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Abstract. In-situ observations of solar wind plasma exhibit statistical
differences according to their coronal origins. These in-situ conditions
are a direct result of various processes such as ionization and acceler-
ation occur in the inner corona. Machine learning methods have been
successful in characterizing solar wind in-situ observations using unsu-
pervised deep clustering and dimensionality reduction techniques, but it
remains unclear as to how solar wind data embedding and downstream
clustering could be improved while providing better interpretability in
machine learning process. In this study, we explore the impact of dis-
tance metrics on solar wind in-situ data clustering. We evaluate the
metric performance by applying it to dimension-reduction-stacking and
deep clustering techniques and comparing it with state-of-the-art meth-
ods using solar wind in-situ measurements. Our work demonstrates the
potential for customized distance metrics to improve the interpretabil-
ity and performance of deep clustering approaches applied in solar wind
in-situ observations.

Keywords: Solar wind · Classification · Machine Learning ·
Heliophysics

1 Introduction

The solar wind is the stream of supersonic ionized particles released from
the Sun, and drives space weather at Earth’s geo-space environment. Space
weather impacts Earth’s climate, satellite communication, power grids, and other
domains important to life on the surface. The physical processes occurring in the
base of the solar corona that ionize, heat, and accelerate the solar wind plasma
are of central importance to space weather forecasting and the ways in which
the Sun affects the Earth.

One way we observe the solar wind is through in-situ measurements (e.g.,
ACE and Ulysses missions), which are inextricably tied to conditions in the
solar corona–the outermost part of the sun’s atmosphere–where the solar wind
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originates. The in-situ properties of solar wind can be linked back to the coronal
structures where it originates [24]. These properties encapsulate the dynamic and
thermal properties of the bulk solar wind plasma (protons), minor constituents
(Helium and heavier ions, such as Carbon, Nitrogen, Oxygen, Neon, Magnesium,
Silicon, Sulfur, Iron, etc.), and magnetic field associated with them. Properties
associated with these so-called heavy ions include total abundances and charge
states, either as the average charge state of a specific element, or by the ratio of
densities of individual charge states (such as O7+/O6+, C6+/C5+, measured by
SWICS instrument onboard ACE and Ulysses).

There are certain solar wind structures identifiable by in-situ measurements.
For example, plasma originating from coronal hole (CH) regions is usually
observed to have high proton speeds: the aptly named fast wind. The plasma
from CHs also has lower charge state ratios, indicating cooler electron tempera-
tures and low plasma densities in the coronal origins [4,26]. This is in contrast
of the slow solar wind, whose coronal origins are more difficult to ascertain
from in-situ properties. The slow solar wind could come from anywhere from
the periphery of active regions (ARs) [11,13], the helmet streamers [21,22], or
the pseudostreamers [5,19,23], and so forth. The wind from these source regions
is more ionized, which indicates hotter electron temperatures and higher den-
sities in their coronal sources. Solar wind can also be attributed to occasional
transient events which are important to space weather, such as Interplanetary
Coronal Mass Ejections (ICMEs), which are energetic eruptions originating in
magnetically active regions [7,8].

The Challenges of Solar Wind Classification. The solar wind has been
traditionally classified according in-situ physical properties via statistical means;
however, there are at least three challenges that arise when attempting to use in-
situ properties to assign different types of solar wind to specific coronal sources:
1) singular observable, such as proton speed, is of poor use as a categoriza-
tion metric (slow wind can arise from CHs [2,9,17,20,22]); 2) in-situ solar wind
speeds and composition are on a continuum [27], and 3) the dimensionality
of the data limits how the behavior can be visualized (there are 77 different
parameters related to the heavy ion composition and elemental abundances alone
ACE/SWICS [6]).

Unsupervised learning methods and dimensionality reduction algorithms
have already proven effective at answering these challenges as data-driven char-
acterization schemes [1,3,15]. However, an approach has yet to be shown which
minimizes instances of subjectivity in parameter selection and explains how the
downstream embedding and clustering results are delivered. In this work, we
detail the appropriate domain knowledge for solar wind data and introduce a
novel deep clustering approach, PCA+t-SNE+DBSCAN, for characterizing the
solar wind using in-situ properties. This method utilizes our dimension reduction
stacking technique, PCA+t-SNE, proposed in this study, along with various dis-
tance metric probing, to effectively and more transparently identify solar wind
clusters. To the best of our knowledge, this is the first explainable machine
learning method proposed for the clustering of solar wind data. The proposed
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dimension reduction stacking can also be extended to other AI and data science
fields.

2 Dimension Reduction Stacking

The application of dimension reduction stacking is novel to the field of solar
physics. Dimension reduction stacking is the technique of combining reduction
methods by using the output of one method as the input of another. Formally,
the original input data X = {xi}Ni=1, where xi ∈ R

M , is mapped to a low-
dimensional representation Y = {yi}Ni=1, where yi ∈ R

l and l � p. The stacking
results in a composite function f(g(X)) → Y. Typically, f and g belong to
different types of dimension reduction methods, and their combination enables
the extraction of features at a deeper level by having one method address the
limitations that another has in the stack.

2.1 Principal Component Analysis

The first dimension reduction method we used in our stack is Principal Compo-
nent Analysis (PCA). PCA focuses on minimizing information loss by creating
new uncorrelated variables that successively maximize variance. These variables
are called principal components (PCs), and they are the solutions to an eigen-
value/eigenvector problem of the covariance matrix of the input data. The qual-
ity of the reduction can be measured using the variability associated with the set
of retained PCs. To measure the quality the amount of selected PC’s, the cumu-
lative explained variance percentage is calculated. PCA, being a classic holistic
method, is capable of extracting the global behavior of the data; however, PCA
usually cannot capture the local behavior of the data because each PC only
contains some levels of global characteristics of the data.

2.2 t-Distributed Stochastic Neighboring with Embedding

The second dimension reduction technique in the stack is the t-Distributed
Stochastic Neighboring with Embedding (t-SNE). This is a non-linear method,
capable of capturing local data behaviors in the dimensionality reduction. The
t-SNE algorithm minimizes the Kullback-Leiber (K-L) divergence between a
distribution P and student t-distribution Q to achieve the low-dimensional
embedding by solving a non-convex optimization problem. The Gaussian and
t-distributions model the pairwise similarities between data points in the orig-
inal high-dimensional input space and embedding. t-SNE aims to force a simi-
larity of the embedding data to the original data by seeking the minimum K-L
distance between P and Q. By having the PCA transformation emphasize the
global structure of the data, and t-SNE generate an embedding that captures
local structure in the data (in multiple scales), the data expression can be repre-
sented in two dimensions in a way that considers both global and local structures.
Once the data is in this form, the embedding can be clustered in order to identify
attributes of the clusters.
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2.3 PCA+t-SNE Dimension Reduction Stacking

The dimension reduction stacking is done by composing PCA and t-SNE, titled
PCA+t-SNE. We project the input data onto the PCA space while ensuring a
minimum of 95% total explained variance. Subsequently, reduction is used to
compute distance matrices. These distance matrices will then be fed into t-SNE.
It is worth mentioning that PCA+t-SNE outperforms PCA+UMAP in terms
of performance, as t-SNE has a better ability to capture local behavior of the
data compared to UMAP [10]. This observation is further supported by our
downstream DBSCAN clustering results.

Algorithm 1: Dimension Reduction Stacking (X,η,p)

1 Input:

2 The input data: X ∈ R
N×M .

3 The explained variance ratio: η.
4 The perplexity in t-SNE: p.
5 Output:
6 The dimension reduction stacking embedding: XPCA+TSNE .
7 Begin. PCA for the scaled data:
8 XPCA, pcV ariance ←pca(X).
9 Retrieve reduction:

10 IF
∑i=l

i=1 pcV ariancei ≥ η
11 Xembedding ←XPCA[:,1:l].
12 Compute pairwise distances:
13 DX ← fdist(Xembedding)
14 t-SNE embedding:
15 XPCA+TSNE ←tsne(DX ,p)
16 Return: XPCA+TSNE .
17 End

3 Data and Preprocessing

We use the Advanced Composition Explorer (ACE) spacecraft as the platform for
our data. ACE is positioned at the L1 point, measuring the solar wind plasma and
interplanetary magnetic field since 1998. A subset of the data from 2000–2002
was chosen, as because the heightened solar activity in this time range resulted in
more frequent equatorial CHs and ICMEs, providing in a more balanced inclusion
of solar wind sources in this interval. From this range, we use a random subset
of 2500 2-hour-binned measurements.

To create the data expression for reduction, we collect 12 variables linked to
solar wind in-situ signatures: from the Solar Wind Electron, Proton, and Alpha
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Monitor (SWEPAM) [14], we use the proton temperature (Tp) and proton den-
sity (np) to compute the proton entropy (Sp = Tp n−2/3

p ), and we also include
alpha-to-proton ratio (denoted as α/H). From SWICS [9], we include the ele-
mental composition (relative abundances of Magnesium, Silicon, Iron, Carbon,
Neon, and Helium to Oygen, denoted as Mg/O, Si/O, Fe/O, C/O, Ne/O, and
He/O respectively) and heavy ion composition signatures of Oxygen, Carbon
and Iron (O7+/O6+, C6+/C4+, C6+/C5+, and 〈QFe〉).

After removing samples with null values in the original data set and taking
the random subset (as described previously), the data variables (described above)
are scaled using a Min-Max scaling along each dimension.

4 Solar Wind Deep Clustering Under Dimension
Reduction Stacking

We generate a meaningful embedding space for input solar wind data that reveals
both latent global and local data characteristics through PCA+tSNE dimension
stacking, before seeking meaningful similarity via density-based clustering. PCA
is applied as the first dimensionality reduction technique. The left panel of Fig. 1
shows the percentage of explained variance (blue) and accumulated explained
variance (red) by each PC. The subset of PCs up to PC7 explains 95% of the
original data variance. All of the data are visualized in the first two PC com-
ponents frame through a Gaussian Kernel Density Estimate (KDE) in the right
panel of Fig. 1.

Fig. 1. Result of PCA on the in-situ solar wind data. The left panel shows the percent-
age of variance (blue) and cumulative sum (red) explained by each PC. The middle
panel shows the eigenvalues of each PC. The right plot visualizes the Gaussian KDE
height of the first two PCs. (Color figure online)
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In our implementation, we utilize the projected data of the original solar wind
dataset in the PCA subspace, maintaining a 95% explained variance ratio, for
calculating pairwise distance matrices using the Euclidean, Cosine, and Maha-
lanobis distance metrics respectively. These pre-computed distance matrices are
then employed as inputs for t-SNE to generate the t-SNE embedding. This
PCA+tSNE dimension reduction stacking approach captures both the global
and local characteristics of the data in dimension reduction, in addition to a de-
noising procedure. Moreover, this stacking method yields a meaningful embed-
ding space for exploring similarities in solar wind data, which benefits subse-
quent density-based clustering, such as DBSCAN. DBSCAN is robust to noise
and adaptable to data of any shape, making it suitable for the noisy, nonlinear
solar wind data that can demonstrate any shape after dimension reduction stack-
ing. Deep: PCA+t-SNE+DBSCAN here means an in-depth exploration of latent
global and local data characteristics revealed in the latent embedding generated
from PCA+t-SNE stacking, as well as the examination of various similarity met-
rics in PCA+t-SNE stacking.

DBSCAN (Density Based Spatial Clustering of Applications with Noise) is a
density-based clustering algorithm designed to cluster data of arbitrary shape,
and to account for noise. DBSCAN classifies points as either core, reachable,
or outlier (noise). Core points are within a radius ε of a neighborhood–the size
of the neighborhood is specified by a minimum number of points, including the
point in question. A reachable point is within radius ε of a core point, but does
not neighbor the required minimum number of points. An outlier is a point
which is beyond ε of any core point. In our context, outliers will be solar wind
samples which have physical qualities which differ enough from the main groups
of solar wind. The core points form clusters because of their high densities, while
the reachable points form the edge of said clusters and the outliers stand out as
noise. DBSCAN will allow us to find the boundaries of clusters without imposing
any model or numerical restrictions. Once these cluster labels are generated, we
can then project the labels back onto the original data in order to examine the
underlying physics of the solar wind clusters.

4.1 Deep Clustering Under Different Distance Metrics

We employ three distance metrics-Euclidean, cosine, and Mahalanobis-in
PCA+t-SNE stacking before DBSCAN clustering. This implies that these dis-
tances are utilized to calculate the pairwise distance matrix using data projected
into the PCA subspace

The corresponding PCA+t-SNE+DBSCAN clustering results are shown in
Figs. 2, 3, and 4. In the DBSCAN clustering process, we set the minimum number
of points for a cluster to be considered a core cluster to 75 points. We then vary
epsilon for each embedding until we see some of the smaller scale clusters. The
epsilon values are shown in Table 1. The clusters are projected onto physical
parameters associated with each data point.

The first distance metric we examine is the Euclidean metric, resulting in
6 clusters and one outlier group (Fig. 2). The winds in Class 2 have very low
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Table 1. Selected epsilon values for each distance metric

Distance Metric Euclidean Cosine Mahalnobis

Epsilon 11.0 10.3 11.2

Fig. 2. Embedding and clustering using Euclidean distance as the metric in the
PCA+TSNE process (top left). Class labels are assigned by DBSCAN, and are pro-
jected onto the charge state ratio of oxygen (O7+/O6+ ratio), the average charge state
of Iron, and the bulk proton speed (top right, bottom left, and bottom right, respec-
tively).

O7+/O6+ and relatively high Vp, indicative of equatorial coronal hole associated
fast wind. Class 3, 4, and 6 have relatively high O7+/O6+ and slow proton speed,
indicative of typical streamer-associated slow wind [22]. The O7+/O6+ of 0.145
(logarithm base 10 value is about −0.84) was found by previous work [22] that
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can effectively separate the streamer-associated slow solar wind from the coronal-
hole-associated fast wind; and here we see that the coronal hole (cluster 2) and
slow wind (clusters 3, 4, 6) are separated by a very similar value of O7+/O6+.
Class 5 is an interesting class; it has characteristics similar to slow solar wind;
however, it has higher wind speeds and very high average iron charge states.
These are consistent with the characteristics of ICMEs passing by a spacecraft.
It appears that clustering the solar wind using this Euclidean distance metric
can be useful to extract ICMEs, and separated the non-ICME solar wind into
distinct sub-groups, such as coronal-hole associated fast and streamer-associated
slow wind.

The result based on Cosine distance metric is shown in Fig. 3. There are two
very similar slow wind clusters (2 and 6), possessing relatively high O7+/O6+

ratio and slow proton speed. These two clusters are likely the streamer-associated
slow solar wind. Oppositely, in cluster 5 the solar winds have low O7+/O6+ ratios
and relatively high proton speed, those winds are more likely contributed by
the low latitude coronal-hole associated fast wind. Interestingly, the separation
point of O7+/O6+ between these two different coronal-originated solar winds
is still located near the value of 0.145 (logarithm base 10 value is about -0.84),
consistent with the result of Euclidean distance and the previous study [22]. The
O7+/O6+ ratios of the clusters 1 and 3 are in between the streamer slow wind
(cluster 2 and 6) and coronal-hole fast wind (5), indicating that they may be
some combination of these two types of winds. In the average charge state of
Iron plot, the relatively high value of Iron charge state in the class 4 implies that
some winds in this class may contain the ICME plasma, but not all of them are
ICMEs.

The result based on Mahalanobis distance is shown in Fig. 4. The solar wind
in class 6 possesses the lowest O7+/O6+ ratio, and relatively high proton speed,
indicating that this class is more likely to be the fast wind originated from
equatorial coronal holes. Class 5 is characterized as having the highest averaged
charge state of Iron, indicative of a group of ICME winds. Class 3 possesses
relatively high O7+/O6+ ratio (mostly higher than 0.145) and relatively slow
proton speed, consistent with the features of typical streamer-associated slow
wind. Classes 1, 2 and 4 seem to posses the majority of the data, however their
O7+/O6+ ratio, average charge state of Iron and proton speed are in the mod-
erate ranges which implies that they are probably some combinations of the
coronal-hole and streamer winds, therefore they cannot be assigned to any spe-
cific solar wind types or coronal origins.

Maximum Fusion Distance Metric. The clustering results calculated using
the three different distance metrics have different strength and weakness in relat-
ing them with the solar wind features and the coronal origins. It is hard to deter-
mine which distance metrics is the best one among these three. Therefore, in the
next step, we create a new distance metric which is designed to prioritize the
effectiveness of all of the three metrics, in order to obtain the optimized solar
wind clustering result.



Dimension Reduction Stacking for Deep Solar Wind Clustering 119

The new distance metric is defined as the maximum of the three normal-
ized metrics as calculated previously (Eq. 1). We name this new distance metric
Maximum Fusion.

pmax = max(
peuc

max(peuc)
,

pcosine
max(pcosine)

,
pm

max(pm)
) (1)

We then apply the same t-SNE parameters and clustering process, retaining
MinPts as 75 and choosing epsilon to reveal multiple scales of clusters. The result
of the clustering is shown in Fig. 5. It is clear that the solar wind clusters are
in general separated at the threshold of O7+/O6+ = 0.145 (logarithm base 10
value is −0.84), with class 2 and 5 as hotter (O7+/O6+ ratio > 0.145, streamer-

Fig. 3. Embedding and clustering using Cosine distance as the metric in the PCA +
TSNE process (top left). Class labels are assigned by DBSCAN, and are projected onto
the charge state ratio of oxygen (O7+/O6+ ratio), the average charge state of Iron, and
the bulk proton speed (top right, bottom left, and bottom right, respectively).
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Fig. 4. Embedding and clustering using Mahalanobis distance as the metric in the
PCA+TSNE process (top left). Class labels are assigned by DBSCAN, and are pro-
jected onto the charge state ratio of oxygen (O7+/O6+ ratio), the average charge state
of Iron, and the bulk proton speed (top right, bottom left, and bottom right, respec-
tively).

associated) and slower wind and class 3 as colder (O7+/O6+ ratio < 0.145,
coronal-hole associated) and faster wind; meanwhile class 1 which possesses the
majority of the data points, stays in between. Particularly, the winds in class
4 have the highest O7+/O6+ ratios and average charge state of Iron, indicating
that they are likely ICMEs. These five clusters in Fig. 5 are more explainable
and better understandable in terms of the solar wind features and the coronal
origins than the results from the other three distance metrics.
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5 Conclusion

In this work, we find that PCA+t-SNE can characterize in-situ solar wind data in
a way that reveals the hidden features in the data. We then present the solar wind
clustering results using DBSCAN with three distance metrics, Euclidean, Cosine,
and Mahalanobis, and a new distance metrics that we invent, Max Fusion. We
describe the impact that these metrics have on the solar wind clustering, and
compare the clustering results (Table 2).

Table 2. Comparison of the solar wind clustering results among different distance
metrics

slow wind
(high O7+/O6+)

fast wind
(low O7+/O6+)

CME
(high O7+/O6+

and QFe)

undefined

Euclidean 3 classes (3,4,6) 1 class (2)
wide speed range

1 class (5) 1 class (1)

Cosine 2 classes (2,6) 1 class (5)
wide speed range

not very clear 2 classes (1,3)

Mahalanobis 1 class (3) 1 class (6)
wide speed range

1 class (5) 3 classes (1,2,4)

Max Fusion 2 classes (2,5) 1 class (3) 1 class (4) 1 class (1)

The comparison of the clustering results show that all of the four distance
metrics can produce solar wind clusters that are indicative of streamer-associated
slow solar wind (slow speed and high O7+/O6+ ratio). Euclidean and Maha-
lanobis distance metrics can also produce a cluster of solar wind that matches
the characteristics of ICMEs (high O7+/O6+ and average charge state of Iron),
but Cosine distance metrics fails to produce a cluster of solar wind that can be
exclusively considered as ICMEs. All of the first three distance metrics result in
a cluster of solar wind that possesses low O7+/O6+ ratio solar wind, and has a
proton speed range spanning from 300 to 700 Km/s with two peaks, indicating
that this cluster may be partially contributed by coronal-hole associated winds,
but also with some contamination from other slow-speed types of winds. Dif-
ferently, the clusters identified using Max Fusion distance metrics show clear
different types of solar wind: two clusters are slow, streamer-associate wind; one
cluster is coronal-hole associate fast wind; and one cluster is like ICME wind.
Therefore, we conclude that the Max Fusion distance metrics so far is the best
distance metrics that can effectively classify the solar wind into different cat-
egories of physically distinct characteristics and indicative of different coronal
origins. We summarize the comparison of these clustering results in Table 2.

6 Discussion

The MinPts parameter is essential in defining core points and influencing cluster
density in the DBSCAN algorithm, particularly for large, noisy datasets such as
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Fig. 5. Embedding and clustering using max-fusion distance as the metric in the
PCA+TSNE process (top left). Class labels are assigned by DBSCAN, and are projected
onto the charge state ratio of oxygen (O7+/O6+ ratio), the average charge state of iron,
and the bulk proton speed (top right, bottom left, and bottom right, respectively).

solar wind data. This becomes even more significant when applied to embedding
data derived from the proposed dimension reduction stacking (PCA+tSNE). Our
study, as shown in the left panel of Fig. 6, illustrates how the Eps (epsilon) value
fluctuates in relation to the Euclidean distance metric in the embedding. Teach-
nically, it refers to the radius of a neighborhood around a solar wind projection
point in the embedding space.

A lower MinPts setting results in a restricted epsilon range and a higher
cluster count, whereas a very high MinPts leads to underfitting, as indicated by
a reduced number of clusters. Interestingly, the left side of these curves tends
to display a consistent cluster count across various MinPts values, though this
can cause overfitting with many outliers. To counteract this, a higher MinPts
value enables DBSCAN to concentrate on fewer, larger-scale clusters, a crucial
approach in our study to prevent the formation of overly small clusters and
ensure the applicability of our findings to a wide range of solar wind datasets.
Therefore, we have selected a MinPts value of 75 for our analysis. However,
it’s important to note that this empirical choice may not be the best fit for
generalization in larger solar wind datasets.
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Fig. 6. The number of clusters that result from DBSCAN clustering with increasing
epsilon. The left panel shows varying MinPts on the Euclidean distance metric. The
right panel shows various distance metrics on MinPts = 75.

Moreover, our previous findings indicate that the epsilon values are relatively
similar across different distance metrics. As depicted in the right panel of Fig. 6,
there is a noticeable overlap in cluster numbers when using both Euclidean and
Cosine distance metrics, in contrast to the Mahalanobis metric, which shows
peak values at lower epsilon levels. This observation suggests that the choice of
epsilon not only depends on the scale of the structures under study but also varies
in its impact across different distance metrics within the embedding space. To
address this, we are developing an optimal parameter tuning strategy for large-
scale solar wind data analysis. This approach involves utilizing various distance
metrics and a probing learning method that leverages a small subset of the data
for initial insights. Additionally, we are incorporating distance metric learning
techniques, including Siamese and Triplet Networks, to uncover more meaningful
and insightful solutions in our analysis [28].
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