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Abstract

We study the problem of online prediction, in which at each time step t ∈ {1, 2, · · ·T}, an individual
xt arrives, whose label we must predict. Each individual is associated with various groups, defined
based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions
that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of
the members of any single group. Previous work [Blum and Lykouris, 2019] provides attractive regret
guarantees for these problems; however, these are computationally intractable on large model classes
(e.g., the set of all linear models, as used in linear regression). We show that a simple modification
of the sleeping-experts-based approach of Blum and Lykouris [2019] yields an efficient reduction to
the well-understood problem of obtaining diminishing external regret absent group considerations. Our
approach gives similar regret guarantees compared to Blum and Lykouris [2019]; however, we run in
time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular
implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the
external-regret problem can be solved efficiently, an improvement on Blum and Lykouris [2019]’s stronger
condition that the model class must be small. Our approach can handle online linear regression and
online combinatorial optimization problems like online shortest paths. Beyond providing theoretical
regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on
two real data sets — Medical costs and the Adult income dataset, both instantiated with intersecting
groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across
groups, our algorithm gives substantial error improvements compared to running a standard online linear
regression algorithm with no groupwise regret guarantees.

1 Introduction

Consider the problem of predicting future healthcare costs for a population of people that is arriving
dynamically and changing over time. To handle the adaptively changing nature of the problem, we might
deploy an online learning algorithm that has worst-case regret guarantees for arbitrary sequences. For
example, we could run the online linear regression algorithm of Azoury and Warmuth [2001], which would
guarantee that the cumulative squared error of our predictions is at most (up to low order terms) the squared
error of the best fixed linear regression function in hindsight. Here we limit ourselves to a simple hypothesis
class like linear regression models, because in general, efficient no-regret algorithms are not known to exist
for substantially more complex hypothesis classes. It is likely however that the underlying population is
heterogenous: not all sub-populations are best modeled by the same linear function. For example, “the best”
linear regression model in hindsight might be different for different subsets of the population as broken out
by sex, age, race, occupation, or other demographic characteristics. Yet because these demographic groups
overlap — an individual belongs to some group based on race, another based on sex, and still another based
on age, etc — we cannot simply run a different algorithm for each demographic group. This motives the
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notion of groupwise regret, first studied by Blum and Lykouris [2019]. A prediction algorithm guarantees
diminishing groupwise regret with respect to a set of groups G and a hypothesis class H, if simultaneously
for every group in G, on the subsequence of rounds consisting of individuals who are members of that group,
the squared error is at most (up to low order regret terms) the squared error of the best model in H on that
subsequence. Blum and Lykouris [2019] gave an algorithm for solving this problem for arbitrary collections of
groups G and hypothesis classes H — see Lee et al. [2022] for an alternative derivation of such an algorithm.
Both of these algorithms have running times that depend polynomially on |G| and |H| – for example, the
algorithm given in Blum and Lykouris [2019] is a reduction to a sleeping experts problem in which there
is one expert for every pairing of groups in G with hypotheses in H. Hence, neither algorithm would be
feasible to run for the set H consisting of e.g. all linear functions, which is continuously large — and which is
exponentially large in the dimension even under any reasonable discretization.

Our first result is an “oracle efficient” algorithm for obtaining diminishing groupwise regret for any
polynomially large set of groups G and any hypothesis class H: In other words, it is an efficient reduction
from the problem of obtaining groupwise regret over G and H to the easier problem of obtaining diminishing
(external) regret to the best model in H ignoring group structure. This turns out to be a simple modification
of the sleeping experts construction of Blum and Lykouris [2019]. Because there are efficient, practical
algorithms for online linear regression, a consequence of this is that we get the first efficient, practical
algorithm for online linear regression for obtaining groupwise regret for any reasonably sized collection of
groups G (our algorithm needs to enumerate over the groups at each round and so has running time linear in
|G|).

Theorem 1 (Informal). Any online learning problem with a computationally efficient algorithm guaranteeing
vanishing regret also admits a computationally efficient algorithm (Algorithm 1) guaranteeing vanishing
groupwise regret in the full information setting, for any polynomial-size collection of of arbitrarily intersecting
groups.
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Figure 1: Regret vs. time (as a fraction of
subsequence length), for 5 demographic
groups based on age, sex; and 2 non-
demographic groups based on smoking
habits

We can instantiate this theorem in any setting in which we have an
efficient no (external) regret learning algorithm. For example, we can
instantiate it for online classification problems when the benchmark
class has a small separator set, using the algorithm of Syrgkanis et al.
[2016]; for online linear optimization problems, we can instantiate it
using the “Follow the Perturbed Leader” (FTPL) algorithm of Kalai
and Vempala [2005]. For online linear regression problems, we can
instantiate it with the online regression algorithm of Azoury and
Warmuth [2001].

With our algorithm in hand, we embark on an extensive set of
experiments in which the learning task is linear regression, both
on synthetic data and on two real datasets. In the synthetic data
experiment, we construct a distribution with different intersecting
groups. Each group is associated with a (different) underlying linear
model; individuals who belong to multiple groups have labels that are
generated via an aggregation function using the models of all of the
containing groups. We experiment with different aggregation func-
tions (such as using the mean, minimum, maximum generated label,
as well as the label of the first relevant group in a fixed lexicographic
ordering). We find that consistently across all aggregation rules, our
algorithm for efficiently obtaining groupwise regret when instantiated
with the online regression algorithm of Azoury and Warmuth [2001]
has substantially lower cumulative loss and regret on each group
compared to when we run the online regression algorithm of Azoury
and Warmuth [2001] alone, on the entire sequence of examples. In
fact, when using our algorithm, the regret to the best linear model
in hindsight when restricted to a fixed group is often negative, which
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means we make predictions that are more accurate than that of the best linear model tailored for that
group, despite using linear learners as our underlying hypothesis class. This occurs because there are many
individuals who are members of multiple groups, and our algorithm must guarantee low regret on each group
separately, which requires ensembling different linear models across groups whenever they intersect. This
ensembling leads to an accuracy improvement.

We then run comparisons on two real datasets: the prediction task in the first is to predict patient medical
costs, and the task in the second is to predict income from demographic attributes recorded in Census data.
We define intersecting groups using attributes like age, sex, race etc. Here too, our algorithm, instantiated
with the online regression algorithm of Azoury and Warmuth [2001], has consistently lower groupwise regret
than the baseline of just running the algorithm of Azoury and Warmuth [2001] alone on the entire sequence
of examples. Thus, even though algorithms with worst-case regret guarantees are not known for hypothesis
classes substantially beyond linear regression, we can use existing online linear regression algorithms to
efficiently obtain substantially lower error while satisfying natural fairness constraints by demanding groupwise
regret guarantees.

In Figure 1, we plot the performance of our algorithm instantiated with the online linear regression
algorithm of Azoury and Warmuth [2001], compared to the baseline of running Azoury and Warmuth [2001]
alone on all data points, on a medical cost prediction task. We divide the population into a number of
intersecting groups, on the basis of age (young, middle, and old), sex (male and female) and smoking status
(smoker and non-smoker). We plot the regret (the difference between the squared error obtained, and the
squared error obtainable by the best linear model in hindsight) of our algorithm compared to the baseline
on each of these demographic groups (in the top panel for age and sex groups, and in the bottom panel for
smoking related groups). Since the number of individuals within each group is different for different groups,
we normalize the x axis to represent the fraction of individuals within each group seen so far, which allows us
to plot all of the regret curves on the same scale. In these computations, the performance of our algorithm
comes from a single run though the data, whereas “the best model in hindsight” is computed separately for
each group. The plot records average performance over 10 runs. Here medical costs have been scaled to lie in
[0, 1] and so the absolute numbers are not meaningful; it is relative comparisons that are important. What
we see is representative on all of our experiments: the groupwise regret across different groups is consistently
both lower and growing with time at a lower rate than the regret of the baseline. The regret can even be
increasingly negative as seen in the age and sex groups.

1.1 Related Work

The problem of obtaining diminishing groupwise regret in a sequential decision-making setting was introduced
by Blum and Lykouris [2019] (see also Rothblum and Yona [2021] who introduce a related problem in the
batch setting). The algorithm of Blum and Lykouris [2019] is a reduction to the sleeping experts problem;
Lee et al. [2022] derive another algorithm for the same problem from first principles as part of a general online
multi-objective optimization framework. Both of these algorithms have running time that scales at least
linearly with (the product of) the number of groups and the cardinality of the benchmark hypothesis class.
In the batch setting, Tosh and Hsu [2022] use an online-to-batch reduction together with the sleeping-experts
style algorithm of Blum and Lykouris [2019] to obtain state-of-the-art batch sample complexity bounds. None
of these algorithms are oracle efficient, and as far as we are aware, none of them have been implemented —
in fact, Tosh and Hsu [2022] explicitly list giving an efficient version of Blum and Lykouris [2019] that avoids
enumeration of the hypothesis class as an open problem. Globus-Harris et al. [2022] derive an algorithm for
obtaining group-wise optimal guarantees that can be made to be “oracle efficient” by reduction to a ternary
classification problem, and they give an experimental evaluation in the batch setting—but their algorithm
does not work in the sequential prediction setting.

Multi-group regret guarantees are part of the “multi-group” fairness literature, which originates with
Kearns et al. [2018] and Hébert-Johnson et al. [2018]. In particular, multicalibration Hébert-Johnson et al.
[2018] is related to simultaneously minimizing prediction loss for a benchmark class, on subsets of the data
Gopalan et al. [2022, 2023], Globus-Harris et al. [2023]. One way to get groupwise regret guarantees with
respect to a set of groups G and a benchmark class H would be to promise “multicalibration” with respect to
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the class of functions G×H . Very recently, Garg et al. [2023] gave an oracle efficient algorithm for obtaining
multicalibration in the sequential prediction setting by reduction to an algorithm for obtaining diminishing
external regret guarantees. However, to apply this algorithm to our problem, we would need an algorithm that
promises external regret guarantees over the functions in the class G×H . We do not have such an algorithm:
For example the algorithm of Azoury and Warmuth [2001] can be used to efficiently obtain diminishing
regret bounds with respect to squared error and the class of linear functions: but even when H is the set of
linear functions, taking the Cartesian product of H with a set of group indicator functions will result in a
class of highly non-linear functions for which online regret bounds are not known. In contrast to Garg et al.
[2023], our approach can be used to give groupwise regret using a learning algorithm only for H (rather than
an algorithm for G×H), which lets us give an efficient algorithm for an arbitrary polynomial collection of
groups, and the benchmark class of linear functions.

2 Model

We study a model of online contextual prediction against an adversary in which we compare to benchmarks
simultaneously across multiple subsequences of time steps in {1, . . . , T}. Each subsequence is defined by a
time selection function I : {1, . . . , T} → {0, 1} 1 which specifies whether or not each round t is a member
of the subsequence or not. In each round, the learner observes a context xt ∈ X where X ⊆ [0, 1]d; based
on this context, he chooses a prediction pt ∈ A ⊆ [0, 1]n. Then, the learner observes a cost (chosen by an
adversary) for each possible prediction in A. The learner is aware of a benchmark class of policies H; each
f ∈ H is a function from X to A and maps contexts to predictions. The learner’s goal is to achieve loss that
is as low as the loss of the best policy in hindsight — not just overall, but also simultaneously on each of the
subsequences (where “the best policy in hindsight” may be different on different subsequences).

More precisely, the interaction is as follows. The loss function ℓ maps actions of the learner and the
adversary to a real valued loss in [0, 1]. The time selection functions I = {I1, I2, · · · I|I|} are the indicator
function for the corresponding subsequence. In rounds t ∈ {1, . . . , T}:

1. The adversary reveals context xt ∈ X (representing any features relevant to the prediction task at
hand), as well as I(t) for each I ∈ I, the indicator for whether each subsequence contains round t.

2. The learner (with randomization) picks a policy pt : X → A 2 and makes prediction pt(xt) ∈ A.
Simultaneously, the adversary selects an action yt taken from a known set Y.

3. The learner learns the adversary’s action yt and obtains loss ℓ(pt(xt), yt) ∈ [0, 1].

We define the regret on any subsequence against a policy f ∈ H as the difference in performance of the
algorithm and that of using f in hindsight to make predictions. The regret of the algorithm on subsequence
I is measured against the best benchmark policy in hindsight (for that subsequence):

Regret on Subsequence I = E

[∑
t

I(t)ℓ(pt(xt), yt)

]
− min

fI∈H

∑
t

I(t)ℓ (fI(xt), yt) .

Here, E [
∑

t I(t)ℓ(pt(xt), yt)] is the expected loss obtained on subsequence I by an algorithm that uses
policy pt at time step t, and minfI∈H

∑
t I(t)ℓ (f(xt), yt) represents the smallest loss achievable in hindsight

on this subsequence given a fixed policy f ∈ H. This regret measures, on the current subsequence, how well
our algorithm is doing compared to what could have been achieved had we known the contexts xt and the
actions yt in advance—if we could have made predictions for this subsequence in isolation. Of course the same
example can belong to multiple subsequences, which complicates the problem. The goal is to upper bound
the regret on each subsequence I by some sublinear function o(TI) where TI =

∑
t I(t) is the ‘length’ of I.

1Our results hold without significant modification for fractional time selection, i.e., I : 1 . . . T → [0, 1].
2For most of our applications, the policy is in fact picked from the benchmark class, however in one of our applications, online

least regression, the analysis is simplified by allowing policies beyond the benchmark.
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In the context of our original motivation, the subsequences map to the groups we care about—the
subsequence for a group is active on some round t if the round t individual is a member of that group. Our
benchmark class can be, e.g., the set of all linear regression functions. Obtaining low subsequence regret
would be straightforward if the subsequences were disjoint3. The main challenge is that in our setting, the
subsequences can intersect, and we cannot treat them independently anymore.

In aid of our techniques, we briefly describe the problem of external regret minimization, a problem that
is generalized by the setup above, but which consequently admits stronger results (better bounds in running
time/ regret) in various settings.

External Regret Minimization In this problem, the learner has access to a finite set of experts E,
and picks an expert et ∈ E with randomization in each round t ∈ {1, 2 · · ·T}, in each round. An adversary
then reveals a loss vector ℓt ∈ R|E| with the learner picking up a loss of ℓt(et). The learner’s objective is to
minimize the overall regret, called external regret, on the entire sequence as measured against the single best
expert in hindsight. Formally :

External Regret = E

[∑
t

ℓt(et)

]
−min

e∈E

∑
t

ℓt(e).

An online learning algorithm is called a no-regret algorithm if its external regret is sublinear in T , i.e.
o(T ), and its running time and regret are measured in terms of the complexity of the expert set E.

3 Subsequence Regret Minimization via Decomposition

We outline our main algorithm for online subsequence regret minimization. Algorithm 1 maintains |I| experts,
each corresponding to a single subsequence, and aggregates their predictions suitably at each round. Each
expert runs their own external regret minimizing or no-regret algorithms (each measuring regret against
the concept class H). However and as mentioned above, the challenge is that any given time step might
belong simultaneously to multiple subsequences. Therefore, it is not clear how to aggregate the different
suggested policies corresponding to the several currently “active” subsequences (or experts) to come up with
a prediction.

To aggregate the policies suggested by each expert or subsequence, we use the AdaNormalHedge algorithm
of Luo and Schapire [2015] with the above no-regret algorithms forming the set of k meta-experts for this
problem.

Theorem 2. For each subsequence I, assume there is an online learning algorithm ZI that picks amongst
policies in H mapping contexts to actions and has external regret (against H) upper bounded by αI . Then,
there exists an online learning algorithm (Algorithm 1), that given |I| subsequences I , has total runtime (on
a per round basis) equal to the sum of runtimes of the above algorithms and a term that is a polynomial in |I|
and d and obtains a regret of αI +O

(√
TI log |I||

)
for any subsequence I with associated length TI .

In the interest of space, the proof has been moved to Appendix B. As an immediate consequence of this
theorem, we obtain the main result of our paper as a corollary (informally stated).

Theorem 3. Any online learning problem with a computationally efficient algorithm for obtaining vanishing
regret also admits a computationally efficient algorithm for vanishing subsequence regret over subsequences
defined by polynomially many time selection functions.

Improved computational efficiency compared to Blum and Lykouris [2019] We remark that our
method is similar to Blum and Lykouris [2019] in that it relies on using AdaNormalHedge to decide between
different policies. However, it differs in the set of actions or experts available to this algorithm, allowing us to
obtain better computational efficiency in many settings.

3One could just run a separate no-regret learning algorithm on all subsequences separately.
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Parameters: Time Horizon T

1. Initialize an instance ZI of an external regret minimization algorithm for the subsequence
corresponding to each time selection function I ∈ I, with the policy class H as the set of experts.

2. Initialize an instance Z of AdaNormalHedge with {ZI}I∈I as the set of policies, which we call
meta-experts.

3. For t = 1, 2, · · ·T :

(a) Subsequence-level prediction step: Observe context xt. Each meta-expert ZI recom-
mends a randomized policy pI

t with realization zIt (from H).

(b) Prediction aggregation step: Using the information from the subsequence indicators and
fresh randomness, use AdaNormalHedge to sample a meta-expert ZI′ a. Set the policy pt

of the algorithm to be policy ztI′ offered by this meta-expert (i.e. pick action ztI′(xt)).

(c) Update step: Observe the adversary’s action yt. Update the state of algorithm Z by
treating the loss of meta-expert ZI as ℓ(zIt (xt), yt) For each subsequence I that is ‘active’ in
this round (i.e., with I(t) = 1), update the internal state of the algorithm ZI using xt and yt.

aAdaNormalHedge in fact samples from only the set of meta-experts corresponding to active subsequences

Algorithm 1: Algorithm for Subsequence Regret Minimization

In our algorithm, we use exactly |I| experts; each of these experts corresponds to a single subsequence
and makes recommendations based on a regret minimization algorithm run only on that subsequence. Their
construction instead instantiates an expert for each tuple (f, I), where f ∈ H is a policy and I ∈ I is a
subsequence; a consequence is that their running time is polynomial in the size of the hypothesis class. We
avoid this issue by delegating the question of dealing with the complexity of the policy class to the external
regret minimization algorithm associated with each subsequence, and by only enumerating |I| experts (one
for each subsequence). Practical algorithms are known for the external regret minimization sub-problem
(that must be solved by each expert) for many settings of interest with large (or infinite) but structured
policy classes (expanded upon in Section 4).

4 Applications of our Framework

4.1 Online Linear Regression

Our first application is online linear regression with multiple groups. At each round t, a single individual
arrives with context xt and belongs to several groups; the learner observes this context and group membership
for each group and must predict a label.

Formally, the context domain is X = [0, 1]d where a context is an individual’s feature vector; the learner
makes a prediction ŷt in A = [0, 1], the predicted label ; the adversary, for its action, picks yt ∈ Y = [0, 1] as
his action, which is the true label ; and the policy class H is the set of linear regressors in d dimensions, i.e.
H consists of all policies θ ∈ Rd where θ(xt) := ⟨θ, xt⟩ ∀xt ∈ X. 4

Each subsequence I corresponds to a single group g within the set of groups G = {g1, g2, · · · g|G|}; in each
round the subsequence indicator functions I(t) are substituted by group membership indicator functions g(t),
for each g ∈ G. The goal is to minimize regret (as defined in Section 2) with respect to the squared error loss:

4While these predictions may lie outside [0, 1], we allow our instantiation of AdaNormalHedge to clip predictions outside this
interval to the nearest endpoint to ensure the final prediction lies in [0, 1], since this can only improve its performance. We
also note that the algorithm of Azoury and Warmuth [2001] has reasonable bounds on the predictions, which is reflected in the
corresponding external regret bounds (See Cesa-Bianchi and Lugosi [2006] for details).
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i.e., given that yt is the true label at round t, ŷt is the label predicted by the learner, the loss accrued in
round t is simply the squared error ℓ(ŷt, yt) = (ŷt − yt)

2.
The notion of subsequence regret measured against a policy θ ∈ H in this setting leads exactly to the

following groupwise regret metric for any given group g (against θ):

Regret of Group g against policy θ = E

[
T∑

t=1

g(t)(ŷt − yt)
2

]
−

T∑
t=1

g(t)(⟨θ, xt⟩ − yt)
2. (1)

Our goal is to bound this quantity for each group g in terms of Tg :=
∑

t g(t), which we refer to as the length
of subsequence associated with group g, and in terms of the size of θ.

For each subsequence I, we use the online ridge regression algorithm of Azoury and Warmuth [2001]
to instantiate the corresponding meta-expert ZI in Algorithm 1. We note that our algorithm obtains the
following groupwise regret guarantees as a direct corollary from Theorem 2.

Corollary 1. There exists an efficient algorithm with groupwise regret guarantees for online linear regression
with squared loss. This algorithm runs in time polynomial in |G| and d and guarantees that the regret for
group g as measured against any policy θ ∈ H is upper-bounded by

O

(
d ln(1 + Tg) +

√
Tg ln(|G|) + ∥θ∥22

)
,

where Tg denotes the length of group subsequence g.

4.2 Online Classification with Guarantees for Multiple Groups

We now study online multi-label classification under multiple groups. We perform classification on an
individual arriving in round t based upon the individual’s context xt and his group memberships. Formally,
the context domain is X ⊆ {0, 1}d and each context describes an individual’s feature vector; the prediction
domain is A ⊆ {0, 1}n, with the prediction being a multi-dimensional label; and the adversary’s action
domain is Y = {0, 1}n with the action being the true multi-dimensional label that we aim to predict. Each
subsequence I corresponds to a group g, with the set of groups being denoted by G = {g1, g2, · · · g|G|}. We
assume that the learner has access to an optimization oracle that can solve the corresponding, simpler, offline
classification problem: i.e., given t context-label pairs {xs, ys}ts=1, an oracle that finds the policy f ∈ H that
minimizes

∑t
s=1 ℓ(f(xs), ys) for the desired loss function ℓ(.).

Our subsequence regret is equivalently the groupwise regret associated with group g. Formally:

Regret of Group g = E

[∑
t

g(t)ℓ(pt(xt), yt)

]
−min

f∈H

∑
t

g(t)ℓ (f(xt), yt) .

We describe results for two special settings of this problem, introduced by Syrgkanis et al. [2016] for the
external regret minimization version of this problem.

Small Separator Sets: A set S ⊂ X of contexts is said to be a separator set of the policy class H if
for any two distinct policies f, f ′ ∈ H, there exists a context x ∈ S such that f(x) ̸= f ′(x). We present
groupwise regret bounds assuming that H has a separator set of size s – note that a finite separator set
implies that the set H is also finite (upper bounded by |A|s).

Transductive setting In the transductive setting, the adversary reveals a set S of contexts with |S| = s
to the learner before the sequence begins, along with the promise that all contexts in the sequence are present
in the set S. Note that the order and multiplicity of the contexts given for prediction can be varied adaptively
by the adversary.

When plugging in the online classification algorithm of Syrgkanis et al. [2016] as the regret minimizing
algorithm ZI for each subsequence I (here, equivalently, for each group g) in Algorithm 1, we obtain the
following efficiency and regret guarantees:
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Corollary 2. There exists an oracle efficient online classification algorithm (that runs in time polynomial
in |G|, d, n, and s) for classifiers with small separator sets (size s) with groupwise regret upper bounded by

O
(√

Tg(
√
(s3/2n3/2 log |H|+

√
log |G|)

)
for each group g.

Corollary 3. There exists an oracle efficient online classification algorithm (running in time polynomial in
|G|, d, n, and s) for classifiers in the transductive setting (with transductive set size s) with groupwise regret

upper bounded by O
(√

Tg(
√

s1/2n3/2 log |H|+
√

log |G|)
)
for each group g.

Note that in the above corollaries, “oracle efficient” means an efficient reduction to a (batch) ERM
problem—the above algorithms are efficient whenever the ERM problem can be solved efficiently.

We also briefly mention how the ideas of Blum and Lykouris [2019] lift the results in this section for
binary classification to the “apple-tasting model” where we only see the true label yt if the prediction is
pt = 1. For sake of brevity, this discussion is moved to Appendix E.

4.3 Online Linear Optimization

Our framework gives us subsequence regret guarantees for online linear optimization problems, which, among
other applications, includes the online shortest path problem. In each round t, the algorithm picks a prediction
at from A ⊆ [0, 1]d and the adaptive adversary picks cost vector yt from Y ⊆ Rd as its action. The algorithm
obtains a loss of ℓ(at, yt) = ⟨at, yt⟩. Unlike the previous applications, there is no context, and the policy class
H is directly defined as the set of all possible predictions A. The algorithm is assumed to have access to an
optimization oracle that finds some prediction in argmina∈A⟨a, c⟩ for any c ∈ Rd. The objective is to bound
the regret associated with each subsequence I (described below) in terms of TI :=

∑
t I(t), the length of the

subsequence.

Regret of Subsequence I = E

[∑
t

I(t)⟨at, yt⟩

]
−min

a∈A

∑
t

I(t)⟨a, yt⟩

Kalai and Vempala [2005] show an oracle efficient algorithm that has regret upper bounded by
√
8CAdT

where A = maxa,a′∈A ||a− a′||1 and C = maxc∈Y ||c||1. Using this algorithm for minimizing external regret
for each subsequence in Algorithm 1, we obtain the following corollary:

Corollary 4. There is an oracle efficient algorithm for online linear optimization (of polynomial time in |I|)
with the regret of subsequence I (of length TI) upper bounded by O(

√
TICAd+

√
TI log |I|)).

5 Experiments

We empirically investigate the performance of our algorithm in an online regression problem. We present our
experimental results on two datasets in the main body. First, we run experiments on a synthetic dataset
in Section 5.2. Second, we perform experiments on real data in Section 5.3 using dataset [Lantz, 2013] for
medical cost prediction tasks. We provide additional experiments on the census-based Adult income dataset
5 [Ding et al., 2021, Flood et al., 2020] in Appendix C.5.

5.1 Algorithm description and metric

Learning task: In our experiments, we run online linear regression with the goal of obtaining low subsequence
regret. We focus on the case where subsequences are defined according to group membership, and we aim to
obtain low regret in each group for the sake of fairness. Our loss functions and our regret metrics are the
same as described in Section 4.1.

5adult reconstruction.csv is available at https://github.com/socialfoundations/folktables
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Our algorithm: We aim to evaluate the performance of Algorithm 1 for groupwise regret minimization.
Given |G| groups, our algorithm uses |G|+ 1 subsequences: for each group g ∈ G, there is a corresponding
subsequence that only includes the data of individuals in group g; further, we consider an additional “always
active” subsequence that contains the entire data history. We recall that our algorithm uses an inner no-regret
algorithm for each meta-expert or subsequence, and AdaNormalHedge to choose across active subsequences on
a given time step. We choose online ridge regression from Azoury and Warmuth [2001] for the meta-experts’
algorithm as per Section 4.1.

Baseline: We compare our results to a simple baseline. At every time step t, the baseline uses
the entire data history from the first t − 1 rounds, without splitting the data history across the |G| + 1
subsequences defined above. (Recall that since the subsequences intersect, there is no way to partition the
data points by group). The baseline simply runs traditional online Ridge regression: at every t, it estimates

θ̂t ≜ argminθ{
∑t−1

τ=1(⟨θ, xτ ⟩ − yτ )
2 + ∥θ∥22}, then predicts label ŷt ≜ ⟨θ̂t, xt⟩.

Note that both our algorithm and the baseline have access to group identity (we concatenate group
indicators to the original features), thus the baseline can learn models for different groups that differ by a
linear shift6.

5.2 Synthetic Data

Feature and group generation Our synthetic data is comprised of 5 groups: 3 shape groups (circle, square,
triangle) and 2 color groups (red, green). Individual features are 20-dimensional; they are independently
and identically distributed and taken from the uniform distribution over support [0, 1]20. Each individual
is assigned to one of the 3 shape groups and one of the 2 color groups randomly; this is described by
vector at ∈ {0, 1}5 which concatenates a categorical distribution over pshape = [0.5, 0.3, 0.2] and one over
pcolor = [0.6, 0.4].

Label generation Individual labels are generated as follows: first, we draw a weight vector wg for each
group g uniformly at random on [0, 1]d. Then, we assign an intermediary label to each Individual in group
g; this label is given by the linear expression w⊤

g x. Note that each individual has two intermediary labels
by virtue of being in two groups: one from shape and one from color. The true label of an individual is
then chosen to be a function of both intermediary labels, that we call the label aggregation function. We
provide experiments from the following aggregation functions: mean of the intermediary labels; minimum of
the intermediary labels; maximum of the intermediary labels; and another aggregation rule which we call the
permutation model (described in Appendix C.3). Our main motivation for generating our labels in such a
manner is the following: first, we pick linear models to make sure that linear regression has high performance
in each group, which allows us to separate considerations of regret performance of our algorithm from
considerations of performance of the model class we optimize on. Second, with high probability, the parameter
vector wg significantly differs across groups; thus it is important for the algorithm to carefully ensemble
models for individuals in the intersection of two groups, which is what makes it possible to out-perform the
best linear models in hindsight and obtain negative regret.

Results Here, we show results for the mean aggregation function described in Section 5.2. Results for the
other three (min, max, and permutation) are similar and provided in Appendix C.1,C.2,and C.3 respectively.
Across all the groups we can see that our algorithm has significantly lower regret than the baseline, which in
fact has linearly increasing regret. Note that this is not in conflict with the no-regret guarantee of Azoury
and Warmuth [2001] as the best fixed linear model in hindsight is different for each group: indeed we see in
box (f) that Azoury and Warmuth [2001] does have low regret on the entire sequence, despite having linearly
increasing regret on every relevant subsequence.

Further, we note that our algorithm’s groupwise regret guarantees sometimes vastly outperform our
already strong theoretical guarantees. In particular, while we show that our algorithm guarantees that the
regret evolves sub-linearly, we note that in several of our experiments, it is in fact negative and decreasing
over time (e.g. for the colors green and red). This means that our algorithm performs even better than the

6We know of no implementable algorithms other than ours that has subsequence regret guarantees for linear regression (or
other comparably large model class) that would provide an alternative point of comparison.
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Figure 2: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with mean of intermediary labels.
Our algorithm always has lower regret than the baseline.

best linear regressor in hindsight; This is possible because by necessity, our algorithm is ensembling linear
models for individuals who are members of multiple groups, giving it access to a more expressive (and more
accurate) model class.

Quantitatively, the rough 7 magnitude of the cumulative least-squared loss (for the best performing linear
model in hindsight) is 33. Our algorithm’s cumulative loss is roughly lower than the baseline by an additive
factor of 20, which represents a substantial improvement compared to the loss of the baseline. This implies
that our regret improvements in Figure 2 are of a similar order of magnitude as the baseline loss itself, hence
significant.

Note that Fig 2 is for the data shuffled with 10 random seeds. In Fig 3 we repeat the experiment on the
same dataset but with the following sorted order: individuals with the color red all appear before those with
color green. This sequence validates that our algorithm has similar qualitative guarantees even when the
data sequence is not i.i.d.; this in line with the no-regret guarantee we prove in Corollary 1, which holds for
adversarial sequences.

5.3 Medical Cost Data

Dataset description The “Medical Cost” dataset Lantz [2013] looks at an individual medical cost prediction
task. Individual features are split into 3 numeric {age, BMI, #children} and 3 categoric features {sex,
smoker, region}. The dataset also has a real-valued medical charges column that we use as our label.
Data pre-processing All the numeric columns are min-max scaled to the range [0, 1] and all the categoric
columns are one-hot encoded. We also pre-process the data to limit the number of groups we are working
with for simplicity of exposition. In particular, we simplify the following groups:

1. We divide age into 3 groups: young (age ≤ 35), middle (age ∈ (35, 50]), old (age> 50)

7Exact values provided in Appendix D table 1
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Figure 3: Regret for the baseline (blue) & our algorithm (orange) on synthetic data(sorted by color) with mean of
intermediary labels. Our algorithm always has lower regret than the baseline.

2. For sex, we directly use the 2 groups given in the dataset : male, female

3. For smoker, we directly use the 2 groups given in the datset : smoker, non-smoker

4. We divide BMI (Body Masss Index) into 4 groups: underweight (BMI < 18.5), healthy (BMI ∈ [18.5, 25)),
overweight (BMI ∈ [25, 30)), obese (BMI ≥ 30)

We provide detailed plots (including error bars) for all groups in Appendix C.4. Here, we provide a
summary in Figure 4 with the regret for each group, with the x axis representing the fraction of individuals
within each group seen so far.

Results We have already discussed the age, sex, smoking groups in Sec 1, Fig 1. We remark that the
BMI group results in Fig 4 (d) are similar: the groupwise regret is consistently lower and growing with time
at a lower rate than the baseline. Quantitatively, the rough magnitude8 of the cumulative loss of the best
linear model in hindsight is ∼ 4.1, and our algorithm’s cumulative loss is ∼ 1.9 units lower than the baseline,
which is a significant decrease.

Note that Fig 4 is for the data shuffled with 10 random seeds. In Fig 5 we repeat the experiment on the
same dataset but with the age feature appearing in ascending order. This shows that our algorithm has
similar qualitative guarantees even when the data sequence is not i.i.d..

8Exact values provided in Appendix D table 9
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Figure 4: Regret vs. time (as a fraction of subsequence length). Our algorithm (solid line) always has lower regret
than the baseline(marked line)
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Figure 5: Regret vs. time (as a fraction of subsequence length) for medical cost data (sorted by age). Our algorithm
(solid line) always has lower regret than the baseline (marked line).
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Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Calibration
for the (computationally-identifiable) masses. In International Conference on Machine Learning, pages
1939–1948. PMLR, 2018.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of Computer
and System Sciences, 71(3):291–307, 2005.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering: Auditing
and learning for subgroup fairness. In International conference on machine learning, pages 2564–2572.
PMLR, 2018.

Brett Lantz. Medical Cost Personal Datasets — kaggle.com, 2013. URL https://www.kaggle.com/datasets/

mirichoi0218/insurance.

Daniel Lee, Georgy Noarov, Mallesh Pai, and Aaron Roth. Online minimax multiobjective optimization:
Multicalibeating and other applications. Advances in Neural Information Processing Systems, 35:29051–
29063, 2022.

Haipeng Luo and Robert E. Schapire. Achieving all with no parameters: Adaptive normalhedge, 2015.

Guy N Rothblum and Gal Yona. Multi-group agnostic pac learnability. In International Conference on
Machine Learning, pages 9107–9115. PMLR, 2021.

13

https://www.ipums.org/projects/ipums-cps/d030.v8.0
https://proceedings.mlr.press/v202/globus-harris23a.html
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/mirichoi0218/insurance


Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert Schapire. Efficient algorithms for adversarial contextual
learning. In International Conference on Machine Learning, pages 2159–2168. PMLR, 2016.

Christopher J Tosh and Daniel Hsu. Simple and near-optimal algorithms for hidden stratification and
multi-group learning. In International Conference on Machine Learning, pages 21633–21657. PMLR, 2022.

A Organization

The Appendix is organized as follows. Appendix B contains the proof of Theorem 2. Regret curves for the
synthetic data with the 3 other label aggregations functions: min, max, permutation are in Appendix C.1,
C.2 and C.3 respectively. In Appendix C.4 and C.5 we provide detailed plots for the 2 real datasets: Medical
cost and Adult income respectively. Appendix D provides tables with regret at the end of each subsequence,
along with cumulative loss of the best linear model for all the experiments. Lastly, Appendix E contains the
binary classification with apple-tasting feedback results.

B Proof of Theorem 2

Our algorithm uses the AdaNormalHedge algorithm of Luo and Schapire [2015]. AdaNormalHedge is an
online prediction algorithm, that given a finite benchmark set of |I| policies and |I| time selection functions,
guarantees a subsequence regret upper bound of O(

√
TI log |I|) with a running time that is polynomial in

|I| and the size of the contexts that arrive in each round. We refer to meta-experts {ZI}I∈I as policies
even though they are themselves algorithms, and not policies mapping contexts to predictions, however, the
output of each one of these algorithms in any time step are policies in H mapping contexts to predictions.
Therefore, when algorithm Z picks ZI as the policy to play in a round, it is in fact picking the policy zIt
that is the output of algorithm ZI in that round.

Thus, the running time claim follows from the construction of Algorithm 1.
By appealing to the regret guarantees of each algorithm ZI and taking the expectation only over the

random bits used by these algorithms, we get the following for each subsequence I:(
E

[∑
t

I(t)ℓ(zI
t (xt), yt)

]
−min

f∈H

∑
t

I(t)ℓ(f(xt), yt)

)
≤ αI

where pI
t is the (randomized) policy suggested by the algorithm ZI and TI =

∑
t I(t). Note that the actual

prediction pt(xt) made by Algorithm 1 might differ from pI
t (xt), however since the regret guarantee holds for

arbitrary adversarial sequences, we can still call upon it to measure the expected regret of hypothetically
using this algorithm’s prediction on the corresponding subsequence. Importantly, we update the algorithm
ZI with the true label yt on every round where the subsequence I is active.

Next, we appeal to the regret guarantee of algorithm Z. Before doing so, we fix the realization of the
offered expert pI

t as zIt from each meta-expert ZI i.e. we do the analysis conditioned upon the draw of
internal randomness used by each meta-expert. In particular, our analysis holds for every possible realization
of predictions pI

t offered by each of the meta-experts over all the rounds. Since our algorithm updates the
loss of each meta-expert with respect to these realized draws of the meta-experts, therefore, we use the
subsequence regret guarantee of Z (i.e the results about AdaNormalHedge in Luo and Schapire [2015]) for
each subsequence I to get:(

E

[∑
t

I(t)ℓ(pt(xt), yt)

]
−
∑
t

I(t)ℓ(zIt (xt), yt)

)
≤ O

(√
TI log(|I|)

)
where the expectation is taken only over the random bits used by A to select which meta-expert to use in
each round. We then additionally measure the expected regret over the random bits used internally by the
meta-experts to get:
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(
E

[∑
t

I(t)ℓ(pt(xt), yt)

]
− E

[∑
t

I(t)ℓ(pI
t (xt), yt)

])
≤ O

(√
TI log(|I|)

)
Putting together the first and last inequality in this proof gives us (for each subsequence I):(

E

[∑
t

I(t)ℓ(pt(xt), yt)

]
−min

f∈H

∑
t

I(t)ℓ(f(xt), yt)

)
≤ αI +O

(√
TI log(|I|)

)

C Additional Figures

On the synthetic data with the 3 other aggregation rules: min, max, permutation; the plots and qualitative
inferences are similar to the mean aggregation in Section 5.2, i.e., across all the groups we see that our
algorithm has significantly lower regret than the baseline, which in fact has linearly increasing regret 9.
Thus, here, we only discuss quantitative values such as the magnitudes of the cumulative loss, and difference
between the cumulative loss of the baseline and our algorithm.

Note that in each of these experiments, like in Sec 5 we provide two sets of figures, one in which the data
sequences are obtained by shuffling, in the other they’re obtained by sorting 10, the latter is used to validate
that our algorithm has similar qualitative results even when the data sequences are not i.i.d. For the synthetic
dataset the individuals with color red all appear before those with color green. In both the medical cost and
adult income dataset we repeat the experiment on the same dataset but with the age feature appearing in
ascending order.

C.1 Synthetic Data - Min

Recall here that the label of any individual is the minimum of the intermediary labels of the groups it’s a part
of. Quantitatively, the rough magnitude 11 of the cumulative loss of the best linear model in hindsight is ∼ 79,
and our algorithm’s cumulative loss is ∼ 48 units lower than the baseline, which is a significant decrease.

Fig 6, 7 have the plots for the shuffled, sorted by color sequences respectively.

9On the always on group, the baseline has sublinear growth, we have discussed this phenomenon in Sec 5.2
10We shuffle the data, and the online algorithms either 1) use this sequence directly or 2) mergesort according to the specified

feature; the latter represents a non-i.i.d data sequence
11Exact values provided in Appendix D table 3
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Figure 6: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with minimum of intermediary
labels, our algorithm always has lower regret than the baseline.
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Figure 7: Regret for the baseline (blue) & our algorithm (orange) on synthetic data(sorted by color) with minimum of
intermediary labels, our algorithm always has lower regret than the baseline
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C.2 Synthetic Dataset - Max

Recall here that the label of any individual is the maximum of the intermediary labels of the groups it’s a
part of. Quantitatively, the rough magnitude 12 of the cumulative loss of the best linear model in hindsight
is ∼ 59, and our algorithm’s cumulative loss is ∼ 34 units lower than the baseline, which is a significant
decrease.

Fig 8, 9 have the plots for the shuffled, sorted by color sequences respectively.
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Figure 8: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with maximum of intermediary
labels, our algorithm always has lower regret than the baseline.

12Exact values provided in Appendix D table 5
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Figure 9: Regret for the baseline (blue) & our algorithm (orange) on synthetic data(sorted by color) with maximum
of intermediary labels, our algorithm always has lower regret than the baseline

C.3 Synthetic Dataset - Permutation

Recall here there is an underlying fixed ordering or permutation over the groups, and the label of any
individual is decided by the linear model corresponding to the first group in the ordering that this individual
is a part of. The permutation (chosen randomly) for experiments in Figure 10 is (1:green, 2:square, 3:red,
4:triangle, 5:circle). Let’s see two simple examples to understand this aggregation: For an individual which is
a red square we use the intermediary label for square, for an individual which is a green square we use the
intermediary label for green.

Quantitatively, the rough magnitude 13 of the cumulative loss of the best linear model in hindsight is ∼ 94,
and our algorithm’s cumulative loss is ∼ 93 units lower than the baseline, which is a significant decrease.

Fig 10, 11 have the plots for the shuffled, sorted by color sequences respectively.

13Exact values provided in Appendix D table 7
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Figure 10: Regret for the baseline (blue) & our algorithm (orange) on synthetic data with permutation aggregation of
intermediary labels, our algorithm always has lower regret than the baseline
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Figure 11: Regret for the baseline (blue) & our algorithm (orange) on synthetic data(sorted by color) with permutation
of intermediary labels, our algorithm always has lower regret than the baseline
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C.4 Medical Cost dataset

For the medical cost data we have already discussed the rough quantitative results in Section 5.3, for exact
values see Appendix D table 9. Here we discuss regret curves for the baseline and our algorithm on all the
groups.

Regret on age, sex groups On all three age groups: young, middle, old (Fig 12), and both sex groups:
male, female (Fig 13); our algorithm has significantly lower regret than the baseline, in fact, our algorithm’s
regret is negative and decreasing over time. i.e., our algorithm outperforms the best linear regressor in
hindsight. This qualitatively matches the same phenomenon occurring in the synthetic data.
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Figure 12: Age groups
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Figure 13: Sex groups

Regret on smoker, BMI groups For both smokers and non smokers (Fig 14), and all four BMI groups:
underweight, healthyweight, overweight, obsese (Fig 15); our algorithm has significantly lower regret than the
baseline, which in fact has linearly increasing regret.
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Figure 14: Smoking groups
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Figure 15: Bmi groups

Regret on the always-on group In Fig 16 our algorithm’s regret is negative and decreasing with time,
i.e., it outperforms the best linear regressor in hindsight. The baseline’s regret evolves sublinearly, this
matches the same phenomenon occurring in the synthetic data in Section 5.2 Fig 2 (f).
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Figure 16: Always on

In Fig 17 to 21 we repeat the experiment but with the age feature appearing in ascending order. In all of
them we see the same qualitative results as the shuffled data.
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Figure 17: Age groups
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Figure 18: Sex groups
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Figure 19: Smoking groups
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(c) Bmi: Overweight
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(d) Bmi: Obese

Figure 20: Bmi groups
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Figure 21: Always on
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C.5 Adult Income Dataset

Dataset description The Adult income dataset 14 is targeted towards income prediction based on cen-
sus data. Individual features are split into: 5 numeric features, {hours-per-week, age, capital-gain,

capital-loss, education-num}; and 8 categoric features, {workclass, education, marital-status,

relationship, race, sex, native-country, occupation}. The dataset also contains a real-valued
income column that we use as our label.
Data pre-processing All the numeric columns are min-max scaled to [0, 1], while all the categoric columns
are one-hot encoded. We also pre-process the data to limit the number of groups we are working with for
simplicity of exposition. In particular, we simplify the following groups:

1. We divide the age category into three groups: young (age ≤ 35), middle (age ∈ (35, 50]), old (age> 50)

2. We divide the education level into 2 groups: at most high school versus college or more.

3. For sex, we directly use the 2 groups given in the dataset: male, female.

4. For race, we directly use the 5 groups given in the dataset: White, Black, Asian-Pac-Islander, Amer-
Indian-Eskimo, Other.

Quantitatively, the rough magnitude 15 of cumulative loss of the best linear model in hindsight is ∼ 568,
and our algorithm’s cumulative loss is ∼ 14 units lower than the baseline, so there is a decrease but not
as significant as for the other datasets. This may be because in this case, conditional on having similar
features, group membership is not significantly correlated with income; in fact, we observe in our data that
different groups have relatively similar best fitting models. This explains why a one-size-fits-all external
regret approach like Azoury and Warmuth [2001] has good performance: one can use the same model for all
groups and does not need to fit a specific, different model to each group.

Regret on age groups On all three age groups: young, middle, old (Fig 22); our algorithm has lower
regret than the baseline.
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Figure 22: Age groups

Regret on education level groups For both the education level groups: atmost high school and college
or more (Fig 23), our algorithm has lower regret than the baseline.

14adult reconstruction.csv at https://github.com/socialfoundations/folktables
15Exact values provided in Appendix D table 11
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Figure 23: Education level groups

Regret on sex groups On both the sex groups: male and female (Fig 24), our algorithm has lower
regret than the baseline
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Figure 24: Sex groups

Regret on race groups On all 5 race groups: White, Black, Asian-Pac-Islander, Amer-Indian-Eskimo,
Other (Fig 25) our algorithm has lower regret than the baseline.
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Figure 25: Race groups

Regret on always-on group In Fig 26 our algorithm’s regret is negative and decreasing with time, i.e.,
it outperforms the best linear regressor in hindsight. The baseline’s regret evolves sublinearly, this matches
the same phenomenon occurring in the synthetic data in Section 5.2 Fig 2 (f).
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Figure 26: Always on

In Fig 27 to 31, we repeat the experiment but with the age feature appearing in ascending order. In all of
them we see the same qualitative results as the shuffled data.
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Figure 27: Age groups
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Figure 28: Education level groups
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Figure 29: Sex groups
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Figure 30: Race groups

0 10000 20000 30000 40000 50000
time

25

20

15

10

5

0

5

10

Re
gr

et

always_on
Baseline
Our algorithm

Figure 31: Always on

D Regret Tables

In these tables, for a given group we record: its size, regret for the baseline, regret for our algorithm, and
the cumulative loss of the best linear model in hindsight. Since the baseline and our algorithm are online
algorithms we feed the data one-by-one using 10 random shuffles, recording the mean and standard deviation.
Note that the cumulative loss of the best linear model in hindsight will be the same across all the shuffles,
since it’s just solving for the least squares solution on the entire group subsequence. We also provide regret
tables for the non-i.i.d sequences obtained by sorting, just after the corresponding table with shuffled data.
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Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 15.25 ± 0.22 0.73 ± 0.09 23.57
square 30044 15.43 ± 0.13 0.63 ± 0.06 14.12
triangle 20099 12.13 ± 0.10 0.76 ± 0.04 9.43
green 59985 10.02 ± 0.15 -14.13 ± 0.19 38.81
red 40015 14.75 ± 0.16 -1.80 ± 0.17 26.37
always on 100000 0.76 ± 0.06 -39.93 ± 0.10 89.18

Table 1: Synthetic data with mean of intermediary labels

Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 11.30 ± 0.18 -2.07 ± 0.22 23.57
square 30044 13.64 ± 0.11 0.85 ± 0.13 14.12
triangle 20099 17.82 ± 0.13 1.18 ± 0.08 9.43
green 59985 24.10 ± 0.01 -2.63 ± 0.26 38.81
red 40015 0.61 ± 0.07 -15.46 ± 0.16 26.37
always on 100000 0.71 ± 0.07 -42.09 ± 0.36 89.18

Table 2: Synthetic data(sorted by color) with mean of intermediary labels

Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 21.62 ± 0.28 0.81 ± 0.10 63.49
square 30044 64.21 ±0.31 0.94 ± 0.05 15.17
triangle 20099 12.47 ± 0.13 0.57 ± 0.07 26.37
green 59985 14.55 ± 0.19 -43.10 ± 0.23 97.42
red 40015 21.64 ± 0.20 -16.69 ± 0.23 69.72
always on 100000 1.04 ± 0.06 -94.94 ± 0.08 202.29

Table 3: Synthetic data with min of intermediary labels

Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 14.71 ± 0.26 -4.63 ± 0.66 63.49
square 30044 73.06 ± 0.31 1.15 ± 0.10 15.17
triangle 20099 10.45 ± 0.18 -0.20 ± 0.26 26.37
green 59985 35.28 ± 0.01 -23.29 ± 0.41 97.42
red 40015 0.83 ± 0.07 -42.50 ± 0.16 69.72
always on 100000 0.96 ± 0.07 -100.94 ± 0.53 202.29

Table 4: Synthetic data(sorted by color) with min of intermediary labels
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Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 22.78 ± 0.32 0.91 ± 0.07 32.46
square 30044 17.86 ± 0.14 0.52 ± 0.08 36.92
triangle 20099 29.51 ± 0.22 0.87 ± 0.05 9.42
green 59985 8.65 ± 0.20 -23.25 ± 0.24 65.38
red 40015 12.48 ± 0.22 -23.46 ± 0.29 62.42
always on 100000 0.86 ± 0.08 -66.98 ± 0.13 148.08

Table 5: Synthetic data with max of intermediary labels

Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 19.01 ± 0.26 0.95 ± 0.10 32.46
square 30044 10.95 ± 0.09 -6.99 ± 0.26 36.92
triangle 20099 40.20 ± 0.19 1.03 ± 0.07 9.42
green 59985 20.37 ± 0.01 -14.77 ± 0.22 65.38
red 40015 0.77 ± 0.07 -39.27 ± 0.18 62.42
always on 100000 0.87 ± 0.07 -74.30 ± 0.29 148.08

Table 6: Synthetic data(sorted by color) with max of intermediary labels

Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 28.84 ± 0.45 -38.63 ± 0.17 77.14
square 30044 92.10 ± 0.64 -0.28 ± 0.27 54.87
triangle 20099 12.03 ± 0.20 -15.15 ± 0.09 30.67
green 59985 75.89 ± 0.89 1.31 ± 0.07 28.95
red 40015 112.49 ± 0.88 0.04 ± 0.26 78.32
always on 100000 1.26 ± 0.09 -185.77 ± 0.25 294.39

Table 7: Synthetic data with permutation of intermediary labels

Group name Group size Baseline’s regret
Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

circle 49857 24.05 ± 0.63 -51.72 ± 0.17 77.14
square 30044 99.59 ± 0.70 -38.91 ± 0.12 54.87
triangle 20099 9.15 ± 0.20 -20.49 ± 0.11 30.67
green 59985 187.32 ± 0.01 1.42 ± 0.09 28.95
red 40015 0.88 ± 0.08 -57.12 ± 0.15 78.32
always on 100000 1.08 ± 0.09 -242.83 ± 0.19 294.39

Table 8: Synthetic data(sorted by color) with permutation of intermediary labels
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Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

young 574 0.55 ± 0.14 -1.58 ± 0.18 5.40
middle 408 0.38 ± 0.15 -0.97 ± 0.16 3.34
old 356 0.44 ± 0.18 -0.64 ± 0.19 3.13
underweight 20 0.16 ± 0.02 0.11 ± 0.02 0.03
healthyweight 225 1.59 ± 0.14 0.36 ± 0.07 1.00
overweight 386 1.55 ± 0.17 0.43 ± 0.07 1.84
obese 707 3.42 ± 0.31 1.25 ± 0.12 3.65
smoker 274 5.06 ± 0.17 1.47 ± 0.09 0.90
non-smoker 1064 1.70 ± 0.15 0.73 ± 0.13 5.57
male 676 0.65 ± 0.21 -1.75 ± 0.21 6.11
female 662 0.59 ± 0.24 -1.57 ± 0.24 5.88
always on 1338 1.13 ± 0.09 -3.43 ± 0.13 12.10

Table 9: Medical costs data

Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

young 574 0.82 ± 0.09 -1.09 ± 0.07 5.40
middle 408 0.22 ± 0.01 -1.28 ± 0.02 3.34
old 356 0.20 ± 0.01 -1.10 ± 0.01 3.13
underweight 20 0.16 ± 0.01 0.13 ± 0.01 0.03
healthyweight 225 1.47 ± 0.05 0.32 ± 0.04 1.00
overweight 386 1.37 ± 0.04 0.36 ± 0.02 1.84
obese 707 3.64 ± 0.10 1.12 ± 0.10 3.65
smoker 274 5.05 ± 0.07 1.35 ± 0.05 0.90
non-smoker 1064 1.60 ± 0.07 0.60 ± 0.05 5.57
male 676 0.63 ± 0.16 -1.73 ± 0.15 6.11
female 662 0.51 ± 0.17 -1.84 ± 0.15 5.88
always on 1338 1.02 ± 0.10 -3.69 ± 0.08 12.10

Table 10: Medical costs data (sorted by age)

31



Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

young 22792 37.40 ± 1.04 14.01 ± 0.41 421.89
middle 16881 20.11 ± 1.11 14.93 ± 0.63 608.15
old 9858 22.99 ± 0.74 14.81 ± 0.75 414.61
HighSchool&less 22584 33.02 ± 1.21 14.38 ± 0.51 499.55
College&more 26947 28.67 ± 1.54 10.55 ± 1.08 963.92
Male 33174 20.95 ± 0.86 -2.17 ± 0.77 1171.06
Female 16357 18.82 ± 0.54 5.19 ± 0.69 314.32
White 42441 14.67 ± 0.76 -17.42 ± 0.98 1325.50
Asian-Pac-Islander 1519 5.82 ± 0.23 4.66 ± 0.21 55.05
Amer-Indian-Eskimo 471 3.55 ± 0.12 3.48 ± 0.44 9.04
Other 406 3.28 ± 0.24 3.21 ± 0.24 7.50
Black 4694 6.16 ± 0.39 2.79 ± 0.36 94.58
always on 49531 18.25 ± 0.66 -18.51 ± 0.94 1506.92

Table 11: Adult income data

Group name Group size
Baseline’s
regret

Our algorithm’s
regret

Cumulative loss
of best linear
model in hindsight

young 22792 6.28 ± 0.04 -4.93 ± 0.12 421.89
middle 16881 35.21 ± 0.08 21.24 ± 0.38 608.15
old 9858 30.22 ± 0.15 21.56 ± 0.73 414.61
HighSchool&less 22584 25.50 ± 0.27 7.92 ± 0.62 499.55
College&more 26947 27.44 ± 0.31 11.16 ± 0.86 963.92
Male 33174 20.75 ± 0.32 -10.28 ± 0.93 1171.06
Female 16357 10.25 ± 0.24 7.43 ± 0.50 314.32
White 42441 10.89 ± 0.28 -20.17 ± 0.98 1325.50
Asian-Pac-Islander 1519 4.39 ± 0.10 4.29 ± 0.21 55.05
Amer-Indian-Eskimo 471 2.65 ± 0.30 2.59 ± 0.32 9.04
Other 406 2.72 ± 0.03 2.55 ± 0.05 7.50
Black 4694 3.74 ± 0.90 1.28 ± 0.97 94.58
always on 49531 9.45 ± 0.21 -24.40 ± 0.91 1506.92

Table 12: Adult income data (sorted by age)
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E Apple Tasting Model

In the apple tasting model for binary classification (n = 1), we only see the label yt at the end of the t-th
round if the prediction pt is to “accept”, i.e.,pt = 1. We present results in a generalization of this model,
introduced by Blum and Lykouris [2019], called the Pay-for-feedback model. In this model, the algorithm is
allowed to pay the maximum possible loss of 1 at the end of the t-th round to see the label yt. The sum of all
the payments is added to the regret expression to create a new objective that we wish to upper bound. For
some notation - vt is the indicator variable that is set to 1 if we pay to view the label at the end of round t.
This new objective is written down below -

Groupwise Regret with Pay-for-feeback =

(
E

[∑
t

gi(t)(ℓ(pt, yt) + vt)

]
− min

f∈Fi

∑
t

gi(t)ℓ(f(xt), yt)

)

Blum and Lykouris [2019] introduce a blackbox method that converts any online algorithm with regret
for group g upper bounded by O(

√
Tg) (other terms not dependent on Tg can multiply with this expression)

into an algorithm with a corresponding bound in the pay-for-feedback model. This method is based upon
splitting the time interval T into a number of equal length contiguous sub-intervals and randomly sampling a
time step in each sub-interval for which it pays for feedback. Using this method on top of our algorithm, we
derive the following corollary.

Corollary 5. There exists an oracle efficient online classification algorithm in the pay-for-feedback model for
concept classes with small separator sets (size s) with groupwise regret upper bounded by

O
(
T 1/6

√
Tgi(

√
s3/2 log |Fi|+

√
log |G|)

)
(for group gi).

33


	Introduction
	Related Work

	Model
	Subsequence Regret Minimization via Decomposition
	Applications of our Framework
	Online Linear Regression
	Online Classification with Guarantees for Multiple Groups
	Online Linear Optimization

	Experiments
	Algorithm description and metric
	Synthetic Data
	Medical Cost Data

	Organization
	Proof of Theorem 2
	Additional Figures
	Synthetic Data - Min
	Synthetic Dataset - Max
	Synthetic Dataset - Permutation
	Medical Cost dataset
	Adult Income Dataset

	Regret Tables
	Apple Tasting Model

