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Abstract—Vehicle-to-Everything (V2X) communication enables
vehicles to communicate with other vehicles and roadside
infrastructure, enhancing traffic management and improving
road safety. However, the open and decentralized nature of V2X
networks exposes them to various security threats, necessitating
a robust misbehavior detection system (MBDS). While machine
learning (ML) has proved effective in different anomaly detection
applications, the existing ML-based MBDSs have shown limi-
tations in generalizing due to the dynamic nature of V2X and
insufficient and imbalanced training data. Moreover, they are
known to be vulnerable to adversarial ML attacks. On the other
hand, generative adversarial networks (GAN) possess the potential
to mitigate such issues and improve detection performance by
synthesizing unseen samples of minority classes and utilizing
them during their model training. Therefore, we propose the first
application of GAN to design an MBDS.

Our contributions are manifold. In the pursuit of an effective
GAN-based MBDS, we train and evaluate a diverse set of
Wasserstein GAN (WGAN) models and present VEhicular GAN
(VEHIGAN), an ensemble of multiple top-performing WGANs,
which transcends the limitations of individual models and
improves detection performance and adversarial robustness.
We present a physics-guided data preprocessing technique that
generates effective features for ML-based misbehavior detection.
To evaluate the adversarial robustness, we formulate two categories
of adversarial attacks against the WGAN-based MBDS. In
the evaluation, we leverage the state-of-the-art V2X attack
simulation tool VASP to create a comprehensive dataset of V2X
messages with diverse misbehaviors. Evaluation results show
that in 20 out of 35 misbehaviors, VEHIGAN outperforms
the baselines and exhibits comparable detection performance
in other scenarios. Particularly, VEHIGAN excels in detecting
advanced misbehaviors that manipulate multiple fields in V2X
messages simultaneously, replicating unique maneuvers. Moreover,
VEHIGAN provides approximately 92% improvement in false
positive rates under powerful adaptive adversarial attacks and
possesses intrinsic robustness against other adversarial attacks
that target false negative rates. Finally, we make the data and code
available for reproducibility and future benchmarking, available
at https://github.com/shahriar0651/VehiGAN.

Index Terms—vehicular network, misbehavior detection systems,
generative adversarial networks, deep learning

I. INTRODUCTION

Road traffic accidents take approximately 1.35 million lives
every year around the world, leaving another 50 million non-

fatally injured [1]. Approximately 94% of major accidents
in conventional transportation systems are caused, at least
in part, by human errors [2]. Conversely, a connected and
intelligent traffic system (C-ITS) has the potential to help
reduce these human errors and save millions of lives. One of
the fundamental enabling technologies of C-ITS is the Vehicle-
to-Everything (V2X) communication that allows vehicles to
communicate with their environment, such as other vehicles
(V2V), infrastructure (V2I), and pedestrians (V2P) [3]. V2X
technology provides vehicles with real-time traffic information
along with alerts on potential hazards, which help coordinate
traffic flow, avoid collisions, and minimize fatalities and injuries
on the roads.

Moreover, V2X can also augment safe, efficient, and conve-
nient autonomous driving systems. By V2X communication
protocols, connected vehicles transmit Basic Safety Messages
(BSMs) (also known as Cooperative Awareness Messages
(CAM) in the European Union), as defined in the SAE
J2735 standard [4]. A BSM primarily contains a short-term
pseudonym for sender identification, current location, speed,
acceleration, direction, etc., and is generally transmitted every
100 milliseconds. A security credential management system
(SCMS) incorporates a public key infrastructure (PKI) to deliver
digital certificates to the vehicles that serve as a signature for
the exchanged messages [5]. Such a cryptographic solution
secures V2X by thwarting any outsider attackers from sending
bogus messages.

While V2X has the potential to boost C-ITS and is secure
against the outsider attacker, it still poses several security
challenges [6], especially from insider attackers. Insider at-
tackers have valid access credentials but disseminate wrong
information to achieve the attack goals [7]. Hence, while
the digital signatures confirm the origin of the BSMs, they
cannot ensure the truthfulness of the content. Such malicious
actions by rogue insiders, referred to as “misbehaviors” in
V2X, are hard to detect through cryptographic methods and
can seriously threaten road safety. On the other hand, a
misbehavior detection system (MBDS) continuously checks
for such potential misbehavior, serving as an essential defense
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for V2X communication system [6].
The MBDS, usually running on an ego vehicle, receives

BSMs from another vehicle and checks whether the content
has anomalies or is physically implausible [6]. Upon observing
potential anomaly, it reports such an event with its evidence to
the misbehavior authority (MA), another component of SCMS,
following a misbehavior reporting protocol (MBR) [6]. Such
reporting allows the MA to further investigate and penalize the
malicious vehicle, if needed, by putting its credentials on the
certificates revocation list (CRL) to isolate it from the V2X
network [5].

Nevertheless, MBDS confronts a multitude of formidable
challenges [8], rendering it a complex and evolving research
task. There are different MBDSs proposed in the existing
research [8] to detect malicious or erroneous V2X messages.
While the state-of-the-art threat landscape has become quite
broad [9], mandating a comprehensive solution, most of the
existing MBDSs provide a partial defense, focusing on specific
types of attacks and features [6]. Although the conventional
discriminative Deep Learning (DL) models have the capability
to learn complex V2X data distribution and detect misbehaviors,
they struggle to generalize well due to the lack of insufficient
and imbalanced training datasets [10]. Moreover, the tradi-
tional DL-based methods are proven vulnerable to adversarial
attacks [11]. On the other hand, generative adversarial networks
(GAN) [12], a generative DL model, has already proven
the capability to overcome such data imbalance issues as
they can synthesize unseen samples of minority classes (such
as rare vehicular states) and utilize them during its own
model training [13]. Moreover, unlike traditional MBDS,
GAN’s training through implicit density estimation makes it
intrinsically robust against adversarial attacks. Thus, by utilizing
both the generative and discriminative powers along with a
powerful learning technique, GAN possesses the potential to
serve as a robust anomaly detection system [14].

Hence, to the best of our knowledge, we are the first to
explore the adaptability of GAN in designing a robust MBDS
for V2X.

Our contributions are as follows:
• We study the feasibility of using Wasserstein GAN

(WGAN), one of the most prominent and stable vari-
ants of the GANs [15], to design an unsupervised DL-
based MBDS for V2X communication. To overcome
the limitations of the individual WGAN, we propose
VEHIGAN, an ensemble of multiple top-performing
WGANs that provides enhanced detection performance
across misbehaviors and robustness against adversarial
attacks.

• We present a physics-guided data preprocessing technique
that generates effective features from raw V2X attributes
for any ML-based MBDS.

• To investigate the robustness against adversarial adaptive
attackers, we formulate two categories of attacks targeting
the WGAN-based MBDS. We assess the impacts across a
spectrum of scenarios, ranging from white-box to black-
box settings and from single-model to multi-model attacks.

• Employing the state-of-the-art V2X attack simulation
tool VASP [9], we generate an extensive V2X message
dataset containing 68 distinct types of misbehaviors,
representing a substantial enhancement compared to prior
V2X misbehavior datasets [16], [17]. We make them
publicly available to advance the state-of-the-art MBDS
research.

• We evaluate VEHIGAN against 35 different types of
misbehaviors (as the other 33 misbehaviors do not fit
our threat model), and compare the performance with
various anomaly detection techniques. The results indicate
that VEHIGAN achieves the best detection performance in
20 out of 35 misbehaviors, particularly against advanced
ones that manipulate multiple fields in V2X messages,
replicating unique maneuvers, with a comparable high
performance against the rest. Moreover, VEHIGAN shows
approximately 92% improvement in false positive rate
under one type of powerful adaptive attack and intrinsic
robustness against other type of attacks that aim for high
false negatives.

The rest of the paper is organized as follows: We introduce
an overview of the background and threat model in Section II.
Section III presents the technical details of VEHIGAN. We
provide an experimental setup and implementation details in
Section IV. The evaluation results are in Section V. The related
works are discussed in Section VI. Finally, we conclude the
paper in Section VII.

II. BACKGROUND AND THREAT MODEL

A. Generative Adversarial Networks

GAN, introduced by Ian Goodfellow in 2014 [12], is an
implicit generative model based on artificial neural networks.
It has become a popular technique for generating realistic data
(e.g., image, video, audio) that resemble the distribution of the
training dataset. Out of different variants of GAN, Wasserstein
GAN (WGAN) with gradient penalty is the most popular due
to its high performance, robustness, and training stability [18].

Like other GAN variants, WGAN consists of two neural
networks: a generator G and a discriminator D. The generator’s
role is to transform a random noise vector z drawn from a
simple distribution (Pz) into fake-but-realistic data samples
G(z). The discriminator, on the other hand, is tasked with
distinguishing between real sample x from the training data
distribution (Pr) and generated fake data sample G(z). While
G is trained to deceive D into accepting the fake data as real,
D is optimized to discriminate both the real and fake samples
correctly. Thus, WGAN solves a min-max optimization prob-
lem, where G is trained to minimize the Wasserstein distance
between the real and fake data samples, and D is trained to
maximize such distance. The objective of WGAN is to find
the parameters of the generator (θG) and the discriminator
(θD) that satisfy a Nash equilibrium [12]. Mathematically, the
optimization problem can be expressed as:

min
θG

max
θD

[Ex∼Pr
[D(x)]− Ez∼Pz

[D(G(z))]] (1)



TABLE I: Attack matrix with attack type and targeted fields

Attack Type Value(s) of targeted field(s) Targeted Field(s)
Position Speed Acceleration Heading Yaw Rate Heading & Yaw Rate

Random Random value 1⃝ 5⃝ 11⃝ 17⃝ 24⃝ 30⃝
Random Offset Value with random offset 2⃝ 6⃝ 12⃝ 18⃝ 25⃝ 31⃝

Constant Constant value 3⃝ 7⃝ 13⃝ 19⃝ 26⃝ 32⃝
Constant Offset Value with constant offset 4⃝ 8⃝ 14⃝ 20⃝ 27⃝ 33⃝

High Significantly high value 9⃝ 15⃝ 28⃝ 34⃝
Low Significantly low value 10⃝ 16⃝ 29⃝ 35⃝

Opposite Opposite to the original heading 21⃝
Perpendicular Perpendicular to the original heading 22⃝

Rotating Rotating heading over time 23⃝

Attacker

Target 1

Actual
Position

Transmitted
Position

Target 2

Rear Collusion
Warning

Forward Collusion
Warning

(a) An illustration of random position attack.

Attacker

Merging Right
Speed: 55

Heading: +1.0
Yaw Rate: +1.0

Going Straight
Speed: 55
Heading: 0
Yaw Rate: 0

Going Straight
Speed: 55
Heading: 0
Yaw Rate: 0

Merge Collusion Warning

Target 1

Actual
Position

Transmitted
Position

(b) An illustration of high heading & yaw rate attack.

Fig. 1: An illustration of two types of misbehaviors with diverse intentions in V2X space. In (a), while going straight, the
attacker vehicle transmits fake random positions to influence the decision of nearby benign target vehicles. In (b), the attacker
vehicle transmits fake high heading & yaw rate to stage a potential right turn and, thus, a collision scenario with the target.

Here, D(x) and D(G(z)) are the outputs of the discriminator
on a real and a generated sample, respectively. Thus, G and D
learn together in an adversarial training fashion, making them
efficient in their individual tasks. From one perspective, with
the help of G, D implicitly learns the complex distribution of
the benign (real) data distribution, making it a good candidate
for an anomaly-based MBDS [19].

B. Fast Gradient Sign Method (FGSM) Attack

The Fast Gradient Sign Method (FGSM) is an adversarial
attack technique to deceive DL classification models [20].
Mathematically, FGSM perturbs an input data point (x) by
adding a small perturbation (ϵ) in the direction of the sign of the
gradient of the model’s loss (L) with respect to the input. The
objective is to maximize the loss, leading to misclassification
by the model. The FGSM attack can be expressed as:

xadv = x+ ϵ · sign(∇xL(f(x), y)) (2)

Here, xadv represents the adversarial example, f(x) is the
model’s prediction on input, y is the actual label, ∇xL denotes
the gradient of the model’s loss and ϵ controls the magnitude
of the perturbation.

Anomaly detectors, primarily based on unsupervised DL
techniques, assign anomaly scores to data points based on
their deviation from normal patterns. Hence, FGSM can
be extended to generate adversarial examples for anomaly
detectors, focusing on manipulating the anomaly scores output
by these models [21]. Let us use the notation s to represent

the anomaly detector that returns the anomaly score. In this
notation, the equation becomes:

xadv = x± ϵ · sign(∇xs(x)) (3)

The goal is to manipulate (increase/decrease) the anomaly score,
potentially leading to misclassifications by causing normal
instances to be mislabeled as anomalies or vice versa. We
adopt this approach to evaluate the adversarial robustness of
VEHIGAN, further elaborated in Section III-G.

C. Threat Model

We focus on the insider and active attackers within the
V2X network who are authenticated members with legitimate
cryptographic credentials and actively engaged in malicious
actions. They are local parties and transmit deceptive BSMs
containing false data to achieve their malicious objectives.
Table I summarizes the overall threat landscape, outlining
various attack types, targeted field(s), and the description of
the value transmitted in the targeted field(s). The circle .⃝
indicates the target field(s) of each type of attack, and the
number within it denotes the attack index. For example, in
the case of a “Random” attack, the attacker can transmit
random values for either position, speed, acceleration, etc.
(as illustrated in Fig. 1a). However, in the Rotating attack,
the attacker only targets the heading as it is the only field
that can have meaningful values indicating a rotation. We
assume that to keep attack complexity low, most of the attacks
( 1⃝− 29⃝) only compromise a single targeted field, such as



position, speed, acceleration, heading, or yaw rate, and do not
account for the change on the other correlated non-targeted
fields. Furthermore, we consider a set of advanced attacks
when the attacker compromises both the heading & yaw rate
(as illustrated in Fig. 1b) (30⃝− 35⃝) and modifies these two
fields together, coherently, following their inter-dependency.

We name each attack based on the attack type and targeted
field(s). For example, a RandomPosition attack transmits
random values in the fields of positional fields;RotatingHeading
transmits heading data demonstrating that the vehicle is rotating
over time. We use this threat matrix in Section IV-A to generate
a misbehavior dataset and evaluate VEHIGAN’s performance.

We further explore two types of adversarial attacks, namely,
white-box and black-box attacks [22], wherein adversaries can
generate adversarial input by making subtle adjustments to
any/all of the sensor values, following the patterns outlined by
the specific attack algorithms. The perturbations introduced are
designed to be so unnoticeable that they closely resemble the
inherent noise present in natural sensor data. In the white-box
adversarial attacks, the attacker possesses complete knowledge
of the detection mechanism, and the parameters and gradients
of all the WGAN model(s) employed. In black-box attacks,
adversaries lack direct access to the model’s parameters and
gradients. Hence, they employ transfer attacks, generating
adversarial samples using a surrogate WGAN model and
deploying them against the target model(s).

III. VEHIGAN: GAN-BASED MBDS

This section first describes an overview of the VEHIGAN
architecture, followed by the details of each part. Fig. 2 shows
the workflow of VEHIGAN, its two phases (training and
testing), and its different components. The training phase has
five core tasks: i) collecting V2X data, ii) feature engineering,
iii) WGAN training, iv) pre-evaluating WGANs, and v)
selecting top WGAN candidates. The testing phase has similar
tasks, but instead of WGAN training, it deploys a subset of
candidate WGAN models for ensembling, runs the inference
on the collected data, and takes action based on the output.

A. VEHIGAN Overview

The central element of VEHIGAN is a software system
designed to gather and analyze BSMs from nearby vehicles
in near real-time. It can be implemented both in the onboard
units (OBU) of the individual ego vehicles for self-defense or
in the roadside units (RSU) by local authorities.

1) Training Phase: The top part of Fig. 2 shows the training
phase of VEHIGAN. In the first step, VEHIGAN collects
BSMs from some trusted participating vehicles. Such trusted
participant vehicles can be pre-selected by the V2X authority
to ensure the reliability of the collected data for future MBDS
training. On the other hand, there are traffic simulators, such
as Veins [23], that can generate BSMs resembling real-world
traffic mobility. Once sufficient data is collected to generalize
the traffic behaviors and mobility, VEHIGAN initiates the
feature engineering tasks. VEHIGAN extracts new features
from the transmitted raw fields from the BSMs and extends

the dataset by combining all the features altogether, effectively
creating multi-dimensional time-series telematics data.

There exists an inherent complexity in finding the optimal
architecture of any DL model, and the most prevailing approach
is to perform a grid search. VEHIGAN employs the same
strategy and trains different WGAN models with varying
architectures and hyper-parameters on the combined dataset.
After training all the models, VEHIGAN starts pre-evaluating
the performance of the WGAN models using a validation
dataset. Such validation dataset is assumed to have some
representative anomalies of the testing data and can give
a good estimate of the discriminator’s testing performance.
After the pre-evaluation, instead of selecting the single best-
performing discriminator for MBDS, VEHIGAN shortlists the
top-performing m candidate discriminators for the ensemble
during the testing phase. Finally, VEHIGAN calculates the
anomaly scores threshold for each of the top m discriminators
using the validation dataset, which will be used during the
testing phase.

2) Testing Phase: The bottom part of Fig. 2 shows the testing
phase of VEHIGAN, which is completely executed locally on
the OBU/RSU. Similar to the training phase, VEHIGAN keeps
collecting raw BSMs from individual testing vehicles, runs
the feature engineering task, and creates a combined data
representation. Later, instead of using all the m top-performing
discriminators, VEHIGAN randomly selects k discriminators,
where k ≤ m from the m top candidates and ensemble them for
misbehavior detection. We define such detector as VEHIGANk

m

that predicts the misbehavior scores with different random k
discriminator every time. If the score for any vehicle surpasses
a predetermined threshold, which is the average threshold of the
deployed k discriminator, VEHIGAN reports that as potential
misbehavior. The following subsections explain the details of
each part of VEHIGAN in each phase.

B. Collecting Raw V2X Data

Throughout both the training and testing phases, VEHIGAN
gathers BSMs from nearby vehicles. VEHIGAN places partic-
ular emphasis on BSM’s core features that are important for
the V2X applications. VEHIGAN categorizes the entire dataset
into multiple groups based on the vehicle id, v, where each of
these groups contains continuous time series data for a specific
vehicle. Whereas VEHIGAN keeps all BMSs of individual
vehicles in the training phase, it keeps only the latest messages
that are sufficient to run the inference in the testing phase.
Before engaging in training or running inference with the raw
features, VEHIGAN performs essential feature engineering, as
detailed in the subsequent section.

C. Feature Engineering

VEHIGAN leverages domain expertise related to classical
physics to conduct vector decomposition of raw features to
extract new correlated features. For instance, when considering
the scalar values of speed and acceleration, there is no direct
correlation. However, upon vector decomposition into their
respective X and Y components, it becomes evident that
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Fig. 2: Workflow of VEHIGAN, which has two phases of operation: i) training phase and ii) testing phase.

TABLE II: Feature engineering to extract highly correlated features from the raw features

Type Raw Feats Decomposed Features Relation Delta Features
X Comp Y Comp X Comp Y Comp X Comp Y Comp

Position x, y x y − − ∆x = x(t + 1) − x(t) ∆y = y(t + 1) − y(t)
Speed v vx = v × cos(θ) vy = v × sin(θ) ∆x = vx × ∆t ∆y = vy × ∆t ∆vx = vx(t + 1) − vx(t) ∆vy = vy(t + 1) − vy(t)
Acceleration a ax = a × cos(θ) ay = a × sin(θ) ∆vx = ax × ∆t ∆vy = ay × ∆t − −
Heading θ θx = 1 × cos(θ) θy = 1 × sin(θ) − − ∆θx = θx(t + 1) − θx(t) ∆θy = θy(t + 1) − θy(t)
Yaw Rate ω ωx = ω × cos(θ) ωy = ω × sin(θ) ∆θx = ωx × ∆t ∆θy = ωy × ∆t − −

changes in speed exhibit a high correlation with acceleration for
each component. This feature extraction capability empowers
VEHIGAN to create consistent, new features from raw data
attributes, ultimately facilitating the development of a robust
MBDS. Table II provides an overview of how VEHIGAN
performs vector decomposition into X and Y components,
represented by subscripts (x) and (y), respectively, for various
raw features. VEHIGAN further computes the changes between
them in the consecutive time steps, defined as delta (∆) features.
The table illustrates the interrelationships among the extracted
features and delta features. The combined features, that need to
be secured, may contain both the raw and extracted features (as
illustrated in Fig. 2). However, the current implementation of
VEHIGAN only considers the extracted features as combined
features for the defense, which can be easily extended by
adding more raw features.

To train the WGAN models, VEHIGAN
takes the pre-selected core feature set F as
{∆x,∆y, vx, vy,∆vx,∆vy, ax, ay,∆θx,∆θy, wx, wy} and
generates numerous 2D snapshots xbsm

v ∈ Rw×f from the
time series data of vehicle v. This is achieved using a moving
window of size w, and the length of the selected feature set is
f . These snapshots are aggregated to form the training dataset
X bsm

train ∈ Rn×w×f , where n represents the total number
of snapshots across all vehicular groups. These snapshots
encapsulate both temporal patterns of various vehicles and
feature-wise relationships. On the other hand, to create testing
data to check for MBDS using the trained and ensembled
WGAN models, VEHIGAN only keeps a single 2D snapshot
xbsm
v ∈ Rw×f of time series data from the most recent w

BSMs for every vehicle v. Every time a new message comes

from the vehicle v, its corresponding xbsm
v gets updated.

D. Model Training

To find the best-performing WGAN models, VEHIGAN
explores a wide range of model architectures and hyper-
parameters. Each configuration is designed to experiment with
different hyperparameters and architectural choices for both G
and D models. For every configuration, VEHIGAN initializes
the models and sets their respective hyperparameters, such as
training epochs, to find potential candidates for the best models.
To adapt the WGAN model to the multi-dimensional time series
data, we use a 2D convolutional neural network (CNN) in both
G and D. While G converts a 1D noise vector z ∈ Rd into a 2D
snapshots xfake ∈ Rw×f , D takes the real or fake snapshots
xreal or xfake ∈ Rw×f as inputs and outputs a scalar value
that represents the likelihood of the input being real. Upon
completing the training on Xbsm

train, VEHIGAN stores model
checkpoints and relevant training statistics for further process.

E. Model Pre-evaluation and Selection

To determine the top m WGAN models as the candidate
for the ensemble, VEHIGAN runs the pre-evaluation on a
validation dataset Xbsm

valid, containing both the benign and attack
traces. We assume that the defender has such representative
attack traces, which can be used to pre-evaluate the WGAN
models. We define average discriminative score (ADS) as the
average detection score (DS) of D over all the attacks in the
validation dataset. The DS can be any commonly used metrics
used to evaluate a classifier, such as AUROC, AUPRC, etc.
(explained in Section IV-A2). A higher score indicates that a
certain D is more likely to be effective against any unseen



misbehavior in the test data. If there are A different unique
attacks in Xbsm

valid, ADS of the ith WGAN can be expressed
as:

ADSi =
1

A

A∑
j=1

DSj
i (4)

Here DSj
i is the ith discriminator’s score against the jth attack

in the validation dataset. Consequently, the top m WGAN
models with the highest ADS are selected as the candidates
for the ensemble model.

F. Threshold Selection and Attack Detection

As the discriminator of a WGAN is architecturally designed
to output higher values for benign inputs, we take the negative
of that value as anomaly score s to generalize the misbehavior
detection process:

s(.) = −D(.) (5)

Hence, the benign anomaly scores of any model on all
the snapshots in Xbsm

train is calculated as s(Xbsm
train). The

detection threshold τ for each of the individual discriminators
is calculated based on the p-th percentile of that where p is a
system parameter (usually 99 to 99.99).

Although there are top m candidates, VEHIGAN builds the
final ensemble detector by averaging the prediction of randomly
selected k discriminators. Thus, the ensemble discriminator
Dens is defined as: Dens(.) = 1

k

∑k
i=1 Di(.) Hence, the

benign ensembled anomaly scores Strain = sens(X
bsm
train) =

−Dens(X
bsm
train) and the ensemble detection threshold τens is

the average of thresholds of the corresponding models. During
the testing phase, the anomaly score of the most recent w BSMs
of the target vehicle v is calculated using sv = sens(x

bsm
v ),

and the detection threshold τens is used to check if vehicle v
is misbehaving. A value of sv > τens indicates the existence
of misbehavior, and VEHIGAN immediately creates an MBR
on vehicle v, including the corresponding BSMs, and sends it
to the MA.

G. Adversarial Robustness of VEHIGAN

Any unsupervised DL-based anomaly detection model,
including the discriminators of WGAN, differs from the
supervised DL-based classification model. First, they may have
different architectures (e.g., the number of neurons in the
last layer) and loss functions. While the adversarial attack
algorithms are initially developed against the classification-
based models [11], we extend them to the anomaly detection
model, especially against the discriminators of WGANs. Given
that there are eventually two possible outcomes from the
discriminators — benign or anomaly — we categorize the
FGSM attacks against any anomaly detection model into two
types:

1) Adversarial False Positive (AFP) Attack: An APF attack
on anomaly detection involves manipulating a benign (negative)
input to deceive the model to output an anomaly score high
enough to be flagged as an anomaly (false positive). Let us
assume the adversarial perturbation on a benign sample xben

under an AFP attack is ∆xAFP
adv , which can be calculated using

the gradient that maximizes the anomaly score. Thus, for the
WGAN, combining (3) and (5), we get the following:

xAFP
adv = xben +∆xAFP

adv

xAFP
adv = xben + ϵ · sign(∇xs(xben))

xAFP
adv = xben − ϵ · sign(∇xD(xben))

(6)

The goal of the AFP attacks is to increase the FP rate by
crafting adversarial samples that resemble benign data but are
misclassified by the discriminator as misbehavior.

2) Adversarial False Negative (AFN) Attack: An AFN attack
involves manipulating an anomalous (positive) input to deceive
the model to output an anomaly score low enough to be
determined as a benign (false negative) one. Let xanom be
an anomalous (misbehavior) sample. Similarly, the adversarial
perturbation ∆xAFN

adv on an anomalous (misbehavior) sample
xanom under an AFN attack is calculated from the gradient
that minimizes the anomaly score, following:

xAFN
adv = xanom +∆xAFN

adv

xAFN
adv = xanom − ϵ · sign(∇xs(xanom))

xAFN
adv = xanom + ϵ · sign(∇xD(xanom))

(7)

The goal of the AFN attacks is to increase the FN rate by
crafting adversarial samples that resemble anomalous data but
are misclassified by the discriminator as benign. We follow
these two algorithms and use Xbsm

valid dataset to evaluate the
adversarial robustness of VEHIGAN under different practical
scenarios.

IV. IMPLEMENTATION

A. Dataset

We implement VEHIGAN on the V2X misbehavior dataset
simulated using VASP [9], an open-source framework. VASP
allows the simulation of diverse types of V2X attacks and works
as a sub-module for Veins [23], a well-established open-source
framework for running vehicular network simulations. Veins
runs on an event-based network simulator OMNeT++ [24], and
road traffic simulator SUMO [25]. VASP currently supports the
Boston traffic network, which is a good candidate to represent
real-world traffic mobility. We ran VASP simulation for 3,000
simulated seconds to collect benign traces without any attacks.
Such simulation provided us with 1, 018, 098 benign BSMs
from 475 different vehicles. Similarly, we ran VASP simulation
for 1360 simulated seconds to collect malicious traces with
68 distinct attacks, out of which we used 35 of them for our
evaluation, resulting in a dataset of 2, 641, 309 BSMs. It is
noted that the remaining 33 attacks fall outside the scope of
our threat model. Nonetheless, we have published the complete
dataset to facilitate future research endeavors. While running
the attack, we selected the attack policy as persistent, where
the attacker vehicle always transmits attack messages and with
25% malicious vehicles. We consider the sliding window size
w as 10 and number of features f as 12.



1) Model Architecture. : Based on the hyperparameters
mentioned previously, we train a diverse range of WGAN
models. We consider different dimension of noise vector z
as {8, 16, 32, 48, 64}, number of layers for G/D networks as
{6, 7, 8}, and training epoch as {25, 50, 75, 100}. Therefore,
we train and save 60 WGAN model instances. While we adhere
to 60 different instances, training additional models enables
a deeper exploration of optimal architecture, albeit with the
trade-off of higher training overhead. In training each model,
we select a batch size of 128 and a learning rate of 1× 10−3.
In both the 2D up-sampling layers of G and the 2D convolution
layers of D, we use the filters with the kernel size of 2 × 2
with the activation function LeakyReLU .

2) Evaluation Metrics: The discriminator can produce four
distinct outcomes. True Positive (TP) and True Negative
(TN) occur when the model accurately predicts an input as
misbehavior and benign behavior, respectively. On the other
hand, False Positive (FP) and False Negative (FN) happen when
the model incorrectly predicts an input as misbehavior and
benign behavior. We evaluate the discriminator’s performance
based on these outcomes using the following metrics:

• True Positive Rate (TPR) is the proportion of total positive
instances correctly identified as positives ( TP

TP+FN ).
• False Positive Rate (FPR) is the proportion of negative

instances incorrectly identified as positives ( FP
FP+TN ).

• False Negative Rate (FNR) is the proportion of positive
instances incorrectly identified as negatives ( FN

TP+FN ).
• ROC Curve indicates the classifiers performance with

varying discrimination threshold [26]. The ROC curve plots
TPRs and FPRs for different thresholds. The area under
the ROC curve (AUROC) indicates the robustness of the
detectors against both benign and misbehavior instances.

B. Baseline Models

1) Linear Models for Outlier Detection: Such models
assume that the normal data points in the dataset can be
well-described by linear relationships, and outliers are data
points that significantly deviate from this linearity. For instance,
Principal Component Analysis (PCA) uses the sum of weighted
projected distances to the eigenvector hyperplane as the outlier
scores [27].

2) Proximity-based Outlier Detection: Such methods, also
known as distance-based outlier detection models, assume
outliers are significantly different (far) from the benign data
points in the dataset. For instance, k-Nearest Neighbors (KNN)
assigns each data point an outlier score based on the distance
to its k-nearest neighbors [28].

3) Probabilistic Models for Outlier Detection: Such methods
model the data distribution and assess the likelihood of each
data point under that distribution with the assumption that
outliers are generated from a less probable distribution. For
example, Gaussian Mixture Models (GMM) is a probabilistic
model where outliers have a low probability of being generated
by any of the mixtures of several Gaussian distributions [29].

4) DL Models for Outlier Detection: DL learns complex
and intricate data distribution and effectively detects stealthy
and complex anomalies within a large dataset. While VEHI-
GAN also falls under this category, we consider CNN-based
Autoencoders (AE) as the DL-based baselines in this study.
AE are neural network architectures used for various tasks,
including anomaly detection [30]. In the context of outlier
detection, AE learns to reconstruct the input data, and data
points that are not reconstructed accurately are flagged as
outliers. We train the AE baseline on the raw features and
name it as BASEAE. However, to show the contribution of the
featured engineering of VEHIGAN, we also evaluate all the
baselines on the VEHIGAN extracted features and name them
with the prefix VEHI- as mentioned in Table III.

V. RESULTS

We evaluate the effectiveness of VEHIGAN from different
perspectives. First, we analyze the detection performance of
individual WGAN against different attacks. Later, we study
the effectiveness of ensemble-based VEHIGANk

m through the
contribution of k deployed models out of m candidate ones.
Moreover, we conduct an extensive adversarial robustness
analysis of VEHIGANk

m. Lastly, we compare the performance
of two representative VEHIGANk

m models with other baseline
models.

A. Misbehavior Detection Performance

1) Performance of Single WGAN-based VEHIGAN1
1: Fig. 3

provides a comprehensive assessment of all the trained WGANs,
specifically discriminators against all the attacks considered
in the evaluation. Here, different color indicates different
discriminators for which we skipped the legend as there are
60 of them. However, we highlight the lines for the top three
discriminators that provided the highest average AUROC, along
with the upper bound, the maximum achievable performance
by any individual discriminators, across attacks. According
to the figure, different discriminators performed differently
against the same attack. Even the top three discriminators
failed to detect certain attacks effectively. This implies that it is
challenging to train a single WGAN model capable of providing
a comprehensive solution to all types of misbehaviors.

2) Performance of Ensemble-based VEHIGANk
m: We now

evaluate an ensemble-based MBDS to check if combining
the top-performing WGAN models harnesses the strengths
of each model while mitigating their weaknesses. Fig. 4
shows the impact of m and k on the AUROC scores in the
ensemble-based VEHIGANk

m. We observe that adding more
discriminators (higher m and k) mostly leads to higher AUROC
scores. However, the benefits of adding more discriminators
for VEHIGAN tend to plateau after a certain point (m ≥ 5),
indicating a small number of discriminators, typically 5 to 6,
are enough to provide decent AUROC scores. We also notice
that k does not necessarily need to be equal to m; even k > m

2
leads to consistently elevated AUROC scores.



0 5 10 15 20 25 30 35
Attack Index

0.0
0.2
0.4
0.6
0.8
1.0

AU
RO

C

Upper-bound
window=10, layers=5, noise dim=16, epoch=50

window=10, layers=4, noise dim=64, epoch=75
window=10, layers=4, noise dim=64, epoch=50
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Fig. 4: Average AUROC of VEHIGANk
m, where m ≥ 5 with

k ≥ m
2 leads to consistently elevated AUROC scores.

B. Adversarial Robustness

To assess the adversarial robustness of VEHIGAN, we
examine the robustness of individual WGAN-based VEHIGAN
under AFP and AFN attacks (outlined in Section III-G). For this
evaluation, we set a threshold at the 99.0 percentile of benign
anomaly scores, ensuring an FPR of less than 1% without
adversarial attacks. Considering the FGSM attack, we explore
values of ϵ within the range of 0.0 to 0.02. To better contrast
the impact of such adversarial attacks, we randomize each
adversarial perturbation and use it as random noise baselines
to evaluate the model’s response under a noisy but benign
environment.

1) Robustness of Single WGAN-based VEHIGAN1
1: Fig. 5a

illustrates the FPRs of the top 10 single WGAN-based
VEHIGAN1

1 models under white-box AFP attacks and random
noise. With ϵ = 0.01 (i.e., 1% change in the sensor values),
such attacks lead to approximately 50% FPR on average. In
contrast, random noise with the same strength does not increase
the FPR at all. Besides, with approximately only a 2% change
in the original values, all benign samples attain anomaly scores
sufficient to be labeled as anomalous, resulting in nearly 100%
FPR in all the models. Random noise at this strength, however,
exhibits less than 40% FPR on average. This underscores the
vulnerability of single WGAN-based VEHIGAN1

1 to white-box
AFP attacks. Fig. 6 illustrates such an AFP attack with ϵ = 0.01
on a benign input.

On the other hand, Fig. 5b demonstrates the FNR of the
top 10 single WGAN-based VEHIGAN1

1 models under AFN
attacks. It is evident from the figure that all single WGAN-based
VEHIGAN models exhibit inherent robustness against AFN
attacks. Despite adversarial perturbations aiming to minimize
anomaly scores, they push samples beyond the manifold of
benign samples, still creating anomalies at the discriminator.
As AFN attacks prove ineffective against all single WGAN-
based VEHIGAN1

1, we exclusively consider AFP attacks in
the remainder of this paper.

Subsequently, we consider a practical black-box transfer
attack wherein the attacker generates adversarial samples using
one model and deploys them against others. To study the
transferability of AFP attacks against single WGAN-based
VEHIGAN1

1, we designate the best model as open-box and the
remaining 9 models as black-box. Thus, adversarial samples
are generated using the white-box model and evaluated against
all the top 10 single WGAN-based VEHIGAN1

1. Fig. 5c
demonstrates that while the white-box attacks result in an
80-100% FPR, the black-box attacks demonstrate very limited
adversarial response, exhibiting reactions akin to random noise.

While certain attacks may transfer at higher epsilon values,
the extent is unclear, as any random perturbation with the
same intensity produces a comparable effect. For example, the
25-70% FPR at epsilon 0.02 in a black-box attack may not
solely be attributed to adversarial perturbation. Random noise
with a similar strength can itself result in 20-60% FPR (as
shown in Fig. 5a). We hypothesize that such adversarial non-
transferability may arise from the distinctive learning approach
(implicit density estimation) of GANs, differing from traditional
DL methods. This may result in diverse loss landscapes among
different WGANs (discriminators), impeding the transferability
of adversarial samples, which serves as another motivation
for considering ensemble-based approaches in VEHIGAN.
The following sections delve into evaluating the robustness of
ensemble-based VEHIGAN.

2) Attacking Ensemble-based VEHIGAN: In this analysis,
we examine two practical adversarial scenarios. Firstly, we
consider a less sophisticated attacker who generates AFP
samples solely using the best-performing single-WGAN-based
VEHIGAN and employs them to attack the ensemble-based
VEHIGAN where the compromised model itself is present in
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Fig. 5: Adversarial robustness of single WGAN-based VEHIGAN1
1 under various attacks
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Fig. 6: A representation of AFP attack on a benign input. (a)
shows the gradient of the loss function with respect to the
benign input, as outlined in (6). The signs of the gradients
at each pixel determine the perturbation (e.g., ±ϵ). (b) shows
both the benign and adversarial inputs. The markers with the
red edge ( ) indicate the corresponding adversarial values of
each sensor at different time steps, which are either increased
or decreased by ϵ = 0.01 based on the sign of the gradient.

the ensemble. We consider this as a gray-box attack, assuming
that the attacker is constrained, either lacking white-box access
to all the WGAN models in the ensemble or the ability to
attack more than one model at a time. Thus, the attacker takes
an opportunistic approach, anticipating that adversarial samples
from the best model will transfer to all models in the ensemble.

The left panel of Fig. 7a depicts the FPRs of VEHIGANk
m

with different m and all the possible values of k under such AFP
attacks (ϵ = 0.01). Despite achieving an FPR of > 80% against
the white-box VEHIGAN1

1, when applied to the ensemble-
based VEHIGANk

m, the FPR substantially decreases. Increasing
the number of candidate models (m) in the ensemble increases
uncertainty, diminishing the effectiveness of the attacks. The
right panel of Fig. 7a shows the specific impact of the number
of deployed models (k) for different m. The figure shows that
for the same m, deploying more models (higher k) further
eradicates the impact of AFP attacks. VEHIGANk

m with m ≥ 5
and k ≥ 2 mostly provides FPRs of less than 5%, demonstrating
the adversarial robustness of VEHIGAN against gray-box AFP
transfer attacks.

Thereafter, we consider more advanced and adaptive attacks
with the attacker having greater knowledge and computational

capabilities. Under this scenario, the attacker has open-box
access to all the discriminators used in VEHIGANk

m. During
AFP sample generation, the attacker utilizes all discriminators
in loss calculation to increase anomaly scores for the ensembled
model. The right panel of Fig. 7b shows FPRs of VEHIGANk

m

with different m and all the possible values of k. It is evident
that VEHIGANk

m still demonstrates high adversarial robustness
against multi-model AFP attacks. There exist limited adversarial
samples that are effective against all discriminators (when
m > 2) simultaneously. It is also evident from the right panel
of Fig. 7b that FPR falls below 5% for most VEHIGAN
configurations with m > 5 and k ≥ 5. Such findings further
support the discriminators’ unique loss landscapes and the
nontransferability property (Fig. 5c). Therefore, adversarial
attacks neither transfer nor are effective against multi-WGAN-
based VEHIGAN.

C. Performance Comparison with Baselines

In this analysis, we compare the performance of two represen-
tatives VEHIGAN (i.e., VEHIGAN5

5 and VEHIGAN10
10) with

other baseline methods mentioned in Section IV-B. Table III
provides the AUROC scores of individual detectors against
individual attacks. As shown, in 31 out of the 35 attacks,
VEHIGAN10

10 or VEHIGAN5
5 outperformed the raw-based

BaseAE, indicating the effectiveness of VEHIGAN. Moreover,
to evaluate the effectiveness of the feature engineering step
in VEHIGAN, we further show the effectiveness of all the
baselines trained on the extracted features. Such baselines are
named with the prefix Vehi- in the table. As illustrated, feature
engineering boosted the performance of all such VEHIGAN-
assisted baselines, indicating its wide-spread adaptability. How-
ever, in 20 out of the 35 attacks, VEHIGAN10

10 still provided
the best performance.

While in the majority of the 15 other attacks, VEHIGAN
did not achieve the highest AUROC scores, it consistently
demonstrated a level of detection performance nearly on par
with the top-performing baselines. VEHIGAN10

10 particularly
stands out from the other baselines to secure specific in-
tricate features like heading with unique attacks, such as
RotatingHeading or PerpendicularHeading etc., characterized
by their complex misbehaviors. Furthermore, in the threat
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Fig. 7: Adversarial robustness of ensemble-based VEHIGANk
m under various APF attacks

TABLE III: AUROC scores of VEHIGAN compared to other
baselines (bold highlights the best) against different attacks.

Vehi-
GAN10

10

Vehi-
GAN5

5

Base-
AE

Vehi-
AE

Vehi-
PCA

Vehi-
KNN

Vehi-
GMM

RandomPosition 1.00 1.00 0.98 1.00 1.00 1.00 1.00
RandomPositionOffset 1.00 1.00 0.49 1.00 0.95 0.99 1.00
PlaygroundConstantPosition 0.87 0.84 0.48 0.80 0.4 0.74 0.82
ConstantPositionOffset 0.49 0.48 0.51 0.49 0.53 0.51 0.51

RandomSpeed 0.99 0.99 0.77 1.00 0.98 0.99 1.00
RandomSpeedOffset 0.97 0.95 0.60 1.00 0.95 0.97 1.00
ConstantSpeed 0.94 0.94 0.56 0.98 0.37 0.79 0.99
ConstantSpeedOffset 0.93 0.92 0.48 0.96 0.54 0.85 0.98
HighSpeed 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LowSpeed 0.89 0.86 0.48 0.86 0.42 0.8 0.86

RandomAcceleration 0.61 0.56 0.55 0.98 0.57 0.73 0.83
RandomAccelerationOffset 0.51 0.52 0.47 0.92 0.53 0.64 0.71
ConstantAcceleration 0.41 0.56 0.74 1.00 0.94 0.99 0.97
ConstantAccelerationOffset 0.44 0.54 0.59 0.95 0.62 0.78 0.89
HighAcceleration 0.95 0.99 1.00 1.00 1.00 1.00 1.00
LowAcceleration 0.97 0.99 1.00 1.00 1.00 1.00 1.00

RandomHeading 1.00 1.00 0.97 1.00 0.99 1.00 1.00
RandomHeadingOffset 1.00 1.00 0.84 1.00 0.99 0.99 1.00
ConstantHeading 0.88 0.86 0.25 0.82 0.48 0.75 0.84
ConstantHeadingOffset 0.89 0.88 0.79 0.83 0.6 0.81 0.83
OppositeHeading 0.91 0.89 0.66 0.86 0.52 0.83 0.86
PerpendicularHeading 0.9 0.89 0.70 0.81 0.45 0.76 0.81
RotatingHeading 0.84 0.84 0.47 0.78 0.51 0.65 0.81

RandomYawRate 0.97 0.96 0.46 0.99 0.87 0.82 0.97
RandomYawRateOffset 0.93 0.91 0.50 0.98 0.8 0.74 0.95
ConstantYawRate 0.95 0.93 0.57 0.96 0.81 0.67 0.98
ConstantYawRateOffset 0.99 0.99 0.43 0.99 0.95 0.93 0.99
HighYawRate 1.00 0.99 0.59 1.00 0.97 0.97 1.00
LowYawRate 1.00 0.99 0.54 1.00 0.96 0.96 1.00

RandomHeadingYawRate 1.00 1.00 0.76 1.00 0.97 0.98 0.99
RandomHeadingYawRateOffset 1.00 1.00 0.72 1.00 0.94 0.96 0.99
ConstantHeadingYawRate 0.78 0.77 0.39 0.77 0.49 0.71 0.78
ConstantHeadingYawRateOffset 1.00 1.00 0.89 1.00 1.00 1.00 1.00
HighHeadingYawRate 1.00 1.00 0.88 1.00 1.00 1.00 1.00
LowHeadingYawRate 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 0.89 0.89 0.66 0.93 0.77 0.87 0.92

model, we consider advanced attacks (last six rows in Table III)
that manipulate both the heading & yaw rate fields and
VEHIGAN10

10 appeared as the most effective MBDS against
such sophisticated attacks. However, it is worth noting that
VEHIGAN showed low performance against some of the
acceleration-related attacks. One possible explanation for this
is the noisy acceleration produced by VASP, even under benign

conditions. This unwanted simulation artifact has been notified
on VASP Github. Given the sensitivity of training WGAN,
compared to AE, this noise could have potentially hindered the
network’s ability to effectively learn and mitigate acceleration-
related misbehaviors. Conversely, all the models failed to
detect ConstantPositionOffset attacks as they do not violate any
physics, and the only way to detect them is to use additional
features, such as raw positions in VEHIGAN, or run consistency
checks with map data, which can work parallel as an additional
detector along with VEHIGAN.
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Fig. 8: Scalability analysis of VEHIGAN

D. Scalability Analysis

Training of WGAN models is relatively costly due to
their implicit density estimation. However, model trainings
are done offline in a powerful computer or cloud, preferably
equipped with GPUs. Hence, training overhead does not create
scalability issues for deploying VEHIGAN. Instead, to study the
scalability of VEHIGAN, we investigate the inference time (in
milliseconds) in the testing phase for all the 60 discriminators,
with different numbers of layers in the D.

We implement each discriminator’s standard version using
Keras and the lightweight version using TensorflowLite (TFLite)
and calculate their inference times. All experiments run on a
server with an Intel Core i7-8700K CPU running at 3.70GHz
and Ubuntu 18.04.3 LTS. Fig. 8a shows that the inference
time for standard models takes around 40ms, far below the
BSM transmission interval of 100ms. Hence, in this case,
parallel inference of the ensemble models will ensure timely



misbehavior detection in VEHIGAN. However, if the system
does not have the computational capability to run inference in
parallel, the lightweight TFLite models can be adopted, which
can provide similar performance at much lower overhead. As
shown in Fig. 8b, the TFLite models only take less than 0.40ms
for any D, ensuring a swift detection. Although the additional
layer increases the inference time slightly in TFLite models, it
is negligible compared to the BSM transmission interval.

VI. RELATED WORK

Several research explored different supervised ML-based
MBDS for V2X [31]–[33]. They explored the effectiveness of
common algorithms such as logistic regression, support vector
machine, KNN, naive Bayes, random forest, decision tree
classifier, etc., along with plausibility checks-based detectors
and evaluated the performance of the existing misbehavior
datasets. Ercan et al [33] proposed extracting new features to
enhance the detection performance of such models and further
studied the efficacy of ensemble-based approaches. DL-based
supervised and semi-supervised models using convolutional
neural networks (CNN), LSTM, and transformaer are also
explored in [34], [35] but implemented on limited features,
skewing their detection range. However, supervised models
often encounter difficulties in achieving robust generalization
and struggle to detect unknown and evolving attack patterns,
known as zero-day attacks. These challenges stem from the
limitations of insufficient and imbalanced training datasets. The
main factor contributing to this is the scarcity of real-world
attack data due to a lack of deployment. Furthermore, simulated
data may not always faithfully represent real-world situations,
exacerbating the generalization issue.

Sedar et al. assess the effectiveness of RL approaches for
misbehavior detection in V2X scenarios, focusing on real-time
position and speed patterns [36]. There are a few works on
the ensembling approach for MBDS in V2X. [37] proposed
a data-driven ensemble framework that combines KNN-based
clustering and RL to detect misbehaviors in unlabeled vehicular
data. It assesses performance in various attacks and highlights
the potential challenges of inconsistent or mislabeled training
data. Nevertheless, RL-based approaches require substantial
labeled training data and computational resources and may not
generalize well to real-life situations.

There are a few MBDS based on trajectory verification
based on V2X messages. Nguyen et al. proposed an approach
to verify the motion behavior of a target vehicle and the
truthfulness of data in cooperative vehicular communications
by using checkpoints in predicted trajectories [38]. Physical
layer plausibility checks also seemed efficient. So et al. [39]
introduced physical layer plausibility checks based on the
received signal strength indicator (RSSI) of basic safety
messages (BSMs). However, these types of defenses are only
effective against the fake node-based attacker and location-
based misbehaviors, leaving the rest of the fields undefended.
Different statistical approaches in anomaly detection were
also utilized in MBDS. Valentini et al. [40] used a statistical
approach for anomaly detection in V2V communication. One

downside of statistical approaches is that they mostly face
limitations in identifying novel or zero-day attacks.

In contrast to the aforementioned studies, our approach in de-
signing VEHIGAN incorporates several practical considerations.
Firstly, VEHIGAN relies on GAN, an unsupervised DL model
that doesn’t necessitate labeled training data. Furthermore,
VEHIGAN is efficient, adversarially robust, and versatile,
which can seamlessly accommodate various types of features,
making it effective against a broader spectrum of misbehaviors.
Notably, we make our code and data available, whereas none
of these prior works are reproducible as they did not share
the code. Thus, we had to resort to common outlier detection
algorithms for establishing baselines.

Individual GAN and their ensemble variants have been
studied in different anomaly detection domains. Durugkar et al.
introduced a multi-discriminator-based GAN architecture aimed
at better approximating the data distribution, thereby enabling a
more stringent critique of the generator [41]. Similarly, Zhang
et al. proposed a framework comprising multiple generators
within the GAN architecture [42]. Han et al. advocated for
a GAN framework consisting of multiple generators and
discriminators, where each generator undergoes critique from
every discriminator, and each discriminator evaluates synthetic
samples from every generator [14]. While these approaches
serve as motivation for our work, none have been tested on
the V2X misbehavior datasets. Furthermore, we adhere to the
basic WGAN architecture, prioritizing faster and more stable
training while maintaining greater control over the individual
components of the WGAN architecture.

VII. CONCLUSION

In this work, we leverage the potential of GAN to design
an ensemble-based robust MBDS for V2X communications
called VEHIGAN. The key elements of VEHIGAN are physics-
guided feature engineering, training of diverse GAN models,
and pre-evaluating and selecting top-performing GANs for
the ensemble. For evaluation, we generate a comprehensive
V2X misbehavior dataset and evaluate VEHIGAN against a
diverse range of misbehaviors. Our comprehensive evaluation
shows an ensemble-based VEHIGAN shows approximately
92% improvement in FPR under powerful adaptive attacker
AFP attacks and inherent robustness against AFN attack. It
outperformed baseline models in 20 out of 35 attacks and
displayed similar performance in the remainder. Moreover, such
VEHIGAN proved to be the most promising solution against
the advanced misbehavior that manipulate multiple fields (such
as heading & yaw rate) in the V2X messages simultaneously.
Our finding emphasizes that GAN can be a potential tool
for MBDS if the target V2X applications involve complex
features like heading or if threat space is too complex for
traditional detectors. Thus, this work advances the state-of-the-
art by presenting GAN as a promising avenue for future MBDS
research. To foster further research in this critical domain, we
make both our code and datasets publicly accessible.



ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under grants 1837519, 2235232 and 2312447, and
by the Office of Naval Research under grant N00014-19-1-
2621.

REFERENCES

[1] World Health Organization. Global status report on road safety, 2018.
[2] Santokh Singh. Critical reasons for crashes investigated in the national

motor vehicle crash causation survey, 2018.
[3] Md Julkar Nayeen Mahi, Sudipto Chaki, Shamim Ahmed, Milon Biswas,

M Shamim Kaiser, Mohammad Shahidul Islam, Mehdi Sookhak, Alistair
Barros, and Md Whaiduzzaman. A review on vanet research: Perspective
of recent emerging technologies. IEEE Access, 2022.

[4] V2X Core Technical Committee. V2X Communications Message Set
Dictionary, sep 2023.

[5] Benedikt Brecht, Dean Therriault, André Weimerskirch, William Whyte,
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