®

Check for
updates

Collective Contracts for Message-Passing
Parallel Programs

&)@ and Stephen F. Siegel

Ziqing Luo
CAV CAV
Artifact University of Delaware, Newark, DE 19716, USA Artifact

Evaluation {ziqing,siegel}@udel.edu E":I‘fﬁ:"

Available Reusable

Abstract. Procedure contracts are a well-known approach for specify-
ing programs in a modular way. We investigate a new contract theory
for collective procedures in parallel message-passing programs. As in the
sequential setting, one can verify that a procedure f conforms to its
contract using only the contracts, and not the implementations, of the
collective procedures called by f. We apply this approach to C programs
that use the Message Passing Interface (MPI), introducing a new con-
tract language that extends the ANSI/ISO C Specification Language.
We present contracts for the standard MPI collective functions, as well
as many user-defined collective functions. A prototype verification sys-
tem has been implemented using the CIVL model checker for checking
contract satisfaction within small bounds on the number of processes.

Keywords: contract + message-passing - MPI - verification - collective

1 Introduction

Procedure contracts [27,46,47] are a well-known way to decompose program ver-
ification. In this approach, each procedure f is specified independently with pre-
and postconditions or other invariants. To verify f, one needs only the contracts,
not the implementations, of the procedures called by f.

Contract languages have been developed for many programming languages.
These include the Java Modeling Language (JML) [38] for Java and the ANSI C
Specification Language (ACSL) [10] for C. A number of tools have been developed
which (partially) automate the process of verifying that a procedure satisfies its
contract; an example for C is Frama-C [18] with the WP plugin [9].

In this paper, we explore a procedure contract system for message-passing
parallel programs, specifically for programs that use the Message-Passing Inter-
face (MPI) [45], the de facto standard for high performance computing.

Our contracts apply to collective-style procedures in these programs. These
are procedures f called by all processes and that are communication-closed: any
message issued by a send statement in f is received by a receive statement in f,
and vice-versa. The processes executing f coordinate in order to accomplish a
coherent change in the global state. Examples include all of the standard blocking
MPT collective functions [45, Chapter 5], but also many user-defined procedures,

© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 44-68, 2024.
https://doi.org/10.1007/978-3-031-65630-9_3

https://doi.org/10.5281/zenodo.10938740
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65630-9_3&domain=pdf
http://orcid.org/0000-0001-6557-3692
http://orcid.org/0000-0001-9359-3332
https://doi.org/10.1007/978-3-031-65630-9_3

Collective Contracts for Message-Passing Parallel Programs 45

such as a procedure to exchange ghost cells in a stencil computation. (We will
use the term collective as shorthand for collective-style when there is no chance
of ambiguity.) These procedures are typically specified informally by describing
the effect they produce when called by all processes, rather than the effect of an
individual process. They should be formally specified and verified in the same
way.

Developers often construct applications by composing collective procedures.
As examples, consider the Monte Carlo particle transport code OpenMC [53]
(over 24K lines of C++/MPI code) and module parcsr_ls in the algebraic
multigrid solver AMG [62] (over 35K lines of C/MPI code). Through manual
inspection, we confirmed that every function in these codes that involves MPI
communication is collective-style.

We begin in Sect.2 with a toy message-passing language, so the syntax,
semantics, and theoretical results can be stated and proved precisely. The main
result is a theorem that justifies a method for verifying a collective procedure
using only the contracts of the collective procedures called, as in the sequential
case.

Section 3 describes changes needed to apply this system to C/MPI programs.
We handle a significant subset of MPI that does not include MPI_ANY_SOURCE
(“wildcard”) receives. This means program behavior is largely independent of
interleaving [55]. There are enough issues to deal with, such as MPI datatypes,
input nondeterminism, and nontermination, that we feel it best to leave wild-
cards for a sequel. A prototype verification system for such programs, using the
CIVL model checker, is described and evaluated in Sect. 4. Related work is dis-
cussed in Sect. 5. In Sect. 6, we wrap up with a discussion of the advantages and
limitations of our system, and work that remains.

In summary, this paper makes the following contributions: (1) a contract
theory for collective message-passing procedures, with mathematically precise
syntax and semantics, (2) a theorem justifying a method for verifying that a
collective procedure conforms to its contract, (3) a contract language for a large
subset of MPI, based on the theory but also dealing with additional intricacies
of MPI, and (4) a prototype verification tool for checking that collective-style
MPI procedures conform to their contracts.

2 A Theory of Collective Contracts

2.1 Language

We describe a simple message-passing language MINIMP with syntax in Fig. 1.
There is one datatype: integers; 0 is interpreted as false and any non-zero integer
as true. A program consists of global variable declarations followed by (mutually
recursive) procedure definitions. Global variables may start with arbitrary val-
ues. Each procedure takes a sequence of formal parameters. The procedure body
consists of local variable declarations followed by a sequence of statements. Local
variables are initially 0. Assignment, branch, loop, call, and compound state-
ments have the usual semantics. Operations have the usual meaning and always

46 Z. Luo and S. F. Siegel

program ::= (int x ;)* procdef-+

procdef ::= contract? void f ((int x (, int x)x)7) { (int x ;)* s* }
sestmti=x=e; | f((e(,e)x)?); | if (e) s (elses)? | while (e) s
| {s«}| sendetoe; | recva frome ;
ecexpri:=c | x | nprocs | pid | Ge | e®e | \on(e,e) | \old(e)
contract ::= /*@ requires e; ensures e; assigns (z(,xz)%)7;
waitsfor { e | int z ; e }; */
ceZ x.f € ID oe{-"} Oe{+ - %/ h==<<=8ll}

Fig. 1. MINIMP syntax

return some value—even if the second argument of division is 0, e.g. Operators
with ‘\’, described below, occur only in the optional contract.

A procedure is executed by specifying a positive integer n, the number of
processes. Each process executes its own “copy” of the code; there is no shared
memory. Each process has a unique ID number in PID = {0,...,n—1}. A process
can obtain its ID using the primitive pid; it can obtain n using nprocs.

The command “send data to dest” sends the value of data to the process
with ID dest. There is one FIFO message buffer for each ordered pair of processes
p — q and the effect of send is to enqueue the message on the buffer for which p
is the ID of the sender and ¢ is dest. The buffers are unbounded, so send never
blocks. Command “recv buf from source” removes the oldest buffered message
originating from source and stores it in variable buf; this command blocks until
a message becomes available. A dest or source not in PID results in a no-op.

A procedure f with a contract is a collective procedure. The contract encodes
a claim about executions of f: if f is called collectively (by all processes), in such
a way that the precondition (specified in the requires clause) holds, then all of
the following hold for each process p: p will eventually return; p’s postcondition
(specified in the ensures clause) will hold at the post-state; all variables not
listed in p’s assigns clause will have their pre-state values at the post-state;
and if ¢ is in p’s waitsfor set then p will not return before ¢ enters the call.
These notions will be made precise below.

Global variables and the formal parameters of the procedure are the only
variables that may occur free in a contract; only globals may occur in the assigns
clause. A postcondition may use \old(e) to refer to the value of expression e
in the pre-state; \old may not occur in this e. Pre- and postconditions can use
\on(e,7) to refer to the value of e on process i. These constructs allow contracts
to relate the state of different processes, and the state before and after the call.

Ezxample 1. The program of Fig. 2 has two procedures, both collective. Procedure
g accepts an argument k and sends its value for global variable x to its right
neighbor, in a cyclic ordering. It then receives into local variable y from its left
neighbor ¢, adds k to the received value, and stores the result in x. The contract
for g states that when p exits (returns), the value of x on p is the sum of k and
the original value of x on ¢. It also declares p cannot exit until g has entered.
Procedure f calls g nprocs times. Its contract requires that all processes call £

Collective Contracts for Message-Passing Parallel Programs 47

int x;
/*@ requires 1; ensures x == \on(\old(x), (pid+nprocs-1)%nprocs) + k;
assigns x; waitsfor { j | int j; j == (pid+nprocs-1)%nprocs }; */
void g(int k) {
int y;

send x to (pid+1)Y%nprocs;
recv y from (pid+nprocs-1)%nprocs;
x = y+k;
}
/*@ requires k == \on(k,0); ensures x == \old(x) + nprocsxk;
assigns x; waitsfor { j | int j; 0<=j && j<nprocs }; */
void f(int k) { int i; i = 0; while (i<mprocs) { g(k); i = i+1; } }

Fig. 2. cyc: a MINIMP program

with the same value for k. It ensures that upon return, the value of x is the sum
of its original value and the product of nprocs and k. It also declares that no
process can exit until every process has entered.

2.2 Semantics

Semantics for procedural programs are well-known (e.g., [2]), so we will only
summarize the standard aspects of the MINIMP semantics. Fix a program P
and an integer n > 1 for the remainder of this section. Each procedure in P
may be represented as a program graph, which is a directed graph in which
nodes correspond to locations in the procedure body. Each program graph has a
designated start node. An edge is labeled by either an expression ¢ (a guard) or
one of the following kinds of statements: assignment, call, return, send or receive.
An edge labeled return is added to the end of each program graph, and leads to
the terminal node, which has no outgoing edges.

A process state comprises an assignment of values to global variables and a
call stack. Each entry in the stack specifies a procedure f, the values of the local
variables (including formal parameters) for f, and the program counter, which
is a node in f’s program graph. A state specifies a process state for each process,
as well as the state of channel p — ¢ for all p,q € PID. The channel state is a
finite sequence of integers, the buffered messages sent from p to gq.

An action is a pair a = (e,p), where e is an edge u > v in a program graph
and p € PID. Action a is enabled at state s if the program counter of the top
entry of p’s call stack in s is u and one of the following holds: « is a guard ¢ and
¢ evaluates to true in s; « is an assignment, call, return, or send; or « is a receive
with source ¢ and channel ¢ — p is nonempty in s. The execution of an enabled
action from s results in a new state s’ in the natural way. In particular, execution
of a call pushes a new entry onto the stack of the calling process; execution of a
return pops the stack and, if the resulting stack is not empty, moves the caller
to the location just after the call. The triple s — s’ is a transition.

48 Z. Luo and S. F. Siegel

Let f be a procedure and sy a state with empty channels, and in which
each process has one entry on its stack, the program counter of which is the
start location for f. An n-process execution (of f is a finite or infinite chain
of transitions so 2 s; 23 ---. The length of ¢, denoted len(¢), is the number of
transitions in ¢. An execution must be fair: if a process p becomes enabled at
some point in an infinite execution, then eventually p will execute. Note that,
once p becomes enabled, it will remain enabled until it executes, as no process
other than p can remove a buffered message with destination p.

A process p terminates in ¢ if for some i, the stack for p is empty in s;. We
say C terminates if p terminates in ¢ for all p € PID. The execution deadlocks if
it is finite, does not terminate, and ends in a state with no enabled action.

It is often convenient to add a “driver” to P when reasoning about executions
of a collective procedure f. Say f takes m formal parameters. Form a program
P’ by adding fresh global variables z1, ..., z,, to P, and adding a procedure

void main() { f(x1,...,zm); }.

By “execution of P/,” we mean an execution of main in this new program.

2.3 Collective Correctness

In this section, we formulate conditions that correct collective procedures are
expected to satisfy. Some of these reflect standard practice, e.g., collectives
should be called in the same order by all processes, while others specify how
a procedure conforms to various clauses in its contract. Ultimately, these con-
ditions will be used to ensure that a simple “stub” can stand in for a collective
call, which is the essential point of our main result, Theorem 1.

In formulating these conditions, we focus on the negative, i.e., we identify the
earliest possible point in an execution at which a violation occurs. For example,
if a postcondition states that on every process, x will be 0 when the function
returns, then a postcondition violation occurs as soon as one process returns
when its x has a non-zero value. There is no need to wait until every process has
returned to declare that the postcondition has been violated. In fact, this allows
us to declare a postcondition violation even in executions that do not terminate
because some processes never return.

Fix a program P and integer n > 1. Let C be the set of names of collective
procedures of P. Let ¢ be an execution sy = s; =3 --- of a procedure in P.
For i € 1.len((), let ¢* denote the prefix of ¢ of length i, i.e., the execution

ay aj
Sg — r — 8.

Collective Consistency. The first correctness condition for (is collective con-
sistency. To define this concept, consider strings over the alphabet consisting of
symbols of the form e/ and x/, for f € C. Given an action a and p € PID, define
string Ty, (a) as follows:

— if a is a call by p to some f € C, T,(a) = e/ (a is called an enter action)

Collective Contracts for Message-Passing Parallel Programs 49

0: el ed s r x7e s r x9 e9 s

; \ \ \ ;
1:e ef s —rx? e’ s —rx? e s rx9 x
2: ef &9 TSy % r

Fig. 3. Representation of a 3-process execution of cyc’ of Fig.2. ef = enter (call) f;
xf = exit (return from) f; s = send; r = receive. The execution has no collective errors
and ends in a state with one buffered message sent from process 1 to process 2.

— if @ is a return by p from some f € C, T(a) = x/ (a is called an ezit action)
— otherwise, Tp(a) is the empty string.

Now let T,,(¢) be the concatenation Tp(a1)T,(az)---. Hence T,({) records the
sequence of collective actions—enter or exit actions—taken by p.

Definition 1. An ezecution (is collective consistent if there is some p € PID
such that for all ¢ € PID, T,(C) equals or is a prefiz of T,,(¢). We say ¢ commits
a consistency violation at step i if (*~! is collective consistent but ¢ is not.

For the rest of this section, assume (is collective consistent.

The sequence of actions performed by p in (is divided into segments whose
boundaries are the collective actions of p. More precisely, given i € 0..len({) and
p € PID, define k = segp(C,i) to be the number of collective actions of p in
ai,...,a;. We say p is in segment k at state 1.

Ezample 2. In program cyc of Fig.2, there is a 3-process execution ¢ of Pf
illustrated in Figure 3. The execution is collective consistent: T,,(() is a prefix
of T1(¢) = efeIx9eIx9eIxIxf for all p € {0,1,2}. A process is in segment 0 at
any point before it executes ef; it is in segment 1 after executing e/ but before
executing its first e?; and so on. At a given state in the execution, processes can
be in different segments; e.g., when process 2 is in segment 1, process 1 is in
segment 3 and process 0 is in segment 2.

Precondition and Postcondition Violations. We now turn to the issue of
evaluation of pre- and postconditions. Let f be a collective procedure in P with
precondition pre(f) and postcondition post(f). Let V; be the union of the set of
formal parameters of f and the global variables of P. As noted above, these are
the only variables that may occur free in pre(f) and post(f). An f-valuation is
a function a: PID — (V; — Z). For each process, « specifies a value for each
free variable that may occur in pre(f) or post(f).

For any expression e that may occur as a sub-expression of pre(f), and p €
PID, define [e]a,p € Z as follows:

50 Z. Luo and S. F. Siegel

[clap=c [Se]ap = Slelap
[2]ap = a(p)(2) [er © e2]a,p = [e1]a,p © [e2]ap
[nprocs)a,y, =n [\on(e1, e2)]a.p = [€1]a,q, Where g = [e2]ap-
[pid]a, =p

This is the result of evaluating e in process p. Note how \on shifts the evaluation
context from process p to the process specified by es, allowing the precondition
to refer to the value of an expression on another process.

Evaluation of an expression involving \old, which may occur only in post(f),
requires a second f-valuation § specifying values in the pre-state. The definition
of [-]a,5,p repeats the rules above, replacing each subscript “a” with “a, 57, and
adds one rule:

\o1d(e)]a,5p = lelp.p-

Say 1 < i <len(¢) and a; is an ef action in process p. Let r = seg,(C,7) and
Q = {q € PID | seg,(¢,7) =}, o't Q= (Vy = Z),

where o/(q)(v) is the value of v on process ¢ in state sj(4), and j(q) is the
unique integer in 1..i such that a;(g) is the r-th collective action of ¢ in ¢. (As
¢ is collective consistent, a;(,) is also an e/ action.) In other words, o’ uses the
values of process ¢’s variables just after q entered the call. Now, o/ is not an f-
valuation unless @ = PID. Nevertheless, we can ask whether o’ can be extended
to an f-valuation a such that [pre(f)]a,q holds for all ¢ € PID. If no such «
exists, we say a precondition violation occurs at step 1.

Ezample 3. Consider program cyc of Fig.2. Suppose process 1 calls f(1) and
process 2 calls f(2). Then a precondition violation of f occurs with the second
call, because there is no value that can be assigned to k on process 0 for which
1 =\on(k,0) and 2 = \on(k, 0) both hold.

If a; is an xf action, define Q and j(q) as above; for any q € Q, aj(q) is also
an x/ action. Let o/(q)(v) be the value of v in ¢ at state 5j(q)—1, i-e., just before ¢
exits. Define k(q) € 1..5(q) — 1 so that ajq) is the e/ action in ¢ corresponding to
@j(q), i-€., (g is the call that led to the return a,. Define 3': Q — (V;y — Z)
so that 3'(q)(v) is the value of v on ¢ in state sy, i.e., in the pre-state. A
postcondition violation occurs if it is not the case that there are extensions of o/
and (' to f-valuations o and 3 such that [post(f)]a,s,4 holds for all ¢ € PID.

Waitsfor Violations. We now explain the waitsfor contract clause. Assume
again that a; is an x/ action in process p, and that k is the index of the corre-
sponding e/ action in p. The expression in the waitsfor clause is evaluated at
the pre-state si to yield a set W C PID. A waitsfor violation occurs at step @
if there is some ¢ € W such that seg,((,7) < seg,((, k), i.e., p exits a collective
call before ¢ has entered it.

Collective Contracts for Message-Passing Parallel Programs 51

Correct Executions and Conformance to Contract. We can now encap-
sulate all the ways something may go wrong with collective procedures and their
contracts:

Definition 2. Let P be a program, (= so > s1--- an ezecution of a procedure
in P, and i € 1..len((). Let p be the process of a; and r = seg,((,i). We say ¢
commits a collective error at step i if any of the following occur at step i:

1. a consistency, precondition, postcondition, or waitsfor wviolation,

2. an assigns violation: a; is an exit action and the value of a variable not in
p’s assigns set differs from its pre-state value,

3. a segment boundary violation: a; is a receive of a message sent from a process
q at a; (j <1i) and seg,(C,j) > r; or a; is a send to q and seg,(C,i) >, or

4. an unreceived message violation: a; s a collective action and there is an
unreceived message sent to p from q at a; (j < i), and seg,(¢,j) =r — 1.

The last two conditions imply that a message that crosses segment boundaries
is erroneous. In particular, if an execution terminates without collective errors,
every message sent within a segment is received within that same segment.

Definition 3. An execution of a procedure is correct if it is finite, does not
deadlock, and has no collective errors.

We can now define what it means for a procedure to conform to its contract.
Let f be a collective procedure in P. By a pre(f)-state, we mean a state of
P/ in which (i) every process has one entry on its call stack, pointing to the
start location of main, (ii) all channels are empty, and (iii) for all processes, the
assignment to the global variables satisfies the precondition of f.

Definition 4. A collective procedure f conforms (to its contract) if all execu-
tions of P/ from pre(f)-states are correct.

Note that any maximal non-deadlocking finite execution terminates. So a con-
forming procedure will always terminate if invoked from a pre(f)-state, i.e., ours
is a “total” (not “partial”) notion of correctness in the Hoare logic sense.

2.4 Simulation

In the sequential theory, one may verify properties of a procedure f using only
the contracts of the procedures called by f. We now generalize that approach
for collective procedures. We will assume from now on that P has no “collective
recursion.” That is, in the call graph for P—the graph with nodes the procedures
of P and an edge from f to g if the body of f contains a call to g—there is no cycle
that includes a collective procedure. This simplifies reasoning about termination.

If f,g € C, we say f uses g if there is a path of positive length in the call
graph from f to g on which any node other than the first or last is not in C.

Given f € C, we construct a program P/ which abstracts away the implemen-
tation details of each collective procedure g used by f, replacing the body of g
with a stub that simulates g’s contract. The stub consists of two new statements.
The first may be represented with pseudocode

52 Z. Luo and S. F. Siegel

havoc(assigns(g)); assume(post(g));

This nondeterministic statement assigns arbitrary values to the variables speci-
fied in the assigns clause of g’s contract, as long as those values do not commit
a postcondition violation for g. The second statement may be represented

wait(\old(waitsfor(g)));

and blocks the calling process p until all processes in p’s wait set (evaluated in
p’s pre-state) reach this statement. This ensures the stub will obey ¢’s waitsfor
contract clause. Now P7 is a program with the same set of collective procedure
names, and same contracts, as Pf. A simulation of f is an execution of P7.

Theorem 1 Let P be a program with no collective recursion. Let f be a collective
procedure in P and assume all collective procedures used by f conform. If all
simulations of [from a pre(f)-state are correct then f conforms.

Theorem 1 is the basis for the contract-checking tool described in Sect. 4.2.
The tool consumes a C/MPI program annotated with procedure contracts. The
user specifies a single procedure f and the tool constructs a CIVL-C program
that simulates f by replacing the collective procedures called by f with stubs
derived from their contracts. It then uses symbolic execution and model checking
techniques to verify that all simulations of f behave correctly. By Theorem 1,
one can conclude that f conforms.

A detailed proof of Theorem 1 is given in [43]. Here we summarize the main
ideas of the proof. We assume henceforth that P is a collective recursion-free
program.

Two actions from different processes commute as long as the second does
not receive a message sent by the first. Two executions are equivalent if one can
be obtained from the other by a finite number of transpositions of commuting
adjacent transitions. We first observe that equivalence preserves most violations:

Lemma 1 Let ¢ and n be equivalent executions of a procedure f in P. Then

1. ¢ commits a consistency, precondition, postcondition, assigns, segment bound-
ary, or unreceived message violation iff n commits such a violation.
2. ¢ deadlocks iff n deadlocks.

8. C is finite iff n is finite.

If ¢ commits a collective error when control is not inside a collective call
made by f (i.e., when f is the only collective function on the call stack), we
say the error is observable. If the error is not observable, it is internal. We say
¢ is observably correct if it is finite, does not deadlock, and is free of observable
collective errors.

We are interested in observable errors because those are the kind that will
be visible in a simulation, i.e., when each collective function g called by f is
replaced with a stub that mimics ¢’s contract.

Collective Contracts for Message-Passing Parallel Programs 53

When ¢ has no observable collective error, it can be shown that a collective
call to g made within ¢ can be extracted to yield an execution of g. The idea
behind the proof is to transpose adjacent transitions in ¢ until all of the actions
inside the call to g form a contiguous subsequence of (. The resulting execution &
is equivalent to (. Using Lemma 1, it can be shown that £ is also observably cor-
rect and the segment involving the call to g can be excised to yield an execution
of g. The next step is to show that extraction preserves internal errors:

Lemma 2 Assume (is an observably correct execution of collective procedure
f in P. Let g1,92,... be the sequence of collective procedures called from f.
If a transition in region r (i.e., inside the call to g.) of { commits an internal
collective error then the execution of P97 extracted from region r of € is incorrect.

A corollary of Lemma 2 may be summarized as “conforming + observably
correct = correct”. More precisely,

Lemma 3 Let f be a collective procedure of P. Assume all collective procedures
used by f conform. Let ¢ be an execution of PT. Then (is correct if and only if
C is observably correct.

To see this, suppose (is observably correct but commits an internal collective
error. Let r be the region of the transition committing the first internal collective
error of . Let g be the associated collective procedure used by f, and x the
execution of PY9 extracted from region r of (. By Lemma 2, x is incorrect,
contradicting the assumption that g conforms.

Next we show that observable errors will be picked up by some simulation.
The following is proved using extraction and Lemma 3:

Lemma 4 Suppose f is a collective procedure of P, all collective procedures used
by f conform, and C is an execution of P¥. If ¢ has an observable collective error
or ends in deadlock then there exists an incorrect simulation of f.

Since infinite executions are also considered erroneous, we must ensure they
are detected by simulation:

Lemma 5 Suppose f is a collective procedure of P, and all collective procedures
used by f conform. If C is an infinite execution of PT with no observable collective
error then there exists an incorrect simulation of f.

Finally, we prove Theorem 1. Assume f is a collective procedure in P and all
collective procedures used by f conform. Suppose f does not conform; we must
show there is an incorrect simulation of f. As f does not conform, there is an
incorrect execution ¢ of P/ from a pre(f)-state. By Lemma 3, ¢ is not observably
correct. If C is finite or commits an observable collective error, Lemma 4 implies
an incorrect simulation exists. Otherwise, Lemma 5 implies such a simulation
exists. This completes the proof.

54 Z. Luo and S. F. Siegel

3 Collective Contracts for C/MPI

In Sect. 3.1, we summarize the salient aspects of C/MPI needed for a contract
system. Section 3.2 describes the overall grammar of MPI contracts and summa-
rizes the syntax and semantics of each new contract primitive.

3.1 Background from MPI

In the toy language of Sect.2, every collective procedure was invoked by all
processes. In MPI, a collective procedure is invoked by all processes in a commu-
nicator, an abstraction representing an ordered set of processes and an isolated
communication universe.! Programs may use multiple communicators. The size
of a communicator is the number of processes. Each process has a unique rank
in the communicator, an ID number in 0..size — 1.

In Sect. 2, a receive always selects the oldest message in a channel. In MPI, a
point-to-point send operation specifies a tag, an integer attached to the “message
envelope.” A receive can specify a tag, in which case the oldest message in the
channel with that tag is removed, or the receive can use MPI_ANY_TAG, in which
case the oldest message is. MPI collective functions do not use tags.

MPI communication operations use communication buffers. A buffer b is spec-
ified by a pointer p, datatype d (an object of type MPI_Datatype), and nonneg-
ative integer count. There are constants of type MPI_Datatype corresponding to
the C basic types: MPI_INT, MPI_DOUBLE, etc. MPI provides functions to build
aggregate datatypes. Each datatype specifies a type map: a sequence of ordered
pairs (t,m) where ¢ is a basic type and m is an integer displacement in bytes. A
type map is nonoverlapping if the memory regions specified by distinct entries
in the type map do not intersect. A receive operation requires a nonoverlapping
type map; no such requirement applies to sends. For example, the type map
{(int,0), (double, 8)}, together with p, specifies an int at p and a double at
(char*)p+8. As long as sizeof (int) < 8, this type map is nonoverlapping.

The extent of d is the distance from its lowest to its highest byte, including
possible padding bytes at the end needed for alignment; the precise definition is
given in the MPI Standard. The type map of b is defined to be the concatenation
of Ty, . . ., Teount—1, where T; is the type map obtained by adding ¢ * extent(d) to
the displacements of the entries in the type map of d. For example, if count is 2,
sizeof (double) = 8 and ints and doubles are aligned at multiples of 8 bytes,
the buffer type map in the example above is

{(int, 0), (double, 8), (int, 16), (double, 24)}.

A message is created by reading memory specified by the send buffer, yielding
a sequence of basic values. The message has a type signature—the sequence
of basic types obtained by projecting the type map onto the first component.
The receive operation consumes a message and writes the values into memory
according to the receive buffer’s type map. Behavior is undefined if the send and
receive buffers do not have the same type signature.

! 'We consider only intra-commaunicators in this paper.

Collective Contracts for Message-Passing Parallel Programs 55

function-contract ::= requires-clause* terminates-clausex decreases-clause?
simple-clausex comm-clausex named-behavior+ completeness-clauses
collective-contract+

simple-clause ::= assigns-clause | ensures-clause | allocation-clause | abrupt-clause

named-behavior ::= behavior id : assumes-clausex requires-clausesx
simple-clausex comm-clausex

comm-clause ::= mpi uses term (, term)x ;

collective-contract ::= mpi collective(term) :requires-clausex simple-clausex
walitsfor-clausex mpi-named-behavior= completeness-clausesx

mpi-named-behavior ::= behavior id : assumes-clausex requires-clausex
simple-clausex waitsfor-clausex

Fig. 4. Grammar for ACSL function contracts, extended for MPI. Details for standard
ACSL clauses can be found in [10].

3.2 Contract Structure

We now describe the syntax and semantics for C/MPI function contracts. A con-
tract may specify either an MPI collective function, or a user-defined collective
function. A user function may be implemented using one or more communicators,
point-to-point operations, and MPI collectives.

The top level grammar is given in Fig.4. A function contract begins with a
sequence of distinct behaviors, each with an assumption that specifies when that
behavior is active. Clauses in the global contract scope preceding the first named
behavior are thought of as comprising a single behavior with a unique name and
assumption true. The behaviors may be followed by disjoint behaviors and
complete behaviors clauses, which encode claims that the assumptions are
pairwise disjoint, and their disjunction is equivalent to true, respectively. All of
this is standard ACSL, and we refer to it as the sequential part of the contract.

A new kind of clause, the comm-clause, may occur in the sequential part.
A comm-clause begins “mpi uses” and is followed by a list of terms of type
MPI_Comm. Such a clause specifies a guarantee that no communication will take
place on a communicator not in the list. When multiple comm-clauses occur
within a behavior, it is as if the lists were appended into one.

Collective contracts appear after the sequential part. A collective contract
begins “mpi collective” and names a communicator ¢ which provides the con-
text for the contract; ¢ must occur in a comm-clause from the sequential part. A
collective contract on ¢ encodes the claim that the function conforms to its con-
tract (Definition 4) with the adjustment that all of the collective errors defined
in Definition 2 are interpreted with respect to ¢ only.

A collective contract may comprise multiple behaviors. As with the sequential
part, clauses occurring in the collective contract before the first named behavior
are considered to comprise a behavior with a unique name and assumption true.

Type Signatures. The new logic type mpi_sig_t represents MPI type signa-
tures. Its domain consists of all finite sequences of basic C types. As with all
ACSL types, equality is defined and == and != can be used on two such values

56 Z. Luo and S. F. Siegel

in a logic specification. If t is a term of integer type and s is a term of type
mpi_sig_t, then t*s is a term of type mpi_sig_t. If the value of t is n and
n > 0, then t*s denotes the result of concatenating the sequence of s n times.

Operations on Datatypes. Two logic functions and one predicate are defined:

int \mpi_extent(MPI_Datatype datatype);
mpi_sig_t \mpi_sig(MPI_Datatype datatype) ;
\mpi_nonoverlapping(MPI_Datatype datatype);

The first returns the extent (in bytes) of a datatype. The second returns the type
signature of the datatype. The predicate holds iff the type map of the datatype is
nonoverlapping, a requirement for any communication buffer that receives data.

Value Sequences. The domain of type mpi_seq_t consists of all finite
sequences of pairs (¢,v), where ¢ is a basic C type and v is a value of type
t. Such a sequence represents the values stored in a communication buffer or
message. Similar to the case with type signatures, we define multiplication of an
integer with a value of type mpi_seq_t to be repeated concatenation.

Communication Buffers. Type mpi_buf_t is a struct with fields base (of
type void*), count (int), and datatype (MPI_Datatype). A value of this type
specifies an MPI communication buffer and is created with the logic function

mpi_buf_t \mpi_buf (void * base, int count, MPI_Datatype datatype);

The ACSL predicate \valid is extended to accept arguments of type mpi_buf_t
and indicates that the entire extent of the buffer is allocated memory; predicate
\valid_read is extended similarly.

Buffer Arithmetic. An integer and a buffer can be added or multiplied. Both
operations are commutative. These are defined by

n * \mpi_buf(p, m, dt) == \mpi_buf(p, n * m, dt)
n + \mpi_buf(p, m, dt) == \mpi_buf((char*)p + n*\mpi_extent(dt), m, dt)

Multiplication corresponds to multiplying the size of a buffer by n. It is meaning-
ful only when both n and m are nonnegative. Addition corresponds to shifting a
buffer by n units, where a unit is the extent of the datatype dt. It is meaningful
for any integer n.

Buffer Dereferencing. The dereference operator * may take an mpi_buf_t b
as an argument. The result is the value sequence (of type mpi_seq_t) obtained
by reading the sequence of values from the buffer specified by b.

The term *b used in an assigns clause specifies that any of the memory
locations associated to b may be modified; these are the bytes in the range p+m
to p + m + sizeof (t) — 1, for some entry (¢,m) in the type map of b.

The ACSL predicate \separated takes a comma-separated list of expres-
sions, each of which denotes a set of memory locations. It holds if those sets are

Collective Contracts for Message-Passing Parallel Programs 57

pairwise disjoint. We extend the syntax to allow expressions of type mpi_buf_t
in the list; these expressions represent sets of memory locations as above.

Terms. The grammar for ACSL terms is extended:
term ::= \mpi_comm_rank | \mpi_comm_size | \mpi_on(term, term)

The term \mpi_comm_size is a constant, the number of processes in the
communicator; \mpi_comm_rank is the rank of “this” process. In the term
\mpi_on(t,r), r must have integer type and is the rank of a process in the com-
municator. Term t is evaluated in the state of the process of rank r. For conve-
nience, we define a macro \mpi_agree(x) which expands to x==\mpi_on(x,0).
This is used to say the value of x is the same on all processes.

Reduction. A predicate for reductions is defined:

\mpi_reduce(mpi_seq_t out, integer lo, integer hi,
MPI_Op op, (integer)->mpi_seq_t in);

The predicate holds iff the value sequence out on this process is a point-wise
reduction, using operator op, of the hi — 1o value sequences in(1o), in(lo + 1),

.., in(hi — 1). Note in is a function from integer to mpi_seq_t. We say a
reduction, and not the reduction, because op may not be strictly commutative
and associative (e.g., floating-point addition).

4 Evaluation

In this section we describe a prototype tool we developed for MPI collective
contract verification, and experiments applying it to various example codes. All
experimental artifacts, including the tool source code, are available online [43].

4.1 Collective Contract Examples

The first part of our evaluation involved writing contracts for a variety of collec-
tive functions. We started with the 17 MPI blocking collective functions specified
in [45, Chapter 5|. These represent the most commonly used message-passing
patterns, such as broadcast, scatter, gather, transpose, and reduce (fold). The
MPI Standard is a precisely written natural language document, similar to the
C Standard. We scrutinized each sentence in the description of each function
and checked that it was reflected accurately in the contract.

Figure 5 shows the contract for the MPI collective function MPI_Allreduce.
This function “combines the elements provided in the input buffer of each pro-
cess. . . using the operator op” and “the result is returned to all processes” [45].
This guarantee is reflected in line 13. “The ‘in place’ option ...is specified by
passing the value MPI_IN_PLACE to the argument sendbuf at all processes. In
this case, the input data is taken at each process from the receive buffer, where it

58 Z. Luo and S. F. Siegel

1 #define SBUF \mpi_buf (sbuf, count, dt)

2 #define RBUF \mpi_buf (rbuf, count, dt)

3 /*@ mpi uses comm; mpi collective(comm):

4 requires \valid(RBUF) && \mpi_nonoverlapping(dt);

5 requires \mpi_agree(count) && \mpi_agree(dt) && \mpi_agree(op) && count >= 0;

6 requires \separated(RBUF, {SBUF |int i; sbuf != MPI_IN_PLACE});

7 assigns *RBUF;

8 ensures \mpi_agree (*RBUF);

9 waitsfor { i | int i; O <= i < \mpi_comm_size && count > 0};

10 behavior not_in_place:

11 assumes sbuf != MPI_IN_PLACE;

12 requires \mpi_agree(sbuf != MPI_IN_PLACE) && \valid_read(SBUF);

13 ensures \mpi_reduce(*RBUF, O, \mpi_comm_size, op, \lambda integer t; \mpi_on(*SBUF, t));
14 behavior in_place:

15 assumes sbuf == MPI_IN_PLACE;

16 requires \mpi_agree(sbuf == MPI_IN_PLACE);

17 ensures

18 \mpi_reduce (*RBUF, O, \mpi_comm_size, op, \lambda integer t; \mpi_on(\old(*RBUF), t));
19 disjoint behaviors; complete behaviors; */

20 int MPI_Allreduce(const void *sbuf, void *rbuf, int count, MPI_Datatype dt, MPI_Op op,
21 MPI_Comm comm) ;

Fig. 5. The contract of the MPI_Allreduce function.

will be replaced by the output data.” This option is represented using two behav-
iors. These are just a few examples of the tight mapping between the natural
language and the contract.

The only ambiguity we could not resolve concerned synchronization. The
Standard is clear that collective operations may or may not impose barriers.
It is less clear on whether certain forms of synchronization are implied by the
semantics of the operation. For example, many users assume that a non-root
process must wait for the root in a broadcast, or that all-reduce necessarily entails
a barrier. But these operations could be implemented with no synchronization
when count is 0. (Similarly, a process executing all-reduce with logical and could
return immediately if its contribution is false.) This issue has been discussed
in the MPI Forum [17]. Our MPI_Allreduce contract declares, on line 9, that
barrier synchronization occurs if count > 0, but other choices could be encoded.

In addition to the MPI collectives, we wrote contracts for a selection of user-
defined collectives from the literature, including;:

exchange: “ghost cell exchange” in 1d-diffusion solver [58]
diff1dIter: computes one time step in 1d-diffusion [58]

dotProd: parallel dot-product procedure from Hypre [23]

matmat: matrix multiplication using a block-striped decomposition [52]
oddEvenIter: odd-even parallel sorting algorithm [30,41].

CU o=

We also implemented cyc of Fig.2 in MPI with contracts.

Figure 6 shows the contract and the implementation for dotProd. The func-
tions hypre_MPIx are simple wrappers for the corresponding MPI functions. The
input vectors are block distributed. Each process gets its blocks and computes
their inner product. The results are summed across processes with an all-reduce.
The contract uses the ACSL \sum function to express the local result on a pro-
cess (line 3) as well as the global result (line 13). Thus the contract is only

Collective Contracts for Message-Passing Parallel Programs 59

1 #define hypre_ParVectorComm(vector) ((vector) -> comm)

2 #define PAR_SIZE x->local_vector->size * x->local_vector->num_vectors
3 #define LOCAL_RESULT \sum(O, PAR_SIZE-1, \lambda int t; \

4 x->local_vector->datal[t] * y->local_vector->datalt])

5 /*@ requires \valid_read(x) && \valid_read(x->local_vector);

6 requires \valid_read(y) && \valid_read(y->local_vector);

7 requires \valid_read(x->local_vector->data + (0 .. PAR_SIZE-1));
8 requires \valid_read(y->local_vector->data + (0 .. PAR_SIZE-1));

9 requires x->local_vector->size > 0 && x->local_vector->num_vectors > 0;
10 mpi uses hypre_ParVectorComm(x) ;

11 mpi collective(hypre_ParVectorComm(x)) :

12 assigns \nothing;

13 ensures \result == \sum(0, \mpi_comm_size-1,

14 \lambda integer k; \mpi_on(LOCAL_RESULT, k));
15 waitsfor {i | int i; O <= i < \mpi_comm_size}; */

16 HYPRE_Real hypre_ParVectorInnerProd(hypre_ParVector *x, hypre_ParVector *y) {
17 MPI_Comm comm = hypre_ParVectorComm(x) ;

18 hypre_Vector *x_local = hypre_ParVectorLocalVector(x);

19 hypre_Vector *y_local = hypre_ParVectorLocalVector(y);

20 HYPRE_Real result = 0.0;

21 HYPRE_Real local_result = hypre_SeqVectorInnerProd(x_local, y_local);

22 hypre_MPI_Allreduce(&local_result, &result, 1, hypre_MPI_REAL,

23 hypre_MPI_SUM, comm);

24 return result;

Fig. 6. The parallel dotProd function from Hypre [23], with contract.

valid if a real number model of arithmetic is used. This is a convenient and
commonly-used assumption when specifying numerical code. We could instead
use our predicate \mpi_reduce for a contract that holds in the floating-point
model.

4.2 Bounded Verification of Collective Contracts

For the second part of our evaluation, we developed a prototype tool for ver-
ifying that C/MPI collective procedures conform to their contracts. We used
CIVL, a symbolic execution and model checking framework [57] written in Java,
because it provides a flexible intermediate verification language and it already
has strong support for concurrency and MPI [44]. We created a branch of CIVL
and modified the Java code in several ways, which we summarize here.

We modified the front-end to accept contracts in our extended version of
ACSL. This required expanding the grammar, adding new kinds of AST nodes,
and updating the analysis passes. Our prototype can therefore parse and perform
basic semantic checks on contracts.

We then added several new primitives to the intermediate language to sup-
port the formal concepts described in Sect. 2. For example, in order to evaluate
pre- and postconditions using \mpi_on expressions, we added a type for collec-
tive state, with operations to take a “snapshot” of a process state and merge
snapshots into a program state, in order to check collective conditions.

Finally, we implemented a transformer, which consumes a C/MPI program
annotated with contracts and the name of the function f to be verified. It gener-
ates a program similar to P/ (Sect.2.4). This program has a driver that initial-
izes the global variables and arguments for f to arbitrary values constrained only

60 Z. Luo and S. F. Siegel

function states prover time(s) function states prover time(s)
g (cyc) 3,562 7 4 allgather 14,606 356 32
allreduceDR 7,390 15 5 reduce 118,278 54 46
f (cyc) 7,913 16 15 scatter 125,900 394 69
oddEvenIter 14,216 91 8 gather 126,724 259 71
bcast 29,256 80 16 matmat 8,345 275 188
allreduce 14,174 64 16 reduceScatterNC 264,215 259 214
dotProd 4,690 102 40 reduceScatter 211,541 499 505
diffidIter 4,762 130 100 exchange 896,869 9659 478

Fig. 7. Verification performance for nprocs < 5.

by f’s precondition, using CIVL’s $assume statement. The body of a collective
function g used by f is replaced by code of the form

wait(waitsfor(g)); $assert(precondition); $havoc(assigns(g));
wait(waitsfor(g)); $assume(postcondition);

where wait is implemented using CIVL primitive $when, which blocks until a
condition holds. When the CIVL verifier is applied to this program, it explores
all simulations of f, verifying they terminate and are free of collective errors. By
Thm. 1, the verifier can prove, for a bounded number of processes, f conforms.

Our prototype has several limitations. It assumes no wildcard is used in
the program. It does not check assigns violation for the verifying function. It
assumes all communication uses standard mode blocking point-to-point functions
and blocking MPI collective functions. Nevertheless, it can successfully verify a
number of examples with nontrivial bounds on the number of processes.

For the experiment, we found implementations for several of the MPI col-
lective functions. Some of these are straightforward; e.g., the implementation of
MPI_Allreduce consists of calls to MPI_Reduce followed by a call to MPI_Bcast.
Two of these implementations are more advanced: allreduceDR implements
MPI_Allreduce using a double recursive algorithm; reduceScatterNC imple-
ments MPI_Reduce_scatter using an algorithm optimized for noncommutative
reduction operations [12].

We applied our prototype to these collective implementations, using the con-
tracts described in Sect.4.1. We also applied it to the 5 user-defined collectives
listed there. We were able to verify these contracts for up to 5 processes (no other
input was bounded), using a Mac Mini with an M1 chip and 16GB memory. For
the CIVL configuration, we specified two theorem provers to be used in order:
(1) CVC4 [8] 1.8, and (2) Z3 [49] 4.8.17, each with a timeout of two seconds.

Results are given in Fig. 7. For each problem, we give the number of states
saved by CIVL, the number of calls to the theorem provers, and the total veri-
fication time in seconds, rounded up to the nearest second.

The times range from 4 seconds to 8 and a half minutes. In general, time
increases with the number of states and prover calls. Exceptions to this pat-
tern occur when prover queries are very complex and the prover times out—two

Collective Contracts for Message-Passing Parallel Programs 61

seconds in our case. For example, matmat, whose queries involve integer multi-
plications and uninterpreted functions, times out often. It is slower than most
of the test cases despite a smaller state space.

Comparing reduceScatter with reduceScatterNC, it is noteworthy that
verifying the simple implementation takes significantly longer than the advanced
version. This is because the simple implementation re-uses verified collective
functions. Reasoning about the contracts of those functions may involve expen-
sive prover calls.

For exchange, nearly one million states are saved though its implementation
involves only two MPI point-to-point calls. This is due to the generality of its
contract. A process communicates with its left and right “neighbors” in this
function. The contract assumes that the neighbors of a process can be any two
processes—as long as each pair of processes agree on whether they are neighbors.
Hence there is combinatorial explosion generating the initial states.

For each example, we made erroneous versions and confirmed that CIVL
reports a violation or “unknown” result.

5 Related Work

The ideas underlying code contracts originate in the work of Floyd on formal
semantics [26], the proof system of Hoare [29], the specification system Larch
[27], and Meyer’s work on Eiffel [46,47]. Contract systems have been developed
for many other languages, including Java [25,32,38], Ada [5], C# [7], and C
[10,18].

Verification condition generation (VCG) [6,25,39] and symbolic execution
[35,36,51] are two techniques used to verify that code conforms to a contract.
Eztended static checking is an influential VCG approach for Java [25,32,39].
Frama-C’s WP plugin [9,18] is a VCG tool for ACSL-annotated C programs,
based on the Why platform [24]. The Kiasan symbolic execution platform [20]
has been applied to both JML and Spark contracts [11].

Several contract systems have been developed for shared memory concur-
rency. The VCC verifier [15,16,48] takes a contract approach, based on object
invariants in addition to pre- and postconditions, to shared-memory concurrent
C programs. VeriFast is a deductive verifier for multithreaded C and Java pro-
grams [31]. Its contract language is based on concurrent separation logic [14].
These systems focus on issues, such as ownership and permission, that differ
from those that arise in distributed computing.

For distributed concurrency, type-theoretic approaches based on session types
[50,54,59] are used to describe communication protocols; various techniques
verify an implementation conforms to a protocol. ParTypes [40] applies this
approach to C/MPI programs using a user-written protocol that specifies the
sequence of messages transmitted in an execution. Conformance guarantees
deadlock-freedom for an arbitrary number of processes. However, ParTypes pro-
tocols cannot specify programs with wildcards or functional correctness, and
they serve a different purpose than our contracts. Our goal is to provide a public

62 Z. Luo and S. F. Siegel

contract for a collective procedure—the messages transmitted are an implemen-
tation detail that should remain “hidden” to the extent possible.

Several recent approaches to the verification of distributed systems work by
automatically transforming a message-pasing program to a simplified form. One
of these takes a program satisfying symmetric nondeterminism and converts it
to a sequential program, proving deadlock-freedom and enabling verification of
other safety properties [4]. Another does the same for a more general class of
distributed programs, but requires user-provided information such as an “invari-
ant action” and an abstraction function [37]. A related approach converts an
asynchronous round-based message-passing program, with certain user-provided
annotations, to a synchronous form [19]. This technique checks that each round
is communication-closed, a concept that is similar to the idea of collective-style
procedures. It is possible that these approaches could be adapted to verify that
collective-style procedures in an MPI program conform to their contracts.

There are a number of correctness tools for MPI programs, including the
dynamic model checkers ISP [60] and DAMPI [61], the static analysis tool MPI-
Checker [22], and the dynamic analysis tool MUST [28]. These check for certain
pre-defined classes of defects, such as deadlocks and incorrectly typed receive
statements; they are not used to specify or verify functional correctness.

Ashcroft introduced the idea of verifying parallel programs by showing every
atomic action preserves a global invariant [3]. This approach is applied to a simple
message-passing program in [42] using Frama-C+WP and ghost variables to
represent channels. The contracts are quite complicated; they are also a bespoke
solution for a specific problem, rather than a general language. However, the
approach applies to non-collective as well as collective procedures.

A parallel program may also be specified by a functionally equivalent sequen-
tial version [56]. This works for whole programs which consume input and pro-
duce output, but it seems less applicable to individual collective procedures.

Assume-Guarantee Reasoning. [1,21,33,34] is another approach that decom-
poses along process boundaries. This is orthogonal to our approach, which
decomposes along procedure boundaries.

6 Discussion

We have summarized a theory of contracts for collective procedures in a toy
message-passing language. We have shown how this theory can be realized for C
programs that use MPI using a prototype contract-checking tool. The approach
is applicable to programs that use standard-mode blocking point-to-point oper-
ations, blocking MPI collective functions, multiple communicators, user-defined
datatypes, pointers, pointer arithmetic, and dynamically allocated memory. We
have used it to fully specify all of the MPI blocking collective functions, and
several nontrivial user-defined collective functions.

MPT’s nonblocking operations are probably the most important and widely-
used feature of MPI not addressed here. In fact, there is no problem specifying
a collective procedure that uses nonblocking operations, as long as the proce-
dure completes all of those operations before returning. For such procedures,

Collective Contracts for Message-Passing Parallel Programs 63

the nonblocking operations are another implementation detail that need not be
mentioned in the public interface. However, some programs may use one proce-
dure to post nonblocking operations, and another procedure to complete them;
this is in fact the approach taken by the new MPI “nonblocking collective” func-
tions [45, Sec. 5.12]. The new “neighborhood collectives” [45, Sec. 7.6] may also
require new abstractions and contract primitives.

Our theory assumes no use of MPI_ANY_SOURCE “wildcard” receives. It is
easy to construct counterexamples to Theorem 1 for programs that use wild-
cards. New conceptual elements will be required to ensure a collective procedure
implemented with wildcards will always behave as expected.

Our prototype tool for verifying conformance to a contract uses symbolic
execution and bounded model checking techniques. It demonstrates the feasi-
bility of this approach, but can only “verify” with small bounds placed on the
number of processes. It would be interesting to see if the verification condition
generation (VCG) approach can be applied to our contracts, so that they could
be verified without such bounds. This would require a kind of Hoare calculus for
message-passing parallel programs, and/or a method for specifying and verifying
a global invariant.

One could also ask for runtime verification of collective contracts. This is an
interesting problem, as the assertions relate the state of multiple processes, so
checking them would require communication.

Acknowledgements. We are grateful to the anonymous reviewers for providing valu-
able advice on the presentation of the results in this paper and for pointing out impor-
tant related work. This material is based upon work by the RAPIDS Institute, sup-
ported by the U.S. Department of Energy, Office of Science, Office of Advanced Scien-
tific Computing Research, Scientific Discovery through Advanced Computing (SciDAC)
program, under award DE-SC0021162. Support was also provided by U.S. National Sci-
ence Foundation awards CCF-1955852, CCF-1319571, and CCF-2019309.

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Program. Lang.
Syst. 17(3), 507-535 (1995). https://doi.org/10.1145/203095.201069

2. Alur, R., Bouajjani, A., Esparza, J.: Model Checking Procedural Programs,
chap. 17, pp. 541-572. Springer, Cham (2018).https://doi.org/10.1007/978-3-319-
10575-8_17

3. Ashcroft, E.A.: Proving assertions about parallel programs. J. Comput. Syst. Sci.
10(1), 110-135 (1975). https://doi.org/10.1016/S0022-0000(75)80018-3

4. Bakst, A., Gleissenthall, K.v., Kici, R.G., Jhala, R.: Verifying distributed programs
via canonical sequentialization. Proc. ACM Program. Lang. 1(OOPSLA) (2017).
https://doi.org/10.1145/3133934

5. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, Boston (2003)

6. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364-387.
Springer, Heidelberg (2005). https://doi.org/10.1007/11804192_17

https://doi.org/10.1145/203095.201069
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1145/3133934
https://doi.org/10.1007/11804192_17

64

7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Z. Luo and S. F. Siegel

. Barnett, M., Fahndrich, M., Leino, K.R.M., Miiller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81-91
(2011). https://doi.org/10.1145/1953122.1953145

. Barrett, C., et al.: CVC4. In: International Conference on Computer Aided Verifi-
cation, pp. 171-177. Springer, Heidelberg (2011). http://dl.acm.org/citation.cfm?
id=2032305.2032319

. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z., Blanchard, A.: WP plug-in

manual: frama-C 22.0 (Titanium) (2020). https://frama-c.com/download/frama-

c-wp-manual.pdf

Baudin, P., et al.: ACSL: ANSI/ISO C Specification Language, version 1.16 (2020).

http://frama-c.com/download/acsl-1.16.pdf

Belt, J., Hatcliff, J., Robby, Chalin, P., Hardin, D., Deng, X.: Bakar Kiasan: flexible

contract checking for critical systems using symbolic execution. In: Bobaru et al.

[13], pp. 58-72.https://doi.org/10.1007/978-3-642-20398-5_6

Bernaschi, M., Tannello, G., Lauria, M.: Efficient implementation of reduce-scatter

in MPI. In: Proceedings of the 10th Euromicro Conference on Parallel, Dis-

tributed and Network-Based Processing (EUROMICRO-PDP 2002), pp. 301-

308. IEEE Computer Society, Washington (2002). http://dl.acm.org/citation.cfm?

id=1895489.1895529

Bobaru, M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.): NASA Formal

Methods - Third International Symposium, NFM 2011, Pasadena, 18-20 April

2011. Proceedings, LNCS, vol. 6617. Springer, Heidelberg (2011). https://doi.org/

10.1007/978-3-642-20398-5

Brookes, S.: A semantics for concurrent separation logic. Theoret. Comput. Sci.

375(1), 227-270 (2007). https://doi.org/10.1016/j.tcs.2006.12.034. Festschrift for

John C. Reynolds’s 70th Birthday

Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,

S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in Higher Order

Logics, LNCS, vol. 5674, pp. 23—-42. Springer, Heidelberg (2009). https://doi.org/

10.1007/978-3-642-03359-9_2

Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invari-

ants in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV

2010. LNCS, vol. 6174, pp. 480-494. Springer, Heidelberg (2010). https://doi.org/

10.1007/978-3-642-14295-6_42

Community, M.: Collective Synchronization (2020). https://github.com/mpi-

forum/mpi-issues/issues/257. Accessed 13 Aug 2021

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:

Frama-C—a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-

combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233-247. Springer, Heidelberg

(2012). https://doi.org/10.1007/978-3-642-33826-7_16

Damian, A., Dragoi, C., Militaru, A., Widder, J.: Communication-closed asyn-

chronous protocols. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification,pp.

344-363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_20

Deng, X., Lee, J., Robby: Bogor/Kiasan: a k-bounded symbolic execution for check-

ing strong heap properties of open systems. In: 21st IEEE/ACM International

Conference on Automated Software Engineering (ASE 2006), 1822 September

2006, Tokyo, pp. 157-166. IEEE Computer Society, USA (2006). https://doi.org/

10.1109/ASE.2006.26

Dingel, J.: Computer-assisted assume/guarantee reasoning with VeriSoft. In: Pro-

ceedings of the 25th International Conference on Software Engineering (ICSE

https://doi.org/10.1145/1953122.1953145
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=2032305.2032319
https://frama-c.com/download/frama-c-wp-manual.pdf
https://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.com/download/acsl-1.16.pdf
https://doi.org/10.1007/978-3-642-20398-5_6
http://dl.acm.org/citation.cfm?id=1895489.1895529
http://dl.acm.org/citation.cfm?id=1895489.1895529
https://doi.org/10.1007/978-3-642-20398-5
https://doi.org/10.1007/978-3-642-20398-5
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.1007/978-3-642-14295-6_42
https://github.com/mpi-forum/mpi-issues/issues/257
https://github.com/mpi-forum/mpi-issues/issues/257
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-030-25543-5_20
https://doi.org/10.1109/ASE.2006.26
https://doi.org/10.1109/ASE.2006.26

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Collective Contracts for Message-Passing Parallel Programs 65

2003), pp. 138-148. IEEE Computer Society, Washington (2003).https://doi.org/
10.1109/ICSE.2003.1201195

Droste, A., Kuhn, M., Ludwig, T.: MPI-checker: static analysis for MPI. In: Pro-
ceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM 2015), pp. 3:1-3:10. ACM, New York (2015). https://doi.org/10.1145/
2833157.2833159

Falgout, R.D., Yang, U.M.: hypre: a library of high performance preconditioners. In:
Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) Computational
Science—ICCS 2002, pp. 632-641. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-47789-6_66

Filliatre, J.C., Paskevich, A.: Why3: where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Proceedings of the 22nd European Conference on Program-
ming Languages and Systems (ESOP 2013), pp. 125-128. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6_-8

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Knoop, J., Hendren, L.J. (eds.) Proceedings
of the 2002 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Berlin, 17-19 June 2002, pp. 234-245. Association for
Computing Machinery, New York (2002). https://doi.org/10.1145/512529.512558
Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci. 19,
19-32 (1967)

Guttag, J.V., Horning, J.J., Wing, J.M.: The Larch family of specification lan-
guages. IEEE Softw. 2(5), 24-36 (1985). https://doi.org/10.1109/MS.1985.231756
Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Miiller, M.S.: MPI runtime
error detection with MUST: advances in deadlock detection. In: Hollingsworth,
J.K. (ed.) International Conference on High Performance Computing Networking,
Storage and Analysis, SC 2012, Salt Lake City, 11-15 November 2012, pp. 30:1-
30:11. IEEE Computer Society Press, Los Alamitos (2012). https://doi.org/10.
1109/SC.2012.79

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576-580 (1969). https://doi.org/10.1145/363235.363259

Huisman, M., Monahan, R., Miiller, P., Mostowski, W., Ulbrich, M.: VerifyThis
2017: A Program Verification Competition. Tech. Rep. Karlsruhe Reports in Infor-
matics 2017, 10, Karlsruhe Institute of Technology, Faculty of Informatics (2017).
https://doi.org/10.5445/IR /1000077160

Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL 2011), pp. 271-282. Association for Com-
puting Machinery, New York (2011). https://doi.org/10.1145/1926385.1926417
James, P.R., Chalin, P.: Faster and more complete extended static checking for
the Java Modeling Language. J. Automat. Reason. 44, 145-174 (2010). https://
doi.org/10.1007/s10817-009-9134-9

Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596-619 (1983). https://doi.org/
10.1145/69575.69577

Jones, C.B.: Specification and design of (parallel) programs. In: Mason, R.E.A.
(ed.) Information Processing 83, Proceedings of the IFIP 9th World Computer
Congress, Paris, 1923 September 1983, pp. 321-332. North-Holland /IFIP, New-
castle University (1983)

https://doi.org/10.1109/ICSE.2003.1201195
https://doi.org/10.1109/ICSE.2003.1201195
https://doi.org/10.1145/2833157.2833159
https://doi.org/10.1145/2833157.2833159
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/512529.512558
https://doi.org/10.1109/MS.1985.231756
https://doi.org/10.1109/SC.2012.79
https://doi.org/10.1109/SC.2012.79
https://doi.org/10.1145/363235.363259
https://doi.org/10.5445/IR/1000077160
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1007/s10817-009-9134-9
https://doi.org/10.1007/s10817-009-9134-9
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577

66

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Z. Luo and S. F. Siegel

Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems, 9th International Confer-
ence, TACAS 2003, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2003, Warsaw, 7-11 April 2003, Proceedings.
LNCS, vol. 2619, pp. 553-568. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36577-X_40

King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385—
394 (1976). https://doi.org/10.1145/360248.360252

Kragl, B., Enea, C., Henzinger, T.A., Mutluergil, S.O., Qadeer, S.: Inductive
sequentialization of asynchronous programs. In: Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2020), pp. 227-242. Association for Computing Machinery, New York (2020).
https://doi.org/10.1145/3385412.3385980

Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1-38
(2006). https://doi.org/10.1145/1127878.1127884

Leino, K.R.M.: Extended static checking: a ten-year perspective. In: Wilhelm, R.
(ed.) Informatics - 10 Years Back. 10 Years Ahead. LNCS, vol. 2000, pp. 157-175.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44577-3_11

Lépez, H.A., et al.: Protocol-based verification of message-passing parallel pro-
grams. In: Aldrich, J., Eugster, P. (eds.) Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, Part of SPLASH 2015, Pittsburgh, 25-30 Octo-
ber 2015, pp. 280-298. ACM, New York (2015). https://doi.org/10.1145/2814270.
2814302

Luo, Z., Siegel, S.F.: Symbolic execution and deductive verification approaches to
VerifyThis 2017 challenges. In: Margaria, T., Steffen, B. (eds.) Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA 2018), Proceedings,
Part II: Verification. LNCS, vol. 11245, pp. 160-178. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-030-03421-4_12

Luo, Z., Siegel, S.F.: Towards deductive verification of message-passing parallel
programs. In: Laguna, I., Rubio-Gonzélez, C. (eds.) 2018 IEEE/ACM 2nd Inter-
national Workshop on Software Correctness for HPC Applications (Correctness),
pp- 59-68. IEEE (2018). https://doi.org/10.1109/Correctness.2018.00012

Luo, Z., Siegel, S.F.: Artifact of “Collective contracts for message-passing parallel
programs” (2024). https://doi.org/10.5281/zenodo.10938740

Luo, Z., Zheng, M., Siegel, S.F.: Verification of MPI programs using CIVL. In:
Proceedings of the 24th European MPI Users’ Group Meeting (EuroMPI 2017),
pp. 6:1-6:11. ACM, New York (2017). https://doi.org/10.1145/3127024.3127032
Message-Passing Interface Forum. MPI: A Message-Passing Interface standard,
version 3.1 (2015). https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
Meyer, B.: Applying “Design by Contract.” IEEE Comput. 25(10), 40-51 (1992).
https://doi.org/10.1109/2.161279

Meyer, B., Nerson, J.M., Matsuo, M.: EIFFEL: object-oriented design for software
engineering. In: Nichols, H.K., Simpson, D. (eds.) ESEC 1987. LNCS, vol. 289, pp.
221-229. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0022115
Moskal, M.: Verifying functional correctness of C programs with VCC. In: Bobaru
et al. [13], pp. 56-57 (2011). https://doi.org/10.1007/978-3-642-20398-5_5

https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1007/3-540-44577-3_11
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1007/978-3-030-03421-4_12
https://doi.org/10.1109/Correctness.2018.00012
https://doi.org/10.5281/zenodo.10938740
https://doi.org/10.1145/3127024.3127032
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/BFb0022115
https://doi.org/10.1007/978-3-642-20398-5_5

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Collective Contracts for Message-Passing Parallel Programs 67

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 337-340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3_24

Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) Objects, Models, Com-
ponents, Patterns. LNCS, vol. 7304, pp. 202-218. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30561-0-15

Pasareanu, C., Visser, W.: A survey of new trends in symbolic execution for soft-
ware testing and analysis. Int. J. Softw. Tools Techol. Transf. 11(4), 339-353
(2009). https://doi.org/10.1007/s10009-009-0118-1

Quinn, M.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill
2004

%{mna)no, P.K., Horelik, N.E., Herman, B.R., Nelson, A.G., Forget, B., Smith, K.:
OpenMC: a state-of-the-art Monte Carlo code for research and development. Ann.
Nucl. Energy 82, 90-97 (2015). https://doi.org/10.1016/j.anucene.2014.07.048
Scalas, A., Yoshida, N., Benussi, E.: Verifying message-passing programs with
dependent behavioural types. In: Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI 2019), pp.
502-516. Association for Computing Machinery, New York (2019).https://doi.org/
10.1145/3314221.3322484

Siegel, S.F., Avrunin, G.S.: Modeling wildcard-free MPI programs for verification.
In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP 2005), pp. 95-106. Association for Comput-
ing Machinery, New York (2005).https://doi.org/10.1145/1065944.1065957

Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Combining symbolic execu-
tion with model checking to verify parallel numerical programs. ACM Trans. Softw.
Eng. Methodol. 17(2), 1-34 (2008). https://doi.org/10.1145/1348250.1348256
Siegel, S.F., et al.: CIVL: the Concurrency Intermediate Verification Language.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2015), pp. 61:1-61:12. ACM, New York
(2015). http://doi.acm.org/10.1145/2807591.2807635

Siegel, S.F., Zirkel, T.K.: FEVS: a functional equivalence verification suite for
high performance scientific computing. Math. Comput. Sci. 5(4), 427-435 (2011).
https://doi.org/10.1007/s11786-011-0101-6

Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994 Parallel Architectures and Languages Europe. LNCS, vol. 817, pp.
398-413. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58184-7_118
Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic verification of MPI
programs with reductions in presence of split operations and relaxed orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66-79. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_9

Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., Supinski, B.R.d., Schulz, M.,
Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI pro-
grams. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2010), pp. 1-10.
IEEE Computer Society, Washington (2010). https://doi.org/10.1109/SC.2010.7
Yang, U., Falgout, R., Park, J.: Algebraic Multigrid Benchmark, Version 00 (2017).
https://www.osti.gov//servlets/purl /1389816

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1016/j.anucene.2014.07.048
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/1065944.1065957
https://doi.org/10.1145/1348250.1348256
http://doi.acm.org/10.1145/2807591.2807635
https://doi.org/10.1007/s11786-011-0101-6
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-540-70545-1_9
https://doi.org/10.1109/SC.2010.7
https://www.osti.gov//servlets/purl/1389816

68 Z. Luo and S. F. Siegel

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Collective Contracts for Message-Passing Parallel Programs
	1 Introduction
	2 A Theory of Collective Contracts
	2.1 Language
	2.2 Semantics
	2.3 Collective Correctness
	2.4 Simulation

	3 Collective Contracts for C/MPI
	3.1 Background from MPI
	3.2 Contract Structure

	4 Evaluation
	4.1 Collective Contract Examples
	4.2 Bounded Verification of Collective Contracts

	5 Related Work
	6 Discussion
	References

