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Abstract

We make a connection between multicalibration and property elicitation and show that (under
mild technical conditions) it is possible to produce a multi-calibrated predictor for a continuous
scalar property I' if and only if I" is elicitable.

On the negative side, we show that for non-elicitable continuous properties there exist simple
data distributions on which even the true distributional predictor is not calibrated. On the positive
side, for elicitable I', we give simple canonical algorithms for the batch and the online adversarial
setting, that learn a ['-multicalibrated predictor. This generalizes past work on multicalibrated
means and quantiles, and in fact strengthens existing online quantile multicalibration results.

To further counter-weigh our negative result, we show that if a property I'! is not elicitable by
itself, but is elicitable conditionally on another elicitable property I'°, then there is a canonical
algorithm that jointly multicalibrates I'* and I'°; this generalizes past work on mean-moment
multicalibration.

Finally, as applications of our theory, we provide novel algorithmic and impossibility results
for fair (multicalibrated) risk assessment.

*This work was done in part while the author was visiting the Simons Institute for the Theory of Computing.
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1 Introduction

Consider a distribution D over a labeled data domain Z = X x R of examples with observable features
x € X and labels y € R. A predictor f : X — R is (mean) calibrated if, informally, it correctly
estimates the mean label value even conditional on its own predictions: i.e., B )~ply|f(z) =v] =v
for all predictions v. Calibration is a desirable property, but a weak one, since it only refers to the
average value of the label, averaged over all examples such that f(x) = v; it might be, for example, that
there is a structured subset of examples G C X such that f systematically under-estimates label means
for examples z € G — such a predictor can still be calibrated if it compensates by over-estimating the
mean labels for x &€ G.

Multicalibration was introduced by Hébert-Johnson et al. [2018] to strengthen the notion of calibra-
tion. A multicalibrated predictor is parameterized by a collection of groups G C 2%, and is calibrated
not just overall, but also conditional on membership in G for all groups G € G. That is, for all v, G,
we must have:
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Multicalibration was generalized from means to moments by Jung et al. [2021]. Thought-provokingly,
by way of an explicit counterexample, Jung et al. [2021] showed that the variance (and other higher
moments) cannot be multicalibrated by themselves but can be multicalibrated jointly with the mean,
i.e., as part of a (mean, moment) pair. Later, Gupta et al. [2022] and Jung et al. [2023] showed how
to obtain a quantile analogue of multicalibration, which requires that for any target coverage level
7 € [0, 1], for any v in the range of a predictor f and for any G € G:

Ellly < f@)lf(z) =v,z e Gl =7

Thus, by now we have efficient batch [Hébert-Johnson et al., 2018, Jung et al., 2021, 2023] and
online [Gupta et al., 2022, Bastani et al., 2022] multicalibration algorithms for several natural distri-
butional properties (means and quantiles), an impossibility result for the variance and higher moments,
and a result showing how to multicalibrate means and moments together despite moments not being
multicalibratable on their own [Jung et al., 2021]. But are these one-off results, or is there a more
general theory of multicalibration for distributional properties — i.e., arbitrary functionals I' : P — R
mapping any distribution P € P to a scalar statistic I'(P)? To study this question, it is natural
to define (cf. Dwork et al. [2022]) that a predictor f is (G,T')-multicalibrated for property T if for all
groups G € G and values « in f’s range, it holds that:

L(D[(f(x) =7,z € G)) =1,

where D|(f(z) = v, € G) is the data distribution conditioned on the event {z : f(z) = v,z € G}.
(When G = {X'}, we would simply say that f is I'-calibrated.)

Our motivation In developing our theory of property multicalibration, we are guided by trying to
answer several questions of special significance:

1. Which distributional properties of interest are possible to multicalibrate, and which ones are
not?

2. For those properties that are possible to multicalibrate in the batch setting, do we always also
have a solution in the online adversarial setting, or is there an online-offline separation?

3. Both in the batch and in the online setting, can one formulate a natural canonical algorithm
with simple and generic performance guarantees, which takes in a description (in some simple
format) of any multicalibratable property of interest and outputs a multicalibrated predictor for
it?

4. For practically important properties that are not multicalibratable per se, are there any rea-
sonably general techniques that would come to the rescue and let us nonetheless achieve some
modified notion of multicalibration? (Cf. the case of variance, where packaging it together with
multicalibrated means brings it back into the realm of multicalibratable properties as shown by
Jung et al. [2021].)



1.1 Our results

We give an (almost) complete answer to all these questions by connecting property multicalibration
to the well-studied theory of property elicitation.

The modern formulation of property elicitation theory is due to Lambert et al. [2008], but it has
been extensively developed in both earlier and later works. In a nutshell, properties are called elicitable
if their value on any data distribution can always be directly learned as the minimizer of some loss
function over the dataset. For example, means and quantiles are elicitable as they can be solved for,
respectively, via least squares and quantile regression. But, for instance, variance is not elicitable,
hence why one typically first predicts the mean and only then computes the variance around it.

An equivalent (subject to mild assumptions) notion is that of identifiable properties: an identifica-
tion function (typically a first-order condition on the property’s “loss function”) tells us if we over- or
under-estimated the property value, in expectation over the dataset. For example, an expected iden-
tification function for a mean predictor f,, is simply E(, 4)[fm(x) — y], and an expected identification
function for a 7-quantile predictor f; is Pr, [y < f-(z)] — 7, the average overcoverage of f,. We give
the following collection of results.

1. A Feasibility Criterion: I'-multicalibration is possible if and only if I is elicitable. We
provide a very general if-and-only-if characterization, that subject to mild assumptions catego-
rizes various distributional properties of interest as possible or not possible to multicalibrate. We
show that a property T is sensible for calibration (see Definition 12) if and only if it is elicitable,
if and only if it is identifiable. See Theorem 4 in Section 3. A crucial tool that we use is a
central result of Steinwart et al. [2014]: (under mild conditions) a property T is elicitable <=
it is identifiable <= its level sets are convex; the key is that we tightly relate sensibility for
T'-calibration to the convexity of I'’s level sets.

2. General canonical batch and online algorithms. We identify two “canonical” I'-multicalibration
algorithms for elicitable properties I': the batch Algorithm 1 and the online adversarial Algo-
rithm 5, and prove convergence guarantees for them. See Sections 4 and 6, respectively. Our batch
algorithm naturally extends the known methods for means and quantiles [Hébert-Johnson et al.,
2018, Jung et al., 2023]. Our online algorithm generalizes existing online algorithms for means
and quantiles [Gupta et al., 2022, Bastani et al., 2022, Lee et al., 2022] (and achieves stronger
results than prior work for quantiles).

3. Joint multicalibration for conditionally elicitable properties. We show that if a property
I'Y is elicitable, and T'! is conditionally elicitable given I'! (meaning, informally, that conditional
on knowing the exact value of I') there is a regression procedure to learn I'!) then (under
technical conditions), the pair (I'%, T'!) is jointly multicalibratable using a canonical Algorithm 3.
This generalizes (mean, moment) multicalibration of Jung et al. [2021]. See Section 5.

4. Applications: Positive and negative results on fair risk assessment. Prior work on mean,
joint mean-moment and quantile multicalibration offer theoretical and empirical evidence for the
promise of deploying multicalibration for the purposes of risk estimation. Previously, however,
nothing was known about multicalibrating any of the large collection of other risk measures
beyond quantiles and variances. In Section 7, we begin to fill this gap by applying our theory to
derive results about a host of risk measures of central significance in financial risk assessment. For
example, we show a general negative result that the large family of distortion risk measures are
not multicalibratable, except for means and quantiles (and two other technical quantile variants).
On the positive side, we establish that so-called Bayes risks are multicalibratable jointly with
the elicitable property whose risk they measure. This is exemplified by Conditional Value at
Risk (CVaR), also known as Fzxpected Shortfall (ES) — a risk assessment measure of central
theoretical and practical significance — which, as we show, is not multicalibratable on its own
but is multicalibratable jointly with quantiles.

1.2 Additional related work

The main conceptual contribution of our paper is to connect the literature on multicalibration with
the literature on property elicitation, both of which have a number of related threads.



Multicalibration (Mean) multicalibration in the batch setting was introduced by Hébert-Johnson et al.
[2018], and has subsequently been generalized in a number of ways. As already discussed, Jung et al.
[2021] study mean conditioned moment multicalibration in the batch setting, Gupta et al. [2022]
study mean, quantile, and mean conditioned moment multicalibration in the sequential setting, and
Jung et al. [2023] studies quantile multicalibration in the batch setting. These generalizations can
be seen as asking for calibration with respect to different distributional properties — i.e. they are
generalizations of the type that we characterize in our paper. Dwork et al. [2021] study outcome
indistinguishability, generalizing batch multi-calibration in a binary-label setting to allow for distin-
guishers that can evaluate the expectations of arbitrary predicates of triples (z, f(x),y), and consider
strengthenings in which the distinguisher gets further access to f — e.g. by being able to query it
in arbitrary points, or by having access to its code. In particular, they show that without additional
access to f, outcome indistinguishability can be reduced to (mean) multicalibration. Note that many
distributional properties (e.g. variances, quantiles, etc) only become interesting when the label space
becomes real valued rather than binary valued.

The most closely related works study abstract generalizations of multi-calibration. Dwork et al.
[2022] study a generalization of outcome indistinguishability to real valued labels, and along the way
consider batch multicalibration with respect to linearizing statistics. In our language, these are distri-
butional properties I' that behave linearly over mixture distributions — informally that for any two
distributions Dy, Ds and any « € [0, 1], I'(aD;1 + (1 — a)D3) = oI'(D1) 4+ (1 — «)T'(D2). We adopt one
of their definitions of multicalibration with respect to general distributional properties. All linearizing
statistics have convex level sets (and so are elicitable), but not all elicitable properties are linear in this
sense — for example, quantiles do not linearize. So our characterization of multicalibration implies
that it is possible to multicalibrate with respect to a broader class of properties than are studied by
Dwork et al. [2022]. Lee et al. [2022] study a general online learning problem that they call “Online
Minimax Multiobjective Optimization”, and derive algorithms for multicalibration along with a num-
ber of other applications in this framework. We make use of this framework to derive our sequential
multicalibration bounds, using an identification function that arises from the connection we make to
property elicitation. Recent work of Deng et al. [2023] studies a one-dimensional generalization of
multicalibration that asks for the condition that E[e(f(x),z)s(f(z),y)] = 0 for abstract functions ¢
and s, and derives sufficient (but not necessary) conditions under which this can be achieved in the
batch setting. The algorithms we derive for batch multicalibration are similar to theirs, where an
identification function takes the place of their s function, and a scoring function takes the place of
their potential function; they do not consider sequential or multi-dimensional problems. Relative to
this line of work, our result is the first to provide a characterization of when property multicalibration
can be obtained, and to provide unifying results for both batch and sequential multicalibration.

There are also generalizations in orthogonal directions. Gopalan et al. [2022b] define “low degree
multicalibration”, which is a hierarchy of properties of predictors that are still trying to predict means,
but relax the conditioning event that f(z) = v. At the bottom of the hierarchy is multi-accuracy
Hébert-Johnson et al. [2018], Kim et al. [2019] which does not condition on f(x) at all. Multicalibra-
tion lies at the top of the hierarchy; in between are conditions that depend on f(x) only smoothly,
through a degree k polynomial. Gopalan et al. [2022b] show that intermediate levels of this hierarchy
have some of the desirable properties of multicalibration and can be easier to obtain. Several works
[Kim et al., 2019, Gopalan et al., 2022a, Kim et al., 2022, Globus-Harris et al., 2023] study generaliza-
tions of mean multicalibration in which “groups” representing subsets of the data domain are relaxed to
arbitrary real valued functions and give a number of applications. In this setting, Globus-Harris et al.
[2023] provide a characterization of when mean multicalibration implies Bayes optimality. See Roth
[2022] for an introductory exposition of much of this work.

Property elicitation Brier [1950], Good [1992], and Savage [1971] study proper scoring rules, which
are contracts for paying experts as a function of their predictions and realized outcomes that maximally
reward them (in expectation) if they report the true probability of the outcome event. Since scoring
rules directly elicit probabilities, they could in principle be used to elicit an entire probability distribu-
tion by eliciting the probability of every event in its support, but this is generally infeasible. Instead,
Lambert et al. [2008] introduce the problem of property elicitation, whose goal is to design contracts
that incentivize experts to truthfully report some property of a large or infinite support distribution
— like its mean, variance, median, etc. Informally a property is elicitable if there exists some function



of a report and an outcome that in expectation over the outcome is minimized at the property value.
There is now a large literature on property elicitation; we make use of several key results. Osband
[1985] and Gneiting [2011] define the notion of an identification function for a property, which like
a scoring rule is a function of a report and an outcome; an identification function takes value 0 in
expectation over the outcome if the report is equal to the property value. Steinwart et al. [2014] prove
a central characterization theorem (subject to mild technical conditions) — a continuous property is
elicitable if and only if it has an identification function if and only if it has convex level sets. The
characterization of Steinwart et al. [2014] holds generally for continuous outcome spaces. When the
outcome space is finite, Finocchiaro and Frongillo [2018] show that (subject to technical conditions),
elicitable properties can be elicited with convex scoring rules.

2 Preliminaries

We study prediction problems over labeled datapoints in Z = X x ), where X is a space of feature
vectors and Y C R is a space of labels. We study both batch (offline) and sequential (online) prediction
problems. The online setting will be discussed in Section 6, and we defer sequential prediction defini-
tions and preliminaries to that section. Informally, property multicalibration is defined identically in
the sequential setting as we define it here in the batch setting, with the empirical distribution over the
realized data sequence taking the place of the underlying dataset distribution considered here.

In the batch setting, there is a distribution D € AZ over labeled examples. Such a distribution
induces a distribution X over features and Y over labels. Keeping D implicit, we let Y, := (Y {X = z})
denote the conditional label distribution given feature vector x € X', and more generally, given a subset
G C X, we write Y := (Y|{z € G}) for the conditional label distribution conditional on z € G. A
predictor or model is simply a real valued mapping f : X — R.

Both offline and online, our goal is to make (multi)calibrated predictions about some distributional
property. We now introduce the requisite background for both these notions.

2.1 Distributional properties

A one-dimensional (distributional) property is a functional T' : P — R, where P is some space of
probability distributions of real-valued random variables. We write Ranger to denote the range of I,
and without loss of generality, scale properties in this paper so that Ranger C [0, 1].

Examples of distributional properties include the mean, or the median, or a 7-quantile, or the
variance of a distribution (for further examples see Section 7). What all of these notions have in
common is that each of them puts a single real number in correspondence with a given distribution.

Formally defining P Throughout this paper, the basic assumption we make about the space of
distributions P that I" is defined on is that P is a convexr subspace of some vector space, so that taking
convex combinations over distributions in P is a well-defined operation.

The distributions P € P will be defined over the label space ), and we have two convenient ways
to define the structure of P, depending on whether or not ) is a finite set. If ) is finite (]| = d < 00),
then every distribution P € P can be embedded into R? as an element of the d-dimensional simplex
A(d), so we simply define that P C A(d) C R? is a convex subset of the simplex A(d), equipped with
the usual Euclidean norm.

If YV is infinite, we assume that P C Wy, where Wy is a Banach space (i.e. a complete normed
vector space; see Diestel and Uhl [1977] for an accessible introduction to Banach spaces) of probability
distributions over ) that have almost everywhere bounded densities, equipped with the total variation
norm || - ||rv. In particular, Wy is a metric space where the distance between any two probability
distributions Py, P> € P is computed as the total variation distance ||Py — Pa||Tv.

An assumption we will often place on I' is continuity: i.e. I' cannot take drastically different
values on very similar distributions. (A great many properties, including means, variances, quantiles,
entropies, etc. are indeed continuous.)

Definition 1 (Continuous Property). If the functional T' : P — R is continuous (with respect to the
metric topology on P and the standard topology on R), we call T a continuous property.



Property prediction on datasets In our batch setting, we deal with datasets over X x ), and we
are interested in training predictors fr : X — R for properties I' of the conditional label distributions
Y. over Y. Informally, a good predictor for property I' would satisfy fr(z) = T'(Y;) for every x € X.
Since we study properties I' : P — R defined over some family P of distributions over the dataset’s
label space Y, we will want to restrict our attention to those dataset distributions D € A(X x )
whose induced label distributions Y, belong to P for all z € X, so that at least the property I' has a
well-defined value on every distribution conditional on any z € X. We formalize this as follows.

Definition 2 (P-Compatible Dataset Distribution). Given a family of distributions P C AY over the
label space Y, we say that a dataset distribution D € A(X x V) over X x Y is P-compatible if for all
x € X, the induced label distribution given x belongs to P, i.e. we have Y, € P.

2.2 Property elicitation and identification

We are now ready to formally define three related concepts that are the subject of study in the property
elicitation literature. These concepts are: elicitability, identifiability, and level set convexity (CxLS) of
distributional properties. All three of them are desirable to have for any property of interest, and are
tightly related to each other — in fact, as we discuss shortly, they are equivalent under some technical
assumptions on the distributional property.

Elicitability Simply put, a property defined on a family of distributions P is called elicitable if its
value on any distribution P € P can be obtained by minimizing some loss function in expectation over
samples from P — or, said in the language of statistical learning, by solving a regression problem.
As is customary in the elicitation literature, we refer to such loss functions as scoring functions:
mathematically, a scoring function is just a function S : R x Y — R.

Definition 3 (Strictly Consistent Scoring Function). Fixz a space of probability distributions P. A
scoring function S : R x Y — R is strictly P-consistent for property I : P — R if:

I'(P) = argmin E [S(v,y)] for all P €P.

yeR y~P
We also say that S elicits I'.

For brevity, we denote: S(vy, P) = E,~p[S(7,y)].
S is said to be P-order sensitive for T if for all P € P and 71,72 € R such that |y; — T'(P)| <
|v2 — T'(P)], it holds that S(y1, P) < S(v2, P).

Definition 4 (Elicitable Property). Fiz a space of probability distributions P. A property T : P — R
is said to be elicitable if it has a strictly P-consistent scoring function.

As a basic example of the above definitions, the scoring function defined as S(v,y) = (y—y)? elicits
distributional means; thus, means are an elicitable property.

However, a key takeaway from the elicitation literature is that elicitability should not be taken for
granted. For instance, the variance of a distribution cannot be directly elicited as a minimizer of some
loss, without first estimating e.g. the mean; and thus the variance is not an elicitable property. We
will discuss more such examples in Section 7.

Convexity of level sets (CxLS) A simple but deep necessary condition for elicitability, first
observed by Osband [1985], is that elicitable properties must have convez level sets (also referred to
as CzLS). This will be key to our characterization of sensibility for calibration via elicitability. The
claim is simple but conceptually important so we include the proof for completeness.

Fact 1 (Osband [1985]). Let P be a convex space of probability distributions, and T' : P — R be an
elicitable property. Then for all v € Ranger, the level set {P € P : T'(P) = 7} is convex: for any
Pl,Pg with F(Pl) = F(Pg) =7, F()\Pl + (1 - )\)Pg) =7 for all A € [O, 1]

Proof. Fix any two distributions Pj, P» € P such that I'(P;) = I'(P,) = 7 and let S be a strictly
‘P-consistent scoring function for I'. Since S is a strictly consistent scoring function, we have that



v = argmin., S(7/, P,) = argmin,, S(v', P»). For any a € [0,1] consider P = aP; + (1 — a)P;. By the
convexity of P we have Pe P, and by linearity of expectation, for any v/ € R we have:

S(’va) = aS(/val)—’—(l_a)S(’%PZ)
< aSH,P)+(1—-a)SH, P)
= S(+,P)
Hence v = argmin,/ S(v/, P) and thus T'(P) = ~, proving the claim. O

Identifiability A concept related to the above two is identifiability, introduced by Osband [1985]
and Gneiting [2011]. It requires a property to have a so-called identification function:

Definition 5 (Identification (Id) Function). A function V : R x Y is a P-identification (or simply id)
function for property I' : P — R if for every P € P:

SV ()] =0eT(P) =1.
A ‘P-identification function for I is said to be oriented if it satisfies: E,wp[V (v,y)] > 0 < v > T'(P).
For notational economy we write: V (v, P) = E,.p[V (7,y)].
In other words, the property value can be identified as the zero of its expected id function over the
distribution. For oriented identification functions, we further have that over- (resp. under-)estimating
the property value leads to positive (resp. negative) expected identification function values.

Definition 6 (Identifiable Property). A property I' : P — R is called identifiable if there exists a
P-identification function for I.

Intuitively, the connection to elicitability is that if, e.g., the scoring function for a property is convex
and differentiable, then its derivative (in the first argument) gives an identification function for the
same property.

A connection between elicitability, identifiability and CxLS Under mild assumptions, elic-
itability, identifiability, and the CxLS property of continuous distributional properties I' are in fact
equivalent, as shown by Steinwart et al. [2014]. Essentially, while Osband’s result (Fact 1) states (sub-
ject to no assumptions other than P being convex) that CxLS is a necessary condition for elicitability,
the characterization of Steinwart et al. [2014] demonstrates that it is also sufficient, subject to fur-
ther technical assumptions (and shows identifiability to be equivalent to elicitability under those same
assumptions).

Formally, Steinwart et al. [2014] prove their characterization for P being defined in one of two ways:

Definition 7. We let Py be defined as the subspace of the Banach space Wy which includes all
probability distributions whose densities are bounded above almost everywhere.

We let Psg be the subspace of Py that includes all probability distributions P € Py whose densities
are bounded below everywhere by some ep > 0.

Theorem 1 (Steinwart et al. [2014]). Consider a space of probability distributions P € {Pgy, P>o}.
I': P — R be any continuous, strictly locally non-constant' property. Then the following statements
are equivalent:

1. T is elicitable.
2. T has a bounded non-negative order-sensitive scoring function S.
3. T is identifiable and has a bounded, oriented identification function V.

4. T has convez level sets: for any 7 in the range of T', {P € P : T'(P) =~} is convez.

1Strictly locally non-constant’ is a (weak) requirement that for every P in the interior of P with I'(P) = v, and any
e-neighborhood U of P in the metric topology on P, there are distributions P/, P’ € Ue such that I'(P") < v < T'(P’).



Moreover, if I is elicitable, then it has a canonical bounded identification function V* such that every
locally Lipschitz continuous order sensitive scoring function S for T' can be written as:

st = [ V(g dr + ()

0

for some vo € Ranger, some bounded non-negative weighting function w and a function k depending
only on the labels.

2.3 Calibration and multicalibration for property predictors

We now give general definitions of calibration and multi-calibration for predictors of any distributional
property in the batch setting. We defer our definitions of sequential multicalibration to Section 6. A
variant of these definitions first appeared in Dwork et al. [2022] under the name calibration consistency
under miztures. This is a generalization of batch mean and quantile calibration error as studied in
Hébert-Johnson et al. [2018], Jung et al. [2023].

Fix any dataset over Z = X x ), given by its data distribution D € AZ. Suppose that, given any
features z € X, we want to predict the value of property I' on Y, the label distribution conditional
on x. For this, we procure a I'-predictor f : X — R. We will call this predictor I'-calibrated if for
all v € Range;, the conditional label distribution given the prediction f(x) = v indeed has property
value .

Definition 8 (Calibrated Predictor for Property I'). A T'-predictor f : X — R is D-calibrated on
dataset distribution D € A(X x Y) if for every v € Range;:

F(}/fﬁ) =7
where Yy = Y{g.f(z)=~} 15 the conditional label distribution induced by D conditional on f(x) = 1.

Now, we extend this definition to that of multicalibration: calibration guarantees that hold with
respect to an arbitrary collection of subsets (‘groups’) of the feature space X.

Definition 9 (G-Multicalibrated Predictor for Property I'). Fiz a collection of groups G C 2%. A
D-predictor f : X — R is (G,T')-multicalibrated on dataset distribution D € A(X x V) if for every
v € Rangey and G € G:

L(Ytn.c) ="

where Yy o ¢ = Y{a.f(a)=y,eec} 15 the conditional label distribution induced by D given f(x) = v and
x € G. In other words, a (G,T')-multicalibrated predictor has the property that the conditional label
distribution conditional both on the prediction that f(x) = v and on the event that x is a member of
group G indeed has property value ~y.

We will later need to work with a definition of approzimate multicalibration for predictors with finite
range. We adopt an f2-notion of calibration error, generalizing approximate quantile multicalibration
as defined in Jung et al. [2023]. This guarantee is stronger than the more common {.-notion of
calibration error studied in e.g. Hébert-Johnson et al. [2018], Jung et al. [2021], Deng et al. [2023], and
can be related to ¢; variants of multicalibration error via the Cauchy-Schwarz inequality as discussed
in Roth [2022].

Definition 10 (a-Approximately G-Multicalibrated Predictor for Property I'). Fix a distribution
D € AZ and a collection of groups G C 2%. For each G € G, let u(G) = Pr(,~plz € G] be the
probability mass on group G. A finite-range predictor f : X — Range; is a-approximately (G,T)-
multicalibrated on D if for all G € G:

= x _ . 2 .
vez%;gef (zﬁngD[f(I)—Wl €Gl(v-T(Ysr.q)) Su( )

Note that 0-approzimate (G, ~)-multicalibration is equivalent to our definition of (G, T")-multicalibration.



3 Sensibility for calibration and elicitability

We are now ready to make a connection between property elicitation and (multi)calibration. First we
define the notion of a property I' being sensible for calibration.

Definition 11 (True Distributional Predictor for a Property). Fiz a distributional property T': P — R
and a P-compatible dataset distribution D. The true distributional predictor fIP for T on D is defined
as fP(x) = T'(Yy) for x € X — i.e. the predictor that for every x € X gives the correct value of
property I' on the conditional label distribution given x.

Definition 12 (Property Sensible for Calibration). Fiz a property T' : P — R, and a collection D
of P-compatible dataset distributions. We say that I' is sensible for calibration over D if the true
distributional predictor f£ is T'-calibrated on D for all D € D.

A key motivation for multicalibration (elaborated on in Dwork et al. [2021]) is that we want to
produce a predictor f that is indistinguishable from f£ with respect to a class of calibration tests
parameterized by G—which only makes sense if I" is sensible for calibration. In general, for properties
that are not sensible for calibration, there need not exist calibrated predictors at all (even beyond f£).

Jung et al. [2021] observed that (in our terminology) variance is not sensible for calibration. Here
is their example. Suppose X = {z¢, 21}, where Pr[X = z1] = Pr[X = z5] = 1, and that Y () = 0 and
Y (z1) = 1 with probability one. Then the true distributional predictor has f{ (o) = f& (z1) =0
(as the labels are deterministic). Nevertheless, Var(Y|f, (r) = 0) = Var(Y) = 0.25 # 0. In other
words, the true label variance is nonzero over the set of points for each of which the label variance
is 0. We now significantly generalize and tighten this observation into a characterization that (under
mild assumptions) a property is sensible for calibration if and only if it is elicitable (or, equivalently,
is identifiable/has convex level sets).

We begin by showing that if a property I' : P — R does not have convex level sets on P, then it is
not sensible for calibration over any family of P-compatible datasets that includes all possible datasets
supported on two points in X whose respective label distributions belong to P.

Definition 13 (2-Point Dataset Distribution). A dataset distribution D over feature-label pairs (X,Y) €
X x Y is called 2-point if there exist two feature vectors x1 # xo € X such that Prp[X & {x1,22}] =0

and Prp[X = x1] # 0,Prp[X = x3] # 0 — in other words, exactly two feature vectors have nonzero

probability of occurring under distribution D.

Theorem 2 (No CxLS = Not Sensible for Calibration). Consider a property I' : P — R where P
s convex, and any family D of P-compatible dataset distributions that includes all the P-compatible
2-point dataset distributions. Then, if I' does not have convex level sets on P, it is not sensible for
calibration over D.

Proof. Suppose that I' violates the convex level sets assumption on the distribution family P. Then
there exists some value v € Ranger such that {P € P : I'(P) = v} is not convex. Equivalently, there
exist distributions Y7,Y2 € P such that I'(Y;) = ['(Yz) = v but T(A\Y: + (1 — X)Y2) # ~ for some
A € [0,1]. We now need to exhibit a dataset distribution D € D on which the true distributional
predictor flP is not I'-calibrated. We construct such a dataset distribution with support over any two
feature vectors x1 # x9 € X, by setting Y, = Y1, YV, = Y5, and Pr[X = z1] = A =1 — Pr[X = a9].
We then immediately see that F(Yflpw) # 7, which completes the proof. O

To prove the converse, we impose a weak and natural regularity assumption on the dataset dis-
tribution D: we require that the mapping from features x to the corresponding Y, induced by D be
just well-behaved enough that the label distributions Yz over any subset G C X are well-defined as
mixtures over the individual label distributions Y, for € G.

In the case of |Y| < oo, the well-behaved nature of the mapping x — Y, can be formalized by
requiring it to be Lebesgue measurable. In the case when |Y| = oo, the space Wy that each Y, belongs
to is a Banach space — and in this setting, the notions of Lebesgue measurability and integrability
(which are only defined in finite-dimensional Euclidean spaces) are replaced by the analogous concepts
of Bochner measurability and Bochner integrability (we refer the reader to Diestel and Uhl [1977] for
an introduction to these concepts). Thus, when |Y| = 0o, we require the map = — Y, to be Bochner
measurable.



Definition 14 (P-Regular Dataset Distribution). Fiz feature space X, label space ), and a family of
probability distributions P over ). Consider a P-compatible dataset distribution D over X x Y. Let
ép : X = P be defined by Ep(x) = Yy, i.e. Ep is the mapping © — Y, from feature vectors to their
label distributions induced by D.

The dataset distribution D is called P-regular if any of the following is true:

1. X is finite;
2. Y is finite (|Y| < 00) and &p is Lebesque measurable when P is viewed as a subset of RIYI;
3. X,Y are infinite and £p is Bochner measurable when P is viewed as a subset of Wry.

For any P-regular dataset D, we now show that a continuous property I' having convex level sets
on P implies that the true distributional predictor flp is in fact ['-calibrated.

Theorem 3 (CxLS = Sensible for Calibration). Consider a continuous property I' : P — R, and
any family D of P-regular dataset distributions. Then, if I' has convex level sets on P, it is sensible
for calibration over D.

Proof. Suppose that I'" has convex level sets on P. We now establish that the true distributional
predictor f£ is calibrated on every dataset D € D: namely, that for all v € Rangep(= Range flp), we
have I‘(YfFDW) = . For the remainder of the proof, we fix any v € Ranger and any dataset distribution
D € D (which is P-regular by assumption), and show that I'(Y;p ) = 7.

Let LSp(y) = {P € P : I'(P) = 7} be the 7-level set of property I, and Q, := {x € X : Y, €
LSr(v)} be the feature space region consisting of all points € X whose label distributions belong to
LSr(v). To prove that I'(Y;p ) =7, we need to establish that Y;» , € LSp(7).

Towards this, we interpret YfrDv"Y as a mixture distribution over the individual label distributions
Y, for x € Q. Let u, be the probability measure induced by the dataset distribution D on @-. Then,
we can write the formal expression:

X is finite: In this case, we can simply write Yfer as a convex combination of the constituent
distributions Y, for z € @),:

Yip o= Z py (@) - Yo
TEQ~

By the convexity of the level set LSr(y), since Y, € LSp(v) for each = € @, then the above convex
combination of Y, for z € @, belongs to LSr(7y), thus implying that Yip , € LSr ().

Y is finite: In this case, the expectation E;~,[Y;] is defined as the Lebesgue integral of the random
variable Y, over the simplex A(d) C R%. By our assumption that the dataset is P-regular, we have
that Y, is a bounded (e.g. in the £, norm) and Lebesgue measurable random variable. Consequently,
Y, is in fact Lebesgue integrable, so the expectation E,.,[Y;] is well-defined and evaluates to some
point u € R?. It remains to show that u € LSr(y).

For this, introduce the indicator function lyg.(yy : A(d) — {0} U {+oc}, defined to be 0 for
Y, € LSr(v), and oo otherwise. As the set LSr(v) is convex, its indicator function lpg () is convex.
Therefore, we can apply Jensen’s inequality to 1pg.(,) to conclude that:

Lisr () () = Tuse(y) ( E [Ym]) < E [lisrn(¥e)] =0,

Ty

implying that Lpg.(,)(u) = 0. By definition of 1yg(,), this demonstrates that u € LSr(7y), as desired.



X,Y infinite: In this case, we define E, ., [Y;] as the Bochner integral (see Diestel and Uhl [1977] for
its definition and properties) of the Bochner measurable map {p. By a standard Bochner integrability
criterion (see Theorem 2 on p. 45 of Diestel and Uhl [1977]), this integral indeed exists and evaluates
to a point in the ambient space Wy, as it is easy to check that E,,_ [||Yz||Tv] < oo (indeed, the
TV norm of any probability distribution is 1 so Ez~p [||Yz||Tv] = 1 < 00). Again, we want to show
that Yo o = Ezwp, [Yo] € LSp(7). For this, we use the following result, which can be interpreted as a
mean value theorem for Bochner integrals:

Fact 2 (Corollary 8 on p. 48 of Diestel and Uhl [1977]). Let (Q2,.A, p) be a finite measure space, E be
a Banach space, and f : Q — E be a Bochner u-integrable function. For G C E, let ©o(G) denote the
closure of the convex hull of G. Then, for each A € A such that u(A) > 0, it holds that

1 _
5 /A fdy € To(f(A)).

To instantiate this fact, we let: (1)  := X, together with the probability measure induced by the
dataset over X; (2) the Banach space E := Wry; (3) the Bochner integrable mapping f := £p; and
(4) the measurable event A := @, C X.

By definition, f(A) = f(Q4) = LSr(7). Observe that LSr(7) is convex by assumption, and it is
also closed in the standard metric topology on Wty since it is the preimage under the continuous
mapping I' of the closed singleton {7} € Rangep. Therefore, f(A) is a closed convex set, and thus
w(f(4)) = f(A).

Finally, by recalling our definition of . as the conditional feature vector distribution given x € @,
induced by D, the integral ﬁ J 4 fdp simply becomes Eyp, [Yo].

Thus, from Fact 2 we conclude that Yo = Eqy, [Yo] € LSp(v), as desired. O

Together, Theorems 2 and 3 establish, under weak regularity conditions, that sensibility for cali-
bration and having convex level sets are equivalent for continuous properties. To finally link sensibility
for calibration to elicitability and identifiability, we can now invoke the above discussed Theorem 1
of Steinwart et al. [2014]. Bringing in the extra assumptions on P (see Definition 7) and T' (the
nowhere-locally-constant assumption discussed in Footnote 1) required by Theorem 1, we obtain our
final characterization result:

Theorem 4 (Sensibility for Calibration <« Elicitability <= Identifiability <= CxLS). Let
' : P = R be a continuous and strictly locally non-constant property defined on a convexr space of
distributions P, where P € {Py, P>o}. Let D be a family of P-regular dataset distributions over the
data domain Z = X x Y, that includes all the P-compatible 2-point dataset distributions.

Then T is sensible for calibration over D if and only if T is elicitable (equivalently, is identifiable,
or has convex level sets).

Proof. Under our assumptions on I', P, and D, Theorems 2 and 3 establish that I is sensible if and only
if it has convex level sets on P. Invoking Theorem 1 of Steinwart et al. [2014] under these assumptions
additionally shows that I" has convex level sets on P if and only if I is elicitable, and if and only if T’
is identifiable. This suffices to show our desired chain of equivalences. O

4 Batch multicalibration

In this section we give a generic batch I'-multicalibration algorithm for elicitable properties I'. It is
a generalization of (and very similar to) past multicalibration algorithms designed for specific proper-
ties, like means [Hébert-Johnson et al., 2018, Gopalan et al., 2022a] and quantiles [Jung et al., 2023].
These algorithms differ in their specifics (the calibration metric they bound, whether they discretize
predictions, etc.); we most closely mirror the quantile multicalibration algorithm of Jung et al. [2023]
that bounds an ¢ notion of calibration error using a discretized predictor.

As a reminder, we henceforth focus on bounded properties I" rescaled to have Ranger = [0,1]. Our
algorithm will output finite-range multicalibrated I'-predictors f. For any integer m > 1, we denote?

2We could have defined [1/m] as any other set of m points in [0, 1] with gaps at most % between any two consecutive
points.
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[1/m] := {#ﬂv miﬂ, ooy o b+ Given any m > 1 (which is effectively our only hyperparameter), our
algorithm can produce an O(%)-approximately multicalibrated I-predictor f with Range, = [1/m].
By Theorem 1, any continuous elicitable property I' has a strictly consistent scoring function and

an identification function. We will now need to make a further assumption:

Assumption 1. AssumeT : P — Ranger has an identification function V' such that V(-,Y) is strictly
increasing and L-Lipschitz for each label distribution Y € P: |V (v,Y) =V (v,Y)| < L|y — /| for all
77"

This assumption is arguably mild. Let S be an antiderivative of V, so that V(vy,y) = %?f).

Then, V being strictly increasing is equivalent to S being a convex strictly consistent scoring function
for I Such a convexity assumption is quite natural in the context of optimization; furthermore,
Finocchiaro and Frongillo [2018] show that for elicitable properties over finite label spaces |Y| < oo,
this is without loss of generality. The extra Lipschitz assumption is what will allow us to quantify our
algorithm’s convergence rate.

To state Algorithm 1, it is convenient for us to re-parameterize our Definition 10 of I'-multicalibration
in terms of an id function V' for I'. (By the properties of V', as this updated notion of calibration error
goes to 0, so will the one in Definition 10.) Below, let Y(¢ .y be the label distribution conditional on
the event {z € X : f(z) =,z € G}.

Definition 15 (Approximate (G, V)-Multicalibration). Fiz groups G, a distribution D, and an id
function V' for a property T. A finite-range T-predictor f : X — [0,1] is a-approximately (G,V)-
multicalibrated if for all G € G:

2
— . < P o~
>, Prli@ =1k ed VOnYen) < p—rea
Y€ Rangey

Algorithm 1 is quite natural. While it can, it finds an intersection @Q; of a group G € G and a level
set of the current predictor f, such that f’s prediction on Q; is too far from the truth, as measured
by the magnitude of the expected identification function value over Q; — and fixes the situation by
shifting f’s value on Q; to the best grid point v € [1/m].

Algorithm 1: BatchMulticalibration(T', G, m, f, L)

Initialize ¢t =1 and f; = f.

Let a = i and let V : Ranger x Y — R be an L-Lipschitz id function for I' satisfying
Assumptlon 1

while f; not a-approximately (G, V')-multicalibrated do

Let Q; = {z: fi(x) =,z € G}, where

(7,G) € argmax Pr [ft() V2 eV, Yiymen))?

(’y”G”)G[ 1 ]nge

Let: o/ = argmin, .11 [V (7", Yq,)|
Update: fii1(z) := ]l[x ZQ) fi(z)+ 1z e Q-+ forall z€ X, and t + ¢+ 1.
Output f;.

Theorem 5 (Guarantees of Algorithm 1). Fiz data distribution D € AZ and groups G C 2%. Fiz
a property I' with its scoring function S and id function V = % satisfying Assumption 1, so that
V (-, Yg) is L-Lipschitz on all label distributions Yg (for Q@ C X) induced by D. Set discretization
m > 1. If Algorithm 1 is initialized with predictor fi : X — R with score E(, )~ p[S(f1(x),y)] = Cinit,

and Cops = E(z )~p[S(fF (), y)] is the score of the true distributional predictor f£, then Algorithm

1 produces a %—appro:m’mately (G, V)-multicalibrated T-predictor f after at most (Cipiz — C'opt)mT2

updates.

The proof of Theorem 5 is given in Appendix A, and is similar to the analysis of previous algorithms
for multicalibration of various properties [Hébert- Johnson et al., 2018, Jung et al., 2023, Deng et al.,
2023]. We use the expected score Ep[S] (where V = ) asa potentlal function for the algorithm: de-
creases at every step of the algorithm. Prior analyses of mean multicalibration [Hébert-Johnson et al.,
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2018] and quantile multicalibration [Jung et al., 2023] used squared loss and pinball loss respectively,
as potential functions—these are strictly proper scoring rules for means and quantiles respectively.
Our analysis is the natural generalization of this to arbitrary elicitable properties. The convergence
rates follow by showing that E[S] drops substantially at every iteration.

Note that we have described Algorithm 1 as able to directly query the expected identification
function V' on the true data distribution D. In practice, we would instead run it on the empirical
distribution over an i.i.d. sample D ~ D™ of n points from D. Appendix B gives finite sample
guarantees for this case.

5 Joint multicalibration

Now we take a step towards understanding two interrelated issues: (1) how to multicalibrate vector-
valued properties, and (2) how to appropriately extend the notion of multicalibration to some prac-
tically important scalar properties that have non-convex level sets and are thus neither elicitable nor
sensible for calibration by our Theorem 2 (e.g. variance). These are closely related questions, since of
course if we have a vector-valued property such that each coordinate is elicitable on its own, then we
can simply use our algorithm from Section 4 to separately multicalibrate each coordinate of the prop-
erty; vector-valued properties are challenging exactly insofar as their coordinates are not individually
elicitable.

Specifically, we study the important case of two-dimensional properties I' = ('Y, T'!), where T is
elicitable whereas I'! is not elicitable per se, but is elicitable conditional on any fixed value of I'°, and
give an algorithm that can produce jointly multicalibrated estimators for such pairs. We here list the
assumptions we will need on our properties, and define joint multicalibration.

Definition 16 (Conditional elicitability). We say that property T'' : P — R is elicitable conditionally
on property I'’ : P — R, if I'! is elicitable on each level set of T°: P,o = {P € P :T'%(P) =+°} for
all ¥° € Rangero.

For the elicitable component I'%, we denote its scoring and identification functions by S°, V.
For property I'! that is elicitable conditionally on I'°, for each 4° € Rangero we denote by Vvlo :
Ranger: X V — R a function that identifies I'* on every distribution P such that T°(P) = ~4°, and
by Sio : Ranger: x J — R a score that is strictly consistent for I'! on every distribution P such that
ro(P) =~°.

Assumptions As in Section 4, we assume that the elicitable component I'V satisfies Assumption 1,
with V9(40, ) strictly increasing and L°-Lipschitz in 4°. Here, we will also need the opposite (similarly
mild) assumption:

Assumption 2. VO(-Y) is LY -anti-Lipschitz around T°(Y') for allY € P: |[°—T%(Y)| < LYVO(»°,Y)|
for all A°.

The situation with T'' is more complex: it has different identification functions V,Yl0 for different
level sets of I'?, instead of a single function for all P € P. In general, nothing prevents these functions
V,o from being completely unrelated to each other for different values of 7 (and even undefined on
each other’s level sets). However, for most properties of interest we can expect that Vvlo (v, P) varies
continuously with the parameter 1%, and is well-defined even for P ¢ {P’ : T°(P’) = ~"}. To reflect
this, and enable our conditional multicalibration algorithm’s guarantees, we make the following (mildly
stronger) assumption:

Assumption 3. Assume that V,Ylo (v, P) is defined for all P € P. Assume furthermore that V,Ylo 18

Le-Lipschitz as a function of 4°: that is, for any fived v* and P € P, and for any v and i, we have
Vo (y, P) = Vi (v, P)| < Lelyf — 1l

Further, we assume that the conditional identification functions Vvlo for T'! on I'%’s level sets {1"O =
7%} retain their “shape”, i.e. remain strictly increasing and Lipschitz, even for distributions from other
level sets of I'’. While this is a nontrivial assumption to make, in Section 7 we verify it when (I'°,T'!)
is a Bayes pair; Bayes pairs are an important and general class of properties [Embrechts et al., 2021],
and a major use case of our joint multicalibration theory.
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Assumption 4. For all’ ° € Rangero, assume V,Ylo(-, P) is L'-Lipschitz and strictly increasing for
all PeP.

We can now define the central notion of this section: jointly multicalibrated predictors for two-
dimensional properties I' = (I'°, T'!). Analogously to Definitions 10, 15 of standard multicalibration,
we define this concept in two versions: the first one is parameterized by (I'°,T'!), and the second one
— by the identification functions (V°, V). As in Section 4, the latter definition serves to simplify
notation in our algorithm analysis (and as this notion of multicalibration error goes to 0, so does the
one parameterized by (I'0, T'1)).

In our definition below, we use the following shorthands (for i = 0,1):

pr(1G AT = Prlfi (@) = vl € G, f (@) = 41,

and _ _ _
pi(G') = Priz € G, f'(x) =]

Also, let Y 0 1y denote the label distribution conditional on the event {z € X : f(z) = (7°,7'),z € G}.

Definition 17 (Approximate Joint Multicalibration). Fiz distribution D € AZ and group family G.
Given a property T' = (T°,T'Y), a finite-range predictor f = (f°, f1) : X — R? is (a°, at)-approximately
(G, 19, T'")-jointly multicalibrated if for every G € G: (1) it holds for all v' € Rangey: :

0
@
Z M’(’YO|G,’71) : (’YO - FO(}/(GKYOWI)>)2 < W7
’YOGRangefo Mf Y
and (2) for all ¥° € Rangeyo, it analogously holds that:
S w60 (0 T (Vg € — o,
1s(G.7°)

’YleRangefl

Similarly, given identification functions VO, {Vvl0 }40€ Rangepo » the predictor f = (f°, 1) is (a, at)-

approximately (G, VY, V!)-jointly multicalibrated if for G € G, v' € Range;. :

al

py(GoyY)’

IN

ST (GAY - (VO Yig e a) (1)

’YOGRangefo

and for all G € G and ~° € Rangeyo:

O[l

(@A) @

Z Mf(71|G=70) ) (VF10(Y(G,70,71))(71= Y(G,'voy'yl)))Q <

VIERangefl

Summary of the Algorithm We now introduce JointMulticalibration (Algorithm 3), a canon-
ical algorithm for learning a jointly multicalibrated predictor f = (f°, 1) for (I'°,T'!). To deal with a
two-dimensional property, we employ a two-stage structure whereby we alternately multicalibrate f°
on the current level sets of f1, and f! on the current level sets of £V, until the desired level of joint
multicalibration error is reached according to both Equations 1 and 2 in Definition 17 above.

As in Section 4, our predictors are discretized: Rangejo = Range; = [ﬁ] The updates to both f°
and f' are performed via calls to the subroutine BatchMulticalibration, which is very similar to
BatchMulticalibration (Algorithm 1) except for two differences: (1) to simplify notation, it directly
accepts identification functions V' rather than properties I'; and (2) to satisfy the extra demands of
joint multicalibration, it has a stricter stopping condition (that is sufficient but not necessary for batch
multicalibration as defined in Section 4). We give the pseudocode for BatchMulticalibration" in
Algorithm 2, and defer its (very similar) analysis to Appendix C in Lemma 3.

31n fact, for Algorithm 3 below, which produces predictors discretized over [1/m] x [1/m], we only need this to hold
for 40 € [1/m], which is less restrictive: [1/m] is a finite set and so does not require Lipschitzness uniformly over all of
Rangero.
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Throughout the execution of Algorithm 3, the subroutine is invoked on auxiliary group families that
consist of pairwise intersections of groups in G and level sets of either f© or f!. Since the predictors get
updated, the auxiliary groups are always in drift across these invocations, and careful bookkeeping is
needed to verify that this does not prevent overall convergence. One key fact we prove towards this is
that across all invocations on V° throughout Algorithm 3, the BatchMulticalibration" subroutine
will perform boundedly many updates on f°, implying that also f! will be re-calibrated at most that
many times.

Algorithm 3 significantly generalizes the (mean, moment) multicalibration algorithm of Jung et al.
[2021], leading to some key differences in the analysis. Notably, in our terminology, in their specific
case the re-calibration of f! given f° can be cast as a single mean multicalibration subroutine using
what they call a “pseudo-label” technique. At our level of generality, this does not work anymore as
we are forced to work with different id functions V,Ylo for T'! on each level set {f° = ~%}. This is why
our inner for loop iterates over the level sets of fO, re-calibrating f' using m separate invocations
of the subroutine (fortunately, these can actually be run in parallel, since f°’s level sets are disjoint).
Even with this construction in hand, our potential function argument from Section 4 does not easily
port over: each level set {f° =%} can overlap with multiple level sets of I'°, so the true property I'!
will generally not admit a single scoring function on { % = 4%} that could be used as a potential. This
is where our assumptions on the behavior of V,Ylo with respect to 4° crucially enable us to show that,
subject to f° being sufficiently multicalibrated, using the proxy id Vvlo on the level set {0 =+°} will
not cause the multicalibration subroutines for I'! to fail to converge.

We begin by formally defining the subroutine BatchMulticalibration, and then give the full
JointMulticalibration algorithm in Algorithm 3.

Algorithm 2: BatchMulticalibration" (V, G, m, f, a)
Initialize t =1 and f; = f.
while 3(v,G) € [1/m] x G such that Pryex[fi(z) = 7,2 € G] (V(7, Yiy.0))” > a/m do

Let Q= {z: fi(z) = v,z € G}
Let:

¥ = argmin [V(y", Yo,
7" €[1/m]

Update: fiy1(z) =1z & Q4] - fe(z) + Lz € Q¢] -+ for all x € X, and ¢ < ¢ + 1.
Output f;.

Algorithm 3: JointMulticalibration((I'°, T't), G, m, (f°, f1))
Let V° and {V.Ylo}'yoe[l/m] be id functions for I'Y and T'! satisfying Assumptions 1, 2, 3, 4.
Initialize t = 1 and f; = (f°, f1).
. 2
while 3(+%,9%, G) €[] <[] x G st Pr[fi(@) = (4%, 7).z € G (V' (1, Yipo 11.0))” 2
Let G) «+{GN{zeX: fl(x)=7'}: GeG,y'€[L]}
Update f,, + BatchMulticalibration”(V? G?, m, 2, a?)
for 1% € [1/m] do
0
Let G, «{Gn{z e X: f (x)=7"}:G € G}
Let f% BatchMulticalibration(V, G2 m, f1, a!)
[9)
Update [}, () < > 11} (21 (@)= £ (), Vo eX
yle(l/m
Update t <t + 1.
Output f; = (£, f}).
The following theorem provides the convergence guarantees for Algorithm 3. The full proof, which
rigorously develops the ideas discussed above, is in Appendix C.

do

Q
m

4(L%)? 4(Lh? 8((L°LoLe)*+(L1)?)

and ol =

Theorem 6 (Guarantees of Algorithm 3). Set a® = . Letal = =
Given any G C 2%, m > 1, JointMulticalibration (Algorithm 3) outputs an (P, al)-approzimately
(G, VO VY -jointly multicalibrated predictor f = (f°, f1) for the property (T°,T'Y), via at most BZ€2T4
updates to f. Here, B° := SUP, ye0,1] SO, y) —inf, ,ejo,1] SO(~,y) for SO an antiderivative of V°, and
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B! := max oc(1/m) (SUP»y,ye[O,l] S'ly" (v,y) —infy yep0.1 S'ly" (v, y)) for each S'ly" an antiderivative of V,Ylo.

6 Sequential multicalibration

We now turn to the sequential adversarial setting, in which there is no underlying distribution, and our
goal will be to obtain approximate (G, V')-multicalibration (Definition 15) on the empirical distribution
defined by the transcript = of an interaction between the Learner and an Adversary. This generalizes
sequential multicalibration for means and quantiles studied by Gupta et al. [2022] to arbitrary elicitable
properties. In fact, even for quantiles, we give a strengthening of the result of Gupta et al. [2022] —
they give an ¢, variant of calibration that makes use of “bucketing” in its conditioning event — we
give a bound on the same f>-notion of calibration we use for batch calibration, without any bucketing,
which is a strictly stronger guarantee. Garg et al. [2023] similarly obtain this stronger guarantee for
sequential mean multicalibration.

6.1 Setup and preliminaries
6.1.1 The sequential learning setting
In the sequential setting, a Learner interacts with an Adversary in rounds ¢t = 1 to T as follows:

1. The Adversary chooses a feature vector z; € X and a distribution Y; € AY (possibly subject to
some restrictions), and reveals x; to the Learner.

2. The Learner makes a prediction p; € R.
3. The Adversary samples y; ~ Y; and reveals y; to the Learner.

The record of the interaction accumulates in a transcript @ = {(z4,ps, y:)}2_;. For any s < T and
transcript 7, the prefix of the transcript 7<% is defined as 7<% = {(2, pr, y¢) };—1. We write II<* for the
domain of all transcripts of length < s. A Learner is a collection of mappings (for each round ¢t < T))
Ly : TI<t x X — AR, and an Adversary is a collection of mappings A; : II<t — X x AY, specifying
their behavior given their observations thus far.

Now we can introduce our strong, ¢, definition of online multicalibration that we will then show
how to achieve.

Definition 18 (Online Multicalibration). Fiz a transcript © = {(x¢,pe, y¢)}ieq. Let n(m,G) = |[{t :
xy € GY}| denote the number of rounds containing a member of group G in w, and n(w,v,G) = |{t :
x¢ € G,pr = v}| denote the number of rounds containing a group G in which the prediction p; was 7.

Fix 7, a collection of groups G, a property I', and an identification function V for I'. We say that
the transcript 7 is a-approximately (G, V)-multicalibrated if for all G € G:

Z n(ﬂ—v'va) Z V(Wayt) < T

n(mw, G) n(m,vy, Q) - an(w, G)

tipr=",2:€G

Remark 1. Observe that this is exvactly the definition of approximate multicalibration we gave in
Definition 15, in which the empirical distribution over w replaces the distribution D.

We can simplify the notion of multicalibration somewhat by canceling terms:

Observation 1. Fiz a transcript w, a collection of groups G, a property I', and an identification
function V' for I'. For each group G € G define the quantity:

KQ(G,TF) = Zm Z V(vat)

tipe=",54€G
Then m is a-approzimately (G, V)-multicalibrated if for oll G € G, Ko(G, ) < oT.

In the online setting, our goal will be to control the growth of K»(G, 7) as the transcript is generated,
for each G € G. The following Lemma will be key:
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Lemma 1. Fiz a partial transcript 7<° = {(z¢,ps, y:)}i—1 and a one-round continuation (s, ps,ys)-
Write =% = 7<% o (x5, ps, Ys) for the transcript extended by one round. Define:

R(W<87G77) = Z V(Wayt)'

t<s:pr=",2+€G

Then for every G € G, if xs & G, we have:
KQ(Ga ﬂ-gs) - KQ(Ga 7T<S) =0.

If x; € G and ps = v we have:

Ka(G1=%) — Ko(Gyn<®) < ——

< oS0 VORI, G+ V(. 9)7)

Proof. If x5 € G, then K3(G,7=°%) = Ko(G, 7<) by definition and we are done. Otherwise, if r5 € G
we can calculate:

KQ(G, WSS) — KQ(G, 7T<S)

2
1 1
= —— V) | +V(nhys) | — = V(v,yt)
’[’L(’]T<S7 e G) + 1 t<s:pt—z'y,wt€G n(7‘r<57 7 G) t<s:pt—z'y,wt€G
2 2
1 1
—— Vvy) | +V(nhys) | — = V(v yt)
n(ﬂ'<57 7 G) t<s:;0t:z’y,xt€G TL(7T<S, 7 G) t<55pt:Z'vat€G
1
—— (2V(7,ys)R(x<*,G V(v,ys)?) -
e 2V (7, ys)R(7<%, G, %) + V(7,4s)%)
This concludes the proof. O

6.1.2 A key tool: the Online Minimax Multiobjective Optimization framework

We will derive our algorithm via the Online Minimax Multiobjective Optimization framework intro-
duced by Lee et al. [2022].

Definition 19 (Online Minimax Multiobjective Optimization Setting). A Learner plays against an Ad-
versary over roundst € [T] := {1,...,T}. Over these rounds, the Learner accumulates a d-dimensional
loss vector (d > 1), where each round’s loss vector lies in [—C,C]% for some C > 0. At each round t,
the Learner and the Adversary interact as follows:

1. Before round t, the Adversary selects and reveals to the Learner an environment comprising:

(a) The Learner’s and Adversary’s respective convex compact action sets Xt, Yt embedded into
a finite-dimensional Euclidean space;

(b) A continuous vector valued loss function ((-,-) : Xt x Y* — [=C,C]%, with each ()
Xt x Yt — [=C,C) (for j € [d]) convex in the 1st and concave in the 2nd argument.

2. The Learner selects some xt € X*.
3. The Adversary observes the Learner’s selection , and responds with some y* € Y?.
4. The Learner suffers (and observes) the loss vector £*(z',y").

The Learner’s objective is to minimize the value of the maximum dimension of the accumulated loss
vector after T rounds—in other words, to minimize: maxje(q) Y_,cir) £5 (2", y")-

A key quantity in the analysis of the Learner’s performance in the online minimax multi-objective
optimization setting is the Adversary-Moves-First value of the stage games at each round ¢ of the
interaction — i.e. how well the Learner could do if (counter-factually) she knew the Adversary’s action
ahead of time.
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Definition 20 (Adversary-Moves-First (AMF) Value at Round t). The Adversary-Moves-First value
of the game defined by the environment (X, V¢, (%) at round t is:

w'y := sup min (maxé’;-(xt,yt)).
yteyt TTEXT \ je[d] -

We can measure the performance of the Learner by comparing it to a benchmark defined by the
Adversary moves first values of the games defined at each round.

Definition 21 (Adversary-Moves-First (AMF) Regret). On transcript mt={(X% V5 %), 2% y*}._ |, we

s=1>

define the Learner’s Adversary Moves First (AMF) Regret for the j™* dimension at time t to be:

t t

Ri(n') =Y (2, y°) = > wh.

s=1 s=1
The overall AMF Regret is then defined as follows: R'(r') = max;¢(q R}

Lee et al. [2022] show that in any online minimax multiobjective optimization setting, Algorithm 4
obtains diminishing AMF regret.
Algorithm 4: General Algorithm for the Learner that Achieves Sublinear AMF Regret

for rounds t =1,...,7 do
Learn adversarially chosen X*, Y, and loss function £¢(-, ).

exp (n 0] 65, y))

Let X; = = fOI‘j c [d]
Zie[d] exp (77 > o b3 (@, ys))
Pl z! € argmin max Lot (z,y).
ay x%)(t yeyt 7%] X J( Y)

Observe the Adversary’s selection of it € Y*.

Theorem 7 (AMF Regret guarantee of Algorithm 4 [Lee et al., 2022]). For any T > Ind, Algo-

rithm 4 with learning rate n = 41;32 obtains, against any Adversary, AMF regret bounded by:

RT <4CVTInd.

6.2 The canonical sequential multicalibration algorithm

In the rest of this section, we show how for any elicitable property I' with a Lipschitz identifica-
tion function V, and for any finite group structure G, the problem of obtaining diminishing (G, V)-
multicalibration error in the sequential adversarial setting can be cast as an instance of online minimax
multiobjective optimization, and so can be solved with an appropriate instantiation of Algorithm 4
with multicalibration error bounds following from an appropriate instantiation of Theorem 7.

We do not need the full power of Assumption 1 in this section — we only need that the identification
function V is Lipschitz. We recall that a Lipschitz condition on the identification function depends on
the label distribution Y, and so the assumption we need will be not only on the property, but on the
distribution chosen at each round by the Adversary. The Lipschitz constant can differ from round to
round; our assumption will only be on its average value.

Assumption 5. Fix an elicitable property ' with an identification function V. Assume that at each
round t, the Adversary chooses a label distribution Y; so that V is L¢-Lipschitz:

V(v,Y:) =V (Y, Y)| < Lily —'|  for all v,7.

We make no assumption about the individual Ly, but assume that their average value is bounded by L:
1 X
72 Li<L
t=1
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We now introduce our canonical algorithm, and prove its guarantees subject to Assumption 5.
Algorithm 5: OnlineMulticalibration(G, V, m)

Initialize an empty transcript 7<%
for rounds t =1,...,7 do
Observe the Adversary’s chosen feature vector x;.
Define the loss function ¢! : [1/m] x G — R™*I9l such that for each G € G and v € [1/m]:

1
U (Ve ye) = L[z € G,y =] - S E e V(v y)R(r<", G, v) + V(v,1)?)

where:
Rx<"Gv)= Y. V().
s<t:ps=7,2s€G
t—1
exp (1> 1 06, (0% y%)
Let XtGKY = ( Lo ) for (G,~) € G x [1/m].

t—1 jg s .8
Z(G’,m’)GQX[l/m] exp (n Zs:l éG’,m’ (p Y ))

Let P' € argmin max Z NEpt [XG. e n (p:)] -
PeAl/ml % (ayyegxi/m)”

Sample p; ~ P! and make prediction p;.

Observe the Adversary’s selection of y.

Update the transcript 7St = gSt=lg o (¢, Pt, Yt)-

Theorem 8 (Algorithmic Guarantees for Sequential Multicalibration). Fiz any finite collection of
groups G and any elicitable property T' with a bounded identification function V' satisfying |V (v,y)| < C.
Suppose that the Adversary in the sequential adversarial setting chooses a sequence of distributions
that together with V' satisfy Assumption &5 with Lipschitz constant L. Then for any m > 0 there is
a randomized algorithm for the Learner (Algorithm 5) that chooses amongst m discrete predictions
at every round and that together with the Adversary induces a transcript distribution that produces a
transcript satisfying a-approzimate (G, V')-multicalibration for:

2
2CL |, 2C*log(T) |, 2 [In(G]m)

Ela] <
lod = = T T

3

Proof. We embed our learning problem into the online minimax optimization setting so that we can
apply Theorem 7. First, what are the Learner’s and the Adversary’s strategy spaces? At each round we
let the Learner’s strategy space be A[l/m], the simplex of probability distributions over predictions
~; discretized at the granularity of 1/m. The Adversary’s strategy space is the set of all Lipschitz
distributions over ). Both of these are convex sets as required. Next, we need to define the loss
function ¢¢ used at each round. We take the dimension of the loss function to be d = |G|m — with
a coordinate devoted to each pair (G € G,i € [m]). Suppose at round ¢, the Adversary has chosen
feature vector x; (which, recall, is shown to the Learner before she must make a prediction). Then we
define the loss vector ¢! as follows: For each G € G,i € [m] we introduce the loss function

Ye~vAlge,yi~Ye

ﬁ@@@”Qt,ﬁ) = E l]]. |:$t S G, Yt = G) (2V( ,yt) (7-‘-<t7G7 i )+ V( ;yt) )] R

E] ' n(w<t, L

where Alg, € A[l/m] is the distribution over predictions chosen by the Learner, and Y; is the label
distribution chosen by the Adversary. By linearity of expectation, this loss function is linear in the
actions of both players, and so in particular is convex-concave as required. By the boundedness of V'
and the definition of R, this loss function takes values in [—C’, C’] as required, for C’ < 3C2.

Next, we need to upper bound the Adversary Moves First value of the game at round ¢:

wl —sup  min  max E [l[mteG,vt:%]-M@V( )R G, )+V( ) )]

Y, Alg:€A[X]GeG i€[m]vi~Alge,yi~Y:

18



To bound w}, consider what the Learner should do if the Adversary first commits to and reveals
the true label distribution Y;. The Learner can compute the true property value ; = I'(Y;). If she
could play v = ~;, this would ensure that V(v:,Y;) = 0, implying that

a_ Vo) _

YT RmE A G) T (<At G

The Learner cannot generally play ~; (since it may not be a multiple of 1/m and hence not in her
strategy space), but she can select the discrete point v; € [1/m] that is closest to 77 — and in
particular will satisfy |y} — | < 1 . With this action, the Learner will achieve 0 loss in all coordinates
corresponding to groups G such that 7y ¢ G as well as in coordinates corresponding to predictions -~
such that v; # - (since for each of these coordinates, the indicator 1{z; € G,y = ] = 0). Thus, 1t
remains to con51der coordinates corresponding to pairs (G, ) such that z; € G and v, = +. For any
such pair, the indicator 1[z; € G,y = —] =1, and so the value of the loss in that coordlnate can be
bounded as:

2CL; C?
E < + - )
m n(r<t, > G)

where we used that by definition, Ey,~v, [V (7, y¢)] = 0, that |y — ;| < L, and that V(-,Y};) is
L;-Lipschitz by Assumption 5.

This upper bounds the AMF value w;*, and thus we can apply Theorem 7 to conclude that Algo-
rithm 4 obtains the following AMF regret bound:

T . . . .
1 ) 1 ) ) )
E 1 € G, T Ta 2V (—,y)R(n<t, G, — V(—,y:)?
Geg Ze[m] T < Y Alge Yo [ [»Tt "= ] n(r<t, Z.G) ( (m ye) R(m m) + (m Yt)

T K2 2 /
< 1 Z 2CLt ]]- It S G7 Yt = - m] C + 1202 |g|m
t:l TL(7T<t mo G)
2CL a Iz € G,y = #] - C? 2 |Q|m
S —+5 Z n(r<t, i ,G) +12C
20L 1 a In(|g|m)
< — ==
< s Z + 12C =
2
< 201 20N0RT) |y [l
m

where in the second inequality we use our Lipschitz assumption on the Adversary, and in the second
to last inequality we use the fact that on any round in which z; € G and v = %, we must have
n(rst, L G) =n(r<t, L G)+1.

By our choice of loss function and Lemma 1, this implies that for all G:

T
2CL  2C2%log(T) In(|G|m)
o <t <t 2
E[Ky(G,7)] = ;E[KQ(G,W ) — Ky(G,m<h)] < — + T +12C —
which completes the proof. o

7 Applications

By combining our theory with known results from the elicitation literature in an essentially blackbox
way, we now obtain several novel positive and negative results shedding light on an important question:
when is it possible to produce multicalibrated predictors for various risk measures? We first summarize
our results informally, and then give the formal statements in Section 7.1.

19



Joint multicalibration of Bayes pairs and risks Any elicitable property I' by definition mini-
mizes its scoring function S, which, as mentioned, can be interpreted as a loss that, when minimized
in-expectation over the dataset, yields a predictor for I". For instance, if I" is the mean, we would
minimize the expected score E(; )~p[S(7,y)] for S(v,y) = (v —y)*> — which is just the familiar least
squares regression. As another example, a natural score S, for 7-quantiles is the well-known pinball
loss defined as Sr(vy,y) := (1 — 7)vy + max{y — v, 0}; its minimization is known as quantile regression.

In the context of loss minimization, one may care not only about the minimizer but also about
the actual magnitude of the loss, raising the question: how high is the expected loss value at the true
property value, i.e. min, E¢, ,y~p[S(7,¥)]? The answer to this question is captured by the notion
of Bayes risk T'B of an elicitable property I' with respect to its strictly consistent loss S; the two-
dimensional property (I',T'?) is then known as a Bayes pair with respect to the loss S.

Definition 22 (Bayes Risks and Bayes Pairs). Fiz an elicitable property T' : P — R and a strictly
consistent T-scoring function S. The Bayes risk of I' on S is a property T® : P — R given by
I'B(P) := S(I'(P),P) for P € P. The property T'BY := (I',T'B) is then called a Bayes pair with
respect to S.

As an example, (mean, variance) is a Bayes pair with respect to the squared loss S; another
example, the Bayes pair (quantile, CVaR), will be discussed shortly. Under some natural assumptions,
most relevant Bayes risks are not elicitable per se [Embrechts et al., 2021]. However, a Bayes risk
I'B is evidently always elicitable conditionally on its underlying property I' (as knowing the value of
I fully determines the value of I'®). This makes Bayes pairs a nice use case for our theory of joint
multicalibration:

Theorem 9 (Informal). Under mild assumptions, all Bayes pairs TPP = (I',T'P) with respect to
Lipschitz losses S are jointly multicalibratable using Algorithm 3.

CVaR (ES) multicalibration Conditional Value at Risk (CVaR), known also as Expected Short-
fall (ES), is a tail risk measure of central significance in the financial risk literature. Originally proposed

by Artzner et al. [1999], and introduced into the convex optimization literature by Rockafellar and Uryasev
[2000], it has been at the center of much recent research. Defined for any 7 € [0, 1] as:

CVaR,(P) = E [Y[Y > ¢,(P)]

(where ¢, (P) is the 7-quantile of P), the Conditional Value at Risk measures the mean of the top
(1—7)-fraction of a random variable’s highest values. As such, it provides useful information on tail risk
behavior above the corresponding quantile. This, together with a host of other very useful properties —
e.g. being a coherent risk measure as defined and shown in Artzner et al. [1999] — makes Conditional
Value at Risk a popular and important financial risk measure. The real-world significance of Expected
Shortfall is underscored by the fact that in the past decade, it was introduced in international banking
regulations, known as the Basel Accords, as a replacement for quantiles (known as Value at Risk (VaR)
in finance) for the purposes of market risk capital calculations; see Embrechts et al. [2014] for details.

Thus, it is theoretically and practically important to ask whether or not the CVaR is sensible for
calibration — as this would allow us to employ our canonical batch and online multicalibration algo-
rithms to train multicalibrated predictors for the CVaR, thereby complementing the recent algorithmic
multicalibration results for quantiles of Jung et al. [2023] and Bastani et al. [2022].

The answer to this question turns out to be nuanced. On the negative side, we will show the CVaR
to not be sensible for calibration, which eliminates the possibility of directly training multicalibrated
predictors for it. Fortunately, we demonstrate that this can be remediated by multicalibrating CVaR.-
not by itself, but rather jointly with the corresponding quantile, ¢, .

Theorem 10 (Informal). For 7 € [0,1], 7-C'VaR is not sensible for calibration. However, 7-CVaR is
multicalibratable jointly with the 7-quantile, by instantiating Algorithm 3.

For the negative part of this theorem, we simply invoke our Theorem 2 with the result of Gneiting
[2011] that CVaR has nonconvex level sets. For the positive part, we recall a classic result (see
e.g. Frongillo and Kash [2021]) that (¢, CVaR;) is a Bayes pair for S being the (rescaled) 7-pinball
loss — which lets us set up the joint multicalibration algorithm for the pair (¢,,CVaR;) by simply
instantiating our above result for general Bayes pairs (Theorem 9).
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An impossibility result for distortion risk measures Distortion risk measures [Wang et al.,
1997] are a large, and theoretically and practically important, class of risk measures. A distortion risk
measure can be interpreted as first re-weighing a given distribution (via a so-called distortion function)
in order to assign more weight to certain outcomes of interest, followed by evaluating the expected
value of the modified distribution. Means, quantiles, CVaR, the class of spectral risk measures, and
numerous other risk measures of theoretical and practical importance are all instances of distortion risk
measures; see e.g. Kou and Peng [2016] and Gzyl and Mayoral [2008] for more examples and details.

Definition 23 (Distortion Risk Measure). Given a distortion function h : [0,1] — [0,1] (i.e., h
is nondecreasing and satisfies h(0) = 0 and h(1) = 1), the corresponding distortion risk measure
I'": P — R is given by:

0 o
h = — X — T — X T
PPy = [ (1= Fole) = Do+ [ b1 = Fo(a)d

for P € P, where Fp is the CDF of P. (We assume the integrals exist for all P € P.)

For instance, letting h(z) = z for = € [0, 1] leads to I'* being the distribution mean; and choosing
h.(x) = 1[x > 1 — 7] leads to """ being the 7-quantile.

As Kou and Peng [2016] and Wang and Ziegel [2015] showed, however, means and quantiles are
essentially® the only distortion risks with convex level sets on finite-support distributions. By invoking
our Theorem 2 (no CxLS == not sensible for calibration), we can thus conclude the following
sweeping negative result:

Theorem 11 (Informal). No distortion risk measures, other than (essentially) means and quantiles,
are sensible for calibration on any dataset family D which allows for finite-support label distributions.

This result tells us that there will not be another multicalibration algorithm for any distortion risk
measure: the existing mean and quantile multicalibration algorithms are (essentially) the only ones.

7.1 Formal statements
7.1.1 Joint multicalibration of Bayes risks

Consider any Bayes pair (I',I'?) with respect to a strictly consistent scoring function S(v,y). As
in Section 5, we assume that Ranger C [0,1] and Rangers C [0,1]. To show that Bayes pairs are
jointly multicalibratable, we will need to set up several assumptions on the scoring and identification
functions associated with (I',T'B), in order to ensure the satisfaction of Assumptions 1, 2, 3, and 4
that the generic joint multicalibration result of Section 5 relies on.

To satisfy Assumption 1, we assume that the property I' has an identification function V that is
strictly increasing and L-Lipschitz in its first argument. To satisfy Assumption 2, we additionally
assume that V' (-, P) is L,-anti-Lipschitz for P € P.

Now note that for all ¥ € Ranger, the Bayes risk I'? by definition satisfies I'?(P) = S(v, %) on the
level set {P € P : T'(P) =} of I'. As a result, the identification function for the Bayes risk I'Z? on the
level set {P € P :T'(P) =} can be simply taken to be:

VPP, y) =" = S(,y)

for all vZ, 5y € [0, 1]. Taking the expectation over any P € P, we can thus write the expected conditional
identification function of I'® conditioned on T' = v as V.P(v7, P) := v% — S(v, P).

To satisfy Assumption 3, we need to enforce the Lipschitzness of V,YB be Lipschitz with respect
to its subscript 7. To do so, we assume that the scoring function S for the Bayes pair (I',T'B) is
Lg-Lipschitz in its first argument. For any v? and any P, this lets us write |V, (vZ, P) =V, (75, P)| =
|S(+, P) — S(v, P)| < Ls|ly — /|, implying that V.? is Lg-Lipschitz in .

Finally, we verify Assumption 4 of Section 5. Note that the identification function VVB(-, P) for
the Bayes risk I'? is well-defined for every v € [0,1] and P € P, even when I'(P) # ~. Furthermore,
VVB (vB, P) is linear in v® with slope 1. Thus, VWB(~, P) is strictly increasing and, in fact, 1-Lipschitz
for v € [0,1] and P € P, as desired.

4See Definition 24 and Theorem 14 in Section 7.1 for a precise statement of their result.
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With all requisite assumptions on the scoring and identification functions for I and I'P satisfied,
we can now invoke Theorem 6 to obtain the following joint multicalibration guarantees for Bayes pairs:

Theorem 12 (Bayes pairs are jointly multicalibratable). Consider any Bayes pair (I', ') with respect
to a strictly consistent scoring function S. Let V be an identification function for T'. Assume that: (1)
The scoring function S is Lg-Lipschitz in its first argument; (2) V is strictly increasing, L-Lipschitz
and Lq-anti-Lipschitz in its first argument.

Pick a discretization factor m > 1. Set o = % and o' = L. Let ol = B((LL,Ls)*+1). Given
any G C 2% instantiate JointMulticalibration (Algorithm 3) using the id function V for T, and the
id function collection VB for TP, such that V.P(vP, P) :=~" — S(v, P) for all v,~" € [0,1], P € P.

Then, Algorithm 3 will output an (7 2 ((LLoLs)* + 1)) -approzimately (G, V,VE)-jointly mul-
ticalibrated predictor f = (f°, f1) for (U, T'B), in at most O (%4) updates® to the joint predictor f.

7.1.2 Joint (quantile, CVaR) multicalibration

By itself, the CVaR is not sensible for calibration. Using our Theorem 2, this follows automatically
from the classic negative result of Gneiting [2011], who shows that CVaR, is not elicitable as it has
nonconvex level sets for various distribution families P.

Fact 3 (CVaR; has nonconvex level sets [Gneiting, 2011]). For any 7 € [0,1], CVaR; has nonconvex
level sets relative to any class P of distributions over some interval I C R that includes the finite-
support distributions, or the finite miztures of compact-support distributions with well-defined PDF.

On the positive side, as an easy corollary of Theorem 12, we obtain our next result that the pair
(quantile, CVaR) can be jointly multicalibrated. To be able to apply Theorem 12, it suffices to identify
a strictly consistent scoring function S, for which the pair (7-quantile, CVaR.;) for any 7 € [0,1] is a
Bayes pair, and then obtain the Lipschitz constant for S, as well as the Lipschitz and anti-Lipschitz
constants for a strictly increasing identification function V; for the 7-quantile.

And indeed, it is well-known (see e.g. Example 1 in Embrechts et al. [2021]) that (T-quantile,
CVaR) is a Bayes pair for a scoring function S, that is the rescaled (by a factor of t2=) pinball loss:

Fact 4 ((r-quantile, CVaR,) is a Bayes pair). Fiz any 7 € [0,1] and let T := g, be a T-quantile, and
I'B := CVaR, be the T-CVaR. Then (I',T'B) is a Bayes pair with respect to the strictly T'-consistent
scoring function S, defined, for all v,y € [0,1], as

1
Sr(v,y) =7+ :(y -7+

where we have denoted (u)4+ = max{u,0}.

To bound the Lipschitz constant of S, note that its derivative in the first argument is %&w) =
1ly <] — 1= 1[y > 7]. Thus S; has Lipschitz constant Ls, < sup.. - %ﬂ:’y*)’ = max{l, ==

Now we need to settle on a strictly increasing (in the first argument) identification function V; for
the 7-quantile ¢, and investigate its Lipschitz properties. Specifically, let us use the standard quantile
id function defined as V; (v, P) := Pryply < 7] — 7 for all v and all P € P. Evidently, V. (-, P) is just
the CDF of P shifted by 7. Thus, by assuming that all distributions in P have a strictly increasing
CDF, we ensure that V. is strictly increasing in ~.

To conveniently quantify the Lipschitzness of V., assume that it is differentiable in ~: this is
equivalent to all P € P having a well-defined PDF pdfp, which will then be the derivative of V, (-, P):
namely, %,Z’P) = pdfp(y). Therefore, enforcing a Lipschitz and an anti-Lipschitz constant on V;,
simply translates to assuming an upper and a lower bound on the PDF of the distributions in the
underlying family P. Indeed, if we now assume that for all P € P, the PDF satisfies 0 < M; <
pdfp(y) < My < oo for all y € [0, 1], this gives us that V; is My-Lipschitz and Mi-anti-Lipschitz.

Plugging the above Lipschitz and anti-Lipschitz bounds on S; and V; into Theorem 12, we thus
obtain the following joint (quantile, CVaR) multicalibration result:

5Specifically, Algorithm 3 will perform at most R~ R*mT updates on the predictor f, where we have denoted
R™= sup S(yy)- if 5(7.y)and Rt =3 _sup =S(vy)?— _inf  (vP =8(v,y)? .
~,9€[0,1] v,¥€[0,1 2 e 1/’” B yelo, 1 B ,y€l0,1]
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Theorem 13 (Joint multicalibration of (7-quantile, CVaR;)). Fiz any constants 0 < My < Mz, and
take any family P of probability distributions over [0,1] such that each P € P has a strictly increasing
CDF and a well-defined density function pdfp satisfying My < pdfp(y) < My for all y € [0,1].
Fiz any target coverage level T € [0,1], and any group structure G C 2% on the dataset. Pick a
discretization m > 1. Set a® = M ond o = L. Let ol = E(MiMomax{1,7/(1—7)})* +1).
Then, by appropriately instantiating JointMulticalibration (Algorithm 3), we can compute a

AMZ 8 ?
< m2 o (<M1M2 max {1, 1 T }) + 1)) — approzimately jointly G-multicalibrated predictor
-7

f=(f° fY) for the pair (T-quantile, CVaR,), after at most O (“&—2) updates to the joint predictor f.

7.1.3 Sensibility for calibration of distortion risk measures

We begin by formally stating the result of Kou and Peng [2016] and Wang and Ziegel [2015] that we
will use. It shows that out of all distortion risk measures, the only ones that have convex level sets
across the family of all finite-support distributions are: (1) means, (2) quantiles, and (3) two other
risk measures which are quantile variants; here are the corresponding definitions.

Definition 24. Consider any family P of probability distributions. For any distribution P € P, let
its CDF (which need not be strictly increasing or continuous) be denoted Fp. We define the following
distributional properties over P:

1. For any 7 € [0, 1], the T-quantile is defined by:

q¢-(P)=inf{y: Fp(y) > 7} for P€P.
2. For any 7 € [0,1] and c € [0,1], define the property:
ar(P):==c-inf{y: Fp(y) > 7} + (1 —c¢)-inf{y: Fp(y) >7} for P€P.
3. For any 7 € [0,1] and ¢ € [0,1], define the property:
qic(P) =c-inf{y: Fp(y) >0} + (1 —¢)-inf{y: Fp(y) =1} for P €P.

Observe that (1)
the distribution; and
strictly increasing.

Kou and Peng [2016] showed that distribution means, together with the three (parametric) prop-
erties listed in Definition 24, are the only distortion risk measures with convex level sets. The proof of
this result was later simplified and refined by Wang and Ziegel [2015], who showed that this negative
result holds even over the family of distributions with at most 3 points in the support.

2 . is just a convex combination of the 0% quantile and the 100% quantile of

q7.c
(2) ¢} in fact is (for all ¢ € [0,1]) the T-quantile subject to the CDF Fp being

Theorem 14 (Characterization of distortion risk measures with convex level sets [Kou and Peng,
2016, Wang and Ziegel, 2015]). Let Ps be the set of all probability distributions supported on at most
3 real-valued points. Let Pypq be the set of all bounded distributions over the reals with a well-defined
PDF. Let P be any family of distributions over the reals such that either P O Pg, or P D Ppg.

Consider any distortion risk measure I' : P — R. Then, T" violates the convex level sets assumption
on P, unless it is one of the following properties:

1. The distributional mean;
2. A T-quantile q,, for some T € [0,1];
3. The property q;c, for some 1,c € [0,1];

4. The property qic, for some 1,¢ € [0, 1].
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Now, our Theorem 2 lets us immediately conclude that for any P as in Theorem 14, no distortion risk
measure — other than means, quantiles, or the two parametric properties q;c or q?.ﬁc — is sensible for
calibration over any P-compatible family of dataset distributions D that includes all the P-compatible
2-point dataset distributions. To formally restate this:

Theorem 15 (Sensibility for calibration for distortion risk measures). Let Ps be the set of all probabil-
ity distributions supported on at most 3 real-valued points. Let Pyq be the set of all bounded distributions
over the reals with a well-defined PDF. Let P be any convex space of distributions over the reals such
that either P O Pg, or P O Ppq.

Consider any distortion risk measure I' : P — R, and any family D of P-compatible dataset
distributions that includes all the P-compatible 2-point dataset distributions.

Then T" is not sensible for calibration over D, unless I' is one of the following properties:

1. The distributional mean;
2. A 7-quantile q,, for some T € [0,1];
3. The property q;c, for some 1,¢ € [0,1];

4. The property qic, for some 1,c € [0, 1].
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A Convergence Guarantees for Batch Multicalibration (Proof
of Theorem 5)

Our convergence analysis of Algorithm 1 will utilize the following natural potential function:

Definition 25. The potential for Algorithm 1 at round t is:

@, := E [S(fi(z),y)l = E [S(fe(x),Yz)],
(z,y)~D X

where f¢ : X = R is the property predictor at the beginning of iteration t of the algorithm and S is a

strictly consistent scoring function for property I' satisfying Assumption 1.

First, we prove the following helper Lemma that bounds the change in § — the potential function of
Algorithm 1 — in the scenario where an incorrect prediction 7 for the property value I'(Y) is corrected
on a label distribution Y. We will later use this fact to bound the progress of the algorithm after every
update to the predictor f for T'.

Lemma 2. Consider any property I' : P — R. Suppose S : Ranger x Y — R and V' : Ranger x Y — R
with V(v,y) = w are a strictly consistent scoring function and the corresponding identification
function for I that satisfy Assumption 1. Then for any v € Rangep and any label distribution Y € P,
letting Ly be the Lipschitz constant of V(-,Y), it holds that:

(V(v,Y))?
2Ly

(V. Y)P

< S, Y) = S0 Y) < V3, Y)( = 1Y) = 1=

Proof. We will prove this result with the help of the following claim.
Claim 1. For any L-Lipschitz increasing function h defined on any interval [a,b], it holds that:

(h(b) — h(a)) (A(b) — h(a))*

h(a)(b—a)+ 5T 5T

b
< [ byt <)~ a) -
Proof. Under these constraints on h, the largest value of the integral f; h(t)dt would be obtained if
h(t) first increased from h(a) to h(b) for t € [a,t'], where t' € [a, b] is defined by (¢’ —a)L = h(b) — h(a),
at the fastest rate possible (that is, at the rate L), and stayed constant at the value h(b) for ¢t € [t/, b].
The integral of this piecewise linear function on [a, b] gives the upper bound.

Conversely, the smallest value of the integral f: h(t)dt would be obtained if h(t) first stayed constant
at the value h(a) for ¢ € [a,t'], where t' is defined so that (b —t')L = h(b) — h(a), and then increased
from h(a) to h(b) at the fastest rate possible (that is, at the rate L) for ¢ € [¢/,b]. Integrating this
function on [a, b] gives the claimed lower bound. O

As V is a derivative of S, by the fundamental theorem of calculus we get: S(v,Y) — S(T'(Y),Y) =
Joo) V(&Y.
First assume v > T'(Y). By Assumption 1, V' continuously increases from T'(Y') to 7, and has
Lipschitz constant Ly. Then, by Claim 1, and using that V(T'(Y"),Y) = 0, we obtain
V(7. Y))? /V V(nY)?*
r

2Ly V(,Y)dt < V(y,Y)(y—T(Y)) —

<

Now assume v < I'(Y). Then, we have:

r(Y)
V(t,Y)dt = —/ V(t,Y)dt.
v

v

S(v.Y) - S((Y),Y) = / .

By Assumption 1, V' continuously increases from 7 to I'(Y’), and has Lipschitz constant Ly . By Claim
2
1, we have: —V(I(Y),Y)(D(Y) - 7) + SLOLDVOIDE < Ty (¢ yyar < —V(y,Y)(D(Y) -

v) — (V(F(Y)g;);v(%y)), which from V(I['(Y),Y) = 0 simplifies to: w < —f,f(y) V(t,Y)dt

< V(EH,Y)y -T(Y)) — % Thus, we have shown our bound for both cases v > T'(Y) and

v < T(Y). 0
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Now, we are ready to prove Theorem 5, which gives the convergence rate for Algorithm 1. We
restate the theorem here for convenience.

Theorem 5 (Guarantees of Algorithm 1). Fiz data distribution D € AZ and groups G C 2%. Fiz
a property I' with its scoring function S and id function V = % satisfying Assumption 1, so that
V (-, Yg) is L-Lipschitz on all label distributions Yo (for @ C X) induced by D. Set discretization
m > 1. If Algorithm 1 is initialized with predictor fi : X — R with score E(g )~p[S (fl( ),y)] = Cinit,
and Cops = E(z )~p[S(fF (2),y)] is the score of the true distributional predictor f£, then Algorithm
1 produces a %—appmximately (G, V)-multicalibrated T-predictor f after at most (Cipiz — Copt)mT2

updates.

Proof. Suppose the algorithm has not halted at round ¢. Thus, f; does not yet satisfy a-approximate
(G, V)-multicalibration, so by the pigeonhole principle there is a pair (G,v) € G x [1/m] such that on
theset Q;:={x e X:x €y, fi(z) =~}

a/m

V{7, Yq,)| > Prox €0l (3)

Now, letting 7' = argmin, ¢y /) [V (7", Yg,)|, the algorithm will update f; — fi+1 via the rule:
feri(@) =1z € Q] - fe(zx) + Lw € Q] -+
From the definition of the potential function values ®; and ®;,1, we have
Qi1 = Pr [55 € Qt] [S(ft-i-l(x)vyw)'x € Qi + J}zg([x Z Q4 ngX[S(ft+1($)aYz)|$ Z Q1]
= Prlz e Q] E [S(feri(2) Yo)le € Q] + Prlo ¢ Qi E [S(fi(2) Yo)le & Qi

0+ PrlreQ) < (@), Ya) (ﬁ(x),mxec;t])

rzeX

=& + PI" [z € Q4 EX - S(v,Ya)lz € Qt])

€
=&+ Pr[reQ](S(,Yo,) -5, Yq,)).

Here Step 2 follows because fi(x) = fiy1(x) for all x outside @, and Step 5 uses the fact that f; and

ft+1 are both constant on @ to rewrite expected scores of fi, fi+1 over © ~ X simply as the scores of

the predictor values 7,7’ with respect to the mixture distribution Yy, of labels over the region Q.
From here, we have:

@i — @ = Prle € Q((S(.Ya,) - ST(Ya).Ya)) - (S(1.Ya) — S('(YVa,). Yo,))
< Prie e QI(V( Yoo T - L0pTedl  V0na )y
< Prlee (VY Yo ~T(Ye,) - (vmg@)P) - 3im
< PrlzeqQ] (V(F)/v Yo) (' — F(YQt>)) - ﬁ
<V Yo ) ~T(¥a,) - 5o
<Ll =T(Yo,)| |y = T(¥a,)| - ﬁ
L «

< _—
~—m?2 2Lm

The equality follows by introducing an added and subtracted term S(I'(Yg, ), Yg,). The 1st inequality
applies the upper and lower bound of Lemma 2 to the two score differences. The 2nd inequality
follows by the a-miscalibration condition of Equation 3. The 3rd inequality drops the nonpositive

term — Pr,ox[z € Qt]w. The 4th inequality drops the factor Pry. x|z € Q] < 1. The 5th
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inequality is because by the Lipschitzness of V, we have |V (v, Yg,)| = [V(v,Yg,) -V (IT'(Yg,), Yo,)| <
L|y' =T (Yg,)|- The 6th inequality is because 7' must be at most - away from the true property value
I'(Yo,) on Qq: farther grid points " would result in a worse |V (y”,Yg,)| (and would thus contradict
the choice of ' by the algorithm), by the structure of the m-discretization and the monotonic increase
of |[V(-,Yg,)| in both directions away from I'(Yy, ).

Now setting o = %, we get Py — Py < # — 51 = —# = —#, and telescoping this over the
rounds t = 1,...,T, where T is the total number of iterations before convergence, we obtain:

L
Q-0 < -T—.
m

By assumption ®; = Cinj and @7 > Cope, so we have T# <Py — &7 < Ciniy — Copt, and thus

2

m
T S (Cinit - Copt)fa

concluding the proof. O

B Finite Sample Guarantees for Batch Multicalibration

We have described Algorithm 1 as if it has direct access to the underlying distribution D (since it
computes expectations of the identification function V' on the underlying distribution). In general
we do not have access to D directly, and instead have access only to a sample D ~ D" of n points
sampled i.i.d. from D. In practice, we would run the algorithm on the empirical distribution over
the n points in D, and its guarantees would carry over to the underlying distribution D from which
the points were sampled. Jung et al. [2023] proved this for the special case of quantiles (in which
the identification function V is the pinball loss), but in fact their proof uses nothing other than the
conditions in Assumption 1. We state the more general version of the theorem here (implicit in
Jung et al. [2023]) and briefly sketch the argument. We note that this argument is to establish that
Algorithm 1 generalizes when used as an empirical risk minimization algorithm. An alternative means
to obtain generalization bounds would be to follow the strategy of Hébert-Johnson et al. [2018] and
use techniques from adaptive data analysis to implement a statistical query oracle, and to then modify
the algorithm so as to compute the quantities V' (v, Q:) only through this oracle—this would also work
to give similar bounds.

Theorem 16 (Implicit in Jung et al. [2023]). Fiz a distribution D € AZ and a property T together
with a bounded identification function V. Suppose Algorithm 1 is run using the empirical distribution
on a dataset D ~ D™ consisting of n i.i.d. samples from D. Then if Algorithm 1 halts after T rounds
and returns a model fr, with probability 1 —§& over the randomness of the data distribution, fT satisfies
a-approzimate (G, V)-multicalibration with respect to D for:

_ar (\/111(1/5) +T(m?[G)m , mn(1/5) +Tln(m2|g|)>

(0%

m n n

The proof has a simple structure. Since V' is bounded, expectations of V over D (i.e. the quantities
of the form V' (v, Y ) that appear in the definition of approximate (G, V')-multicalibration) concentrate
around their expectations with high probability when evaluated on the empirical distribution D. Thus
for any fized model f;, we can establish that its (G, V)-multi-calibration error is similar in and out of
sample by union bounding over each G € G and v € Range;, = [1/m]. Of course the model fr output

by the algorithm is not fixed before D is sampled, so to establish the claim, it is necessary to union
bound over all models fr that might be output. But we can do this; because Algorithm 1 produces
models with range restricted to [1/m], fixing a model f;, we can count how many models f;11 might
result at the next step — at most one for every choice of G € G, v € [1/m], and v’ € [1/m], so at
most |G|m? many models. Thus fixing some initial model f; = f, if the algorithm halts after T steps,
the number of models fr that might be output is bounded by (|G|m?)”. The theorem then follows by
union bounding over all such models.

Theorem 16 upper bounds the generalization error of Algorithm 1 in terms of the number of rounds
T before it halts. Thus, paired with an upper bound on T it gives a worst-case bound on generalization
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error. Theorem 5 upper bounds the round complexity by 7" < O (%2), but there is a catch: L here

is the Lipschitz constant for expectations of V' taken over the true underlying distribution D, and
this will generally not be preserved over the empirical distribution D. Nevertheless, Jung et al. [2023]
show that the same convergence bound holds when run on D (up to constants) — by arguing that
each round of the algorithm run on D decreases the potential function as measured on D (where the
Lipschitz assumption has been made). This is because the algorithm decides on its update each round
by measuring quantities of the form V' (v, @) which are expectations of a bounded function V', and so
concentrate around their true values.

Theorem 17 (Implicit in Jung et al. [2023]). Fiz a distribution D € AZ (which induces a set of
conditional label distributions Yq for each Q@ C X) and a property I' together with an identification
function V. Assume that I' and V together with the set of label distributions P = {Yg : Q C X}
together satisfy Assumption 1 with Lipschitz constant L. Suppose Algorithm 1 is run using the empirical
distribution on a dataset D ~ D" consisting of n i.i.d. samples from D. Then for any § > 0, if:

m? m? |G|m\ m*
> 0 0 il M B
n_Q(ln(L5>+Lln( 7 )L2>

with probability 1 — § over the randommness of D, Algorithm 1 halts after at most T = O (mTQ) many
steps.

Together with Theorem 16, this establishes a worst-case generalization bound for batch property
multicalibration that is polynomial in all of the parameters of the problem and the assumed Lipschitz
constant L of the property’s identification function V.

C Joint Multicalibration Guarantees

We here state the guarantees enjoyed by Algorithm 2. The statement is stronger than that of the
guarantees for the similar Algorithm 1, in two ways: 1) The notion of achieved multicalibration error
at convergence (Equation 4) is stronger than that of Algorithm 1. 2) We show that even with the input
group family G not fixed beforehand (and thus potentially changing over time), Algorithm 2 will never
perform more than a certain number of updates to the predictor f, and if it does perform that many
updates then it will be approximately calibrated conditional on all measurable subsets of X (rather
than just the ones it explicitly performed updates on).

Lemma 3. Set a = %. BatchMulticalibration' (Algorithm 2), when run on a function V that
is monotonically increasing and L-Lipschitz in its first argument, outputs a [1/m]-discretized predictor
f that satisfies:

| o

Pt [f(z) = 7,2 € G (V(7. Yi,09))° <

P - for all v € [1/m],G € G. (4)

Moreover, Algorithm 2 terminates in at most BT’”2 iterations, where B = sup., ye10.1]5 (7, ) —infy yep0,11 S(7,9)
for S an antiderivative of V', and if it runs for that long, the resulting predictor will satisfy (4) for all
(measurable) regions G C X.

Proof. Denote by S an antiderivative of V', and define, similar to the proof of Theorem 5, the potential
value at iteration ¢ of Algorithm 2 as:

P, = (%END[S(ft(x),y)] = E [S(fil2), Y2)]-

Suppose that at round ¢, the algorithm finds a violation of its while loop condition for some G € G
and v € [1/m]. Let Q; = {x € X : z € G, f(z) = v}. Via the same calculations as in the proof of
Theorem 5, we have that

M)
2L
2
< Prle e QI(IVEY, Yo Il — il - L@y
M)
2L ’

i =@ < Prlee (VY Yo )l =) -

< PriweQ(Lh - il -
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where we denote by 4; the unique point such that V(y;,Yp,) = 0 (it is the analog of I'(Yy,) in the
proof of Theorem 5). This argument is still valid as it rests on Lemma 2, which requires properties of
V and S that are still satisfied here.

Now, just as in the aforementioned proof, we have by the monotonicity of V (-, Yy, ) that since the
algorithm chooses 7' = argmin. . ¢y /,,,) [V (7", Yg, )|, it must be that [y —~/| < L and so we obtain

L 1 2
P, < = .
(I)t-l-l ¢ < m2 2L IBI;([J; € Qt]|V(77YQt)|

Since the condition of the while loop demands that Pr,x[z € Q/]|V (7, Yg,)|? = a/m, we get

L «
Py - < — — ——.
s "= m2 2Lm
Setting o = £7 we then have @1 — & < —-L.and thus, by telescoping, ®7 — &y < —LL Since
m - m - m
by definition B = sup,, ,¢0,1] S(v,y) —infy ye(0,1) S(7, ), we also have &7 — &y > —B, and therefore

T < BTm2, providing an upper bound on the number of iterations of the algorithm.

Importantly, in this argument we never referenced the actual definition of @; (i.e. that Q; =
{reX:zeg, f(x) =~}) — we only used that it satisfies the while loop condition, i.e. Pry x|z €
Q:]IV(7,Yg,))? = a/m. Therefore, the upper bound BTmz on the total number of iterations in fact holds
for any arbitrary sequence of regions @1, @2, ... where each @; C X is measurable with respect to the
marginal data distribution over X'. As a result, we know that if BatchMulticalibration" does run for
at least BTmz iterations, then as soon as it finishes iteration ¢t = BT’”Z, there will not exist any measurable
Q C X violating condition (4). Thus, no matter which group family G BatchMulticalibration" is
run on (and even if the group family were to change arbitrarily during the execution), it will never

update the predictor f more than BT’”2 times, concluding the proof. O

4(Lh? 8((LLgLe)*+(L1)?)

042

Theorem 6 (Guarantees of Algorithm 3). Set a® = % and ot = . Letal = -

Given any G C 2%, m > 1, JointMulticalibration (Algorithm 3) outputs an (a, al)-approzimately
0pl 4

(G, VO, VY -jointly multicalibrated predictor f = (f°, f1) for the property (T°,T'Y), via at most BL'%
updates to f. Here, B° := SUP, yeo,1] SO, y) —inf, ,ejo,1] SO(~,y) for SO an antiderivative of V°, and

B! := max oc[1/m) (SUP»y,ye[o,l] Sio (v,y) —infy yep0,1 Sio (v, y)) for each Sio an antiderivative of leo.

Proof. Runtime: First, observe that the while loop in Algorithm 3 will stop after at most 3275‘2
042
iterations if we set a® = %. Indeed, all invocations of BatchMulticalibration on f° with the

identification function V9 can be pieced together into a single process that first multicalibrates f© with
respect to G, then takes the resulting predictor and multicalibrates it with respect to GY, and so on
until the stopping condition of the while loop in JointMulticalibrationis met. This is equivalent to
a single run of BatchMulticalibration" where the group family is externally updated from time to

time: GY — GY — ... — G? — .... But by Lemma 3, this process cannot perform a total of more than
BZ’Z}Z updates on the predictor f°. Since the predictor f° is updated at least once in each iteration

of the while loop of JointMulticalibration, this also bounds the number of iterations of the while
loop.

Now, for each iteration of the while loop, we have m calls to BatchMulticalibration’ as applied
to all identification functions leo for 4% € [1/m]. Again by Lemma 3, each of them takes at most
Bz’{‘2 updates to converge. This follows directly from Assumption 4, which states that V,o(:, P) is
L'-Lipschitz and monotonically increasing for all P € P (not just for P such that T°(P) = 4°).
Naively, running the subroutine m times, once for each level set of f19+1, would amount to a total
of m - B;TQ = BILTS iterations. But in fact, all these m invocations can be viewed as a single
invocation of BatchMulticalibration that updates the predictor f' for I'' using an identification
function V! defined as V, on each level set {f{; ="} (which is well defined since these level sets
partition the domain X’). Therefore, there will be only at most BlLTz across all these m invocations
of BatchMulticalibrationV.

\%4

Taking the above observations together, Algorithm 3 will therefore terminate after at most Bz’[?2 .
BILT2 = % updates to f* and to f!, as claimed.
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Multicalibration Guarantees: Now, we show that the predictors f2, f1 output at termination
satisfy the conditions of Definition 17 of approximate joint multicalibration.
By the stopping condition of the while loop7 at termination we have for all 4%, ', G that Pr [fT (x) =

(7%, 91),z € G] (VO(+°, YV(,YO_’.YlyG)))2 <% 1mp1y1ng after dividing by Pryex[z € G, fh(x) = v!] that

O/m
~ Prlr € G, f(z) =]

Pr [fo(z) = 'z € G, f1(x) = 4] (VO(1°, Vg0 p1.c))° <

1
P for all G € G,~" € Rangey, .

(5)
For every G € G and ' € Range Lo summing this inequality over all at most m values v° € Range £
we obtain that:

0

> Prlfb) =%l € G fi@) =11 (V0" Yewoon))' < 5 e a =T

'yOERangefo
T

so the predictor f2 satisfies its joint multicalibration condition (1) of Definition 17.
Now we show that the predictor fi for I'! satisfies its joint multicalibration condition (2). By

construction, for each 4° € [1/m] the function f7. is equal to fr}”yo in the region {z € X : fo(z) =
7%}, Since f%’vo is output by the corresponding call to BatchMulticalibration’, by Lemma 3 this
0
guarantees for each G/ € Gy = {GN{z € X : foz) = ~°} : G € G} and for each 4' € [1/m]
2 1 . .
that Pr[fi(z) = 7%0 € G (Vh( Yiran)) < 2, implying that Procx[fr(z) = (1°,71), €

2
6] (VA( Vi) <2 forall G € g.
Therefore, we have for all v°,v!, G the bound

al/m

1 1
el Yool < \/Prxex[fm) = (0w el o

VFO(Y(G 0.41))

true identification function on this set. This is where we can make use of Assumption 3, which gives
us L.-Lipschitzness of V’vlf’(" -) as a function of 7Y, as well as Assumption 2, which gives us L%-anti-

But observe that we instead want to bound

(71, Y(Gﬁoﬁl))’, the absolute value of the

Lipschitzness of V°(7°,-) as a function of 4°: we obtain that

| FO(Y(G 0, 1))(7171/(6"7 ’Yl))l < | FU(Y(G 0. 1))(’7171/(6',70,71)) - V'ylo( 17}/(707’)'1,6')” + |V'y10(717YV(’YO»’Yl,G))|
< Lc|"Y - 10 (}/(G ~0 'yl)) | + |V1 (71a}/( 0,71,G)>|
< LCL2|VO(70a (G0 vl))| + |V ( ( 0~ G))|

al/m al/m

Pl = (00, €G] A Prlfr(@) = (0,00, € G’

< L.L

where the fourth step is by substituting in Inequalities 5 and 6.
From here, for all 4%, v, G we have the bound

. ) (L LO\/_+\/_)/\/_
VFO(Y@,W,VI))(’Y RCRED ‘ \/ Pr [fr(z ),z € G]7

and after squaring both sides of the inequality, we obtain:

X ) 2 (L LOVad +Val)? /m
VFO Y, (’Y ’}/(G;'Yov'yl)) — — 0 1
(YiGr0,41)) Izl;f[fT(x) = (%), zedl

for all v°, 4!, G.

Now multiplying both sides by Pg([fr}(x) =~z € G, f2(x) = 7] and noting that
S
(L IOV 4 VaT)? < 2((LeL0) 0% +a') = 2((LLO?A(LOVH4(LY?) /m = 8((LOLOL.+ (L1)2) /m = o

%9
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we get:

2 1
1 1 0 _ 0 1 1 a,/m
IPG)I/"’([JCT(I) =7 |.I € Ga fT(I) =7 ] (Vro(y(cﬁoﬁl))(’y a}/(G,VO,Vl))> S PI/"V[f%(JJ) — 7071: c G]
S

For every G € G and % € Range f9.» Summing this inequality over all at most m values v! € Range 15
we obtain that:

a,

[fi(z) =102 € G)’

> Pl =26 =1 (1
yleRangef’}_

2
1
(Y(GV'yU,'yl))(/}/ 7}/'(G7’YO771))> S r
reX

so the predictor f1 satisfies its joint multicalibration condition (2) of Definition 17, thus concluding
the proof. O
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for all v, ~1, G.



	1 Introduction
	1.1 Our results
	1.2 Additional related work

	2 Preliminaries
	2.1 Distributional properties
	2.2 Property elicitation and identification
	2.3 Calibration and multicalibration for property predictors

	3 Sensibility for calibration and elicitability
	4 Batch multicalibration
	5 Joint multicalibration
	6 Sequential multicalibration
	6.1 Setup and preliminaries
	6.1.1 The sequential learning setting
	6.1.2 A key tool: the Online Minimax Multiobjective Optimization framework

	6.2 The canonical sequential multicalibration algorithm

	7 Applications
	7.1 Formal statements
	7.1.1 Joint multicalibration of Bayes risks
	7.1.2 Joint (quantile, CVaR) multicalibration
	7.1.3 Sensibility for calibration of distortion risk measures


	A Convergence Guarantees for Batch Multicalibration (Proof of Theorem 5)
	B Finite Sample Guarantees for Batch Multicalibration
	C Joint Multicalibration Guarantees

