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Abstract. We consider a dynamic Bayesian persuasion setting where a single long-lived sender per-
suades a stream of “short-lived” agents (receivers) by sharing information about a payoff-relevant state.
The state transitions are Markovian conditional on the receivers’ actions, and the sender seeks to maxi-
mize the long-run average reward by committing to a (possibly history-dependent) signaling mechanism.
Such problems are common in platform markets, where the platform seeks to achieve desirable long-
term revenue and welfare outcomes by influencing the actions of users. While most previous studies
of Markov persuasion consider exogenous agent beliefs that are independent of the chain, we study
a more natural variant with endogenous agent beliefs that depend on the chain’s realized history. A
key challenge to analyzing such settings is to model the agents’ partial knowledge about the history
information. To address this challenge, we analyze a Markov persuasion process (MPP) under various
information models that differ in the amount of information the receivers have about the history of
the process. Specifically, we formulate a general partial-information model where each receiver observes
the history with an 3 periods lag (for 3 ≥ 0). Our technical contribution starts with analyzing two
benchmark models, i.e., the full-history information model (i.e., 3 = 0) and the no-history information
model (i.e., 3 = ∞). We establish an ordering of the sender’s payoff as a function of the informativeness
of agent’s information model (with no-history as the least informative), and develop efficient algorithms
to compute optimal solutions for these two benchmarks. For the information model with general 3, we
present the technical challenges in finding an optimal signaling mechanism, where even determining the
right dependency on the history becomes difficult. Restricting the dependence on the history to a given
length, we formulate the sender’s problem as a bilinear optimization program. To bypass the resulting
computational complexity, we use a robustness framework to design a “simple” history-independent

signaling mechanism that approximately achieves optimal payoff when 3 is reasonably large.

1 Introduction

Many platform services and markets involve freelance service providers (drivers in ride-hailing mar-
kets, hosts in accommodation services, etc.) who make voluntary decisions on when and where to
provide their services, at what quality, and at which price. Often, the participants of these platforms
lack all the necessary information about the system (overall demand, demand imbalances, etc.) to
act optimally. Given that the platform is typically better informed, many of them provide recom-
mendations to the participants on their actions in the system. For example, ride-hailing platforms
such as Uber and Lyft share real-time demand information with drivers to enable them to make
repositioning decisions. In such settings, the participants’ actions not only affect their and the plat-
form’s immediate rewards, but also impact the evolution of the system state. Given this dependence,
a central question is to understand how the platform can make these recommendations taking into
account the participants’ incentives as well as long-term objectives like welfare and revenue.

To study such settings, we consider a model of Markovian persuasion [Wu et al., 2022, Gan et al.,
2022, Ely, 2017, Farhadi and Teneketzis, 2022, Lehrer and Shaiderman, 2022], where a single long-
lived sender seeks to persuade a stream of short-lived receivers by sharing information about
a payoff-relevant state. The state transitions are assumed to be Markovian, where the system’s
next state is fully determined (stochastically) by the current state and the receiver’s action. The
state of the system is observable to the sender but not to the receivers. In line with the liter-
ature [Kamenica and Gentzkow, 2011, Bergemann and Morris, 2019], we assume that the sender



2 Krishnamurthy Iyer, Haifeng Xu, and You Zu

commits to a signaling mechanism, which recommends an action based on the current state and
the history of the process. The receivers are myopic, and choose an action that maximizes their
expected payoff under their posterior beliefs given the recommendation. The goal of the sender is
to maximize the long-run average reward.

In such settings, given the underlying Markovian dynamics, the effectiveness of persuasion is
impacted by the receivers’ knowledge of the history. Past analyses of Markovian persuasion settings
either assume the receivers have exogenous beliefs [Gan et al., 2022, Wu et al., 2022], or assume that
the receivers have no information about the history [Lingenbrink and Iyer, 2019, Anunrojwong et al.,
2022].3 However, from a practical perspective, both these assumptions are restrictive. In particular,
the participants in a platform typically have beliefs that are influenced by their past experiences
therein. Furthermore, these participants are likely to have some limited information of the history.
For instance, in a ride-hailing setting, a driver, in addition to knowing the typical demand patterns
at different locations, may also have some stale historical information about demand at a particular
location from having dropped off a rider there earlier. In order to ensure that the driver heeds a
recommendation to move to that location, a platform must take into account the existence of such
limited historical information.

In this paper, we seek to understand the sender’s persuasion problem when receivers may have
limited information about the history. To do this, we define the notion of an information model ,
which specifies how each receiver’s belief (prior to receiving a recommendation) is related to the
history of the process. In addition to the full-history information model §full (where the receivers
observe the entire history) and the no-history information model §no (where receivers have no
historical information), we consider a sequence §3 of partial-history information models where each
receiver observes the history of the system with an 3 periods lag, for some fixed 3 g 1. These
partial-history information models provide lower-bounds on the sender’s payoff in more complex
information models, and thus serve as a standard for comparison.

Our main contributions are as follows:

1. Establishing benchmarks. We begin with the analysis of the two benchmark information mod-
els, i.e., no-history and full-history information. We prove that, under the no-history information
model, the optimal signaling mechanism is history-independent, whereas in the full-history in-
formation model, the optimal mechanism depends on the current state as well as the previous
state-action pair. Consequently, these characterizations allow us to formulate the sender’s per-
suasion problem as a succinct linear program under both information models.

2. Ordering and solving partial-history information models. We then analyze the sequence
of partial-history information models §3. We show that the sender’s optimal payoff under any
such model is less than that under the no-history information model §no, but greater than that
under full-history information model §full. Moreover, we show that the sender’s optimal payoff
increases as the lag 3 increases. We then identify sufficient conditions on the model primitives
that ensure that the sender’s optimal payoff in the two benchmark information models are equal
and hence partial information about the history on the receivers’ part has no adverse impact
on the sender’s payoff. Nevertheless, we show that the analysis of the persuasion problem in
the information models §3 presents technical intricacies that leaves open even the question
of existence of an optimal signaling mechanism. Due to this, we study the sender’s problem
restricting attention to signaling mechanisms that only depend on a fixed length of past history.

3 Few works assume that the receivers observe past signals but not past states [Ely, 2017, Farhadi and Teneketzis,
2022, Renault et al., 2017, Ashkenazi-Golan et al., 2022]; Lehrer and Shaiderman [2022] allows for stochastic reve-
lation of past states. However, all these papers study the specialized setting where the state evolves independently
of the receivers’ actions.
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Here, we show that the sender’s problem can be written as a bilinear program, whose size grows
exponentially in the lag 3. This suggests that solving to optimality the sender’s problem in the
partial-history information models can be computationally challenging as well.

3. Simple and approximately optimal persuasion. Due to the complexity of solving the
persuasion problem optimally under partial-history information models, we take an alternative
approach and ask whether simple history-independent mechanisms can achieve approximately
optimal payoffs while simultaneously being persuasive under limited historical information. Us-
ing the underlying Markovian dynamics and a robust persuasion approach [Zu et al., 2021], we
answer the preceding question positively. In particular, we construct a history-independent sig-
naling mechanism whose payoff is close to the optimal payoff under the no-history information
model, and which is simultaneously persuasive in information models §3 for all large enough 3.
To obtain this construction, we prove an extension of the splitting lemma [Aumann et al., 1995,
Kamenica and Gentzkow, 2011] to Markovian settings.

Our results contribute to the literature on information design and persuasion in dynamic settings,
with endogenous beliefs of the receivers. From a theoretical perspective, our results establish the
effectiveness of simple history-independent signaling mechanisms in such settings. Furthermore, our
results highlight the importance of robustness in designing signaling mechanisms; when participants
in a platform may have limited historical information, a simple but robust signaling mechanism can
achieve good performance while being persuasive.

2 Literature Survey

Our work contributes to the study of Bayesian persuasion [Kamenica and Gentzkow, 2011, Bergemann and Morris,
2016, 2019, Dughmi, 2017] in dynamic settings. Specifically, our work relates to the following streams
of literature.

Markov persuasion. A number of papers have looked at persuasion problems where the
state evolves according to Markov chain. We discuss a few that are close to our setting. Gan et al.
[2022] study an infinite-horizon dynamic persuasion setting where the sender can observe the payoff-
relevant parameter and recommends actions to the uninformed receivers to maximize the sender’s
cumulative rewards. They consider two types of receivers (myopic and far-sighted) and show that
when the receivers are myopic, the optimal signaling strategy can be computed in polynomial time
by solving a linear program. But in the setting where the receivers are far-sighted, it is NP-hard
to find an approximately optimal policy. A crucial difference between our model and theirs is that
in our model, the receivers’ belief is endogenously determined by the sender’s signaling mechanism,
while in their model, the receiver’s belief about the external parameter is exogenous and known to
the sender.

Wu et al. [2022] focus on a finite-horizon Markov persuasion process where a single long-lived
sender seeks to persuade a stream of myopic receivers to maximize the cumulative rewards. The state
of the world is seen by both the sender and receiver while the uncertain outcome that affects the
transition probability is only known to the sender. The authors use a reinforcement learning approach
to design an online learning algorithm that achieves O(

:
T ) regret. Similar to the work [Gan et al.,

2022], the receiver’s prior belief about the state is an exogenous common prior distribution. They
study a finite-horizon Markov persuasion process while we consider the infinite time horizon.

Bernasconi et al. [2022] study sequential persuasion problem where the sender seeks to persuade
the far-sighted receiver by sharing the payoff-relevant state. The sender can observe the realization
of the state, but neither the sender nor the receiver knows the state distribution. They show that
without the knowledge of the state distribution, no algorithm can be persuasive at each round with
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high probability. The setting is different from ours because the transition probability is common
knowledge, and the receivers are myopic and short-lived in our setting.

Also relevant to us is the recent line of work on dynamic Bayesian persuasion, where the state
evolves according to a Markov chain. Ely [2017], Renault et al. [2017], Farhadi and Teneketzis [2022]
study the dynamic Bayesian persuasion problem between two long-lived players. To reiterate, in
these works, the receiver’s actions do not affect the state transitions. Ely [2017] show that the
sender’s optimal strategy is myopic. Namely, the sender’s optimal strategy ignores the effect of the
sender’s signals on the receiver’s future belief. A generalization is the work by [Ashkenazi-Golan et al.,
2022]. They study the dynamic persuasion problem with binary states and any finite number of ac-
tions. The authors show that the sender’s optimal strategy involves only two types of distribution of
induced beliefs depending on the receiver’s belief at each round. Renault et al. [2017], who consider
a similar setting propose a greedy disclosure policy and prove that it is optimal when the initial
state is sufficiently close to the invariant distribution of the Markov chain. Farhadi and Teneketzis
[2022] study the setting in the finite time horizon and propose a time-varying optimal strategy for
the sender. Lehrer and Shaiderman [2022] study the setting where the sender observes the state but
the receivers randomly observe it. In contrast to these works, our model assumes that the receiver’s
actions affect the state evolution. Other papers also study dynamic persuasion for various appli-
cation contexts, such as [Li and Norman, 2021, Wu, 2021, Board and Lu, 2018, Orlov et al., 2020,
Bizzotto et al., 2021, Alizamir et al., 2020].

As examples of Markovian persuasion where the receivers have no information about the history,
Lingenbrink and Iyer [2019] study the information-sharing problem in a single-server queue offering
services at a fixed price. The service provider observes the queue and shares the information with
the delay-sensitive Poisson arriving customers. The authors formulate the service providers’ decision
problem of maximizing the revenue as an infinite linear program. A similar approach is taken by
[Anunrojwong et al., 2022] to study information design to manage congestion in queues.

Robust persuasion. Because our proposed signaling mechanism in the partial-history infor-
mation model relies on the robust persuasion framework, our work also relates to robust persuasion.
Zu et al. [2021] study a repeated Bayesian persuasion problem where neither the sender nor the
receiver knows the payoff-relevant state distribution. They propose a robust signaling mechanism
that recommends persuasive recommendations at all rounds with high probability and achieves
O(

:
T log T ) regret. For our robustness results, we extend their approach to settings where the

receivers’ beliefs are endogenous.

Kosterina [2022] study a persuasion setting without the common prior assumption. In particular,
the sender has a known prior, whereas only the set in which the receiver’s prior lies is known to the
sender. The sender evaluates the expected utility under each signaling mechanism concerning the
worst-case prior of the receiver. Ui [2022] study the optimal robust public information sharing where
the sender discloses public information with receivers who also acquire costly private information.
The sender is uncertain about the precision and the cost of the private information. Similarly,
Hu and Weng [2021] study the problem where the receiver may have exogenous private information
unknown to the sender. The sender seeks to maximize her expected payoff under the worst-case
payoff across the receiver’s possible private belief distributions and then, among them, chooses the
one that maximizes the expected utility under her conjectured prior. Dworczak and Pavan [2022]
share a similar angle. Both works focus on static persuasion models with robustness to exogenous
receiver beliefs whereas our model focuses on robust persuasion with the endogenous receivers’
beliefs in sequential setups. Finally, there are also studies of robust persuasion with respect to
receiver payoffs (e.g., [Babichenko et al., 2022]), though these are less relevant to the present work.
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3 Model

Informally, we study a dynamic persuasion setting between a long-lived sender and a stream of short-
lived receivers where the underlying payoff-relevant state evolves as a Markov persuasion process. At
each time t, a new receiver arrives to whom the sender, after observing the current state, recommends
an action. The receiver then chooses an action, possibly different from the sender’s recommendation,
after which the state updates according to a Markov transition kernel which is common knowledge
among the sender and the receivers. Each receiver seeks to maximize the expected utility with
respect to her (posterior) beliefs, given the sender’s recommendation and her (partial) information
about the history of the process. The sender’s problem, our object of investigation, is to decide
how to recommend actions that maximize her long-run average payoff. We now describe this model
formally.

We consider a sequential setting where at each time t * Z, the payoff-relevant state is given
by Ë̄t * '. Here ' is a finite set of states. We denote the signal shared by the sender as s̄t * S,
and the action chosen by the receiver as āt * A, where again S is a finite set of signals and A is a
finite set of actions. (We describe how the sender shares the signals and how the receivers choose
their actions in detail below.) The state evolution is Markovian given the receiver’s action: P(Ë̄t =
Ë|h̄t) = p(Ë|Ë̄t21, āt21) for each Ë * ', where h̄t denotes the history at time t, i.e., the infinite
sequence of state, action and signals up to (but not including) time t. Here, p : ' ×' ×A ³ [0, 1]
is a stationary Markovian transition kernel, with p(Ë2|Ë, a) denoting the probability of the state
transitioning from Ë̄t21 = Ë to Ë̄t = Ë2 after the receiver takes action āt21 = a. At the end of
each time t, the corresponding receiver obtains a payoff given by u(Ë̄t, āt) * R, whereas the sender
obtains a reward given by v(Ë̄t, āt) * [0, 1].

3.1 Signaling Mechanisms

We assume that at each time t the sender observes the history h̄t and the current state Ë̄t. On the
other hand, the receiver at time t does not observe the current state, but, as we discuss later, may
have some information about the history. To convey payoff-relevant information about the state
at each time t, the sender shares a private signal s̄t to the corresponding receiver. In particular,
the sender commits to sharing these signals using a signaling mechanism, which in general, maps
the history h̄t and the state Ë̄t at any time t to a signal s̄t. However, we circumscribe the class of
signaling mechanisms in the following ways. First, we restrict our attention to signaling mechanisms
that depend only on a finite part of the history at each time. While this assumption is primarily
motivated by practical concerns, it also allows us to avoid some technical issues in defining the
sender’s long-run average payoff if the signaling mechanism depends on the infinite history. Second,
we assume that the signal at each time t depends only on the historical state-action pairs, and not on
the past signals. This assumption ensures that we do not implicitly induce dependence on the infinite
history via past signals. Finally, we focus on direct signaling mechanisms [Bergemann and Morris,
2019] where the sender shares signals that are action recommendations, i.e., S = A.

Given our assumption that signals are private, it follows by the revelation principle [Ely, 2017]
that considering direct signaling mechanisms is without loss of generality. Further, it is sufficient to
restrict our attention to direct signaling mechanisms that are persuasive, i.e., ones where the action
recommendations are optimally adopted by the receivers. In such settings, the information in past
signals is already contained in the past actions, and hence the assumption that the signals only
depend on past state-action pairs is not restrictive. Thus, the main restrictive assumption we make
is that the signals only have finite history dependence.

Before formalizing the preceding discussion, we introduce some notation to simplify some cum-
bersome expressions. We let X = ' × A denote the set of state-action pairs, and we denote a
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generic element of X by x = (Ë, a). Thus, x̄t = (Ë̄t, āt) * X denotes the state-action pair at time
t, and p(Ë2|x) with x = (Ë, a) stands for p(Ë2|Ë, a). Next, for any k g 1 and at any time t, a slice
of history h̄kt of length k describes the sequence of states-action pairs in the past k time periods:
h̄kt = (x̄t2k, . . . , x̄t21) * X k. We denote a generic element of X k by hk = (x2k, . . . , x21). Finally, we
let X 0 denote the singleton set consisting of the unique (empty) slice of history of length zero.

A signaling mechanism is a mapping Ã : X k×' ³ &(A) (for some k g 0) that specifies for each
hk * X k and Ë * ', the probability Ã(a|hk, Ë) with which the sender shares the signal s̄t = a * A
if the (slice of) history is h̄kt = hk and the current state is Ë̄t = Ë. We let £k denote the set of all
signaling mechanisms that depend only on history slices of length k, and let £ = *kg0£k. The set
£0 contains the signaling mechanisms that do not depend on the history.

3.2 Beliefs and Persuasiveness

Next, we describe the notion of persuasiveness as applied to signaling mechanisms. To do this, we
need to model the receivers’ beliefs about the history of the process, which in general depends
endogenously on how much information they have about the past. We capture this endogenous level
of historical information through the concept of an information model (see Section 3.4). However, to
develop our concepts, we will initially consider the receiver’s prior beliefs as exogenously specified.

Suppose the sender commits to a signaling mechanism Ã * £k for some k g 0. Fix a time t, and
let the corresponding receiver’s belief over the history h̄t and the current state Ë̄t (prior to receiving
any signal) be denoted by Çt. Then, upon receiving an action recommendation s̄t = a, the receiver’s
posterior belief that Ë̄t = Ë can be found using Bayes’ rule as

F (Ë|a;Çt, Ã) =

∑
hk Çt(h

k, Ë)Ã(a|hk , Ë)∑
Ë2

∑
hk Çt(hk, Ë2)Ã(a|hk, Ë2)

.

Here, Çt(h
k, Ë) denotes the receiver’s marginal belief that the history slice of length k is h̄kt = hk *

X k and the state is Ë̄t = Ë. The receiver then chooses an action that maximizes their expected
utility under their posterior belief F (·|a;Çt, Ã). We say the signaling mechanism Ã is persuasive
w.r.t. the belief Çt, if the recommended action s̄t = a is optimal for the receiver, i.e., the following
inequality holds:

∑

Ë

F (Ë|a;Çt, Ã) "u(Ë, a, a
2) g 0, for all a, a2 * A,

where "u(Ë, a, a2) := u(Ë, a) 2 u(Ë, a2) denotes the incremental payoff for the receiver for choosing
action a * A over action a2 * A at state Ë * '. The inequality states that the receiver’s expected
utility with the action a is higher than that with a2 when action a is recommended.

More generally, let § = {Çt : t * Z} denote the sequence of receivers’ beliefs at each time t * Z.
For any such sequence §, the set Pers(§) of persuasive signaling mechanisms contains all signaling
mechanisms Ã that are persuasive w.r.t. Çt for each t * Z. We note that the set Pers(§) is non-empty,
since the mechanism that recommends the receivers’ preferred action at each state is persuasive for
sequence §.

3.3 Invariant Distribution

As a step towards describing the models of endogenous historical information held by the receivers,
we next analyze the induced dynamics under a signaling mechanism to characterize its invariant
distribution. Suppose the sender chooses a signaling mechanism Ã * Pers(§)+£k for some k g 0 and
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that the receivers follow the sender’s recommendations. For k g 1, the induced process dynamics
can be described as a Markov chain with states given by slices h̄kt * X k. An invariant distribution
Ã * &(X k) of this chain satisfies the following balance equations:

∑

x2k*X

Ã(x2k, h
k21)p(Ë|x21)Ã(a|(x2k, h

k21), Ë) = Ã(hk21, Ë, a), (1)

for each hk21 = (x2(k21), . . . , x21) * X k21 and (Ë, a) * X . Here, the left-hand side expression

gives the probability that the slice h̄kt+1 equals (hk21, Ë, a) after a Markovian transition if the slice
h̄kt = (x2k, h

k21) is distributed as Ã and the receiver at time t follows the sender’s recommendation.
The equality then just states the fact that for an invariant distribution, this distribution must be
Ã itself. For k = 0, the induced process dynamics can be described as Markov chain with states
(Ë̄t21, āt21) = h̄1t * X , and the balance equation for an invariant distribution Ã * &(X ) given by

∑

x21*X

Ã(x21)p(Ë|x21)Ã(a|Ë) = Ã(Ë, a), for all (Ë, a) * X .

Since the state of the induced Markov chain includes the receivers’ actions, in general there might
be multiple invariant distributions Ã corresponding to a signaling mechanism. (As a trivial example,
consider a setting with ' = {0}, A = {0, 1} and a receiver who is indifferent between the two
actions. Let Ã * £1 be a signaling mechanism that sends signal s̄t = 0 if (Ë̄t21, āt21, Ë̄t) = (0, 0, 0)
and sends signal s̄t = 1 if (Ë̄t21, āt21, Ë̄t) = (0, 1, 0). Then, any distribution over X is an invariant
distribution under Ã.) Hereafter, in cases where there are multiple invariant distributions, we focus
on the one under which the sender’s expected reward is maximized (with ties broken arbitrarily).
We denote such a distribution by Inv(Ã). Note that this assumption is aligned with the notion of
sender-preferred equilibrium common in the persuasion literature [Kamenica and Gentzkow, 2011].

Below, we abuse the notation slightly by letting Ã = Inv(Ã) also denote the distribution of the
Markov process induced under a signaling mechanism Ã * £k, i.e., the distribution of the entire
history h̄t at each time t. Furthermore, for any 3 g 1, we let Ã(h3) denote the (marginal) distribution
of a slice of history h̄3t .

3.4 Modeling Receivers’ Endogenous Information

We now formally describe the notion of an information model, which captures the receivers’ en-
dogenous information about the historical evolution of the process. We consider two benchmark
settings, one where each receiver fully observes the history, and the other where the receivers have
no information about the history. In addition, we consider a sequence of settings where the receivers
have partial information about the history.

In general, when receivers have information about the history, the belief sequence § = {Çt : t *
Z} itself will depend on the process. The nature of this dependence is determined by the amount of
information the receivers have about the past.

1. Full-history information model: To motivate the notion, fix a signaling mechanism Ã * £
and consider first the setting where at each time t, the corresponding receiver has complete
knowledge of the history h̄t. Then, the receiver’s belief Çt over (h̄t, Ë̄t) must put all its weight
on the realized value of h̄t. In other words, we have for all t * Z,

P
Ã
(
Çt = eh · p(·|x21)

∣∣ h̄t = h, Ë̄t = Ë
)
= 1, for all h * X> and Ë * ',
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where eh is the distribution that puts all its weight on h = (. . . , x22, x21) * X>, and eh·p(·|x21)
encodes the fact that the receivers’ belief about Ë̄t comes from the resulting Markovian transition
p(·|x21). (Here, P

Ã denotes the probability measure induced by the signaling mechanism Ã
together with the underlying Markovian dynamics, assuming that the receivers adopt the sender’s
recommendations.) When the preceding condition holds, we denote the resulting belief sequence
{Çt : t * Z} by §full and call it the full-history information model.

2. No-history information model: At the other extreme, consider the case where the receivers
have no information about the history of the process. Then, at any time t, the receiver’s belief Çt

must be independent of the realized history. A natural approach, motivated by the requirement
of consistency,4 is to let each belief Çt equal the invariant distribution Inv(Ã). Specifically, we
have for each t * Z,

P
Ã
(
Çt = Inv(Ã) · P

∣∣ h̄t = h, Ë̄t = Ë
)
= 1, for all h * X> and Ë * '.

Here, Inv(Ã)·P encodes the distribution of (h̄t, Ë̄t) where the history h̄t is distributed as Inv(Ã),
and the state Ë̄t is obtained from a subsequent transition from the Markov kernel P . For the
setting where the preceding condition holds, we denote the belief sequence {Çt : t * Z} by §no

and call it the no-history information model.

3. Partial-history information models: Between the two extremes described above lie a multi-
tude of information models where receivers possess partial information about the process history.
In such partial-history models, the belief sequence Çt would have a complex dependence on the
history h̄t. Although a comprehensive analysis of all such models is beyond the scope of this
paper, we focus on a particular sequence of information models to capture realistic scenarios
where the receivers may have some stale information about the process.5

Specifically, for a fixed 3 g 0, consider the setting where the receivers observe the process with
an 3-period lag. In other words, at each time t, the receiver observes the history h̄t23, i.e., all
the state-action pairs before time t2 3. Then, we have for each t * Z,

P
Ã
(
Çt = eh23

· P 3
Ã · P

∣∣ h̄t = h, Ë̄t = Ë
)
= 1, for all h * X> and Ë * '.

Here, eh23
is the distribution that puts all its weight on the realization h̄t23 = h23, P

3
Ã encodes

the subsequent 3 transitions of the process, i.e., the distribution of (x̄t23, . . . , x̄t21) under the
signaling mechanism Ã, and finally, the kernel P captures the subsequent distribution of the Ë̄t.
When the preceding holds, we denote the resulting belief sequence {Çt : t * Z} as §3, and call
it the partial-history information model with lag 3. We note that §0 is same as the full-history
information model §full.

An advantage of studying the sequence {§3}3g0 of information models is that they serve as a
standard of comparison for other more complex information models. In particular, one can show
that the sender’s payoff under the information model §3 acts as a lower-bound on her payoff
in settings where the receivers only have limited, but arbitrary, information about states and
action 3 periods and further back. Thus, while we do not capture all possible partial-history
information models, our choice provides a lower bound of many other information models and
gives insight into the problem’s fundamental difficulty.

4 In certain cases, this modeling assumption can be established formally. For instance, if time periods denote the
Poisson arrival times of receivers to a stochastic system, then the receivers observe the system distributed as the
time-average [Wolff, 1982], which equals the expectation w.r.t. the invariant distribution when the latter is unique.

5 Such stale information about the process could plausibly arise from the receivers having interacted with the process
in the past; however, we do not consider such repeated interactions in our model.



Markov Persuasion Processes with Endogenous Agent Beliefs 9

3.5 Sender’s Persuasion Problem

Finally, we are ready to formally describe the sender’s persuasion problem. We focus on settings
where the sender seeks to maximize the long-run average reward over the infinite horizon. Given
the Markovian state-evolution, this is equivalent to the sender choosing a signaling mechanism to
maximize the expected rewards under the resulting invariant distribution. Formally, we denote the
sender’s problem under the information model § as

MPP(§) := max
Ã,Ã

E
Ã[v(Ë, a)]

subject to, Ã * Pers(§) +£, Ã = Inv(Ã), (2)

and let OPT(§) denote its optimal value. Furthermore, for k g 0, we analogously define MPP(§,£k)
(and OPT(§,£k)) as the sender’s problem (and its optimal value) when the signaling mechanism
is restricted to lie in the set £k. In the preceding optimization problem, unlike a static persuasion
problem, the expectation in the objective is taken with respect to the invariant distribution Ã which
is in turn determined by the signaling mechanism Ã.

Hereafter, we make the following standard unichain assumption [Puterman, 2014, Tsitsiklis,
2007], which is common in the analysis of average-reward Markov decision processes. To state
formally, a stationary Markovian policy is a decision rule that chooses a possibly randomized action
based solely on the current state. Such a policy naturally induces a Markov chain over the state
space. The unichain condition requires the induced Markov chain to have a single ergodic class.

Assumption 1 (Unichain). Under any stationary Markovian policy, the resulting Markov chain
has a single ergodic class, i.e., it is aperiodic and irreducible.

This assumption ensures that the invariant distribution under any signaling mechanism Ã * £0,
assuming the receivers adopt the recommendations, is unique, and thus the long-run averages are
independent of the initial conditions.

4 Benchmarking Markovian Persuasion with Historical Information

With the goal towards studying the sender’s persuasion problem in general information models, we
first analyze the sender’s problem (2) under the benchmark full-history and no-history information
models. As we show later, the sender’s optimal payoff in the two benchmark models provide bounds
on the sender’s optimal payoff in partial-history information models. Moreover, the results here set
the stage for our subsequent analysis of the partial-history information models.

4.1 Analysis of the Benchmark Information Models

Our analysis of the benchmark information models begins with the following lemma, which estab-
lishes that in each case, there exists an optimal signaling mechanism that is fairly simple, and
does not heavily depend on the history. In particular, the optimal mechanism under the no-history
information model §no is history-independent, whereas it additionally depends on the previous
state-action pair under the full-history information model §full.

Lemma 1. In the no-history information model §no, there exists an optimal signaling mechanism
Ã that is history-independent, i.e., Ã * £0. Similarly, under the full-history information model §full,
there exists an optimal signaling mechanism Ã * £1, which depends only on the current state and
the previous state-action pair.



10 Krishnamurthy Iyer, Haifeng Xu, and You Zu

The proof uses the underlying Markovian dynamics of the process, and is provided in Appendix A
(as are the proofs are of all results in this section). Most importantly, the lemma allows us to show
that the sender’s problem (2) in the benchmark settings can be formulated as a polynomially-sized
linear program. This LP formulation plays a key role in particular in Proposition 2, where we
characterize sufficient conditions under which the sender’s optimal payoffs in the two benchmark
information models are equal.

To obtain the LP formulations, we begin by recalling that under the information model §no

and with a signaling mechanism Ã * £0, the states Ë̄t * ' form a Markov chain. On the other
hand, for a signaling mechanism Ã * £1 under the model §full, the induced Markov chain can be
described with states (x̄t21, Ë̄t) * X ×'. We now introduce some notation to unify the presentation.
First, define Xfull := X and Xno = {æ}. For i * {full, no}, define the corresponding state space
Wi := Xi × '. Let v(w, a) = v(Ë, a) for w = (x, Ë) * Wi, and extend u(w, a) and "u(w, a, a2) for
w * Wi similarly. Next, for w, ŵ * Wi, with w = (x21, Ë) and ŵ = (x̂21, Ë̂), we define the transition
kernel p(w|ŵ, â) := p(Ë|Ë̂, â)I{x21 = (Ë̂, â) or x21 = æ}. Finally, for x * Xi and w = (x21, Ë) * Wi,
define D(x,w) := I{x = x21}.

With these notation in place, for i * {full, no}, we consider the following linear program LP(i)
with variables z(w, a) with w * Wi and a * A.

LP(i) := max
zg0

∑

w*Wi

∑

a*A

z(w, a)v(w, a)

∑

w*Wi

z(w, a)D(x,w)"u(w, a, a2) g 0, for all a, a2 * A and x * Xi

∑

ŵ*Wi

∑

â*A

z(ŵ, â)p(w|ŵ, â) =
∑

a

z(w, a), for all w * Wi

∑

w*Wi

∑

a

z(w, a) = 1. (3)

To interpret the linear program LP(i), we focus on the full-history information model §full, and
consider a persuasive signaling mechanism Ã * £1. Then, writing the balance equations (1) for the
invariant distribution Ã * Inv(Ã), we obtain

∑

Ë21,a21

Ã(Ë21, a21)p(Ë|Ë21, a21)Ã(a|Ë21, a21, Ë) = Ã(Ë, a).

Since this equation is bilinear in Ã and Ã, we introduce the variables z(w, a) for w = (Ë21, a21, Ë)
to denote the summands on the left-hand side of the preceding equation, and note that z con-
stitutes the joint distribution of two consecutive state-action pairs (x̄t21, x̄t) under the signaling
mechanism Ã. These variables are readily seen to satisfy the two equalities in LP(full). Assuming
Ã is persuasive under §full then yields the inequality. Thus, the variables z(w, a) defined above are
feasible for LP(full). We obtain the following proposition upon showing the converse, i.e., for any
z feasible for LP(full), there exists a signaling mechanism Ã * £1 persuasive under the full-history
information model §full satisfying the equation z(w, a) = Ã(Ë21, a21)p(Ë|Ë21, a21)Ã(a|Ë21, a21, Ë)
(and a similar statement for the §no case).

Proposition 1. For i * {full, no}, the sender’s problem MPP(§i) can be equivalently formulated
as the corresponding linear program LP(i). In particular, for any optimal solution z7i of LP(i) the
signaling mechanism Ãi, defined as,

Ãi(a|w) :=
z7i (w, a)∑
a2 z

7
i (w, a

2)
, for all w * Wi and a * A,
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(if the denominator is positive; otherwise, recommending the receivers’ preferred action), is optimal
for the problem MPP(§i).

Note that the linear program LP(i) has O(|Wi|·|A|) variables and O(|A|2 ·|Xi|+|Wi|) constraints.
Thus, for the no-history information model §no, the linear program LP(no) has O(|'| · |A|) variables
and O(|A|2+|'|) constraints, whereas for the full-history information model §full, the linear program
LP(full) has O(|'|2 · |A|2) variables and O(|'|2 · |A|3) constraints. Together, the preceding result
establishes that, not only the sender’s problem in the benchmark models has a simple LP formulation,
but also that they can be solved efficiently. As we discuss later in Section 5.1, this is in stark contrast
to the case under partial-history information models.

4.2 Ordering and Bounding Partial-history Information Models

Our next result justifies our choice of the two benchmarks, by showing that there is a natural
nested order relating the different information models, with the two benchmark models occupying
the extremes.

Lemma 2. For 3 g 0, we have Pers(§full) ¦ Pers(§3) ¦ Pers(§3+1) ¦ Pers(§no) and consequently,
OPT(§full) f OPT(§3) f OPT(§3+1) f OPT(§no).

Intuitively, the result follows from the fact that with less information available to the receivers,
the sender’s ability to persuade them improves. Formally, this result is established by showing, e.g.,
that any signaling mechanism that is persuasive under the model §full remains persuasive under the
model §no, because the sender can always share additional historical information if needed. Thus,
the result implies a trade-off: by choosing the optimal signaling mechanism for the model §full, the
sender can simultaneously be persuasive for all the partial-history information models §3, but at
the cost of lower payoffs. We illustrate the magnitude of this trade-off in the following example.

Example 1. Consider a setting with ' = {0, 1} and A = {0, 1}. The receivers’ utility is given by
u(Ë, a) = I{Ë = a}, i.e., the receiver desires to match the action with the state. The sender strictly
prefers the receiver choosing action a = 1 over action a = 0 in all states, i.e., v(Ë, a) = I{a = 1}
for all Ë. The transition probabilities are such that when taking action a = 0, the state remains
the same with probability 0.8 and switches with probability 0.2, whereas when taking action a = 1,
the state switches with probability 0.8 and stays the same with probability 0.8. By solving the LP
formulations in the preceding section, we find that the sender’s optimal payoff in the no-history
information model equals OPT(§no) = 1, i.e., when the receivers have no historical information,
the sender can persuade the receivers to always choose her preferred action a = 1. On the other
hand, when the receivers can observe the complete history, the sender obtains a strictly lower payoff,
namely OPT(§full) = 0.52.

Thus, the example shows that, in general, the sender’s optimal payoff significantly depends on
the level of historical information the receivers possess. A natural question then is whether there
are conditions under which historical information does not affect the sender’s ability to persuade
the receivers. The following proposition characterizes one such sufficient condition.

To state the result, we need some definitions. Let Ã * £0 denote an optimal signaling mechanism
in the no-history information model §no. Note that under §no, the receivers’ prior beliefs equal the
invariant distribution Ã = Inv(Ã). For any action a * A recommended by the optimal signaling
mechanism, let µa denote the resulting posterior belief of such a receiver, and let Bno denote the set
of all posterior beliefs so induced. Finally, let Conv(Bno) denote the convex hull of Bno.
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Proposition 2. Suppose the set of posterior beliefs Bno induced by the optimal signaling mechanism
in the no-history information model §no is linearly independent. Furthermore, suppose the transition
kernels lie in the convex hull of these beliefs, i.e., we have p(·|x) * Conv(Bno) for all x * X . Then,
we have OPT(§no) = OPT(§full).

The proposition, together with Lemma 2, implies that when the conditions in the proposition
statement hold, the sender can achieve the same optimal payoffs no matter the level of historical
information possessed by the receivers. In particular, we have OPT(§3) = OPT(§no) for all 3 g
0. The proof of the proposition starts by writing the transition probabilities p(Ë|x) as a convex
combination

∑
a*A »(a|x)µa(Ë) of the beliefs in Bno. Then, we use these weights »(a|x) to explicitly

construct a signaling mechanism Ã̂ * £1 which is persuasive for the model §full, and induces the
same set Bno of posterior beliefs for the receivers with the same distribution, resulting in the same
payoff for the sender. Finally, observe that the beliefs µa * Bno can be easily computed from the
optimal solution of the linear program LP(no); thus, the sufficient conditions in the proposition
statement are straightforward to verify.

5 Optimal Persuasion in Partial-history Information Models via Robustness

We now turn to the study of optimal persuasion in the general partial-history information model.
We first discuss the technical intricacies in finding an optimal signaling mechanism for MPP(§3),
and the associated computational challenges for the problem MPP(§3, £k), which we formulate
as a bilinear optimization program. Given these challenges, we design an approximately optimal
signaling mechanism for MPP(§3) for large enough 3, that is “simple” in the sense that it is history-
independent and computationally efficient. Our key idea is to leverage the fast mixing property of
underlying Markov chains, whereby after sufficiently many transitions, the state distribution will be
close to, though not exactly the same as, the invariant distribution. To guarantee persuasiveness for
this distribution, it suffices for our design to simply guarantee robust persuasiveness for every belief
that is close to the invariant distribution. We show that such robust persuasiveness can be employed
to yield a simple and approximately optimal persuasion signaling mechanism for reasonably large
3.

5.1 Intricacies of Persuasion in Partial-history Information Models

Consider the sender’s persuasion problem MPP(§3) in the partial-history information model §3 for
general 3 g 1. In these models, the receivers neither have complete information about the history, nor
do they completely lack history information. As we show next, this intermediate level of historical
information makes the sender’s persuasion problem challenging and technically intricate. In fact,
even determining the degree of history dependence of the optimal signaling mechanism is difficult.
This intricacy presents itself even in the simplest partial-history information model, namely §1, as
we explain next.

Recall that in the model §1, the receivers observe the history with one-period lag, i.e., at time
t, the corresponding receiver observes the history h̄t21 at time t 2 1. Thus, this receiver knows
the realization of x̄t22 = (Ë̄t22, āt22), but does not know x̄t21 = (Ë̄t21, āt21) and Ë̄t. An initial
guess then is to consider signaling mechanisms in the set £2, i.e., ones that make recommendations
based on (x̄t22, x̄t21, Ë̄t). (This comports well with the full-history information model §full = §0,
where the optimal signaling mechanism lies in the set £1.) With such a choice of Ã, after seeing
h̄t22 = h22 = (. . . , x23, x22), the receiver’s belief about (x̄t21, Ë̄t) is given by

P
Ã
(
x̄t21 = x21, Ë̄t = Ë

∣∣ h̄t22 = h22

)
= p(Ë21|x22)Ã(a21|x23, x22, Ë21)p(Ë|x21).
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Thus, the receiver’s belief depends not just on x22, but also on the realization x23 of x̄t23. Requir-
ing the signaling mechanism Ã to be persuasive for different beliefs of the receiver corresponding
to different realization of x23, without depending on x23 explicitly, is unlikely to yield optimal-
ity. Consequently, one is tempted to consider signaling mechanisms Ã * £3, i.e., ones that make
recommendation based on (x̄t23, x̄t22, x̄t21, Ë̄t). However, a similar argument as above would im-
ply that for such signaling mechanisms, the receiver’s belief would depend on the realization of
(x̄t24, . . . x̄t22). In general, for any signaling mechanism Ã * £k with k g 1, the receiver at time t
has a different belief for different realizations of (x̄t2(k+1), . . . , x̄t22), but the signaling mechanism Ã
does not base its recommendation on the realization of x̄t2(k+1). Due to this mismatch of dependen-
cies, it is unclear what the right dependence of the optimal signaling mechanism is on the history,
or for that matter, even whether there exists an optimal signaling mechanism within the class £ of
signaling mechanisms.

Given the ambiguity regarding the degree of history dependence, one may instead consider
optimizing the sender’s payoff within a restricted subset £k of signaling mechanisms, for some fixed
k. However, even this restricted problem turns out to be computationally challenging since, unlike
the case for §full and §no, it does not reduce to a linear program. In particular, the following result
formulates the sender’s problem MPP(§1, £1) as a bilinear program.

Proposition 3. The sender’s problem MPP(§1, £1) can be formulated as the following bilinear
program:

max
zg0

∑

x22,x21*X

∑

Ë,a

z(x22, x21, Ë, a)v(Ë, a)

∑

x21*X

∑

Ë

z(x22, x21, Ë, a)"u(Ë, a, a
2) g 0, for all x22 * X and a, a2 * A.

∑

x23*X

z(x23, x22, x21)p(Ë|x21) =
∑

a*A

z(x22, x21, Ë, a), for all x22, x21 * X and Ë * '

∑

x22,x21,Ë,a

z(x22, x21, Ë, a) = 1

z(x22, x21, Ë, a) ·
∑

a2*A

z(x222, x21, Ë, a
2) = z(x222, x21, Ë, a) ·

∑

a2*A

z(x22, x21, Ë, a
2),

for all x222, x22, x21, (Ë, a) * X . (4)

To elaborate, for any Ã * £1, assuming the receivers follow the recommendation and given our
preceding discussion, the underlying process dynamics can be described as a Markov chain with
states given by slices h̄2t = (x̄t22, x̄t21). The balance equation for this chain’s invariant distribution
Ã * Inv(Ã) is given by

∑

x22*X

Ã(x22, x21)p(Ë|x21)Ã(a|x21, Ë) = Ã(x21, Ë, a),

for all x21 * X and (Ë, a) * X . As in the case for §full and §no, this equation is non-linear in Ã and
Ã. However, introducing the variables z(x22, x21, Ë, a) := Ã(x22, x21)p(Ë|x21)Ã(a|x21, Ë) no longer
yields a linear program, because of the restriction that Ã cannot depend on x22. In particular, the
non-linear equality constraint in (4) explicitly encodes the requirement that z(x22, x21, Ë, a)/

∑
a2*A z(x22, x21, Ë, a

is independent of x22.
A similar argument holds for any partial-history information model §3, where for any signal-

ing mechanism Ã * £k for k g 0, the belief of a receiver at time t depends on the realiza-
tion of (x̄t232k, . . . , x̄t2321), but the signaling mechanism Ã does not base its recommendation
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k 0 1 2 3 4

OPT(Φ1, Σk) 0.576 0.772 0.799 0.808 0.811

Fig. 1. (Example 1 contd.) Sender’s optimal payoff in MPP(Φ1, Σk) for different values of k. The optimal values
are obtained by numerically solving bilinear optimization programs analogous to (4) for different values of k. Here,
OPT(Φfull) = 0.52 and OPT(Φno) = 1.

on (x̄t232k, . . . , x̄t2k21). Again, the sender’s problem MPP(§3, £k) can be shown to be a bilinear
optimization problem, whose size is exponential in 3+ k. We skip the details for the sake of brevity.

The preceding discussion hints at a trade-off faced by the sender in the model §3 for some 3 g 1.
On one hand, the sender can adopt the optimal signaling mechanism for the full-history information
model §full, which is simple in that it only uses the previous state-action pair (and the current state)
to recommend an action, and is persuasive for the model §3, as shown in Proposition 2. However,
this simplicity may come at the cost of substantially lower payoffs, especially if 3 is large. On the
other hand, the sender may choose a large k and solve a non-linear program akin to (4) to find
the best signaling mechanism within the class k, which likely will yield higher payoffs, at the cost
of substantial computational complexity. (See e.g., Fig 1.) In the following section, we provide an
approach to overcome this trade-off, as long as one is satisfied with approximate optimality.

5.2 Approximately Optimal Persuasion via Robustness

In this section, we ask and answer the following questions: in partial-history information models, can
“simple” signaling mechanisms guarantee persuasiveness without sacrificing the sender’s payoff too
much? And if so, can we find such a mechanism in a computationally efficient manner? To answer
these questions positively, we take an approach inspired from robust persuasion [Zu et al., 2021].
Our starting point is the observation that, for a signaling mechanism Ã, if the underlying Markov
chain mixes rapidly, the belief of the receiver who has stale historical information must be close to
the invariant distribution Ã = Inv(Ã). Thus, if Ã is simultaneously persuasive for all distributions
close to Ã, it must be persuasive under the information models §3 for all large enough 3. Using this
insight, we explicitly construct a robustly persuasive history-independent signaling mechanism with
good payoff guarantees.

To begin, recall that for any history-independent signaling mechanism Ã * £0, assuming the
receivers follow the recommendation, x̄t = (Ë̄t, āt) * X forms a Markov chain. Let Ã = Inv(Ã); we
abuse the notation slightly by letting Ã also denote the marginal over Ë̄t, i.e., Ã(Ë) =

∑
a*A Ã(Ë, a)

for Ë * '. For ë g 0, let B1(Ã, ë) denote the set of all distributions µ * &(') that are ë-close to Ã
in 31-norm: B1(Ã, ë) := {µ * &(') : ‖µ2 Ã‖1 f ë}.

An ë-robustly persuasive signaling mechanism Ã * £0 is one whose recommendations would be
optimally adopted by any receiver whose prior belief about Ë̄t lies in the set B1(Ã, ë):

∑

Ë

µ(Ë)Ã(a|Ë)"u(Ë, a, a2) g 0, for all a, a2 * A and all µ * B1(Ã, ë),

where Ã = Inv(Ã). We denote the set of ë-robustly persuasive signaling mechanisms by RP(ë).
The value of ë captures the degree of robustness of a mechanism Ã * RP(ë), with smaller values
corresponding to lower robustness. Observe that for all ë g 0, we have RP(ë) ¦ Pers(§no)+£0, with
equality for ë = 0. Furthermore, the set RP(ë) is non-empty for all ë g 0, as it contains the signaling
mechanism that recommends an receiver-optimal action at each state.

Our next result describes the relation between RP(ë) and the set Pers(§3) for large 3. For Ã * £0

and 3 g 1, let Q3
Ã(x, Ë) := P

Ã(Ë̄3 = Ë|x̄21 = x) denote the distribution of Ë̄3 under Ã, given x̄21 =
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x * X . Define d3(Ã) as the maximum 31-distance between Q3
Ã(x) and Ã = Inv(Ã) over x * X :

d3(Ã) := sup
x*X

∥∥∥Q3
Ã(x)2 Ã

∥∥∥
1
= sup

x*X

∑

Ë

∣∣∣Q3
Ã(x, Ë)2 Ã(Ë)

∣∣∣ .

Finally, let ³æ(Ã) denote the absolute spectral gap [Levin and Peres, 2017] of the Markov chain {Ët}
under Ã and Ãmin(Ã) = minË Ã(Ë) > 0. We have the following result.

Lemma 3. Suppose the signaling mechanism Ã * £0 is ë-robustly persuasive for ë > 0. If 3 g 0

satisfies d3(Ã) f ë, then Ã * Pers(§3). In particular, Ã * Pers(§3) for all 3 g 1
³æ(Ã)

log
(

2
ëÃmin(Ã)

)
.

The proof of the bound in the lemma statement uses the unichain assumption (Assumption 1)
to bound the mixing time of the underlying Markov chain. The result implies that in order to find
a signaling mechanism in Pers(§3), it suffices to find a history-independent signaling mechanism in
the set RP(ë) for small enough ë. We highlight that the required value of ë decays exponentially in
3, and hence the robustness requirements are not too stringent.

Given this preceding result, we seek to identify a robustly persuasive mechanism with good
guarantees on the sender’s payoff. We prove such a result next. To state the result, we need a
definition. Define the sets Pa ¦ &(') as follows:

Pa :=

{
µ * &(') : a * argmax

a2
Eµ[u(Ë, a

2)]

}
.

In other words, Pa is the set of beliefs for which the receiver finds it optimal to choose action a.
Similar to Zu et al. [2021], we make the following regularity assumption on the receivers’ utility
function.

Assumption 2 (Regularity). There exists a positive constant D > 0 and beliefs ·a * Pa for
a * A such that B1(·a,D) ¦ Pa for each a * A, where B1(·,D) is an 31-ball of size D centered at
·.

The regularity assumption ensures that each action for the receiver is optimal for a set of beliefs
with non-zero (Lebesgue) measure. This ensures the exclusion of pathological instances, where there
is an action that is optimal for the receiver under a unique belief. Furthermore, Zu et al. [2021]
establish that the regularity assumption ensures that, in static problems, the cost of requiring
robustness scales linearly in the degree of robustness.

Next, let aË * A be a best response for a receiver at state Ë * ', i.e., aË * argmaxa*A u(Ë, a)
for each Ë * A. Let Pf (Ë, Ë

2) := p(Ë2|Ë, aË) denote the transition probability from state Ë to state
Ë2 on choosing the action aË, and let Pf denote the transition matrix of the underlying process.
Note that the unichain assumption implies that Pf is ergodic. Let ¿f * &(') denote the steady
state distribution under the transition kernel Pf . Furthermore, let Ç := maxË 1/¿f (Ë) denote the
maximum expected first return time across all states. Finally, let sf be the smallest positive singular
value of the matrix I 2 Pf .

With these definitions in place, we are now ready to present the main result of this section.

Theorem 3. For ë <
sfwminD

2(sf+2(1+Ç)
:

|'|)
, there exists a signaling mechanism Ã̂ * RP(ë) with the

sender’s payoff bounded below by
(
12 2ë

wminD

(
1 +

2(1 + Ç)
√

|'|
sf

))
·OPT(§no),

where wmin is the smallest positive probability of recommending an action under the optimal mecha-
nism under §no.
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The preceding result, together with Lemma 3, implies that for the partial-history model §3 with
large enough 3, the sender need not solve a non-linear program. Instead, the sender can use a sim-
ple history-independent signaling mechanism to obtain approximately optimal payoffs. The proof
involves an explicit construction of such a signaling mechanism Ã̂ * RP(ë). From a computational
perspective, constructing such a mechanism requires solving MPP(§no) (equivalently the linear pro-
gram LP(no)), and solving a separate linear program (13) with O(|'|) variables and constraints (see
Lemma 5 in Appendix B for details). Thus, not only the proposed mechanism obtains approximately
optimal payoffs, but it also can be computed efficiently.

To construct the mechanism Ã̂ * RP(ë) with good guarantees on the sender’s payoff, we use
a similar approach as in [Zu et al., 2021], where we first identify a set of beliefs that we seek to
induce as the receivers’ posterior beliefs under the constructed mechanism. These beliefs are chosen
to lie strictly in the interior of the sets Pa, to ensure that the actions remain optimal for all close-by
beliefs. However, unlike the static setting of [Zu et al., 2021], the endogeneity of the receivers’ prior
belief in our setting raises the question of whether there exists a mechanism that induces these
beliefs as posteriors. To exhibit such a mechanism, we prove the following analog of the splitting
lemma [Aumann et al., 1995, Kamenica and Gentzkow, 2011] for the Markovian persuasion setting,
providing conditions on a set of beliefs under which a signaling mechanism exists that induces those
beliefs as posteriors.

Lemma 4. For a finite set S, let {µs : s * S} be a set of beliefs, and for each s * S, let as * A be
such that µs * Pas . Suppose there exists a set of weights {ws g 0 : s * S} such that

∑
s*S ws = 1

and
∑

s*S

∑

Ë

wsµs(Ë)p(·|Ë, as) =
∑

s*S

wsµs.

Then, there exists a signaling mechanism Ã * £0, which sends signals s * S with probability Ã(s|Ë) =
wsµs(Ë)∑

s2*S ws2µs2 (Ë)
, such that under the no-history information model §no, the posterior belief of a receiver

on receiving signal s equals µs.
Conversely, for any signaling mechanism Ã * Pers(§no) + £0, there exists weights wa g 0 and

beliefs µa * Pa with
∑

a*A wa = 1 and
∑

Ë,a waµa(Ë)p(·|Ë, a) =
∑

a waµa, such that Ã(a|Ë) =
waµa(Ë)∑
a2 wa2µa2 (Ë)

.

With this splitting lemma in hand, we construct our robustly persuasive mechanism by prov-
ing the existence of weights satisfying the preceding condition. We provide the complete proof in
Appendix B.

6 Conclusion

We consider a Markovian persuasion setting between a single long-lived sender and a stream of
receivers, where the sender commits to a signaling mechanism to maximize the long-run average
reward. To capture settings where the receiver may have limited historical information, we analyze
a set of endogenous information models. We observe that the sender’s persuasion problem can
be posed as simple linear programs under the full-history and the no-history information models.
However, when the receiver has partial information about the history, the sender’s problem presents
technical intricacies, and is computationally challenging due to its non-linear nature. To overcome
this difficulty, we adopt a robust persuasion approach to construct a simple history-independent
signaling mechanism with strong guarantees on the payoff, that nevertheless is persuasive for all
models with sufficiently limited historical information. Furthermore, the robust mechanism can be



Markov Persuasion Processes with Endogenous Agent Beliefs 17

computed efficiently by solving simple linear programs. From a theoretical perspective, our work
highlights the trade-off between higher sender’s payoffs and being persuasive under a larger class of
information models.

We have focused on the setting where the sender seeks to maximize the long-run average payoff.
An alternative objective is to maximize the cumulative discounted reward. However, note that in
endogenous information models, the receivers’ belief is related to the invariant distribution of the
process, which equals long-run averages in stationary models. Thus, the persuasion problem with
discounted rewards is similar to a constrained Markov decision process where the objective involves
discounting and the constraint requires averaging. Even in the classical context of constrained MDPs,
problems with distinct discount factors in the objective and the constraints are challenging (note
that averaging can be interpreted as the limit where the discount factor converges to one). For
instance, Feinberg and Shwartz [1994, 1995] show that in such settings the optimal policy need not
be stationary. An additional complexity that arises with discounting rewards is the dependence on
the initial conditions. Given these challenges, a systematic analysis of Markov persuasion process
with endogenous beliefs and discounted rewards is an interesting direction for further theoretical
research.
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A Proofs from Section 4

A.1 Proofs from Section 4.1

Proof of Lemma 1. We prove the two statements corresponding to the no-history information model
§no and the full-history information model §full separately.

1. No-history information model §no: We prove the statement by showing that for any
Ã * £k +Pers(§no) for some k, there exists a Ã̂ * £0+Pers(§no) with the same payoff for the sender.

First, recall that in the no-history information model §no and under the signaling mechanism
Ã * £k * Pers(§no), the receiver’s prior belief is given by the invariant distribution Ã = Inv(Ã). Note
that Ã describes the invariant distribution of the slice h̄kt * X k under Ã. By abusing the notation,
we let Ã(Ë, a) :=

∑
hk21 Ã(hk21, Ë, a) also denote the marginal distribution of (Ë̄t, āt) under Ã.

Now, define the signaling mechanism Ã̂ * £0 as follows: for Ë * ' with
∑

a Ã(Ë, a) > 0, let

Ã̂(a|Ë) := Ã(Ë, a)∑
a2 Ã(Ë, a

2)
for a * A

and for any Ë * ' with
∑

a*A Ã(Ë, a) = 0, we let Ã̂ recommend the receiver-optimal action at Ë.
We first show that Ã̂ * &(X ) with Ã̂(Ë, a) := Ã(Ë, a) is an invariant distribution under Ã̂. To see

this, observe that if
∑

a*A Ã(Ë, a) > 0, we have

∑

x21*X

Ã̂(x21)p(Ë|x21)Ã̂(a|Ë) =

û
ý ∑

x21*X

Ã(x21)p(Ë|x21)

þ
ø Ã̂(a|Ë)

=

(
∑

a2

Ã(Ë, a2)

)
Ã̂(a|Ë)

= Ã(Ë, a)

= Ã̂(Ë, a).

Here, the first and fourth equality follows from the definition of Ã̂, the second follows from the fact
that Ã = Inv(Ã), and the third equality follows from the definition of Ã̂. Moreover, if

∑
a*A Ã(Ë, a) =

0, then
∑

x21*X
Ã(x21)p(Ë|x21) = 0, and Ã̂(Ë, a) = Ã(Ë, a) = 0, and hence the equality continues

to hold. Thus, Ã̂ satisfies the balance equations (1) under Ã̂, and thus, Ã̂ = Inv(Ã̂).
Finally, in the information model §no and under the mechanism Ãk, a receiver’s posterior belief

that Ë̄t = Ë after being recommended s̄t = a is given by

F (Ë|a;Çt, Ã) =

∑
hk Ã(hk)p(Ë|x21)Ã(a|hk, Ë)∑

hk

∑
Ë2 Ã(hk)p(Ë2|x21)Ã(a|hk, Ë2)

(5)

where Ã(hk) denotes the probability that the slice h̄kt = hk * X k under the invariant distribution
Ã = Inv(Ã). Summing the balance equation (1) for Ã over all values of hk21 * X k21, we obtain

∑

hk

Ã(hk)p(Ë|x21)Ã(a|hk, Ë) =
∑

hk21

Ã(hk21, Ë, a) = Ã(Ë, a).

Substituting in (5), we obtain F (Ë|a;Çt, Ã) = Ã(Ë,a)∑
Ë2 Ã(Ë2,a) = Ã̂(Ë,a)∑

Ë2 Ã̂(Ë2,a) = F (Ë|a;Çt, Ã̂), where the

last equality follows by a similar argument for Ã̂ in the model §no. Since the receivers have the same
belief under Ã and Ã̂, and further Ã * Pers(§no), we conclude that Ã̂ * Pers(§no). The result then
follows from the fact that the sender’s payoffs under the two mechanisms are equal.
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2. Full-history information model §full: The proof for the full-history information model fol-
lows along similar lines. Fix Ã * Pers(§full)+£k, and let Ã = Inv(Ã) denote its invariant distribution.
As before, we define a mechanism Ã̂ * £1 and show that it is persuasive under §full and achieves
the same payoff for the sender. Towards that end, let Ã(x21, Ë, a) denote the marginal distribution
under Ã that (x̄t21, Ë̄t, āt) = (x21, Ë, a) and define for x21 * X and Ë * ',

Ã̂(a|x21, Ë) :=
Ã(x21, Ë, a)∑
a2 Ã(x21, Ë, a2)

,

if the denominator is positive, and otherwise let Ã̂ recommend the receiver-optimal action at Ë.
Similarly, define Ã̂ * &(X ) to be Ã̂(Ë, a) :=

∑
x21

Ã(x21, Ë, a). Whenever
∑

a2 Ã(x21, Ë, a) > 0, we
have

∑

x21*X

Ã̂(x21)p(Ë|x21)Ã̂(a|x21, Ë) =
∑

x21*X

û
ý
∑

x22*X

Ã(x22, x21)p(Ë|x21)

þ
ø Ã̂(a|x21, Ë)

=
∑

x21*X

(
∑

a2

Ã(x21, Ë, a
2)

)
Ã̂(a|x21, Ë)

=
∑

x21*X

Ã(x21, Ë, a)

= Ã̂(Ë, a).

On the other hand, if
∑

a2 Ã(x21, Ë, a) = 0, we obtain both sides of the equations are zero. Thus,
we conclude that Ã̂ * Inv(Ã̂).

Finally, in the information model §full and under the signaling mechanism Ã, we have

F (Ë|a;Çt, Ã̂) =
p(Ë|x21)Ã(a|hk, Ë)∑
Ë2 p(Ë2|x21)Ã(a|hk, Ë2)

.

As Ã * Pers(§full), we obtain for any a, a2 * A and all hk * X k,

∑

Ë

p(Ë|x21)Ã(a|hk, Ë)"u(Ë, a, a2) g 0.

After multiplying by Ã(hk), summing up over (x2k, . . . , x22), and using the fact that Ã(x21, Ë, a) =∑
(x2k,...,x22)

Ã(hk)p(Ë|x21)Ã(a|hk, Ë) from the balance equations for Ã = Inv(Ã), we obtain for all

x21 * X and a, a2 * A,

∑

Ë

Ã(x21, Ë, a)"u(Ë, a, a
2) g 0.

Now, from the definition of Ã̂, we have Ã(x21, Ë, a) = Ã̂(x21)p(Ë|x21)Ã̂(a|x21, a) if
∑

a2 Ã(x21, Ë, a
2) >

0. Furthermore, under this condition and using the fact that Ã * Inv(Ã), we have Ã̂(x21) =∑
x22

Ã(x22, x21) =
∑

x22
Ã(x21, x22) > 0. Thus, we conclude that

p(Ë|x21)Ã̂(a|x21, Ë)"u(Ë, a, a
2) g 0.

On the other hand, if
∑

a2 Ã(x21, Ë, a
2) > 0, then Ã̂ recommends the receiver-optimal action. Thus,

we conclude that Ã̂ * Pers(§full). Once again, the result then follows as the sender’s payoffs under
the two mechanisms are equal.
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Proof of Proposition 1. We prove the statement for MPP(§full). A similar argument, with minor
modifications, obtains the equivalence of MPP(§no) and LP(no); we omit it for brevity.

From Lemma 2, we know that there exists an optimal signaling mechanism for MPP(§full) within
the set £1. The proof shows that for any Ã * Pers(§full) +£1, there exists a corresponding feasible
solution z to LP(full) whose objective equals the sender’s payoff, and conversely, for any feasible
solution z to LP(full), there exists a signaling mechanism Ã * Pers(§full) with sender’s payoff equaling
the sender’s payoff at z.

To begin, fix Ã * Pers(§full) + £1, and let Ã = Inv(Ã) * &(X ). The balance equations (1) are
given by

∑

x21

Ã(x21)p(Ë|x21)Ã(a|x21, Ë) = Ã(Ë, a), for all (Ë, a) * X .

Define z(w, a) := Ã(x21)p(Ë|x21)Ã(a|x21, Ë) for w = (x21, Ë) * Wfull and a * A. It is straight-
forward to check that z satisfies the second equality in LP(full). For w = (Ë21, a21, Ë) * Wfull, we
obtain

∑

a

z(w, a) = Ã(x21)p(Ë|x21)

=
∑

x22

Ã(x22)p(Ë21|x22)Ã(a21|x22, Ë21)p(Ë|x21)

=
∑

x22

z(x22, Ë21, a21)p(Ë|x21)

=
∑

x22

∑

ŵ,â

z(ŵ, â)p(Ë|x21)I{ŵ = (x22, Ë21), â = a21}

=
∑

ŵ,â

z(ŵ, â)
∑

x22

p(Ë|x21)I{ŵ = (x22, Ë21), â = a21}

=
∑

ŵ,â

z(ŵ, â)p(w|ŵ, â).

Here, the second equality follows from (1), the second follows from the definition of z, and the
final equality follows from the definition of p(w|ŵ, â). Thus, we conclude that z satisfies both the
equalities in LP(full). Finally, since Ã * Pers(§full) +£1, we obtain for all x1 * X and a, a2 * A,

∑

Ë

p(Ë|x21)Ã(a|x21, Ë)"u(Ë, a, a
2) g 0.

Thus, we obtain for all x21 * X and for all a, a2 * A,
∑

w*Wfull

z(w, a)D(x21, w)"u(w, a, a
2) =

∑

x*X

∑

Ë*'

z(x, Ë, a)I{x = x21}"u(Ë, a, a2)

=
∑

Ë

z(x21, Ë, a)"u(Ë, a, a
2)

= Ã(x21)

(
∑

Ë

p(Ë|x21)Ã(a|x21, Ë)"u(Ë, a, a
2)

)
g 0.

Thus, we obtain that z satisfies the inequality in LP(full). Finally, since
∑

x*X z(x, Ë, a) = Ã(Ë, a),
we conclude that the sender’s payoff under Ã equals the LP(full) objective at z. This concludes the
first part of the statement.
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Conversely, suppose z is a feasible solution for LP(full). Define the signaling mechanism Ã * £1

as follows: for all w = (x21, Ë) * Wfull with
∑

a2 z(w, a
2) > 0, let

Ã(a|x21, Ë) :=
z(w, a)∑
a2 z(w, a

2)
.

For w = (x21, Ë) * Wfull with
∑

a2 z(w, a
2) = 0, let Ã recommend the receiver-optimal action at Ë.

We note that Ã * &(X ) defined as Ã(Ë, a) :=
∑

x*X z(x, Ë, a) for (Ë, a) * X is invariant under Ã.
To see this, observe

∑

x21

Ã(x21)p(Ë|x21)Ã(a|x21, Ë) =
∑

x21

û
ý
∑

x22

z(x22, x21)

þ
ø p(Ë|x21)Ã(a|x21, Ë)

=
∑

x21

(
∑

a2

z(x21, Ë, a
2)

)
Ã(a|x21, Ë)

=
∑

x21

z(x21, Ë, a)

= Ã(Ë, a)

where the first and the fourth equality follows from the definition of Ã. The second equality follows
from the first equality constraint of LP(full) (and from the feasibility of z), and the third equality
follows from the definition of Ã. Thus, Ã = Inv(Ã). Finally, for any x21 * X and all a, a2 * A, we
have

∑

w*Wfull

z(w, a)D(x21, w)"u(w, a, a
2) =

∑

Ë*'

z(x21, Ë, a)"u(Ë, a, a
2)

=
∑

Ë

(
∑

a2

z(x21, Ë, a
2)

)
Ã(a|x21, Ë)"u(Ë, a, a

2)

=
∑

Ë

û
ý∑

x22

z(x22, x21)p(Ë|x21)

þ
øÃ(a|x21, Ë)"u(Ë, a, a

2)

= Ã(x21) ·
∑

Ë

p(Ë|x21)Ã(a|x21, Ë)"u(Ë, a, a
2).

Here, the second equality follows from the definition of Ã, the third equality follows from the fea-
sibility of z to LP(full), and in the final equality, we have used the definition of Ã. Thus, for all
x21 * X with Ã(x21) > 0, from the feasibility of z, we obtain

∑

Ë

p(Ë|x21)Ã(a|x21, Ë)"u(Ë, a, a
2) g 0,

and hence a receiver, after observing x̄t21 = x21, would find it optimal to adopt action a if recom-
mended by Ã. Finally, from the fact that

∑
x z(x, Ë, a) =

∑
x z(Ë, a, x), we obtain that if Ã(x21) = 0,

then
∑

a2 z(x21, Ë, a
2) = 0, and hence, Ã recommends the receiver-optimal action at each Ë. Thus,

again, the receiver finds it optimal to follow the recommendation. Taken together, we conclude that
Ã * Pers(§full). The converse follows from noticing that the sender’s payoff under Ã equals the
LP(full) objective at z.

Summarizing the two parts, we obtain that the sender’s problem MPP(§full) can be equivalently
formulated as the LP(full).
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A.2 Proofs from Section 4.2

Proof of Lemma 2. We first show that for any 3 g 1, Pers(§full) ¦ Pers(§3). To see this, let Ã * £k+
Pers(§full). Define Ã̂ to be the signaling mechanism that, at each time t, in addition to recommending
an action according to Ã also truthfully reveals h̄3t . Since the information of the receiver under Ã̂
in the model §3 is same as that under Ã in the model §full, we conclude that it is optimal for the
receiver to follow the recommended action. Since this is true no matter the realization of the slice h̄3t ,
the receiver should find it optimal to follow the recommendation even without being informed about
the realization. In other words, the receiver should find it optimal to follow the recommendations
of Ã in the model §3, and hence Ã * Pers(§3). Thus, we conclude Pers(§full) ¦ Pers(§3) for 3 g 1. A
similar argument yields Pers(§3) ¦ Pers(§3+1) ¦ Pers(§no).

Proof of Proposition 2. From Lemma 2, we have OPT(§full) f OPT(§no); thus, it remains to show
that under the conditions of the lemma, OPT(§full) g OPT(§no). To show this inequality, we
construct a signaling mechanism Ã̂ * Pers(§full) + £1 that achieves the same payoff as the optimal
signaling mechanism Ã * Pers(§no) +£0.

To begin, note that since p(·|x) * Conv(Bno) for each x * X , there exists a set of non-negative
weights {»(a|x) : a * A, x * X} such that

p(Ë|x) =
∑

a2

»(a2|x)µa2(Ë), for all x * X , Ë * '

∑

a*A

»(a|x) = 1, for all x * X .

Define the mechanism Ã̂ * £1 as follows: for each x21 * X , let

Ã̂(a|x21, Ë) :=
»(a|x21)µa(Ë)∑
a2 »(a

2|x21)µa2(Ë)
=

»(a|x21)µa(Ë)

p(Ë|x21)
,

whenever the denominator is positive, and otherwise let Ã̂ recommend the receiver-optimal action
at Ë.

We first show that Ã̂ * Pers(§full). For each x21 * X , we have

∑

Ë

p(Ë|x21)Ã̂(a|x21, Ë)"u(Ë, a, a
2)

=
∑

Ë

(
∑

a2*A

»(a2|x21)µa2(Ë)

)
»(a|x21)µa(Ë)∑

a2*A »(a2|x21)µa2(Ë)
"u(Ë, a, a2)

= »(a|x21)

(
∑

Ë

µa(Ë)"u(Ë, a, a
2)

)
.

Since µa(Ë) is the posterior belief induced by Ã * Pers(§no), we have
∑

Ë µa(Ë)"u(Ë, a, a
2) g 0. As

»(a|x21) g 0, we have for all x21 * X ,

∑

Ë

p(Ë|x21)Ã̂(a|x21, Ë)"u(Ë, a, a
2) g 0,

If
∑

Ë2 p(Ë2|x21)Ã̂(a|x21, Ë
2) > 0, then upon dividing by it, we obtain action a is optimal for the re-

ceiver if it is recommended by Ã̂ in the model §full. On the other hand, if
∑

Ë2 p(Ë2|x21)Ã̂(a|x21, Ë
2) =

0, then Ã̂ recommends the receiver-optimal action. Thus, we conclude that it is always optimal for
the receiver to follow the recommendations by Ã̂ in the model §full, and hence Ã̂ * Pers(§full).
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We now show that Ã and Ã̂ induce the same marginal distribution over X . Let Ã = Inv(Ã). Let
Ça :=

∑
Ë Ã(Ë, a), and note that Ã(Ë, a) = Çaµa(Ë). Using the definition of Ã̂, we have for Ë * '

and a * A,

∑

x21*X

Ã(x21)p(Ë|x21)Ã̂(a|x21) =
∑

x21*X

Ã(x21)»(a|x21)µa(Ë)

=
∑

x21*X

Ça21
µa21

(Ë21)»(a|x21)µa(Ë), (6)

where we have used the fact that Ã(x21) = Ça21
µa21

(Ë21). Summing both sides over a, we obtain

∑

x21*X

Ã(x21)p(Ë|x21) =
∑

x21*X

Ça21
µa21

(Ë21)

(
∑

a

»(a|x21)µa(Ë)

)
.

Moreover, from the balance equation (1), we have

∑

x21*X

Ã(x21)p(Ë|x21) =
∑

a

Ã(Ë, a) =
∑

a

Çaµa(Ë).

Equating the right-hand sides of the two preceding equations, we obtain

∑

a

û
ýÇa 2

∑

x21*X

Ça21
µa21

(Ë21)»(a|x21)

þ
øµa(Ë) = 0

Because {µa} are linearly independent, we have for all a * A,

Ça =
∑

x21*X

Ça21
µa21

(Ë21)»(a|x21).

Substituting back in (6), we obtain

∑

x21*X

Ã(x21)p(Ë|x21)Ã̂(a|x21) = Çaµa(Ë) = Ã(Ë, a). (7)

Thus, Ã is also an invariant distribution under Ã̂, and thus, the two mechanisms induce the same
marginal distribution over &(X ).

B Proofs from the Section 5

In this section, we provide the missing proofs from Section 5. Throughout, we use the same notation
as in that section.

Proof of Proposition 3. The proof of the proposition is similar to that of Proposition 1, and we only
highlight the parts that are different.

First, consider a signaling mechanism Ã * £1 + Pers(§1), and let Ã = Inv(Ã) * &(X 2) denote
the invariant distribution under Ã. Define z as follows:

z(x22, x21, Ë, a) := Ã(x22, x21)p(Ë|x21)Ã(a|x21, Ë).
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Then, similar arguments to Proposition 1 shows that z satisfies the linear equalities and the inequal-
ity in (4). Similarly, the value of the objective is readily seen to equal the sender’s payoff under Ã.
Finally, the non-linear equality holds because, for any x222, x22, x21, (Ë, a) * X , we have

z(x22, x21, Ë, a) ·
∑

a2*A

z(x222, x21, Ë, a
2) = Ã(x22, x21)p(Ë|x21)Ã(a|x21, Ë)Ã(x

2
22, x21)p(Ë|x21)

= z(x222, x21, Ë, a) ·
∑

a2*A

z(x22, x21, Ë, a
2).

Conversely, let z be any feasible solution to (4). We define Ã * £1 as follows: For any x21 * X
and Ë * ', if there exists an x2 * X such that

∑
a2*A z(x22, x21, Ë, a

2) > 0, let

Ã(a|x21, Ë) =
z(x22, x21, Ë, a)∑

a2*A z(x22, x21, Ë, a2)
.

Note that the non-linear constraint on z implies that the right-hand side does not depend on x22,
and thus Ã is well-defined. On the other hand, if

∑
a2*A z(x22, x21, Ë, a

2) = 0 for all x22 * X ,
let Ã(·|x21, Ë) recommend the receiver-optimal action at Ë. Furthermore, define Ã * &(X 2) as
Ã(x21, Ë, a) :=

∑
x22

z(x22, x21, Ë, a). Using similar arguments in Proposition 1, it follows that
Ã = Inv(Ã) and furthermore that Ã * Pers(§1). The final step is to see that the objective of the
non-linear program at z equals the sender’s payoff under Ã.

Proof of Lemma 3. Let Ã * RP(ë) for some fixed ë > 0, and let 3 g 0 be such that d3(Ã) f ë.
Consider the information model §3, and assume the receivers follow the action recommendations.
From the perspective of a receiver at time t, the relevant information about the history h̄t23 is the
value x̄t2321, as earlier state-action pairs do not affect the subsequent transitions. If x̄t2321 = x * X ,
the distribution of Ë̄t (and hence the receiver’s belief) is given by QÃ(x, Ë). Thus, the receiver’s belief
lies within d3(Ã) of the invariant distribution Ã = Inv(Ã). Since Ã * RP(ë) and d3(ë) f ë, we obtain
that it is optimal for this receiver to follow the recommendation made by Ã. Thus, we obtain
Ã * Pers(§3).

To prove the bound in the lemma statement, we note that since Ã * RP(ë) ¦ £0, it corresponds
to a stationary Markov policy, and hence the induced Markov chain over the states is ergodic by
Assumption 1. The result is then obtained using the following bound on the mixing time of this
chain [Levin and Peres, 2017, Theorem 12.4]:

3 g 1

³æ
log

(
2

ëÃmin(Ã)

)
=ó d3(Ã) f ë,

where ³æ(Ã) is the absolute spectral gap of the underlying Markov chain (i.e., the smallest value
of 1 2 |»| over all non-unit eigenvalues » of the transition kernel matrix under Ã), and Ãmin(Ã) =
minË Ã(Ë). Note that Ã(Ë) > 0 for all Ë * ' from Assumption 1, and hence Ãmin(Ã) is well
defined.

Proof of Lemma 4. We begin by proving the first part of the lemma statement. Given a set S, beliefs
{µs : s * S} and the weights ws g 0 as in the lemma statement, define the distribution Ã * &('×A)
as Ã(Ë, a) =

∑
s*S wsµs(Ë)I{as = a}. We claim that Ã is the steady state distribution under Ã, when

each receiver chooses the action as after receiving signal s * S. (We show below that this is indeed
optimal for the receiver in the information model §no.) This follows from noticing that Ã satisfies
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the balance equations, as we show next. For each Ë * ', we have

∑

Ë2,a2

Ã(Ë2, a2)p(Ë|Ë2, a2) =
∑

Ë2,a2

(
∑

s*S

wsµs(Ë
2)I{as = a2}

)
p(Ë|Ë2, a2)

=
∑

Ë2

∑

s*S

wsµs(Ë
2)

(
∑

a2

I{as = a2}p(Ë|Ë2, a2)

)

=
∑

Ë2

∑

s*S

wsµs(Ë
2)p(Ë|Ë2, as)

=
∑

s*S

wsµs(Ë).

Here, the final equality follows from the assumption made on the weights {ws} in the lemma state-
ment. This, in turn implies that

∑

Ë2,a2

Ã(Ë2, a2)p(Ë|Ë2, a2)
∑

s2*S

Ã(s2|Ë)I{as2 = a} =
∑

s*S

wsµs(Ë)
∑

s2*S

Ã(s2|Ë)I{as2 = a}

=
∑

s2*S

I{as2 = a}Ã(s2|Ë)
(
∑

s*S

wsµs(Ë)

)

=
∑

s2*S

I{as2 = a}ws2µs2(Ë)

= Ã(Ë, a),

where the penultimate inequality follows from the definition of Ã(s|Ë). Thus, we conclude that Ã
satisfies the balance equations.

Since Ã is the invariant distribution under Ã, the marginal distribution of the state (and hence
the receivers’ prior belief in the model §no) equals Ã(Ë) =

∑
a*A Ã(Ë, a) =

∑
s*S wsµs(Ë). From the

definition of Ã, we have Ã(Ë)Ã(s|Ë) = wsµs(Ë). Thus, in the information model §no, the posterior
belief of a receiver that the state is Ë upon receiving a signal s * S is given by Bayes’ rule as

Ã(Ë)Ã(s|Ë)∑
Ë2 Ã(Ë2)Ã(s|Ë2)

= µs(Ë).

Since µs * Pas , we conclude that choosing action as after receiving the signal s is indeed optimal
for the receiver. This concludes the proof of the first part of the lemma statement.

To show the converse, let Ã * Pers(§no) + £0 and let Ã = Inv(Ã). For any a * A with∑
Ë2 Ã(Ë2, a) > 0, define wa :=

∑
Ë2 Ã(Ë2, a), and µa := Ã(·,a)

wa
. For any a * A with

∑
Ë2 Ã(Ë2, a) = 0,

define wa = 0 and µa be any belief in Pa. By construction, we have
∑

a*Awa = 1 and Ã(Ë, a) =
waµa(Ë) for all (Ë, a) * ' × A. As Ã * Pers(§no) + £0, we have

∑
Ë Ã(Ë, a)"u(Ë, a, a2) g 0 for all

a, a2 * A. Consequently, we obtain wa

∑
Ë µa(Ë)"u(Ë, a, a

2) g 0, implying that µa * Pa also holds
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for any a with wa > 0. Finally, for all Ë * ', we obtain
∑

a

waµa(Ë) =
∑

a

Ã(Ë, a)

=
∑

a

∑

Ë2,a2

Ã(Ë2, a2)p(Ë|Ë2, a2)Ã(a|Ë)

=
∑

Ë2,a2

Ã(Ë2, a2)p(Ë|Ë2, a2)

=
∑

Ë2,a2

wa2µa2(Ë
2)p(Ë|Ë2, a2).

Here, the second equality follows because Ã is the steady-state distribution induced by Ã. Thus, we
conclude that {wa, µa}a satisfies all the conditions in the lemma statement.

Proof ofTheorem 3. To begin, let Ã * Pers(§no) denote the optimal signaling mechanism in the
no-history information model §no. Let Ã = Inv(Ã) denote the invariant distribution under Ã, and let
Ã(Ë) =

∑
a Ã(Ë, a) denote the marginal over the states. From Lemma 4 we know there exist weights

wa g 0, with
∑

a*Awa = 1, and beliefs µa * Pa for a * A, satisfying Ã(Ë, a) = waµa(Ë) and
∑

Ë,a

waµa(Ë)p(·|Ë, a) =
∑

a

waµa. (8)

Let A+ = {a * A :
∑

Ë*' Ã(Ë)Ã(a|Ë) > 0} denote the set of actions that are recommended with
positive probability under Ã. It is straightforward to show that A+ = {a : wa > 0}.

Construction of a signaling mechanism: We begin by constructing a signaling mechanism
Ã̂ and show it to be persuasive in the no-information model §no; subsequently, we prove the stronger
claim of ë-robust persuasiveness. First, using Assumption 2, for any a * A+, let ·a * Pa be such that
B1(·a,D) ¦ Pa. For some small · * [0, 1], whose exact value we will set later to obtain robustness,
define ¿a = (12 ·)µa + ··a for all a * A+. Since µa, ·a * Pa and the latter set is convex, we obtain
that B1(¿a, ·D) ¦ Pa. Next, let eË denote the belief that puts all its weight on the state Ë * '.

We seek to construct a signaling mechanism Ã̂ which sends signals in the set S = A+ *', such
that in the model §no, the posterior belief upon receiving a signal s = a * A+ is ¿a, whereas upon
receiving a signal s = Ë * ', the posterior belief is eË. Let as = a if s = a * A+ and as = aË for
s = Ë * ', where aË denotes an optimal action for the receiver at state Ë. Using Lemma 4, there
exists a signaling mechanism Ã̂ inducing the aforementioned beliefs in steady state if there exist
weights {ŵs : s * S} with

∑
s*S ŵs = 1, such that

∑

a*A+

∑

Ë

ŵa¿a(Ë)p(·|Ë, a) +
∑

Ë

ŵËp(·|Ë, aË) =
∑

a*A+

ŵa¿a +
∑

Ë

ŵËeË. (9)

To produce such weights, we first define {ŵa} in terms of {ŵË}. Let ŵa = (1 2
∑

Ë ŵË)wa for
each a * A+. Since

∑
a wa = 1, it follows that the weights {ŵs} sum to one as well. Further, to

simplify expressions, let Ã :=
∑

Ë ŵË. Then, after moving all terms containing ŵË on one side, the
condition (9) becomes

1

12 Ã

(
∑

Ë

ŵËeË 2
∑

Ë

ŵËp(·|Ë, aË)
)

=
∑

a*A+

∑

Ë

wa¿a(Ë)p(·|Ë, a) 2
∑

a*A+

wa¿a

= ·

û
ý∑

a*A+

∑

Ë

wa·a(Ë)p(·|Ë, a) 2
∑

a*A+

wa·a

þ
ø , (10)
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where, in the second equality, we have used ¿a = (12 ·)µa + ··a, along with the fact that {µa, wa}a
satisfy (8).

In Lemma 5, we show that there exists y = (yË g 0 : Ë * ') satisfying

∑

Ë

yËeË 2
∑

Ë

yËp(·|Ë, aË) =
∑

a*A+

∑

Ë

wa·a(Ë)p(·|Ë, a) 2
∑

a*A+

wa·a. (11)

For any such y, we obtain that ŵË = ·yË
1+·‖y‖1

and Ã =
∑

Ë ŵË = ·‖y‖1
1+·‖y‖1

form a solution to (10),

and hence, there exist weights satisfying (9).

Thus, by Lemma 4, we obtain the existence of a history-independent signaling mechanism Ã̂
sending signals s * S = A+ * ', such that in the no-history information model §no, the posterior
beliefs lie in the set {¿a : a * A+}*{eË : Ë * '}. The mechanism Ã̂ sends signals with the following
probabilities: for each Ë * ':

Ã̂(s|Ë) :=

ù
üüú
üüû

ŵa¿a(Ë)∑
a2 ŵa2¿a2 (Ë)+ŵË

for s * A+;
ŵË∑

a2 ŵa2¿a2 (Ë)+ŵË
if s = Ë;

0, otherwise.

(12)

Here, we interpret the signal s = a * A+ as an direct recommendation to choose action a. On the
other hand, the signal s = Ë * ' fully reveals the state and is interpreted as a recommendation to
choose the action aË. Since ¿a * Pa for each a * A+ and aË is an optimal action for the receiver at
state Ë * ', we conclude that the mechanism Ã̂ is persuasive, in the sense that, the receiver finds
it optimal to follow the recommendation.

Note that Lemma 4 implies that the invariant distribution Ã̂ under Ã̂ is given by Ã̂(Ë, a) =
ŵa¿a(Ë)I{a * A+} + ŵËI{a = aË} for each Ë * ' and a * A. Let Ã̂(Ë) :=

∑
a*A Ã̂(Ë, a) =∑

a*A+
ŵa¿a(Ë) + ŵË.

Robustness: Next, we show that Ã̂ * RP(ë). Suppose a receiver’s belief about Ë̄t is given by a
distribution Ã2 * &('), with ‖Ã2 2 Ã̂‖1 f ë. Upon receiving a signal s = Ë * S from the signaling
mechanism Ã̂, it is straightforward to see that the receiver’s belief about Ë̄t continues to update to
eË, and hence aË is still optimal for the receiver on receiving signal s = Ë.

On the other hand, upon receiving a signal s = a * A+, the receiver’s belief about Ë̄t updates

to ¿2a, obtained via Bayes’ rule as ¿2a(Ë) =
µ2(Ë)Ã̂(a|Ë)∑

Ë2 µ2(Ë2)Ã̂(a|Ë2) . Using a similar argument as in [Zu et al.,

2021], we obtain that the following bound on the 31 distance between ¿2a and ¿a (for the sake of
completeness, we include the algebraic steps in Lemma 6):

‖¿2a 2 ¿a‖1 f 2

(
sup
Ë*'

¿a(Ë)

Ã̂(Ë)

)
· ‖Ã2 2 Ã̂‖1.

Since Ã̂(Ë) =
∑

a*A Ã̂(Ë, a) =
∑

a*A+
ŵa¿a(Ë) + ŵË for each Ë * ', we have for each a * A+,

sup
Ë*'

¿a(Ë)

Ã̂(Ë)
= sup

Ë*'

¿a(Ë)∑
a2*A+

ŵa2¿a2(Ë) + ŵË
f 1

ŵa
f 1

(12 Ã)wmin
,

where we use the fact that ŵa = (1 2 Ã)wa for a * A+, and define wmin := mina*A+
wa. Thus, we

obtain

‖¿2a 2 ¿a‖1 f
2‖Ã2 2 Ã̂‖1
(12 Ã)wmin

f 2(1 + ·‖y‖1)ë
wmin

,
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where we have substituted Ã = ·‖y‖1
1+·‖y‖1

, and used ‖Ã2 2 Ã̂‖1 f ë.

For ë f wminD
2(1+‖y‖1)

, choosing · = 2ë
wminD22ë‖y‖1

* [0, 1], we obtain that ‖¿2a 2 ¿a‖1 f ·D and hence

¿2a * B1(·a, ·D) ¦ Pa. Hence, starting with a prior Ã2 with ‖Ã2 2 Ã̂‖ f ë, the posterior belief upon
receiving a signal s = a * A+ lies in the set Pa, implying that the action a continues to be optimal
for the receiver. Taken together, the signaling mechanism Ã̂ is persuasive for all beliefs Ã2 * B1(Ã̂, ë),
and hence is ë-robustly persuasive.

Bound on sender’s payoff: Finally, we provide a bound on the sender’s expected utility under
the signaling mechanism Ã̂, as follows:

∑

Ë*'

∑

a*A

Ã̂(Ë, a)v(Ë, a) =
∑

Ë

∑

a*A+

ŵa¿a(Ë)v(Ë, a) +
∑

Ë

ŵËv(Ë, aË)

g
∑

Ë

∑

a*A+

ŵa¿a(Ë)v(Ë, a)

g (12 Ã)(12 ·)
∑

Ë

∑

a*A+

waµa(Ë)v(Ë, a)

= (12 Ã)(12 ·)OPT(§no),

where in the second inequality, we use ŵa = (12 Ã)wa and ¿a g (12 ·)µa.
Substituting for · and Ã, we obtain the sender’s payoff is lower-bounded by

12 ·

1 + ·‖y‖1
OPT(§no) =

(
12 2(1 + ‖y‖1)

wminD
ë

)
OPT(§no).

In Lemma 5, we show that there exists a solution y g 0 to (11) satisfying ‖y‖1 f 2(1+Ç)
:

|'|

sf
.

Thus, we obtain that the sender’s expected payoff under Ã̂ is lower-bounded by
(
12 2ë

wminD

(
1 +

2(1 + Ç)
√

|'|
sf

))
·OPT(§no).

This completes the proof.

The following lemma is used in the proof of Theorem 3.

Lemma 5. Consider the following linear program:

min
yg0

∑

Ë*'

yË

∑

Ë

yËeË 2
∑

Ë

yËp(·|Ë, aË) =
∑

a*A+

∑

Ë

wa·a(Ë)p(·|Ë, a) 2
∑

a*A+

wa·a. (13)

The preceding linear program is feasible, and its optimal solution is upper bounded by
2(1+Ç)

:
|'|

sf
,

where Ç = maxË 1/¿f (Ë), and sf is the smallest positive singular value of I 2 Pf .

Proof. To show the feasibility of he linear program (13), we first cast it into a matrix form. Let
Pa * R

|'|×|'| be the matrix with Pa(Ë, Ë
2) := p(Ë2|Ë, a). Then, the LP (13) can be recasted as

min
y*R|'|

1
T · y

yT (I 2 Pf ) =
∑

a*A+

wa·
T
a (Pa 2 I)

y g 0.
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where y, and 1 * R
' is the all-one vector.

Since Pf and {Pa}a*A are transition kernels, we have that (I 2 Pf )1 = (I 2 Pa)1 = 0 for all
a * A. This implies that 1 does not lie in the row span of I 2 Pf and I 2 Pa for any a * A+, and
hence 1 is orthogonal to vector

∑
a*A+

wa·
T
a (Pa 2 I). Since Pf is ergodic (from Assumption 1), we

have rank(I2Pf ) = |'|2 1 and thus the vector
∑

a*A+
wa·

T
a (Pa2 I) lies in the row span of I2Pf .

Therefore, the equation yT (I2Pf ) =
∑

a*A+
wa·

T
a (Pa2 I) has a feasible solution. Thus, it remains

to be shown that there exists one that is non-negative.
Let u be any solution to the equality in the linear program. Because Pf is ergodic, there is a

unique stationary distribution ¿f such that ¿Tf (I 2 Pf ) = 0 and each element ¿f (Ë) > 0 for all

Ë * '. Let y = u+ k¿f where k = maxË:u(Ë)<0
|u(Ë)|
¿f (Ë)

is chosen so that y g 0. Hence, we obtain that

y is feasible for the LP (13).

The proof is complete upon showing that ‖y‖1 = ‖u+k¿f‖1 f 2(1+Ç)
:

|'|

sf
. To see this, note that

since rank(Pf 2 I) = |'| 2 1, the matrix I 2 Pf has a singular value decomposition Q�Q̃T , where
� * R

(|'|21)×(|'|21) is the diagonal matrix of singular values and Q, Q̃ * R
|'|×(|'|21) are composed

of orthogonal column vectors. Because multiplying by an orthogonal matrix preserves the 32 norm,
we obtain

‖uT (I 2 Pf )‖2 = ‖uTQ�Q̃T ‖2 = ‖uTQ�‖2 g sf‖uTQ‖2 = sf‖u‖2 g sf√
|'|

‖u‖1,

where sf is the smallest diagonal element (i.e., the smallest singular value) of �, and the final
inequality follows from the relationship between 31 and 32 norms. Note that from Assumption 1, we
have sf > 0. On the other hand,

∥∥∥
∑

a*A+

wa·
T
a (Pa 2 I)

∥∥∥
1
f
∑

a*A+

wa‖·Ta (Pa 2 I)‖1

f
∑

a*A+

wa

|'|∑

j=1

∣∣∣·(j)a (pjj 2 1 +
∑

i 6=j

pij)
∣∣∣

f
∑

a*A+

wa

|'|∑

j=1

·(j)a (12 pjj +
∑

i 6=j

pij)

f 2
∑

a*A+

wa

|'|∑

j=1

·(i)a

= 2,

where the second inequality follows triangle inequality. Taken together, ‖u‖1 f 2
:

|'|

sf
. Finally

observe that k = maxË:u(Ë)<0
|u(Ë)|
¿f (Ë)

f maxË
1

¿f (Ë)
· maxË:u(Ë)<0 |u(Ë)| f Ç‖u‖1. Hence, using the

fact that ‖¿f‖1 = 1, we obtain ‖y‖1 = ‖u + k¿f‖1 f ‖u‖1 + k‖¿f‖1 = ‖u‖1 + k f (1 + Ç)‖u‖1 f
2(1+Ç)

:
|'|

sf
.

The following lemma establishes the continuity of the Bayes’ update. The proof is from [Zu et al.,
2021]; we include it here for completeness. We use the same notation as in the proof of Theorem 3.

Lemma 6. For each a * A+, we have

‖¿2a 2 ¿a‖1 f 2

(
sup
Ë*'

¿a(Ë)

Ã̂(Ë)

)
· ‖Ã2 2 Ã̂‖1.
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Proof. We obtain

‖¿2a 2 ¿a‖1 =
∑

Ë*'

|¿2a(Ë)2 ¿a(Ë)|

=
∑

Ë*'

∣∣∣∣
Ã2(Ë)Ã̂(a|Ë)∑
Ë2 Ã2(Ë2)Ã̂(a|Ë2)

2 Ã̂(Ë)Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

∣∣∣∣

f
∑

Ë*'

∣∣∣∣
Ã2(Ë)Ã̂(a|Ë)∑
Ë2 Ã2(Ë2)Ã̂(a|Ë2)

2 Ã2(Ë)Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

∣∣∣∣

+
∑

Ë*'

∣∣∣∣
Ã2(Ë)Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

2 Ã̂(Ë)Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

∣∣∣∣

f
∣∣∣∣∣
∑

Ë

Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

(
Ã̂(Ë)2 Ã2(Ë)

)
∣∣∣∣∣

+
∑

Ë*'

Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

∣∣Ã2(Ë)2 Ã̂(Ë)
∣∣

f 2
∑

Ë*'

Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

∣∣Ã2(Ë)2 Ã̂(Ë)
∣∣

f 2

(
sup
Ë*'

Ã̂(a|Ë)∑
Ë2 Ã̂(Ë2)Ã̂(a|Ë2)

)
· ‖Ã2 2 Ã̂‖1

= 2

(
sup
Ë*'

¿a(Ë)

Ã̂(Ë)

)
· ‖Ã2 2 Ã̂‖1,

where the last equality follows from the definition of ¿a(Ë).
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