOZU/OEVha POZPOGQMSO:SOERM g():g

For n > 0, proceed {u™,p",s"} — {u"t1, p"*t1 s"*t1} as the following.
Solve
W2 € Vi,
(5.26) Jo u" ™t ?vdz + At [, (eI + cof (p™)) Vu"t1/2 . Vodz
= [qutvdr — 2AtK [, (1 + [s"]?)?dx, Vv € Vgny,.

Compute p*t! and s"*! via

(5.27)
Vk=1,... Ny
a=e MAL

P"(Qr) = ap"(Qu) + (1-a) (D%Qh (u"*1/2) (Qx) D3y, (u72) (Qn)

P (Qr) = Px [p"2(Qr)] -

D%lh (un+1/2) (Qk) D%Zh (un+1/2) (Qk)>

and
Vk=1,...,Np,
(5.28) il N A Dlh(Un_H/Q(Qk)
s"HL(Qy) = e 22t (Qp) + (1 — e 724 .
( ) ( ) ( ) DZh(un+1/2(Qk)
Compute
un—l—l c Vh,
(5.29) Joyuludz + Ate [, Vurtt - Vodz + At [, u*Luda

= [qu"t2vdx + Ate [, gudz, Vv € Vj,.
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and update
(5.30) 9"t =u" a0

All integrations in (5.26) and (5.29) are computed by the trapezoidal rule. In (5.27)
and (5.28), Dy, for i = 1,2 are computed using (5.5) or (5.3); D3, (u"*1) for4,j = 1,2
are computed by approximation (5.12) or (5.19)-(5.20).

5.6. The projection operator P, (-). Since we want to find a convex solution
u, we need to have some mechanism to enforce convexity in our algorithm. There are
many possible approaches to handle the issue.

One particular approach that we discuss here is to modify one of the finite-element
components, p, after each iteration so that the modified p satisfies some convexity-
related properties. Since the Hessian matrix of a convex function is semi-positive
definite and we expect p to converge to the Hessian matrix of the exact solution u*
which is convex, it is reasonable to enforce p to be semi-positive definite; therefore, we
introduce a spectral projection operator to achieve this, and P, (+) is such a projector
in our algorithm.

Let A be a symmetric 2 X 2 matrix. Assume that A has a spectral decomposition,

A = SAS~!, where the columns of S are the eigenvectors of A and A = ()(\)1 ;\) ) .
2

We define the spectral projector operator Py (-) as
_g (M 0\ g
paa=s(y 2)s

where A" = max{\;, 0} for i = 1,2. The effect of Py (A) is to project A onto the cone
consisting of semi-positive definite matrices. This projection during each iteration
makes equation (4.7) an elliptic PDE of w.

Another possible approach is to choose a convex initial condition which will be
discussed in the next section.

6. Initialization.

6.1. Initial condition for scheme (4.6)-(4.8). To initialize ug and pg for
scheme (4.6)-(4.8), we solve the standard Monge-Ampere equation

2.,y _
(61) det(D ’U,()) = K,
ug =g on 0f).

We will deal with (6.1) by adopting the method in [28], which solves the following
initial value problem to steady state,

{%7; — V- ((eI + cof(p))Vu) + 2K =0,

(6.2) u = g on 90,

%—? +7(p — D%u) = 0.

Let {u., p«} be the steady state of (6.2). Accordingly, we set ug = u, po = D?u,
and s = Du, as the initial condition for our scheme (4.6)-(4.8). Therefore, our

algorithm can be summarized as a two-stage method:
Stage 1

In the algorithm in [28], set ¢ = ; = h? and dt = 2h?. Solve (6.2) until
lum*tt —u™||o < tol to get ug. Compute pg = D?ug and sy = Duyg.

Stage 2

With the initial condition ug, pg, and sg, solve (4.6)-(4.8) to steady state.

This manuscript is for review purposes only.
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FiG. 1. Four meshes for two different domains used in our numerical experiments. (a) A regular
mesh on a square. (b) A (highly) symmetric mesh on a square. (c¢) An anisotropic unstructured
mesh on a square. (d) An anisotropic unstructured mesh on a half-unit disk.

6.2. Initial condition for scheme (4.16)-(4.18). When we use scheme (4.16)-
(4.18), the boundary value of the computed solution does not satisfy the given bound-
ary condition, so the initial condition used for scheme (4.6)-(4.8) may not help. To
initialize scheme (4.16)-(4.18), we use the initial condition used to solve (6.2) in [28]:

{V2u0 — WK,

(6.3)
uO|6Q =9,

where A (> 0) is of order O(1).

7. Numerical experiments. In this section, we carry out a variety of numerical
experiments in different settings to demonstrate the performance of scheme (4.6)-(4.8)
and scheme (4.16)-(4.18). Four different meshes as shown in Figure 1 will be used
in our experiments: (a) regular meshes on a unit square, (b) symmetric meshes on a
unit square, (c) unstructured meshes on a unit square, and (d) unstructured meshes
on a half-unit disk. In all of our experiments, in Stage 1 of our algorithm, we use the
method in [28] to initialize the iteration of our algorithm, where we use tol = hZ.

There are several parameters in our algorithm: 7; and ~2 (defined in Section
3.2), ¢ (regularization parameter in the PDE (3.3)), €1 (regularization parameter in
the first order and second order derivative approximation in Section 5.2 and 5.3),
and time step At. In general, when a smooth solution exists, our algorithm is not
sensitive to the choice of parameters. Setting ¢ and e; in the order of h? and
and By (in the formulas of 1 and v2) of O(1) makes the algorithm stable. The time
step At determines how fast our algorithm converges. Our algorithm converges as
long as At is small enough and other parameters are set as mentioned above. A
large At will make our algorithm converge faster, but it may destroy the stability. In
our experiments, setting At in the order of h? makes our algorithm yield reasonable
results. For some problems with singular solutions or derivatives blowing up along
boundaries, we will take both € and 1 to be a larger value and take At to be a smaller
value in order to stabilize the algorithm.

Without specification, we choose At = 2h? and € = 1 = h? in both Stage 1 and
2 of our algorithm. For examples with compatible boundary condition, scheme (4.6)-
(4.8) is used. For examples with incompatible boundary condition, scheme (4.16)-
(4.18) is used. We also compare the numerical solutions by both schemes on some
examples. Without specification, stopping criterion ||u"* —u™||; < 1076 and scheme
(4.6)-(4.8) are used. This stopping criterion is selected so that our algorithm converges
on all meshes. This criterion may be demanding for some coarse meshes, as many
iterations are not necessary. Nevertheless, our current setting does not affect the
demonstration of the performance of our proposed algorithms. A more practical way
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_Hun+1 77""”2

---------- Ly norm

2000 4000 6000 8000
number of iterations

— [[u" " — 2

.......... Ly norm

5000 10000 15000
number of iterations

~ ' 5
0.5 S~ 0.5 0 2000 4000 6000 8000
00 o number of iterations
0.2
0.1 [ERRITN
0\‘\
1 \\\ S 1 -25
05 ~~__— g5 0 1000 2000 3000 4000
00 number of iterations

Fic. 2. (Test problem (7.1) with o = 1. Scheme (4.6)-(4.8).) Graphs of the computed solutions
and the related convergence history. Roe 1: Regular triangulation of the unit square. Row 2:
Symmetric triangulation of the unit square. Row 3: Unstructured anisotropic triangulation of the
unit square. Row 4: Unstructured anisotropic triangulation of a half-unit disk. The second-order
derivatives are approzimated by (5.13).

is to set the stopping criterion depending on h. Additional numerical results are
presented in the supplementary materials.

7.1. Example 1. For the first example, we choose the exact solution u* as a
quadratic function,

(7.1) u* =a(z; —0.5)2 + (z2 — 0.5)?/a,
4
1+4o (21—0.5)2+ 2 (m2—
g = u*|aq, where « is a positive constant.
Since the solution of this example is smooth, we use (5.4) to approximate the

so that the Gauss curvature K =

BE and the boundary condition
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h | Tterations | [[u"™t —u™|| | Ly norm [ rate || L. norm | rate
1/10 193 9.88x10~10 || 6.06x10~* 9.86x10~*
a)| 1/20 606 9.81x10-10 || 1.66x10~* | 1.87 || 2.73x10~% | 1.85
(a)
1/40 2064 9.96x10719 || 4.34x107> | 1.94 || 7.11x107° | 1.94
1/80 7577 9.99x1071 [ 1.05x10~> | 2.05 || 1.73x107° | 2.04
h | Tterations | [[u"™t —u™|| | Ly norm [ rate || L norm | rate
1/10 305 9.99x10-10 || 1.37x1073 2.64x1073
(b) [ 1/20 1021 9.99x10~ 1% || 3.53x10=* | 1.96 || 6.88x10~* | 1.94
1/40 3961 9.99x10~ 10 || 8.98x10=° | 1.97 || 1.75x10~* | 1.98
1/80 | 14259 9.99x10~ 10 ]| 2.16x10=° | 2.06 || 4.24x10=° | 2.05
h | Tterations | [[u"™! — ™| | Ly norm [ rate || Lo norm | rate
1/10 180 9.38x10~10 || 5.70x10~* 2.04x1073
(c)| 1/20 591 9.80x10~ 1% || 1.90x10~* | 1.59 || 5.99x10~* | 1.77
1/40 2080 9.97x10~ 1% [ 5.27x10=° | 1.85 || 1.57x10~* | 1.93
1/80 7690 9.99x10719 [[ 1.42x107° | 1.89 || 6.22x107° | 1.34
h | Tterations | [[u"™t —u™[| | Ly norm [ rate || L norm | rate
1/10 111 8.49x10~10 [ 6.10x10~* 1.20x1073
d)| 1/20 374 9.97x10~ 1% || 1.65x10~* | 1.89 || 4.55x10~* | 1.40
(
1/40 1221 9.93x10710 [| 3.61x107° | 2.20 || 1.03x10~* | 2.14
1/80 4765 9.97x107 10 [ 8.73x107% | 2.05 || 3.54x107° | 1.54
TABLE 1

(Test problem (7.1) with o = 1. Scheme (4.6)-(4.8).) Numbers of iterations necessary for
convergence, approrimation errors and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. (c¢) Unstructured anisotropic triangulation of the
(d) Unstructured anisotropic triangulation of the half-unit disk. The second-order

unit square.

derivatives are approzimated by (5.13).

h | Tterations | [Ju"*1 —u"|] Lo norm | rate | Lo norm | rate

1/10 266 9.50x10~% || 1.01x107! 1.22x10~1
(a) | 1/20 512 9.87x107% [[ 4.02x107% | 1.33 || 4.63x1072 | 1.40
1/40 1432 9.99x107% || 1.82x1072 | 1.14 || 2.13x107% | 1.12
1/80 4529 9.99x10~% [[ 8.73x1073 | 1.06 || 1.03x10~2 | 1.05
h | Tterations | [Ju"*! —u"|] Lo norm | rate | Lo norm | rate

1/10 471 9.57x107% || 8.24x1072 9.74x10~2
(b) | 1/20 782 9.95x10~% || 3.46x1072 | 1.25 || 3.97x1072 | 1.29
1/40 2581 9.99x107% || 1.60x107% | 1.11 [| 1.80x102 | 1.14
1/80 7690 9.99x10~% || 7.78x1073 | 1.04 || 8.56x1073 | 1.07

TABLE 2

(Test problem (7.1) with oo = 1. Scheme (4.6)-(4.8).) Numbers of iterations necessary for con-
vergence, approximation errors, and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. The second-order derivatives are approrimated by

(5.19)-(5.20).

564 first-order d
565
566

567

erivatives.
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In the first test, we choose @ = 1 so that u* represents a
family of con-centric circles which vary isotropically.

With the second-order derivatives approximated by (5.13) and scheme (4.6)-(4.8),
the graphs and convergence histories of numerical solutions on different meshes are
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h | Iterations | [[u"T — ™[] || Ly norm [ rate || L., norm [ rate
1/10 198 9.78x10719 || 1.88x1073 2.75x1073
1/20 604 9.80x107 19 || 3.72x10~% | 2.34 || 5.91x10~* | 2.22
1/40 2057 9.92x10719 || 8.86x10~" | 2.07 || 1.44x10=% | 2.04
1/80 7566 9.99x107 19 || 2.14x107> | 2.05 || 3.53x10=° | 2.03
TABLE 3

(Test problem (7.1) with o = 1. Scheme (4.16)-(4.18)) Numbers of iterations necessary for
convergence, approximation errors, and accuracy orders. The second-order derivatives are approzi-
mated by (5.13).

h | Tterations | [u"*! —w”|| [| L2 norm [ rate || Lo, norm | rate
1/10 309 9.67x10~10 || 5.01x10~* 8.07x10~*
1/20 938 9.93x107 1% || 1.32x10~* | 1.92 || 2.12x10~* | 1.93
1/40 2982 9.97x10719 || 3.38x107°> | 2.01 || 5.39x10~° | 1.98
1/80 | 14565 9.99x10~ 1 || 8.51x1076 | 1.99 || 1.36x107° | 1.99
TABLE 4

(Test problem (7.1) with o = 2. Scheme (4.6)-(4.8).) Numbers of iterations necessary for
convergence, approximation errors, and accuracy orders on the regular triangulation of the unit
square. The second-order derivatives are approzimated by (5.13).

(a) (b)

0 N
-10 = -
s 05 e- )
8% <
830 = —u, O T - U“Hz\
Ly norm 0 -20 Ly norm
-40 |- L norm S f Lo norm
~ 1 -25
0 2000 4000 6000 0.5 ~ " 05 0 5000 10000
number of iterations 00 number of iterations

F1G. 3. (Test problem (7.1). Scheme (4.6)-(4.8).) (a): With oo =1, e1 = €2 = 0 in both stages,
the convergence history on the regular triangulation of the unit square. The second-order derivatives
are approzimated by (5.18). (b)-(c):The graph of the computed solution and the convergence history
on the regular triangulation of the unit square. The second-order derivatives are approximated by
(5.13).

shown in Figure 2. The numbers of iteration and accuracy orders are shown in Table
1, where the accuracy orders in the Lo and L., norms are in general larger than 1.5.
Stopping criterion [Ju™! —u™|| < 107 is used. Since the time step is in the order of
h2, we expect that the rate of convergence is close to 2. In Table 1, the rate is around
1.8, which is slightly better than our expectation.

With the second-order derivatives approximated by (5.19) and (5.20) and scheme
(4.6)-(4.8), we can use a less demanding stopping criterion. Here we use |[u"*! —
u™|| < 1077, The numbers of iteration, the errors of approximation, and the rates
of convergence on regular and symmetric meshes of the unit square are shown in
Table 2, which demonstrate that, in general, our algorithm with approximation (5.19)
and (5.20) is first-order accurate, and in comparison with the results based on the
approximation (5.13), the errors based on the approximation (5.19) and (5.20) are
larger and the convergence rates are smaller.

For comparison, we also show the results by scheme (4.16)-(4.18) with the second-

This manuscript is for review purposes only.
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h Iteration | [Ju"™! —u™||s | Lo error | rate | Lo, error | rate
1/16 177 9.57x10~7 [ 9.79x1072 1.69x10~!

(a)| 1/32 791 9.98x10~7 [ 5.61x10=2 | 0.80 | 1.19x10~T | 0.51
1/64 3360 9.97x10~7 [ 3.12x1072 | 0.85 | 8.39x10~2 | 0.50
1/128 17273 9.99x10°7 1.55x1072 | 1.01 | 5.86x10=2 | 0.52
h | Tteration | [[u™™t —u"|y | Lo error | rate | Lo, error | rate

(b) 1/16 236 9.72x10~7 2.86x1072 7.40x1072
1/32 1179 9.98x10~7 1.13x1072 | 1.34 | 4.53x1072 | 0.71
1/64 5261 9.95x10~7 [ 7.33x1073 | 0.62 | 4.12x1072 | 0.14

h Lo, error | rate
1/16 | 1.61x10°!

(c)| 1/32 | 1.28x10~! | 0.33
1/64 | 1.09x10~* | 0.23
1/128 | 8.80x10~2 | 0.31

TABLE 5

(Test problem (7.2). Scheme (4.6)-(4.8).) Numbers of iterations, approzimation errors, and
accuracy orders with the second-order derivatives approximated by (a) (5.13) and (b) (5.19)-(5.20).
(¢) shows the Lo errors and accuracy orders from [30].

order derivatives approximated by (5.13). Since the boundary condition is compatible,
we use a large k = 500. The number of iteration and accuracy orders are shown in
Table 3. Its efficiency and accuracy are similar to that of scheme (4.16)-(4.18). If &
goes to infinity, scheme (4.16)-(4.18) has an additional stabilization (diffusion) term
which provides larger error but extra robustness, the same as what is observed by
comparing Table 1(a) and Table 3.

Since the exact solution is a quadratic function, its second-order derivatives are
constants so that the zero Neumann boundary condition on these derivatives is exact.
With € = €1 = 0 and h = 1/40, the convergence history of scheme (4.6)-(4.8) is shown
in Figure 3(a). We can see that although approximation (5.13) is a kind of variational
crime, the error decreases to machine precision.

In the second test, we choose o = 2 so that u* represents a family of con-centric
ellipses which vary anisotropically. We apply our algorithm to this problem on the
unit square with regular meshes. The number of iterations necessary to satisfy the
stopping criterion and the corresponding approximation error accuracy is shown in
Table 4. The graph of the computed solution and the related convergence history are
shown in Figure 3(b)-(c).

7.2. Example 2. In the second example, we consider a problem with the exact

solution
_ 2 2
u=—/1—af— 3,

which is a part of the unit sphere, and the corresponding Gauss curvature is con-
stant: K = 1. The computational domain is chosen to be half of the unit disk,
Q= {(z1,72) |71 >0, 22 + 23 < 1}. Accordingly, the boundary condition is given as

_07
9=V

(7.2)

0
(7.3) 71>,

— 2%, x1=0.
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(a) (b)

0 =
o
o-10
-0.5 [«
Q _Hun+l 7“"“2
157 Ly norm
—:Il oSO A - Lo norm
1 -20
0 1000 2000 3000
number of iterations
(d)
0 0
---------- h=1/16 -h=1/16
-0.2—h=1/32 -0.2—h=1/32
----- h=1/64 ; ~—h=1/64
0.4 |-~ -exact 0.4 |-~ -exact

0 05 10 05 1

F1G. 4. (Test problem (7.2). Scheme (4.6)-(4.8)) (a) The graph of the solution with h = 1/64,
where the second-order derivatives are approzimated by (5.18). (b) The convergence history of (a).
(¢)-(d): Graphs of the restrictions of the numerical solutions to the line x1 = 0 with different
h’s. (c) the second-order derivatives approzimated by (5.13) and (d) the second-order derivatives
approzimated by (5.19)-(5.20).

This problem is interesting since the gradient of the exact solution along the
boundary where z; > 0 is infinite (a more challenging problem is solved in Sup-
plementary materials ??). This problem is also solved in [30]. Since the first-order
derivatives are infinite along a part of the boundary, we have to use the regularized
approximation (5.5) for the first-order derivatives; otherwise our solution will blow
up. We use € = h, &1 = h%, At = h?, and the stopping criterion ||u"** —u"||3 < 1076.
Figure 4(a)-(b) shows the graph of the numerical solution for h = 1/64 and the re-
lated convergence history with second-order derivatives approximated by (5.13). The
cross sections of the numerical solutions along the boundary x; = 0 with second-order
derivatives approximated by (5.13) or (5.19)-(5.20) are shown in Figure 4(c)-(d), and
the convergence of numerical solutions using both approximations is clearly observed.

To further quantify both approximations of second-order derivatives, we show
the numbers of iterations, the Ls- and L.o- errors, and their corresponding rates of
convergence in Tables 5(a) and (b). In Table 5, we can see that both approximations of
the second-order derivatives behave reasonably well. Although the algorithm equipped
with approximation (5.19)-(5.20) produces smaller errors than the one equipped with
(5.13), the algorithm with approximation (5.13) is more stable as its convergence
rate is uniformly about 0.5. As a comparison, we also list the L.-errors and related
convergence rates from [30] in Table 5(c). When the mesh is fine enough, our algorithm
equipped with either approximations produces smaller L..-errors than that of [30].

7.3. Example 3. We end this section by considering a problem with no classical
solution. The curvature is a constant in 2:

(7.4) K=1/2inQ,

Thi: iscript s fi cVleW PUTPOSE:
This manuscript is for review purposes only
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n+1

[P =DZu" |5

h Iter. |u —u"l2 | p™ — D%u" |2 o s min lp™ — D?u™||2 in.
1/20 | 177 | 9.62x1077 | 4.44x10=% | 2.35x102 | -0.1192 | 3.28 x 10~3
1/40 | 672 | 9.72x1077 | 1.80x10~% | 7.26x10°2 | -0.1263 | 5.98 x 1073
1/80 | 2149 | 9.98x10~7 | 4.94x10-% [ 1.67x10~! | -0.1305 | 9.41 x 10~3

(b)

h ter. [ um*! —u”o | p" —D2urp | LETpRAeE | wmin [ p" - D2u”z in.
1/20 | 246 | 9.88x10~7 | 4.60x10=3 [ 2.43x1073 | -0.1345 | 7.47 x 10~*
1/40 | 695 | 9.88x10~7 | 7.53x10=% [ 2.43x10~2 | -0.1359 | 4.77 x 103
1/80 | 2468 | 9.99x10~7 | 3.52x10~! | 6.82x1072 | -0.1376 | 6.54 x 1073

TABLE 6

(Test problem (7.4). Scheme (4.6)-(4.8).) Numbers of iterations, iteration errors and minimum
values. The second-order derivatives are approzimated by (a) (5.18) and (b) (5.19)-(5.20).

where 0 = [0, 1]2. We use the boundary condition g = 0 on Q. This problem has
no classical solution since det(DD?u) vanishes on 9€2. In other words, this problem is
incompatible. In our experiment, we first use scheme (4.6)-(4.8) with ¢ = &1 = g9 = h?
and At = 2h2. The second-order derivatives are approximated by (5.13). The number
of iterations, convergence errors, and minimum values are shown in Table 6. The
graphs and contour of the numerical solution with A~ = 1/80 are shown in Figure 5
Row 1. The comparisons of the restriction of the numerical solution with different h
along 1 = 1/2 and x1 = x5 are shown in Figure 5 Row 2. Our solution is smooth
and almost convex, except for the region near the corners of the domain.

Then we use scheme (4.16)-(4.18) with e = g1 = &5 = h? and At = 8h? to solve
it. With h = 1/80, the graph and contour of the computed solution are shown in
Figure 5 Row 3. We can see the boundary value of the computed solution is no
longer constant. At the middle segment on each edge, its value is away from 0 to be
compatible with its interior value. The comparisons of the restriction of the numerical
solution with different h along x; = 1/2 and 1 = x5 are shown in the fourth row
of Figure 5. Compared to the graph in the second row of Figure 5, we observe the
deviation of the boundary value from 0. The same problem is solved on an ellipse
domain in Supplementary materials ?77.

8. Conclusion. In this work, we have proposed two operator splitting/mixed
finite-element methods to solve the Dirichlet Minkowski problem in dimension two.
Our algorithms are easy to implement since only a system of PDEs is to be solved
and the basis functions are chosen to be piecewise linear. When the problem has
a classical solution, scheme (4.6)-(4.8) using approximation (5.19)-(5.20) for second-
order derivatives is first-order accurate while using approximation (5.13) it is almost
second-order accurate. For an incompatible problem, scheme (4.16)-(4.18) can adjust
the boundary value of the computed solution to make it compatible with its interior
values. Our algorithm can solve the Minkowski problem on arbitrary shaped domains
and can also solve problems with singularities in the solution gradient. Our algorithm
can be easily extended to high dimensions, which constitutes an ongoing work.

Acknowledgments. The preparation of this manuscript has been overshadowed
by Prof. Roland Glowinski’s passing away. Roland and the authors had intended to
write jointly: most of the main ideas were worked out together and the authors have
done their best to complete them. In sorrow, the authors dedicate this work to his
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Fic. 5. (Test problem (7.4).) Row 1-2: Scheme (4.6)-(4.8). Row 1: Graphs and contour of
the numerical solution with h = 1/80. Row 2: Graphs of the restrictions of numerical solutions
along x1 = 1/2 (left) and x1 = x2 (right) with h = 1/20, 1/40, and 1/80. Row 3-4: Scheme (4.16)-
(4.18).) Row 3: Graphs and contour of the numerical solution with h = 1/80. Row 4: Graphs of
the restrictions of numerical solutions along x1 = 1/2 (left) and x1 = z2 (right) with h = 1/20,
1/40, and 1/80. The second-order derivatives are approzimated by (5.13).

memory. Roland’s creativity, generosity, and friendship will be remembered.
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