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ABSTRACT

To enhance the efficiency and practicality of federated bandit learning, recent
advances have introduced incentives to motivate communication among clients,
where a client participates only when the incentive offered by the server out-
weighs its participation cost. However, existing incentive mechanisms naively
assume the clients are truthful: they all report their true cost and thus the higher
cost one participating client claims, the more the server has to pay. Therefore,
such mechanisms are vulnerable to strategic clients aiming to optimize their own
utility by misreporting. To address this issue, we propose an incentive compatible
(i.e., truthful) communication protocol, named TRUTH-FEDBAN, where the in-
centive for each participant is independent of its self-reported cost, and reporting
the true cost is the only way to achieve the best utility. More importantly, TRUTH-
FEDBAN still guarantees the sub-linear regret and communication cost without
any overhead. In other words, the core conceptual contribution of this paper is, for
the first time, demonstrating the possibility of simultaneously achieving incentive
compatibility and nearly optimal regret in federated bandit learning. Extensive
numerical studies further validate the effectiveness of our proposed solution.

1 INTRODUCTION

Bandit learning (Lattimore & Szepesvári, 2020) addresses the exploration-exploitation dilemma in
interactive environments, where the learner repeatedly chooses actions and observes the correspond-
ing rewards from the environment. Subject to different goals of the learner, e.g., maximizing cumu-
lative rewards (Abbasi-Yadkori et al., 2011; Auer et al., 2002) vs., identifying the best arm (Audibert
et al., 2010; Garivier & Kaufmann, 2016), bandit algorithms have been widely applied in various
real-world applications, such as model selection (Maron & Moore, 1993), recommender systems (Li
et al., 2010a;b), and clinical trials (Durand et al., 2018). Most recently, propelled by the increasing
scales of data across various sources and public concerns about data privacy, there has been grow-
ing research effort devoted to federated bandit learning, which enables collective bandit learning
among distributed learners while preserving data privacy of each learner. Recent advances in this
line of research mainly focus on addressing the communication bottleneck in the federated network,
which leads to communication-efficient protocols for both non-contextual (Landgren et al., 2016;
Martı́nez-Rubio et al., 2019; Shi et al., 2020; Zhu et al., 2021) and contextual bandits (Wang et al.,
2020; Huang et al., 2021; Li et al., 2022; 2023) under various environment settings.

However, almost all previous works assume clients are altruistic in sharing their local data with the
server whenever communication is triggered (Wang et al., 2020; Li & Wang, 2022a; He et al., 2022).
This limits their practical deployment in real-world scenarios involving individual rational clients
who share data only if provided with clear benefits. The only notable exception is Wei et al. (2023),
where incentive is provided to motivate client’s participation in federated learning. Nevertheless,
their protocol naively assumes the clients are truthful in reporting their participation cost; and thus,
they simply calculate incentives by each client’s claimed cost, leaving it as a design flaw for strategic
clients to exploit. Therefore, how to design an incentive compatible mechanism for federated bandits
that ensures truthful reporting while still preserving the near-optimal regret and communication cost
still remains an open research problem.
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Method Regret Communication Cost IR IC SC

DisLinUCB
O(d
√
T log T ) O(N2d3 log T ) ; ; ;

(Wang et al., 2020)
Inc-FedUCB

O(d
√
T log T ) O(N2d3 log T ) 6 ; ;

(Wei et al., 2023)
Truth-FedBan

O(d
√
T log T ) O(N2d3 log T ) 6 6 6

(Our Algorithm 1)

Table 1: Comparison with related works, where IR, IC and SC represent the guarantee of individual
rationality, incentive compatibility, and social cost near-optimality, respectively.

Following Wei et al. (2023)’s setting for learning contextual linear bandits in a federated environ-
ment, we develop the first incentive compatible communication protocol TRUTH-FEDBAN, which
ensures the clients can only achieve their best utility by reporting the true participation costs. Specif-
ically, instead of simply paying a client by its claimed cost, we decouple the calculation of incentive
from the target client’s reported cost, while preserving individual rationality through a critical-value
based payment design that depends on all other clients’ report cost. Besides the theoretical guaran-
tee on truthfulness, we also empirically demonstrate that misreporting cost brings no benefit to the
client’s utility. More encouragingly, we prove that this can be achieved without any compromise in
maintaining the near-optimal performance in regret and communication cost.

On the other hand, in addition to the above desiderata, maintaining a minimal social cost is also an
important objective in the incentivized communication problem, especially in practical applications.
Following classical economic literature (Procaccia & Tennenholtz, 2013), social cost is defined as
the sum of true participation costs among all participating clients. While incentivizing all clients’
participation ensures nearly optimal performance (Wang et al., 2020), it can be scientifically trivial
(e.g., paying everyone to have all of them participate) and practically undesirable — it not only
brings unnecessary burden for the server, but can also expose unnecessary clients to potential down-
sides of participation (e.g., privacy breaches, added resource consumption, etc.), resulting in worse
social cost. Minimizing social cost while ensuring sufficient client participation is non-trivial, as
it in nature is NP-hard (see Eq. (1)). Though the method proposed by Wei et al. (2023) achieves
sub-linear regret and communication cost (albeit assuming truthfulness), it provides no guarantee
on the social cost. In contrast, our proposed TRUTH-FEDBAN guarantees both sub-linear regret and
near-optimal social cost, with only a constant-factor approximation ratio. To better illustrate our
contribution, we compare the proposed TRUTH-FEDBAN with the most related works in Table 1.

2 RELATED WORK

2.1 FEDERATED BANDIT LEARNING

Federated bandit learning has been well investigated for sequential decision making in distributed
environments. These studies mainly differ in how they model the clients’ and environment charac-
teristics, which can be categorized into 1) bandit-wise: problem profile (e.g., context-free (Martı́nez-
Rubio et al., 2019; Shi & Shen, 2021; Shi et al., 2020) vs. contextual (Wang et al., 2020)) and deci-
sion set (e.g., fixed (Huang et al., 2021) vs. time-varying (Li & Wang, 2022b)), and 2) system-wise:
client type (e.g., homogeneous (He et al., 2022) vs. heterogeneous (Li & Wang, 2022a)), network
type (e.g., peer-to-peer (P2P) (Dubey & Pentland, 2020) vs. star-shaped (Wang et al., 2020)), and
communication type (e.g., synchronous (Li et al., 2022) vs. asynchronous (Li et al., 2023)).

Most recently, Wei et al. (2023) expand this spectrum by introducing the notion of incentivized
communication, where the server has to pay the clients for their participation. Despite being free
from the long-standing assumption about the client’s willingness of participation in literature, they
still assume truthfulness of clients in cost reporting. Specifically, their incentive calculation is based
on the client’s self-reported cost, which leads to serious vulnerability in adversarial scenarios as
clients can exploit this flaw, ultimately paralyzing the federated learning system. This is particularly
concerning in real-world applications where self-interested clients are motivated to strategically
game the system for increased utilities, i.e., increase the difference between incentives offered by
the server and actual participation costs. Our work aims to address this issue by introducing a
truthful incentive mechanism under which clients reporting true costs is in their best interest, while
ensuring near-optimal learning performance.
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2.2 MECHANISM DESIGN

Mechanism design (Nisan & Ronen, 1999) has been playing a crucial role in the fields of economics,
computer science and operation research, with fruitful auction-like real-world applications such as
matching markets (Roth, 1986), resource allocation (Procaccia, 2013), online advertisement pric-
ing (Aggarwal et al., 2006). Typically, the auctioneer (server) aims to sell/purchase one or more
entries of a collection to/from multiple bidders (clients), with the objective of maximizing social
welfare or minimizing social cost. The goal of mechanism design is to incentivize clients to truth-
fully report the values of the entries (i.e., truthfulness), while ensuring non-negative utilities if they
participate in the mechanism (i.e., individual rationality).

The Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) is
probably the most well-known truthful mechanism. Despite having been well explored in many
theoretical studies, VCG is rarely applied in practical applications due to its computational ineffi-
ciency. This is because VCG requires finding an optimal solution to the concerned problem, which
is often NP-hard (Archer & Tardos, 2001). Otherwise, truthfulness cannot be guaranteed when VCG
mechanisms are applied to sub-optimal solutions (Lehmann et al., 2002). To facilitate study on this
issue, Mu’Alem & Nisan (2008) identified the key character of a truthful mechanism and reduced
the problem to designing a monotone algorithm (see Section 4.1). One notable recent related work
is (Kandasamy et al., 2023), where the authors model repeated auctions as a bandit learning problem
for the server, with clients being unaware of their values but able to provide bandit feedback based
on the server’s allocation. The server’s goal is to find allocations that maximize social welfare, while
ensuring the clients’ truthfulness in their feedback. In contrast, in our work, clients know their par-
ticipation costs and are concerned to solve the bandit problem collectively. The server’s goal is to
incentivize clients’ participation for regret minimization, while ensuring the clients’ truthfulness in
cost reporting and minimizing social cost.

In terms of problem formulation, our work is closest to the hiring-a-team task in procurement auc-
tions (Talwar, 2003; Archer & Tardos, 2007), where the server aims to incentivize a set of self-
interested clients to jointly perform a task. One standard assumption in this task is that the envi-
ronment is monopoly-free, i.e., no single client exists in all feasible sets (Iwasaki et al., 2007). The
reason is that if a client is essential, it has the bargaining power to ask for infinite incentive. In this
paper, we do not assume a monopoly-free environment, otherwise additional environment assump-
tions will be needed (e.g., how the context or arms should distribute across clients). Instead, we are
intrigued in studying the origin and impact of the monopoly issue from both theoretical and empiri-
cal perspectives. And we also rigorously prove that we can eliminate the issue via hyper-parameter
control in our mechanism (see Lemma 7).

2.3 MECHANISM DESIGN IN FEDERATED LEARNING

On the other hand, there have been growing efforts in investigating mechanism design in the context
of federated learning (Pei, 2020; Tu et al., 2022). For example, Karimireddy et al. (2022) introduced
a contract-theory based incentive mechanism to maximize data sharing while avoiding free-riding
clients. In their design, every client gets different snapshots of the global model with different levels
of accuracy as incentive, and truthfully reporting their data sharing costs is the best response under
the proposed incentive mechanism. Therefore, there is no overall performance guarantee and their
focus is on investigating the level of accuracy the system can achieve under this truthful incentive
mechanism. Le et al. (2021) also investigated truthful mechanism design in the application scenario
of wireless communication, where server’s goal is to maximize the system’s social welfare, with
respect to a knapsack upper bound constraint. In contrast, in our problem the server is obligated to
improve the overall performance of the learning system, i.e., obtaining near-optimal regret among
all clients. Furthermore, our optimization problem (defined in Eq. (3)) aims at minimizing the so-
cial cost, with respect to a submodular lower bound constraint. Therefore, despite we share a similar
idea of using the monotone participant selection rule and critical-value based payment design to
guarantee truthfulness, the underlying fundamental optimization problems are completely different,
and consequently their solution cannot be used to solve our problem. Besides pursuing the truth-
fulness guarantee in mechanism design under the collaborative/federated setting, the other related
line of research focuses on designing incentive mechanisms that ensures fairness among distributed
clients (Blum et al., 2021; Xu et al., 2021; Sim et al., 2020; Donahue & Kleinberg, 2023), which is
also an important direction, despite being beyond the scope of our work. To our best knowledge,
our work is the first attempt that studies truthful mechanism design for federated bandit learning.
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3 PRELIMINARY: INCENTIVIZED FEDERATED BANDITS

In this section, we present the incentivized communication problem for federated bandits in gen-
eral and the existing solution framework under the linear reward assumption (Wang et al., 2020).
More precisely, we focus our discussions on the learning objectives, including minimizing regret,
communication cost, social cost, and ensuring truthfulness.

Consider a learning system with 1) N distributed strategic and individual rational clients that re-
peatedly interact with the environment by taking actions to receive rewards, and 2) a central server
responsible for motivating the clients to participate in federated learning via incentives. As in line
with Wei et al. (2023), we assume the clients can only communicate with the server, forming a
star-shaped communication network. Specifically, at each time step t ∈ [T ], an arbitrary client

it ∈ [N ] chooses an arm xt ∈ At from its given arm set At ¦ R
d. Then, client it receives a reward

yt = x
¦
t ¹⋆ + ¸t ∈ R, where ¹⋆ is the unknown parameter shared by all clients and ¸t denotes zero-

mean sub-Gaussian noise. Typically, in the centralized setting of bandit learning, a ridge regression

estimator ¹̂t = V −1
g,t bg,t is constructed for arm selection based on the sufficient statistics from all N

clients at time step t, where Vg,t =
∑t

s=1 xsx
¦
s and bg,t =

∑t
s=1 xsys. In contrast, since commu-

nication does not occur at every time step t in the federated setting, each client i only has a delayed
copy of Vg,t and bg,t, denoted as Vi,t = Vg,tlast

+ ∆Vi,t, bi,t = bg,tlast
+ ∆bi,t, where Vg,tlast

, bg,tlast

are the aggregated statistics shared by the server in the last communication, and ∆Vi,t,∆bi,t are the
accumulated local updates that client i has collected from the environment since tlast.

Regret and Communication Cost One key objective of the learning system is to minimize the

(pseudo) regret for all N clients across the entire time horizon T , i.e., RT =
∑T

t=1 rt, where rt =
maxx∈At

E[y|x]−E[yt|xt] is the instantaneous regret of client it at time step t. Meanwhile, a low
communication cost is also desired to keep the efficiency of federated learning, which is measured by
the total number of scalars transferred throughout the system up to time T . Intuitively, more frequent
communication leads to lower regret. For example, communicating at every time step recovers the
centralized setting, leading to the lowest regret, but with an undesirably high communication cost.
Efficient communication protocol design becomes the key to balance regret and communication
cost. And using determinant ratio to measure the outdatedness of the sufficient statistics stored
on the server side against those on the client side has become the reference solution to control
communication in federated linear bandits (Wang et al., 2020; Li & Wang, 2022a).

Incentivized Communication When dealing with individual rational clients, additional treatment
is needed to facilitate communication, as it becomes possible that no client participates unless prop-
erly incentivized thus leading to terrible regret. In other words, client i only participates if its utility
ui,t = Ii,t−Di,t is non-negative, where Ii,t is the server-provided incentive, and Di,t is the client’s
participation cost. To address this challenge and maintain near-optimal learning outcome, Wei et al.
(2023) pinpointed the core optimization problem in incentivized communication as follows:

min
St∈2S̃

∑

i∈St

D̂i,t s.t.
det(Vg,t(St))

det(Vg,t(S̃))
g ´ (1)

where D̂i,t is client i’s reported participation cost, St is the set of clients selected to participate at

time step t, S̃ = {1, 2, · · · , N} is the set of all clients, ´ is specified as an input to the algorithm,
and Vg,t(S) = Vg,tlast

+
∑

j∈S ∆Vj,t. In particular, they assume the clients’ reported cost is simply

the true cost, i.e., D̂i,t = Di,t. A heuristic search algorithm is executed to solve the optimization
problem whenever the standard communication event (Wang et al., 2020) is triggered. A detailed
description of this communication protocol is provided in Appendix F.

Note that Wei et al. (2023)’s work is limited to a constant cost setting of Di,t = Ci · I(∆Vi,t ̸= 0),
which restricts the actual cost Di,t of client i to be independent of time and its local updates ∆Vi,t. In
our work, we relax it to Di,t = f(∆Vi,t), where f can be any reasonable data valuation function, and

even time-varying1. Moreover, their proposed solution for Eq. (1) fails to provide any approximation
guarantee on the objective, thus having no guarantee on the social cost. Below, we provide a formal
definition of truthfulness and social cost employed in this paper.

1In fact, our proposed TRUTH-FEDBAN works with any realization of the valuation function, as all that
matters is that client i has a value Di,t for its data at time step t.
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Definition 1 (Truthfulness) An incentive mechanism is truthful (i.e., incentive compatible) if at
any time t the utility ui,t of any client i is maximized when it reports its true participation cost, i.e.,

D̂i,t = Di,t, regardless of the reported costs of the other clients’ D̂−i,t.

Definition 2 (Social Cost) The social cost of the learning system is defined as the total actual costs
incurred by all participating clients in the incentivized client set St, i.e.,

∑
i∈St

Di,t.

Note that the social cost defined above is different from the incentive cost studied in Wei et al.
(2023), which is the total payment the server made to all clients. As truthfulness is assumed in their
setting, the payment that the server needs to make to incentivize a client is trivially upper bounded
by the client’s true cost. However, in order to ensure truthfulness in our setting, the server needs to
overpay the selected clients (compared with their true cost). In the case where there exists monopoly
client as introduced in Section 2.2, an infinite incentive cost is required.

4 METHODOLOGY

4.1 CHARACTERIZATION OF TRUTHFUL INCENTIVE MECHANISMS

Our idea stems from the seminal result of Mu’Alem & Nisan (2008), who provided a characteriza-
tion of a truthful incentive mechanism as a combination of a monotone selection rule and a critical
value payment scheme, which reduces the problem of designing a truthful mechanism to that of
designing a monotone selection rule. Though it is originally intended for combinatorial auctions
in economics, we are the first to extend it to the incentivized communication problem in federated
bandit learning, laying the foundations for future work.

Definition 3 (Monotonicity) The selection rule for the set St is monotone if for any client i and

any reported costs of the other clients D̂−i,t, client i will remain selected whenever it reports D̂′
i,t f

D̂i,t, provided it is incentivized when reporting D̂i,t.

Furthermore, according to Mu’Alem & Nisan (2008), any monotone selection rule of the incentive
mechanism has an associated critical payment scheme, with its definition given below.

Definition 4 (Critical Payment) Let M be a monotone selection rule of the incentive mecha-
nism and St be the set of selected clients, then for any client i and any reported costs of the

other clients D̂−i,t, there exists a critical value ci,t(M, D̂−i,t) ∈ (R+ ∪ ∞) such that i ∈ St,

∀D̂i,t < ci,t(M, D̂−i,t), and i /∈ St, ∀D̂i,t > ci,t(M, D̂−i,t).

In this way, we can decouple the incentive Ii,t for client i from its reported participation cost D̂i,t,

and calculate the critical value based only on the other clients’ reported costs D̂−i,t. Formally,

Ii,t = ci,t(M, D̂−i,t) · I(i ∈ St) (2)

which is fundamentally different from the incentive design in (Wei et al., 2023) where Ii,t = D̂i,t ·
I(i ∈ St), as our payment method leaves no room for strategic clients to manipulate the incentive
and benefit from misreporting.

4.2 TRUTH-FEDBAN: A TRUTHFUL MECHANISM FOR INCENTIVIZED COMMUNICATION

To balance regret and communication cost, while ensuring truthfulness and minimizing social cost,
our proposed incentive mechanism TRUTH-FEDBAN inherits the incentivized communication pro-
tocol by Wei et al. (2023), with the distinction in implementing a truthful incentive search. As stated
above, the truthfulness of clients is ensured once we devise a monotone algorithm for client selec-
tion, combined with a critical payment scheme. But straightforward monotone algorithms (e.g., a
greedy algorithm ranking clients by their claimed costs) offer no guarantee on social cost. To address
this challenge, we rewrite the original optimization problem in Eq. (1) into the following equivalent
submodular set cover (SSC) problem, where g(S) is a submodular set function (see Definition 11).

min
St∈2S̃

∑

i∈St

D̂i,t s.t. gt(St) g log ´, gt(St) = log
det(Vg,t(St))

det(Vg,t(S̃))
(3)
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Algorithm 1 Truthful Incentive Search

Require: ´, ϵ > 0

1: St ← ∅, S̃ = {1, 2, · · · , N}
2: b← min

i∈S̃
D̂i,t

3: while gt(St) < (1− e−1) log ´ do
4: b← (1 + ϵ)b

5: St ← GREEDY(S̃, b)

6: return St

Algorithm 2 GREEDY

Require: S̃, b
1: St ← ∅
2: while

∑
i∈St

D̂i,t < b do

3: u← argmax
j∈S̃\St:D̂j,t+

∑
i∈St

D̂i,t<b

gt(St∪{j})−gt(St)

D̂j,t

4: St ← St ∪ {u}
5: return St

Inspired by Iyer & Bilmes (2013), we propose Algorithm 1 that achieves a constant-factor bi-criteria
approximation for both the objective and constraint in the problem defined by Eq. (3). As outlined
above, we first initialize a minimal budget (Line 2) for social cost and repeatedly increase the budget
(Line 4) until the resulting client set found by Algorithm 2 satisfies the specified condition (Line 3).

In Algorithm 2, for a given budget b, we iteratively find the best set of clients from the complete
client set until the budget cannot afford more clients. At each iteration, all the remaining non-
selected clients are ranked based on their contribution-to-cost ratio (and hence being greedy). The
algorithm then chooses the client with the highest ratio while ensuring the total cost of all selected
clients is within the budget (Line 3 of Algorithm 2). The correctness of our method hinges on the
following crucial monotonicity property that we prove. Interestingly, despite the wide use of greedy
algorithms in submodular maximization, this monotonicity result is unknown in previous literature
to the best of our knowledge. We thus present it as a proposition in case it is of independent interest.

Proposition 5 (Monotonicity) Algorithm 1 is monotone.

It is not difficult to show that Algorithm 2 is monotone for a fixed input budget b — that is, if client

i is selected under D̂i,t by Algorithm 2, it remains selected when it reports any D̂′
i,t f D̂i,t. But

it is highly non-trivial to prove monotonicity for Algorithm 1. This is because decreasing a client’s
reported cost can cause a different output by Algorithm 2 and, consequently, terminate the search
process in Algorithm 1 at a different budget b with a potentially different selection of participant
set St. We prove Proposition 5 by showing the resulting objective value gt(St) from Algorithm 2’s
selection of clients is non-decreasing with respect to its input budget b. The proof is a bit involving
since Algorithm 2 is an approximate algorithm and generally outputs sub-optimal solutions. We will
have to show that the quality of these sub-optimal solutions — which can be close to or far away
from the exact optimality — will not degenerate as the budget b increases. The proof of the above
property, together with the formal proof of Proposition 5, can be found in Appendix A.

Lemma 6 If the selection rule of a truthful mechanism is computable in polynomial time, so is the
critical payment scheme (Mu’Alem & Nisan, 2008).

Note that in the star-shaped communication network, only the server has the necessary information
to calculate the critical value of each client, and we assume the server is committed not to tricking
the clients. Due to space limit, we leave the detailed critical payment calculation to Appendix G.
In particular, as we do not assume a monopoly-free environment, a client’s critical value could be
infinite at a certain point, as introduced in Section 2.2. Nonetheless, Lemma 7 shows that this infi-
nite payment issue can be essentially eliminated by hyper-parameter control. The time complexity
analysis of Algorithm 1 can be found in Appendix H.

Lemma 7 (Elimination of Infinite Critical Value) With parameter ´ f (1 + tL2/¼d)−d in Algo-
rithm 1, no client will be essential in any communication round at time step t.

A detailed proof is provided in Appendix D. Building upon the properties above, we are now ready
to state the main incentive guarantee of our TRUTH-FEDBAN protocol.

Theorem 8 The incentive mechanism induced by Algorithm 1 is (a) truthful in the sense that ev-
ery client achieves the highest utility by reporting its true participation cost; and (b) individually
rational in the sense that every client’s utility of participating in the mechanism is non-negative.
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Proof The truthfulness guarantee directly follows Lemma 5. Below, we further elaborate on the
impact of misreporting. Denote St and S′

t as the participant sets when client i truthfully reports and

misreports its data sharing cost as D̂i,t = Di,t and D̂′
i,t ̸= Di,t, respectively. Let ci,t be the critical

value of client i, and ui,t and u′
i,t be its utilities in the above two conditions respectively. According

to Definition 4, we have i ∈ St whenever D̂i,t < ci,t, and i /∈ S′
t whenever D̂′

i,t > ci,t. Moreover,

if i /∈ St, then ui,t = 0. For simplicity, the subscript t is omitted in the following discussion.
Specifically, there are four possible cases: 1) i ∈ S and i ∈ S′, as critical payment is independent

from the client’s reported cost D̂i and D̂′
i, therefore u′

i − ui = (ci −Di)− (ci −Di) = 0; 2) i ∈ S

and i /∈ S′, in this case, D̂i = Di < ci < D̂′
i. Therefore, u′

i − ui = 0− (ci −Di) = Di − ci < 0;

3) i /∈ S and i ∈ S′, in this case, D̂′
i < ci < D̂i = Di. Therefore, u′

i − ui = (ci −Di)− 0 < 0; 4)
i /∈ S and i /∈ S′, in this case, both utilizes are zero, therefore u′

i − ui = 0 − 0 = 0. To conclude,
there is no benefit to misreport under our truthful mechanism design in all cases, and only reporting
the true data sharing cost can lead to the client’s best utility.

We now prove the individual rationality. Given the truthfulness guarantee, each client i reports its

true cost D̂i,t = Di,t, and only gets incentivized if D̂i,t < ci,t. Therefore, the utility of client i is
ui,t = ci,t − Di,t > 0 if client i gets incentivized; otherwise, ui,t = 0. In either case, client i is
ensured to have a non-negative utility, which completes the proof.

4.3 LEARNING PERFORMANCE OF TRUTH-FEDBAN PROTOCOL

The truthfulness property above helps the system induce desirable clients participation behaviors.
In this subsection, we demonstrate the learning performance of TRUTH-FEDBAN under these client
behaviors. Our main results are the following guarantees regarding total social cost that the TRUTH-
FEDBAN protocol has to suffer and the resultant regret guarantee it induces.

Theorem 9 (Social Cost) For any ϵ > 0, using Algorithm 2 to search for participants in Algo-
rithm 1 provides a [1 + ϵ, 1 − e−1] bi-criteria approximation solution for the problem defined
in Eq. (3). In other words, to maintain a social cost that is within a (1 + ϵ) factor of the opti-
mal value, it necessitates a relaxation of the constraint by a factor of (1− e−1). Formally,

∑

i∈St

D̂i,t f (1 + ϵ)
∑

i∈S⋆
t

D̂i,t and gt(St) g (1− e−1) log ´

where St is the output of Algorithm 1, and S⋆
t is the ground-truth optimizer of Eq. (3).

Proof Denote the optimal objective value of Eq. (3) as OPT. For the solution S⋆
t , we have OPT =∑

i∈S⋆
t
D̂i,t and gt(S

⋆
t ) g log ´. To simplify out discussions, we omit the subscript t and let Sb and

b be the output set and terminating budget of Algorithm 1 for solving the problem in Eq. (3), and Sb′

and b′ = b/(1 + ϵ) be the set and budget at the previous iteration before termination, then we have

{
g(Sb′) < (1− e−1) log ´ (4)

g(Sb) g (1− e−1) log ´ (5)

Denote S⋆
b′ as the optimal solution for the subroutine search problem with budget b′ (denote the prob-

lem solved by Algorithm 2 in Line 5 of Algorithm 1 as SUBPROBLEM). According to Sviridenko
(2004), the approximation ratio of Algorithm 2 for this SUBPROBLEM is (1− e−1), i.e.,

g(Sb′) g (1− e−1)g(S⋆
b′) (6)

Combining Eq. (4) and Eq. (6), we have g(S⋆
b′) < log ´. Furthermore, we can show that OPT > b′

by contradiction. Assuming OPT f b′, then S⋆ is a feasible solution for the SUBPROBLEM, and
thus g(S⋆) f g(S⋆

b′) < log ´. However, this contradicts the fact that g(S⋆) g log ´, so OPT > b′.
Hence, we can show that the objective value of solution Sb satisfies the following inequality:

∑

i∈Sb

D̂i f b = (1 + ϵ)b′ < (1 + ϵ)OPT (7)

This, combined with Eq. (5), concludes the proof.
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Since D̂i,t = Di,t is guaranteed (see Theorem 8), Theorem 9 directly bounds the social cost as de-
fined in Definition 2. Note that as indicated by Theorem 9, we can flexibly choose any desired level
of social cost by adjusting the parameter ϵ, which allows us to accommodate various computation
resources in practical scenarios. For example, in the case where computation is not a limiting factor
and the core objective is to minimize the social cost, we can set the factor (1 + ϵ) to be almost 1,
approaching the optimal social cost. Moreover, though this bi-criteria approximation slightly devi-
ates from the constraint of the original problem in Eq. (3), it only incurs a constant-factor gap of
(1 − e−1), and Theorem 10 shows that we still attain near-optimal regret and communication cost,
despite this deviation (see proof in Appendix E).

Theorem 10 (Regret and Communication Cost) Under threshold ´, with high probability the
communication cost of TRUTH-FEDBAN satisfies CT = O(Nd2) · P = O(N2d3 log T ), where
P = O(Nd log T ) is the total number of communication rounds, under the communication thresh-

old Dc = T
N2d log T

−
√

T 2

N2dR log T
log ´(1−e−1) in Algorithm 6, where R =

⌈
d log(1 + T

¼d
)
⌉
.

Furthermore, by setting ´(1−e−1) g e−
1

N , the cumulative regret is RT = O
(
d
√
T log T

)
.

5 EXPERIMENTS

To validate our solution, we create a simulated federated bandit learning environment with context
feature dimension d = 5 and N = 25 clients sequentially interacting with the environment for a
fixed time horizon T . Due to space limit, more implementation details can be found in Appendix G.
The results, averaged over 5 runs, are presented alongside the standard deviation.

5.1 COMPARISON BETWEEN DIFFERENT TRUTHFUL INCENTIVE MECHANISMS

(a) Reg. & Commu. Cost (b) Inc. & Social Cost (c) TRUTH-FEDBAN (d) Vanilla Greedy

Figure 1: Comparison between TRUTH-FEDBAN and vanilla greedy incentive mechanism.

We compare TRUTH-FEDBAN with a vanilla greedy algorithm (Algorithm 3). Despite Algorithm 3
also induces a monotone mechanism (and thus truthful), it does not admit any constant-factor ap-
proximation guarantee, hence is less theoretically exciting compared to TRUTH-FEDBAN. A com-
prehensive analysis regrading this baseline method can be found in Appendix B. As reported in
Figure 1(a) and Figure 1(b), TRUTH-FEDBAN achieved competitive sub-linear regret and commu-
nication cost compared to DisLinUCB (Wang et al., 2020), with lower incentive and social costs
compared to the baseline greedy method, validating our theoretical analysis.

5.2 IMPACT ON MISREPORTING

Micro-level Study. In this experiment, we study how misreporting affects an individual, in terms
of the client’s regret, incentive and utility. To do so, we randomly designate a client to keep misre-
porting throughout the entire time horizon while keeping the others being truthful, and compare the
corresponding outcome for this client. We take truth-report as the benchmark and plot the individ-
ual’s total regret, incentive, and utility on the same chart using the normalized score (the respective
value divided by that under truth-report), along with the actual value on top of each bar. As pre-
sented in Figure 1(c) and Figure 1(d), both TRUTH-FEDBAN and the greedy method demonstrate
the ability to prevent client from benefiting via misreporting. It is important that the incentive pay-
ment (i.e., critical value) for the client is subject to the incentive mechanism and independent of its
claimed cost. Therefore, though under-reporting may encourage the client to be selected by the in-
centive mechanism, its net utility essentially becomes negative. Meanwhile, despite over-reporting
cost only undertakes the risk of being ruled out and losing incentives, it is surprising that this behav-
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(a) Regret (b) Communication Cost (c) Incentive Cost (d) Social Cost

Figure 2: Overall impact of misreporting.

ior leads to a slightly higher utility under the vanilla greedy incentive mechanism. We attribute this
to the reduced participation cost incurred by the client — the less it participates, the less it suffers.

Macro-level Study. As presented in Figure 2, we also empirically investigate how different levels
of misreporting across the set of clients affect the entire federated learning system. Specifically,
we vary the number of misreporting clients from 0% to 100% to investigate the impact on overall
system performance, including regret, communication cost, incentive cost, and social cost. Gen-
erally, as guaranteed by our communication protocol, the overall regret under different degrees of
misreporting remains virtually identical to the situation when no client misreports. Meanwhile, the
communication cost tends to increase when clients under report and decrease when they over report.
This aligns with our algorithm’s design, which selects clients based on their value-to-cost ratio (Line
3 in Algorithm 2). For example, when a client under reports, its ratio increases, which increases its
chance to be selected in communication, hence leading to an increased communication cost.

An interesting finding that might seem contradictory to our discovery in the previous micro-level
study is the overall impact of over reporting on incentive costs, which implies that the more clients
over report, the higher the incentives they will receive. But our finding in the micro-level study sug-
gests that over reporting brings no benefit to the client’s individual utility under TRUTH-FEDBAN.
We note that the observation in our macro-level study is due to collusion among clients — once a
sufficient group of clients colludes, the server has to increase the critical value or even pay infin-
ity. This actually rationalizes individual client’s commitment to be truthful, as they are unaware
of others clients’ decision on truthfulness. Meanwhile, this finding reveals the vulnerability of the
incentivized truthful communication to collusion, leaving an interesting avenue for future work to
explore. On the other hand, it can be observed that both overreporting and underreporting hurt the
social cost until the misreporting ratio reaches approximately 50%. This is interesting from the per-
spective of societal divisions — when the society is equally divided into two parts, the social cost is
at its largest. And as division decreases, the cost becomes lower. For example, when the misreport-
ing ratio reaches 100%, meaning that everyone in the system is misreporting, the social cost resets
the scenario where no one misreports, marking the establishment of a new stability in the system.

6 CONCLUSION

In this work, we introduce the first truthful incentivized communication protocol TRUTH-FEDBAN

for federated bandit learning, where a set of strategic and individual rational clients are incentivized
to truthfully report their cost to participate distributed learning. Our key contribution is to design
a monotone client selection rule and its corresponding critical value based payment scheme. We
establish the theoretical foundations for incentivized truthful communication, under which not only
the social cost but also the regret and communication cost obtain their near-optimal performance.
Numerical simulations verify our theoretical results, especially the truthfulness guarantee, i.e., indi-
vidual clients’ utility can only be maximized when reporting their true cost.

Our work opens a broad new direction for future exploration. First of all, our truthful incentivized
communication protocol is not only limited to federated bandit learning, but can be applied to gen-
eral distributed learning environments where self-interested clients need to be incentivized for col-
laborative learning. Second, our truthful guarantee is proved for every round of communication, but
it is unclear whether a client can do long-term planning to game the system. For example, keep over
reporting until it becomes monopoly, ultimately leading to an infinite incentive for its participation.
Last but not least, although we no longer assume clients are truthful, we still assume they are not
malicious, i.e., they only want to maximize their own utility. In practice, it is necessary to investigate
the problem under an adversarial context, e.g., malicious clients intentionally misreport their costs
to hurt other clients’ utilities or system’s learning outcome.
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A PROOF OF MONOTONICITY (PROPOSITION 5)

Our proof of monotonicity relies on the submodularity property and the following lemma. Note
that our proof holds true for any time step t, and thus the subscript t is omitted below to keep our
notations simple.

Definition 11 (Submodularity) A set function g : 2S → R is submodular, if for every A ¦ B ¦ S
and i ∈ S \B it holds that

g(A ∪ {i})− g(A) g g(B ∪ {i})− g(B)

Lemma 12 Increasing the input budget of Algorithm 2 always leads to a no worse output. Formally,
denote the output of Algorithm 2 as Sb and Sb′ under different input budgets b and b′. For any budget
pair b′ > b, we must have either Sb′ = Sb or g(Sb′) > g(Sb).

Proof of Lemma 12. Considering two input budget b and b′ and the corresponding outputs Sb and Sb′

of Algorithm 2. In the following, we show that g(Sb′) g g(Sb) if b′ > b. Without loss of generality,

we denote Sb = {j1, j2, · · · , jn} ∈ 2S̃ and Sb′ = {k1, k2, · · · , km} ∈ 2S̃ as the corresponding

output, where S̃ = {1, 2, · · · , N}, 1 f n f N , 1 f m f N .

Under different budget, the selected client in each round can vary due to the changed constraint
in Line 3 of Algorithm 2. For example, under budget b, a client with the largest ratio may not be
selected because including it would cause the total cost to exceed b. In contrast, under budget b′, it
can be selected due to the increased budget. Consequently, this can create different output sequences
Sb and Sb′ .

Let Ä be the first time when the two sequences diverge, i.e, ji = ki, ∀1 f i < Ä , and jÄ ̸= kÄ . If
such a Ä does not exist, the two sequences are precisely the same and we will have Sb′ = Sb. In the
remainder of this proof, we assume Ä exists and show that g(Sb′) > g(Sb) consequently. Let SÄ

b and

SÄ
b′ be the set that contains the first Ä elements in Sb and Sb′ , so we have SÄ−1

b = SÄ−1
b′ . According

to the greedy strategy (Line 3 of Algorithm 2), it is clear that D̂kÄ
>
∑n

i=Ä D̂ji , meaning that the

cost of client kÄ is even higher than the total costs of clients in Sb \SÄ−1
b , which is the reason that kÄ

appears in the output Sb′ under a larger budget b′ but is not (thus is skipped) in the output Sb under
b. Moreover, this also implies that client kÄ has a larger value-to-cost ratio than that of any client in

Sb \ SÄ−1
b at the Ä -th round, formally

g(SÄ−1
b′ ∪ {kÄ})− g(SÄ−1

b′ )

D̂kÄ

g g(SÄ−1
b ∪ {ji})− g(SÄ−1

b )

D̂ji

, ∀i ∈ [Ä, n] (8)

For clarity, we denote the value of client kÄ as v(kÄ |SÄ−1
b′ ) = g(SÄ−1

b′ ∪ {kÄ}) − g(SÄ−1
b′ ), quanti-

fying how much client kÄ can improve the objective function g with respect to the set SÄ−1
b′ . Then

we have
n∑

i=Ä

v(ji|SÄ−1
b )

D̂ji

· D̂ji f
v(kÄ |SÄ−1

b′ )

D̂kÄ

n∑

i=Ä

·D̂ji <
v(kÄ |SÄ−1

b′ )

D̂kÄ

· D̂kÄ
= v(kÄ |SÄ−1

b′ )

where the first inequality follows from Eq. (8), and the second one holds true because D̂kÄ
>∑n

i=Ä D̂ji . Therefore, we can derive that

v(kÄ |SÄ−1
b′ ) >

n∑

i=Ä

v(ji|SÄ−1
b ) (9)

Now we are ready to compare the objective value of Sb and Sb′ , and show that g(Sb′) > g(Sb). By
simple decomposition, we can rewrite g(Sb) as follows

g(Sb) = g({j1, j2, · · · , jn})
= g(∅) + [g({j1})− g(∅)] + [g({j1, j2})− g(j1)] + · · ·+ [g(Sb)− g(Sb \ {jn})]
= g(∅) + v(j1|S0

b ) + v(j2|S1
b ) + · · ·+ v(jn|Sn−1

b )

= g(∅) +
Ä∑

i=1

v(ji|Si−1
b ) +

n∑

p=Ä

v(jp|Sp−1
b )

13



Published as a conference paper at ICLR 2024

Likewise, we have

g(Sb′) = g(∅) +
Ä∑

i=1

v(ki|Si−1
b′ ) +

n∑

p=Ä

v(kp|Sp−1
b′ )

Recall that ji = ki, ∀i < Ä , and thus we have v(ji|Si−1
b ) = v(ki|Si−1

b′ ), ∀i < Ä . Therefore,

g(Sb′)− g(Sb) =

n∑

i=Ä

v(ki|Si−1
b′ )−

n∑

i=Ä

v(ji|Si−1
b )

= v(kÄ |SÄ−1
b′ ) +

n∑

i=Ä+1

V (ki|Si−1
b′ )−

n∑

i=Ä

v(ji|Si−1
b )

>

n∑

i=Ä

v(ji|SÄ−1
b )−

n∑

i=Ä

v(ji|Si−1
b ) +

n∑

i=Ä+1

v(ki|Si−1
b′ )

>
n∑

i=Ä

v(ji|SÄ−1
b )− v(ji|Si−1

b )

> 0

where the first inequality directly follows Eq. (9), and the last step utilizes the submodularity prop-

erty (see Definition 11) of the submodular function g, i.e., v(ji|SÄ−1
b ) > v(ji|Si−1

b ), ∀i > Ä . This
concludes the proof.

Now we are ready to prove the monotonicity of Algorithm 1 by contradiction.

Proof of Proposition 5. An algorithm is monotone if a client ³ remains selected by the algorithm

whenever its reported cost satisfies D̂′
³ < D̂³, provided it gets selected when reporting D̂³. Let

S = {i1, i2, · · · , in} and b be the resulting participant set and budget determined by Algorithm 1

when client ³ reports D̂³. Without loss of generality, we set ³ = ik, where 1 f k f n, and denote
Sk = {i1, i2, · · · , ik} as the set of clients selected before ³. According to the greedy selection
strategy in Algorithm 2, we have

g(Sk−1 ∪ {³})− g(Sk−1)

D̂³

>
g(Sk−1 ∪ {i})− g(Sk−1)

D̂i

, ∀i ∈ S̃ \ Sk : D̂i +
∑

j∈Sk−1

D̂j f b (10)

Denote S′ and b′ as the resulting participant set and budget determined by Algorithm 1 when client

³ reports D̂′
³ < D̂³. Since decreasing client ³’s claimed cost will increase the ratio in the left-

hand side of Eq. (10), it will remain selected (no later than the k-th round) when b′ f b, otherwise
the terminating participant set Sb′ is not sufficient. The algorithm only deviates from this when the
following condition is true:

g(Sk−1 ∪ {³})− g(Sk−1)

D̂′
³

<
g(Sk−1 ∪ {i})− g(Sk−1)

D̂i

, ∃i ∈ S̃ \ Sk : D̂i +
∑

j∈Sk−1

D̂j f b′

According to Eq. (10), this is only possible when b′ > b because the increased budget allows addi-
tional candidate clients with both larger value and cost, potentially surpassing the largest affordable
ratio under b. However, it contradicts the fact that any feasible terminating budget must be at most
b — as Lemma 12 guarantees that a larger budget input to Algorithm 2 must always result in either
exactly the same set or a different set with strictly higher objective value. Meanwhile, the terminat-
ing condition (Line 3 of Algorithm 1) ensures that the entire search process will promptly terminate
once it finds the minimum budget that satisfies the constraint. Therefore, given budget b already sat-
isfies the constraint, it is impossible for the algorithm to terminate with a solution that has a higher
budget than b, which finishes the proof.

B GREEDY INCENTIVE SEARCH

In contrast to Algorithm 1, one straightforward alternative is to adopt the vanilla greedy method to
solve the problem in Eq. (3), as presented in Algorithm 3. The idea is to iteratively rank all non-
selected clients according to their individual value-to-cost ratio and choose the one with the largest
ratio (Line 3-4), until the resulting participant set satisfies the constraint (Line 2).
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Algorithm 3 Vanilla Greedy Incentive Search

1: St ← ∅, S̃ = {1, 2, · · · , N}
2: while gt(St) < log ´ do

3: i← argmax
j∈S̃\St

gt(St∪{j})−g(St)

D̂j,t

4: St ← St ∪ {i}
5: return S.

It is not difficult to verify this straightforward greedy algorithm is also monotonic, as decreasing
a client’s claimed cost essentially encourages its selection, thus making it a truthful mechanism.
One notable difference between this greedy incentive search algorithm and our truthful incentive
search (Algorithm 1) is that it does not compromise for the constraint. As a result, as pointed
out by previous studies (Wolsey, 1982), this greedy algorithm does not admit any constant-factor
approximation guarantee (i.e., it becomes problem instance specific), as shown in Lemma 13.

Lemma 13 (Theorem 2 of Wolsey (1982)) Under parameter ´ and clients’ reported participation

cost D̂t = {D̂1,t, · · · , D̂N,t}, Algorithm 3 is guaranteed to obtain a participant set St such that

∑

i∈S

D̂i,t f (1 + lnmin{¼1, ¼2, ¼3})
∑

i∈S⋆
t

D̂i,t and gt(St) g log ´

in which ¼1 = max
i,k
{ gt({i})−gt(∅)
gt(Sk

t ∪{i})−gt(Sk
t )
| gt(Sk

t ∪ {i}) − gt(S
k
t ) > 0} where the denominator

is the smallest non-zero marginal gain from adding any element i ∈ S̃ to the intermediate set
Sk
t , i.e., the set contains the first k elements of the output set St, and the numerator is the largest

singleton value of g; ¼2 = Ã1

ÃK
where K is the total number of iterations in the greedy search and

Ãk = max
i

gt(S
k
t ∪{i})−gt(S

k
t )

D̂i,t

; ¼3 = g(S̃)−g(∅)

g(S̃)−g(SK−1

t )
.

Alternatively, we can reformulate Algorithm 3 into an equivalent counterpart (Algorithm 4) that
provides a bi-criteria approximation guarantee similar to Algorithm 1. Note that these two variants

essentially lead to the same outcome when parameterized with ´1 = ´(1−e−1) and ´2 = ´, where
´1 and ´2 are the specified hyper-parameters in Algorithm 3 and Algorithm 4, respectively.

Algorithm 4 Greedy Incentive Search (V2)

Require: ´, S̃ = {1, 2, . . . , N}
1: B ← ORDEREDBUDGET(S̃)
2: St ← ∅, b← 0, k ← 0
3: while gt(St) < (1− e−1) log ´ do
4: b← b+B[k]

5: S ← GREEDY(S̃, b)
6: k ← k + 1
7: return St

Algorithm 5 ORDEREDBUDGET

Require: S̃ = {1, 2, · · · , N}
1: St ← ∅, B ← ∅
2: while S̃ \ St ̸= ∅ do

3: u← argmax
j∈S̃\St

gt(St∪{j})−gt(St)

D̂j,t

4: St ← St ∪ {u}
5: B ← B ∪ {D̂u,t}
6: return B

Lemma 14 Under parameter ´ and clients’ reported participation cost D̂t = {D̂1,t, · · · , D̂N,t},
Algorithm 4 provides a bi-criteria approximation such that

∑

i∈St

D̂i,t f max D̂t +
∑

i∈S⋆
t

D̂i,t and gt(St) g (1− e−1) log ´

where St is the output of Algorithm 1, and S⋆
t is the ground-truth optimizer of problem defined in

Eq. (1).

Proof of Lemma 14. The proof of this lemma largely repeats that of Lemma 9, with a minor differ-
ence in Eq. (7) (i.e., b = (1 + ϵ)b′ vs., b = b′ + B[k]). Unlike Algorithm 1 slightly increasing the
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budget by a constant factor (1+ ϵ), Algorithm 4 increases the budget in a pre-ordered way based on
the result of Algorithm 5. Similar to Eq. (7), the subscript t is omitted, and we have

∑

i∈Sb

D̂i f b = b′ +B[k] f max D̂ +
∑

i∈S⋆

D̂i (11)

Additionally, it is not difficult to see gt(St) g (1− e−1) log ´ since this is the terminating condition
of Algorithm 4. Combining both completes the proof.

C TECHNICAL LEMMAS

Lemma 15 (Lemma 10 of Abbasi-Yadkori et al. (2011)) Suppose x1,x2, · · · ,xt ∈ R
d and for

any 1 f s f t, ∥xs∥2 f L. Let V t = ¼I +
∑t

s=1 xsx
¦
s for some ¼ > 0. Then,

det(V t) f (¼+ tL2/d)d.

Lemma 16 (Lemma 11 of Abbasi-Yadkori et al. (2011)) Let {Xt}∞t=1 be a sequence in R
d, V is

a d× d positive definite matrix and define Vt = V +
∑t

s=1 XsX
¦
s . Then we have that

log

(
det (Vn)

det(V )

)
f

n∑

t=1

∥Xt∥2V −1

t−1

.

Further, if ∥Xt∥2 f L for all t, then

n∑

t=1

min
{
1, ∥Xt∥2V −1

t−1

}
f 2 (log det (Vn)− log detV ) f 2

(
d log

((
trace(V ) + nL2

)
/d
)
− log detV

)
.

D PROOF OF LEMMA 7

Our proof utilizes the following matrix determinant lemma (Harville, 2008).

Lemma 17 (Matrix Determinant Lemma) Let A ∈ R
n×n be an invertible n-by-n matrix, and

B,C ∈ R
n×m are n-by-m matrices, we have that

det(A+BC¦) = det(A) det(Im + C¦A−1B)

Proof of Lemma 7. It is known that the infinite critical value is unavoidable for a monopoly client
under the truthful mechanism design. To eliminate this issue, we first analyze the root cause of the

existence of a monopoly client. Denote Ṽt as the covariance matrix constructed by all sufficient
statistics available in the system at time step t, and ∆Vi,t = X¦

n Xn, Xn ∈ R
∆t×d. Specifically,

client i is a monopoly, i.e., being essential to satisfy the constraint in Eq. (3) at time step t, such that
having all the other N − 1 clients’ data still cannot satisfy the constraint. According to Lemma 17,

plugging in A = Ṽt −∆Vi,t and B = C = X¦
n , we have

det(Ṽt −∆Vi,t)

det(Ṽt)
=

1

det(I∆t +Xn(Ṽt −∆Vi,t)−1X¦
n )

where ∆Vi,t = X¦
n Xn, Xn ∈ R

∆t×d, ∆t represents the number of new data points in ∆Vi,t. Next,
we show that there exists a lower bound of the ratio above, such that as long as we set the hyper-
parameter ´ less than the lower bound, it is guaranteed that no client can be essential. Moreover, for

a positive definite matrix A ∈ R
d×d, we have A−1 ≼

I
¼min(A) where ¼min(A) denotes the minimum

eigenvalue of A. Plugging in A = Ṽt − ∆Vi,t, we have (Ṽt − ∆Vi,t)
−1 ≼

I

¼min(Ṽt−∆Vi,t)
≼

I
¼

,
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where ¼ > 0 is the regularization parameter defined in Eq. (12). It follows that

1

det(I∆t +Xn(Ṽt −∆Vi,t)−1X¦
n )
g 1

det(I∆t +
1
¼
XnX¦

n )

=
1

det(Id +
1
¼
X¦

n Xn)
=

¼d

det(¼Id +∆Vi,t)

g ¼d

det(Vi,t + ¼Id)

g ¼d

(¼+ tL2/d)d
= (1 + tL2/¼d)−d

where the second step holds by elementary algebra, the third step utilizes the fact that Vi,t ≽ ∆Vi,t,

and the last step follows from Lemma 15. Therefore, as long as we set ´ f (1 + tL2/¼d)−d, it is
guaranteed that no client will be essential at time step t. This finishes the proof.

E COMMUNICATION COST AND REGRET ANALYSIS

As TRUTH-FEDBAN directly inherits from the basic protocol proposed in (Wei et al., 2023) with
a truthful incentive mechanism, most part of the proof for communication cost and regret analysis
(Theorem 4) in their paper extends to our problem setting. Therefore, with slight modifications, we
can achieve the same sub-linear guarantee.

In essence, the only difference in terms of establishing the theoretical bounds for regret and com-
munication cost between our method and (Wei et al., 2023) lies in the relaxation of the constraint
in Eq. (3), which deviated from the original constraint in Eq. (1) by a constant-factor gap of (1−e−1).

Moreover, as we reformulate the determinant ratio constraint (i.e.,
det(Vg,t(St))

det(Vg,t(S̃))
g ´) into a log de-

terminant ratio constraint (i.e., log
det(Vg,t(St))

det(Vg,t(S̃))
g (1 − e−1) log ´), the notion of ´ in our work is

slightly different from that in their work. Specifically, denote the hyper-parameter in their method

as ´, then any ´ used in their theoretical results can be replaced by our notation of ´ via the trans-

formation ´ = ´1−e−1

.

In the following, we present the corresponding theoretical results of our proposed TRUTH-FEDBAN

and refer the readers to the proof details in Theorem 4 of (Wei et al., 2023).

Lemma 18 (Communication Frequency Bound) By setting the communication threshold Dc =
T

N2d log T
−(1−e−1)

√
T 2

N2dR log T
log ´, the total number of communication rounds is upper bounded

by
P = O(Nd log T )

where R =
⌈
d log(1 + T

¼d
)
⌉
= O(d log T ).

Communication Cost: In each communication round, all clients first upload O(d2) scalars to the
server and then download O(d2) scalars. According to Lemma 18, the total communication cost is
CT = P ·O(Nd2) = O(N2d3 log T ).

Lemma 19 (Instantaneous Regret Bound) Given parameter ´, with probability 1− ¶, the instan-
taneous pseudo-regret rt = ï¹⋆,x⋆ − xtð in j-th communication round is bounded by

rt = O

(√
d log

T

¶

)
· ∥xt∥Ṽ −1

t−1

·
√

1

´(1−e−1)
· det(Vg,tj )

det(Vg,tj−1
)

Proof of Theorem 10. We followed the notion of good epoch and bad epoch defined in (Wang et al.,
2020). Combining with Lemma 16, we can bound the accumulative regret in the good epochs as,

REGgood = O

(
d√

´1−e−1
·
√
T ·
√
log

T

¶
· logT

)
.
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Furthermore, we can show that the regret across all bad epochs satisfies,

REGbad = O

(
Nd1.5

√
Dc · log

T

¶
log T

)
.

Using the communication threshold Dc = T
N2d log T

− (1 − e−1)
√

T 2

N2dR log T
log ´ specified in

Lemma 18, we have

RT = REGgood +REGbad

= O

(
d√

´1−e−1

√
T log T

)
+O

(
Nd1.5 log1.5 T ·

√
T

N2d log T
+

T

Nd log T
log

1

´1−e−1

)

Henceforth, by setting ´1−e−1

> e−
1

N , we can show that T
N2d log T

> T
Nd log T

log 1

´1−e−1 , and

therefore

RT = O

(
d√

´1−e−1

√
T log T

)
+O

(
d
√
T log T

)
= O

(
d
√
T log T

)

This concludes the proof.

F GENERAL FRAMEWORK FOR INCENTIVIZED FEDERATED BANDITS

Algorithm 6 Incentivized Communication for Federated Linear Bandits

Require: Dc g 0, D̂t = {D̂1,t, · · · , D̂N,t}, Ã, ¼ > 0, ¶ ∈ (0, 1)
1: Initialize: [Server] Vg,0 = 0d×d ∈ R

d×d, bg,0 = 0d ∈ R
d

2: ∆V−j,0 = 0d×d,∆b−j,0 = 0d, ∀j ∈ [N ]
3: [All clients] Vi,0 = 0d×d, bi,0 = 0d, ∆Vi,0 = 0d×d, ∆bi,0 = 0d, ∆ti,0 = 0, ∀i ∈ [N ]
4: for t = 1, 2, . . . , T do
5: [Client it] Observe arm set At

6: [Client it] Select arm xt ∈ At by Eq. (12) and observe reward yt
7: [Client it] Update: Vit,t += xtx

¦
t , bit,t += xtyt

8: ∆Vit,t += xtx
¦
t , ∆bit,t += xtyt, ∆tit,t += 1

9: if ∆tit,t log
det(Vit,t

+¼I)

det(Vit,t
−∆Vit,t

+¼I) > Dc then

10: [All clients→ Server] Upload ∆Vi,t, and let S̃t = {1, 2, · · · , N}
11: [Server] Select incentivized participants St =M(S̃t|D̂t) ▷ Incentive Mechanism
12: for i ∈ St do
13: [Participant i→ Server] Upload ∆bi,t
14: [Server] Update: Vg,t += ∆Vi,t, bg,t += ∆bi,t
15: ∆V−j,t += ∆Vi,t, ∆b−j,t += ∆bi,t, ∀j ̸= i
16: [Participant i] Update: ∆Vi,t = 0, ∆bi,t = 0, ∆ti,t = 0

17: for ∀i ∈ [N ] do
18: [Server→ All Clients] Download ∆V−i,t, ∆b−i,t

19: [Client i] Update: Vi,t += ∆V−i,t, bi,t += ∆b−i,t

20: [Server] Update: ∆V−i,t = 0, ∆b−i,t = 0

Algorihtm 6 shows the incentivized communication protocol proposed by Wei et al. (2023). The
arm selection strategy for client it as time step t is based on the upper confidence bound method:

xt = argmax
x∈At

x
¦¹̂it,t−1(¼) + ³it,t−1||x||V −1

it,t−1
(¼) (12)

where ¹̂it,t−1(¼) = V −1
it,t−1(¼)bit,t−1 is the ridge regression estimator of ¹⋆ with regularization

parameter ¼ > 0, Vit,t−1(¼) = Vit,t−1+¼I , and ³it,t−1 = Ã
√
log

det(Vit,t−1(¼))

det (¼I) + 2 log 1/¶+
√
¼.

Vit,t(¼) denotes the covariance matrix constructed using the data available to client it up to time t.
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G IMPLEMENTATION DETAILS

G.1 HYPER-PARAMETER SETTINGS

As introduced in Section 3, the proposed TRUTH-FEDBAN works with any realization of the valu-
ation function. For demonstration purpose, we instantiate it as a combination of client’s weighted
data collection cost plus its intrinsic preference cost, i.e., f(∆Vi,t) = w · det(∆Vi,t) + Ci, where

w = 10−4, and each client i’s intrinsic preference cost Ci is uniformly sampled from U(0, 100).
In the simulated environment (Section 5), the time horizon is T = 6250, total number of clients
N = 25, context dimension d = 5. We set the hyper-parameter ϵ = 1.0, ´ = 0.5 in Algorithm 1
and Algorithm 3. The tolerance factor in Algorithm 7 is µ = 1.0.

As stated in Section 4.2, we do not assume a monopoly-free environment and thus any truthful
incentive mechanism has to pay essential clients infinite incentives to guarantee their participation
when necessary. Nonetheless, to visualize the impact of infinite payment, we simplify it as a constant
value of 104 that is orders of magnitude greater than the average participation cost. and the infinite
critical value is simplified.

G.2 CRITICAL VALUE CALCULATION FOR ALGORIHTM 3

It is not difficult to show that Algorithm 3 is also monotone and thus inherently associated with a
critical payment scheme to make the resulting mechanism truthful. We now elaborate on the critical
value calculation method for it. And the critical value based payment scheme for Algorithm 1 can
be derived in a similar spirit.

For each client ³ ∈ S in the participant set S (subscript t is omitted for simplicity), the critical value

c³ is determined as follows. First, rerun Algorithm 3 without client ³, i.e., setting S̃′ = S̃ \ {³};
if the process fails to terminate with a feasible set S′, it suggests that client ³ is essential to satisfy
the constraint, then its critical value is c³ = ∞. Otherwise, the process can terminate and return a
feasible set, denoted as S′ = {i1, i2, · · · , iK}, then the critical value c³ is calculated by

c³ = max
k∈[K]

D̂ik ·
g(S′

k−1 ∪ {³})− g(S′
k−1)

g(S′
k−1 ∪ {ik})− g(S′

k−1)
(13)

where ik and S′
k represent the selected client and intermediate set of S′ at k-th round. Denote

v(³|S′
k−1) = g(S′

k−1 ∪ {³}) − g(S′
k−1), now suppose we are placing client ³ at the k-th po-

sition of S′. To do so, the maximal participation cost that client ³ can claim should satisfy

that the corresponding value-to-cost ratio is higher than that of client ik, i.e., v(³|S′
k−1)/D̂³ g

v(ik|S′
k−1)/D̂ik . In other words, the maximal cost client ³ can claim to replace ik is D̂³ =

D̂ik · v(³|S′
k−1)/v(ik|S′

k−1). Therefore, the critical value c³ calculated in Eq. (13) ensures that
as long as the client ³ claims slightly less than c³, it can replace at least one client in the K rounds,

thus becomes selected by the server. On the contrary, if D̂i is higher than c³, we can show that

it will by no means get selected by the server. Specifically, the condition D̂³ > c³ guarantees
g(S′

k−1
∪{³})−g(S′

k−1
)

D̂³

<
g(S′

k−1
∪{ik})−g(S′

k−1
)

D̂ik

, ∀k ∈ [K]. We can start from the selection of the

first client k = 1, and we want to guarantee client ³ will not be selected. The condition tells us
g(³)

D̂³

< g(i1)

D̂i1

, where i1 denotes the client that was selected in the first place when we exclude ³.

We know
g(i1)

D̂i1

is also higher than all the other clients, so algorithm will still select client i1, i.e.,

S1 = {i1} = S′
1. Then for k = 2, the condition suggests

g(S1∪{³})−g(S1)

D̂³

=
g(S′

1
∪{³})−g(S′

1
)

D̂³

<

g(S′

1
∪{i2})−g(S′

1
)

D̂i2

= g(S1∪{i2})−g(S1)

D̂i2

. Therefore, ³ will not be selected at k = 2 either, and

S2 = S′
2. We can show client ³ will not be selected in S by induction.

G.3 CRITICAL VALUE CALCULATION FOR ALGORIHTM 1

In contrast, there is no explicit formula to calculate the critical value in TRUTH-FEDBAN. Follow-
ing Mu’Alem & Nisan (2008), we calculate the critical value using bisection search as described in
Algorithm 7.
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Algorithm 7 Critical Value Calculation (Bisection Search)

Require: S̃ = {1, 2, · · · , N}, D̂t = {D̂1,t, D̂2,t, · · · , D̂N,t}, incentive mechanismM, concerned
client i, budget b, tolerance µ

1: Initialization: L← 0, H ← b
2: while H−L

2 g µ do

3: Calculate critical value: ci ← L+H
2

4: Update D̂ : D̂i,t ← ci,t
5: Run incentive mechanism: S =M(S̃; D̂) ▷ Algorithm 1
6: if i ∈ S then
7: L← ci,t
8: else
9: H ← ci,t

10: Return client i’s critical value ci,t

The idea remains the same as stated above, to calculate the critical value of a particular client, we
first rerun Algorithm 1 without it in the candidate client set. If the client is essential, its critical
value is ci,t = ∞. Otherwise, we can calculate the critical value via Algorithm 7. Specifically, for
any participant i in the set St found by Algorithm 1, it is clear that the bound of i’s critical value is

its claimed cost D̂i,t, otherwise it would not have been included in St. Denote b as the terminating
budget determined by Algorithm 1 when client i is not considered, we can also have a upper bound
for ci,t f b. With the lower and upper bound as input to Algorithm 7, it has been proven (Burden
et al., 2015) that the number of iterations that Algorithm 7 needs to converge to a root to within a
certain tolerance µ is bounded by +log2(µ0

µ
),, where µ0 = |b|.

H TIME COMPLEXITY ANALYSIS OF ALGORITHM 1

As the proposed Algorithm 1 includes a subroutine process of Algorithm 2, thus we start the time
complexity analysis with Algorithm 2. Specifically, the worst-case time complexity of the while
loop is O(N). The operation inside the while loop involves finding the maximum element in a set,
which takes O(N) time. Therefore, the time complexity of Algorithm 2 is O(N2).

Let M be the number of iterations of the while loop (Line 3) in Algorithm 1. Hence, the time
complexity of Algorithm 1 is O(M · N2). Specifically, the worst case is to consistently in-

crease the budget b until it reaches
∑N

i=1 D̂i,t. Therefore, we can upper bound M by considering

the loop-breaking case: b0 · (1 + ϵ)M g ∑N
i=1 D̂i,t, i.e., M f

⌈
log1+ϵ

(∑N
i=1

D̂i,t

b0

)⌉
, where

b0 = min
i∈S̃

D̂i,t. As a result, Algorithm 1 yields the following polynomial time complexity of

O(
⌈
log1+ϵ

(∑N
i=1

D̂i,t

b0

)⌉
·N2).
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