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Abstract

Enhancing accurate molecular property predic-
tion relies on effective and proficient representa-
tion learning. It is crucial to incorporate diverse
molecular relationships characterized by multi-
similarity (self-similarity and relative similarities)
(Wang et al., 2019) between molecules. However,
current molecular representation learning meth-
ods fall short in exploring multi-similarity and of-
ten underestimate the complexity of relationships
between molecules. Additionally, previous multi-
similarity approaches require the specification of
positive and negative pairs to attribute distinct pre-
defined weights to different relative similarities,
which can introduce potential bias. In this work,
we introduce Graph Multi-Similarity Learning
for Molecular Property Prediction (GraphMSL)
framework, along with a novel approach to for-
mulate a generalized multi-similarity metric with-
out the need to define positive and negative pairs.
In each of the chemical modality spaces (e.g.,
molecular depiction image, fingerprint, NMR,
and SMILES) under consideration, we first de-
fine a self-similarity metric (i.e., similarity be-
tween an anchor molecule and another molecule),
and then transform it into a generalized multi-
similarity metric for the anchor through a pair
weighting function. GraphMSL validates the effi-
cacy of the multi-similarity metric across Molecu-
leNet datasets. Furthermore, these metrics of
all modalities are integrated into a multimodal
multi-similarity metric, which showcases the po-
tential to improve the performance. Moreover,
the focus of the model can be redirected or cus-
tomized by altering the fusion function. Last but
not least, GraphMSL proves effective in drug dis-
covery evaluations through post-hoc analyses of
the learnt representations.
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1. Introduction

Graph Neural Networks (GNNs) have emerged as a promi-
nent approach for molecular representation learning, ad-
dressing drug-related challenges (Wieder et al., 2020; Zhang
et al., 2022; Fang et al., 2022; Wang et al., 2023). However,
the generation of task-specific labels for training molecu-
lar GNNs is hindered by the resource-intensive and time-
consuming nature of chemical synthesis and biological test-
ing experiments. To address this challenge, current research
prioritizes self-supervised learning approaches for pretrain-
ing molecular GNNs, with a prevalent trend of adopting
contrastive learning approaches (Wang et al., 2021; 2022b;
Liu et al., 2022a). (See an introduction of pre-training ap-
proaches in Section 2)

Contrastive Learning (CL) is a discriminative representa-
tion learning approach by bringing similar instances into
close proximity within the latent representation space and
pushing apart dissimilar instances (Schroff et al., 2015). A
fundamental prerequisite of CL is to define positive pairs
denoting similarity, and negative pairs representing dissim-
ilarity (Jaiswal et al., 2020). In the CL-based pre-training
of molecular GNNs, positive pairs are often established
through either data augmentation (Sun et al., 2021; You
et al., 2020a), such as node deletion, edge perturbation,
subgraph extraction, attribute masking, and subgraph sub-
stitution, or domain knowledge, exemplified by reactant-
product pairing (Wang et al., 2022a) or conformer grouping
(Moon et al., 2023). However, such a binary characteriza-
tion of the relationships among molecules, by designating
them as either positive or negative pairs, oversimplifies the
complex nature of these connections. Moreover, these CL
approaches fail to notice relationships among multiple in-
stances simultaneously by adapting simple contrastive loss,
thereby hindering the effectiveness and generalizability of
representation learning (Wang et al., 2019; Mu et al., 2023;
Zhang et al., 2023). (See an illustration of similarity types
in CL in Figure Appendix A.1)

Unlike CL, which adapts a binary similarity metric, Simi-
larity Learning (SL) employs a continuous similarity metric
for representation learning. It measures the similarity be-
tween two instances in the given space (Balcan & Blum,
2006; Wen et al., 2023). This pairwise similarity provides a
localized perspective on the relations between two instances
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Figure 1. Graph Similarity Learning for Molecular Property Prediction (GraphMSL). / ., ¢]',,, represent graph-level and node-level
target similarity, respectively. df ., d}’,,, represent the similarity for graph-level and node-level embeddings, respectively. Here, ¢ and j

%3

are the indices of molecular graphs in the graph pool, and [ and m are the indices of atomic nodes in the node pool. Unlike the general
contrastive learning framework shown in Appendix Figure A.2, GraphMSL doesn’t need to define positive or negative pairs and is capable

of learning continuous ordering from target similarity.

in a given instance pool, known as self-similarity (Wang
et al., 2019). However, the global relations between two
instances can be influenced by their belonging to the in-
stance pool. Therefore, self-similarity alone is inadequate
for capturing relationships among multiple instances simul-
taneously, known as relative similarity (Wang et al., 2019).
To address this challenge, Multi-Similarity Learning (MSL)
has emerged as a solution, expanding its focus from self-
similarity to a global view of relations and encapsulating
both self-similarity and relative similarity (Wang et al., 2019;
Zhang et al., 2021; Mu et al., 2023; Zhang et al., 2023).

When formulating a similarity metric, a common guiding
principle is that an effective similarity function or metric
should align tightly with the objectives of specific tasks
(Balcan & Blum, 2006; Miiller et al., 2018; Yang & Jin,
2006). To target the drug discovery tasks, a robust similar-
ity metric must be adept at discerning molecules based on
key properties regarding drug development. Insights drawn
from prior research (Xu et al., 2023a) indicate that distinct
chemical modalities, such as chemical languages, molecu-
lar depiction images, and chemical spectroscopic spectra,
possess unique expertise in expressing specific molecular
properties. More importantly, a continuous similarity metric
for molecules can be projected from each chemical modality
space. Thus, a more promising multimodal similarity metric
can be formulated by integrating these individual metrics.

In response to the challenges and opportunities in molec-
ular graph representation learning, we propose the Graph
Multi-Similarity Learning for Molecular Property Prediction

(GraphMSL) framework. This approach aims to advance
graph contrastive learning to graph multi-similarity learn-
ing by incorporating a continuous multi-similarity metric.
A self-similarity metric can be derived from each hetero-
geneous chemical modality, such as chemical languages,
molecular depiction images, and chemical spectroscopic
spectra, through representation learning. Then, this self-
similarity metric can be transformed into a multi-similarity
metric through a pair weighting function. Besides, various
unimodal multi-similarity metrics can be fused into a multi-
modal similarity metric. In addition, GraphMSL framework
can be customized for singular or multi-view perspective.

In summary, our contribution comprises three major aspects:
Conceptually: We introduce a generalized multi-similarity
metric for graph representation learning, capturing both self-
similarity and relative similarity. Our approach doesn’t rely
on pre-defined negative or positive pairs, and it satisfies
the requirement of convergent similarity learning as shown
in Section 3.1. To the best of our knowledge, this is the
first work to demonstrate such generalized multi-similarity
for graph representation learning. Methodologically: We
extract a self-similarity metric from a chemical modality,
and transition it into a generalized multi-similarity metric
through a pair weighting function, and each modality con-
tributes to a unique multi-similarity metric. Furthermore,
we integrate these metrics into a fused multimodal form that
has the potential to improve the performance. Empirically:
GraphMSL excels in various downstream tasks, with per-
formance enhancements achieved through multi-level graph
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learning. Last but not least, we demonstrate the explain-
ability of the learned representations through two post-hoc
analysis. Notably, we explore minimum positive subgraphs
and maximum common subgraphs to gain insights for fur-
ther drug molecule design.

2. Preliminaries

Directed Message Passing Neural Network (DMPNN).
The Message Passing Neural Network (MPNN) (Gilmer
et al., 2017) is a GNN model that processes an undirected
graph G with node (atom) features x, and edge (chemical
bond) features e,,,. It operates through two distinct phases:
a message passing phase, facilitating information transmis-
sion across the molecule to construct a neural representa-
tion, and a readout phase, utilizing the final representation
to make predictions regarding properties of interest. The pri-
mary distinction between DMPNN and a generic MPNN lies
in the message passing phase. While MPNN uses messages
associated with nodes, DMPNN crucially differs by employ-
ing messages associated with directed edges (Yang et al.,
2019). This design choice is motivated by the necessity to
prevent totters (Mahé et al., 2004), eliminating messages
passed along paths of the form vy v . . . v, Where v; = v; 42
for some i, thereby eliminating unnecessary loops in the
message passing trajectory.

Pre-Training for Molecular GNNs. There are two levels
of pre-training tasks: node-level (atomic level) and graph-
level (molecular level), which enhance the generalization
capabilities of molecular GNNs across diverse downstream
tasks (Hu et al., 2019; Xia et al., 2022; Fang et al., 2022).
Node-level tasks aim to capture local context, often involv-
ing the random masking of nodes and subsequent prediction
of their properties based on node representations. In con-
trast, graph-level tasks focus on extracting global informa-
tion, such as predicting graph properties based on the graph
representation.Self-supervised learning (SSL) is a paradigm
in which a model is trained on a task by leveraging the data
itself to generate supervisory signals, eliminating the need
for external annotations (Liu et al., 2021b; 2022¢). SSL
finds active applications in the pre-training tasks of molec-
ular GNNs by formulating label-free pretext tasks, such as
graph reconstructions (Hu et al., 2020; You et al., 2020b;
Liu et al., 2021a), context predictions (Hu et al., 2019; Peng
et al., 2020), and adopting contrastive learning approaches
(Wang et al., 2021; 2022b; Liu et al., 2022a).

Similarity Learning. Given object ¢ and object j, the op-
timization of object similarity d; ; in the latent representa-
tion space is directed by the target similarity ¢; ; in a given
space, a process commonly recognized as similarity learning
(Moutafis et al., 2016; Suarez-Diaz et al., 2018). Contrastive
learning constrains its similarity metric ¢; ; to a binary set-
ting, taking on values of either 1 or 0. However, similarity

learning allows its similarity metric ¢; ; to be continuous
values. Two distinct types of similarities can be identified,
as illustrated in Appendix Figure A.1: self-similarity (the
pairwise similarity between two objects, typically defined
through cosine similarity), relative similarity (distinctions
in self-similarity with other pairs) (Wang et al., 2019). Con-
trastive learning, implemented with a binary similarity met-
ric, concentrates on self-similarity and fails to explore the
complete relationships between samples (Oh Song et al.,
2016; Wang et al., 2019).

3. Methods

We begin by presenting the theorem of convergent similarity
learning, followed by introducing the generalized multi-
similarity metric and the multimodal multi-similarity metric.

3.1. Convergent Similarity learning

Let S be a set of instances with size of |S|, and let P rep-
resent the learnable latent representations of instances in &
such that |P| = |S|. For any two instances 7, j € S, their
respective latent representations are denoted by P; and P;.
Let t; ; represent the target similarity between instances
i and j in a given domain, and let d; ; be the similarity
between P; and P; in the latent space.

Theorem 3.1 (Theorem of Convergent Similarity learning).
If t; ; is non-negative and {t; ;} satisfies the constraint

lel t;; = 1, consider the loss function for an instance i
deﬁned as follows:

S| i
Ztﬂog( 5 ) (D

edt k

then when it reaches ideal optimum, the relationship be-
tween t; j and d; ; satisfies:

softmax(d; ;) = t; ; 2)
For detailed proof, please refer to Appendix Section B.1.

3.2. Generalized Multi-Similarity

We formulate a generalized multi-similarity metric from
self-similarity by adapting the softmax function as a pair
weighting function. The formula for the generalized multi-

similarity, denoted as tsz between the i*? and j*” instances
under a given space R, is provided below:
Sk
R R e’
t;; = softmax(S;;) = ST _sE, 3)
k=1 '

where S, represents self-similarity, and |S]| is the size of
the instance set. Defined in this manner, the generalized
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multi-similarity metric incorporates both self-similarity and
relative similarities. Notably, unlike other multi-similarity
learning approaches (Wang et al., 2019; Zhang et al., 2021),
our method does not rely on the categorization of negative
and positive pairs for the pair weighting function. Addi-
tionally, the use of the softmax function ensures that the
generalized target similarity ¢; ; adheres to the principles of
Convergent Similarity Learning (refer to Section 3.1).

3.3. Multimodal Multi-Similarity

With a set of generalized multi-similarities {t/*} from vari-
ous modality spaces, we can transform generalized multi-
similarities from respective unimodality space to multi-
modal space through a fusion function. There are numerous
potential designs of the fusion function. For simplicity, we
take linear combination as a demonstration. The multimodal
generalized multi-similarity ¢, between i* and j*" objects
can be defined as follows:

t% = fusion({t?}) )
=D wr ®)
where tﬁj represents the target similarity between i*" and

4t instance in unimodal space R, wg is the pre-defined

weights for the corresponding modal, and Y wgr = 1. Such
that, it still satisfy the requirement of Convergent Similarity
Learning (See proof in Appendix SectionB.2).

4. Experiments

In this section, we begin by presenting the design of
the multi-similarity metric and the GraphMSL framework.
Subsequently, we showcase the results obtained from
GraphMSL. Finally, we demonstrate the explainability of
the learned molecular representations. (Please refer to the
experimental details of pre-training and fine-tuning in the
Appendix Section D.)

4.1. The Design of Multi-Similarity Metric
4.1.1. GRAPH-LEVEL MULTI-SIMILARITY METRIC

Self-Similarity. By employing representation learning, var-
ious chemical modalities, such as NMR spectra, depiction
images, and SMILES, can be encoded into latent represen-
tation vectors. The cosine similarity between two vectors
serves as self-similarity. The unimodal self-similarity for
13C NMR spectrum, denoted as Sfj, can be defined as fol-
lows: ‘

V- V]T
Vil - Vs
where V;, V; represents the embedding of NMR spectra
for two given molecules. Similarly, the uni-modality simi-
larity similarity for depiction images and SMILES can be

S = Cos(V;, V) = (6)

obtained. The self-similarity of fingerprints adapts a well-
established similarity function for molecules, namely the
Tanimoto similarity (Bajusz et al., 2015). (See more details
in Appendix Section C.2)

Generalized Multi-Similarity Metric. Transitioning from
self-similarity to a generalized similarity, we apply the soft-
max function as our pair weighting mechanism. The formula
of generalized similarity is provided below, illustrated with
an example of 13C NMR similarity:

SC.
e iy
tfj = softmax(ng)i = S0 o 7
Zk=1 ek

where tfj represents generalized similarity, Sfj denotes the
self-similarity, and |G| is the size of molecular graph pool.
For the expressions for SMILES and Image modality, please
refer to Appendix Section C.2

Multimodal Multi-Similarity Metric. We employ a sim-
ple linear combination to formulate the multimodal multi-
similarity ¢}, between the i*" and j*" molecules, repre-
sented as a graph-level similarity tz ;» as follows:

2, ®
= wsm ms;w +we 'tic,j +wr 'tz'I,j +wr 'tfj )

where ti ;VI denotes the similarity based on SMILES, tfj
denotes the similarity with respect to '3C NMR spectrum,
tfﬁ ; denotes the similarity regarding images, and f denotes
the similarity based on fingerprints, wgs s, we, wy, and Wy
are the pre-defined weights for their respective similarity,

and wgy + we +wy +wp = 1.

4.1.2. NODE-LEVEL MULTI-SIMILARITY METRIC

Self-Similarity. The self-similarity among nodes (atoms)
is derived from the positions of their signal peaks on '3C
NMR spectra, measured in parts per million (ppm). The
ppm values are continuous, typically ranging from 0 to 200
(see more introduction of ppm in Appendix C.3). The self-
similarity of NMR peaks Sf m can be defined as following:

72
[ppmu — ppman| + 71
where ppm; and ppm,, are the positions of NMR peaks

for the [, m** Carbon atom, 7; and 7 are temperature
hyper-parameter.

(10)

P _
Sl,m -

Generalized Similarity Metric. A generalized multi-
similarity tf m»> as a node-level similarity ¢}, can be for-

mulated with softmax function, as shown below

P
esl,m

_
Sty et

where Sl{)m represents self-similarity of NMR peaks, || is
the size of atomic node pool.

(11)

t?,m = thm = SOfthLJ?(SlITm)l =
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4.2. The Design of GraphMSL Framework

The GraphMSL framework is versatile, allowing customiza-
tion for singular or multiple views. In this context, we
showcase the customization options for graph-level, node-
level, or bi-level GraphMSL. The graph-level GraphMSL,
denoted as GraphMSL , .., incorporates multi-similarity
metrics derived from molecular level chemical semantics.
The node-level GraphMSL, denoted as GraphMSL,, ., in
corporates multi-similarity metrics derived from atomic
level chemical semantics. The bi-level GraphMSL, denoted
as GraphMSL,;, ., .;» incorporates multi-similarity metrics
derived from both molecular and atomic level chemical
semantics. In these implementations, the graph encoder
adopts DMPNN (Yang et al., 2019) architecture, an interac-
tive message passing scheme considering the interactions.
Additionally, neither of these two modules requires addi-
tional projection layers.

The loss function of GraphMSL
Lgraph, can be expressed as:

grapn, Model, noted as

df,’ )
Z 7 log - (12)
dq

Lgraph =
k
1<J<\g| 1<k<|g| € ©

where ¢/ j represents graph-level similarity metrics, dg
represents graph-level latent space similarity metrics, ¢, j, k
represent the indices of molecular graphs within a graph
pool of size |G| per batch.

The loss function of GraphMSL
can be expressed as:

node M0del, noted as Ly, oqe,

1 d

e’ l,m
Lnode = = T577 Y. tmlg g (13
1<m<|N]| 21<q<in €
where ¢}',, represents node-level similarity metrics, dj m

represents node level latent space similarity metrics, [, m, q
represent the indices of nodes within a node pool of size

.

The loss function of GraphMSL;, ;.. ., model, noted as
Lp;_jevel, can be expressed as:

Lbi—lm)el = Lgraph + Lnode (14)

4.3. Results
4.3.1. OVERALL PERFORMANCE OF GRAPHMSL o1,

The performance of GraphMSL , ., is evaluated through a
comparative analysis with a range of baselines, the specifics
of which are described in Appendix Section D.2.2. We
report the performance metrics of GraphMSL,,., ., across 8
classification under ROC-AUC and 3 regression tasks under
RMSE from the MoleculeNet benchmark (Wu et al., 2018a),
as shown in Tables 1. Within these tables, the best results

are denoted in bold, and the second-best are indicated with
underlining. From the comparative evaluation, we find that:

1) GraphMSL,, .., outperforms the baselines in seven of
the eight evaluated classification tasks, including BBBP,
BACE, SIDER, HIV, MUYV, Tox21 and ToxCast.

2) In the regression tasks, GraphMSL ..., also achieves
the highest performance across all evaluated benchmarks,
which include ESOL, FreeSolv, and Lipophilicity.

3) While GraphMSL , .., doesn’t outperform baselines on
the Clintox task, it attains average performance.

In short, these findings underscore the proficiency of
GraphMSL, ., in learning molecular representations that
are effective and impactful, as evidenced by its commend-
able performance across a suite of diverse tasks.

4.3.2. ABLATION STUDY-VARIOUS MUTIL,MODAL
SIMILARITY METRICS

We evaluate the performance of GraphMSL , ., using a
diverse set of similarity metrics, as outlined in Table 3. Each
uni-modal similarity metric demonstrates unique strengths
across various tasks. For instance, the model guided by
Image similarity metrics exhibits outstanding performance
in ESOL compared to other uni-modality metrics. Solubil-
ity is closely tied to the polarity of molecules. High polar
atoms possess the ability to form hydrogen bonds with water,
thereby enhancing solubility. In molecular depiction images,
nonpolar carbon atoms (C) are typically represented as dots.
Conversely, highly polar atoms like oxygen (O), nitrogen
(N), and fluorine (F) are depicted more prominently, occupy-
ing a significant portion of the image. Consequently, image
representations place considerable emphasis on this infor-
mation, distinguishing between nonpolar and polar atoms
by varying pixel density.

Notably, the true strength lies in the flexibility of mul-
timodal similarity metrics achieved through the fusion
of multiple unimodal metrics. There are five variations
of multimodal similarity metrics, denoted as Fusiongp;ies,
Fusionnmr, Fusiongmage, Fusiongingerprine, and Fusionayerage
(Please refer to their configurations in Appendix Section
C.4). Through the comparisons, it becomes evident that
a well-designed multimodal similarity metric can signifi-
cantly enhance model performance compared to unimodal
metrics. For example, Fusiongpes boosts performance in
Tox21 tasks, Fusionyyr enhances results in MUYV task, and
Fusiongingerprine contributes to improved outcomes in BBBP
and BACE tasks.

4.3.3. ABLATION STUDY-MUTIL-VIEW LEARNING

While the GraphMSL .., model demonstrates its efficacy
across a variety of downstream tasks, we further investigate
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Table 1. Overall performances (ROC-AUC) on classification downstream tasks. The best results are denoted in bold, and the second-best
are indicated with underlining. (Note: N-Gram is highly time-consuming on ToxCast.)

DATA SET BBBP BACE SIDER CLINTOX HIV MUV Tox21 TOXCAST
ATTENTIVEFP 64.3+1.8 78.44+2.2  60.6£3.2 84.74+0.3 75.7+£1.4  76.6£1.5 76.1£0.5 63.7+0.2
DMPNN 91.9+3.0 85.24+0.6  57.0£0.7 90.610.6 77.1+£0.5  78.6+1.4  759+0.7 63.7+0.2
N-GRAM 91.240.3  79.14+1.3 63.240.5 87.5+£2.7 78.7£0.4  76.9+£0.7 76.9£2.7 -

GEM 72.4+0.4  85.6%1.1 67.24+0.4 90.1+1.3 80.6+0.9 81.7£0.5  78.1+£0.1 69.21+0.4
UNI-MoL 72.9+0.6  85.7+0.2  65.9£1.3 91.94+1.8 80.84+0.3 82.1+1.3  79.6£0.5 69.6%+0.1
GROVER 86.842.2 82.4£3.6 61.2+25 70.3+£13.7  68.2%1.1 67.3+1.8 80.3£2.0 56.8+£3.4
INFOGRAPH 69.2+0.8  73.942.5 59.240.2 75.1£5.0 74.5+1.8  74.0£1.5 73.0£0.7 62.0+0.3
GRAPHCL 67.5+3.3  68.7+£7.8 60.1£1.3 78.9+4.2 75.0+0.4  77.1£1.0 75.0£0.3  62.84+0.2
MoLCLR 73.3+1.0 82.840.7 61.2£3.6 89.84+2.7 77.4+0.6  78.9+2.3 74.1£53  65.9+2.1
MOLCLR ey 72.4+0.7  85.0+2.4  59.74£3.4 88.01+4.0 778455  74.542.1 78.44+2.6 69.1+1.2
GRAPHMVP 72.4+1.6 81.24+9.0 63.9£1.2 79.1+2.8 77.0+£1.2  77.7£6.0  759+£5.0 63.1+0.4
GRAPHMSL ;1 pn 93.2£0.8 93.6£2.7 68.1%£1.5 88.8+4.6 83.3+1.1  84.5£2.9 86.1+£0.6 71.4%+0.2
GRAPHMSL,, 54e 93.4+2.7 89.3+1.7 62.8%2.1 86.1+5.4 82.1+0.4 754452 849+1.0 70.6+0.8
GRAPHMSLp; —jevel 94.3+0.8 94.5+0.7 67.3£0.6 93.8+0.8 83.040.7 81.5£3.7 86.1+£0.8 71.2+1.1

Table 2. Overall performances (RMSE) on regression downstream
tasks. The best results are denoted in bold, and the second-best are
indicated with underlining.

Data Set ESOL FreeSolv Lipo

AttentiveFP 0.877+0.029 2.073+0.183 0.721+0.001
DMPNN 1.0504-0.008 2.082+0.082  0.683+0.016
N-Gramgp 1.07440.107 2.688+0.085 0.812+0.028
N-Gramxgg 1.083+0.082 5.061+0.744  2.072+0.030
GEM 0.798+0.029 1.877+0.094  0.660+0.008
Uni-Mol 0.788+0.029 1.620+0.035 0.660+0.008
GROVER 1.4231+0.288 2.9771+0.615 0.823+0.010
MolICLR 1.11340.023 2.30140.247 0.789+0.009
MoICLRcmpNN 0.911+0.082  2.021+0.133 0.875+0.003
GraphMSL .1, 0.746+£0.060  1.437+ 0.134  0.537+0.005
GraphMSL,, ;. 0.924+0.083 1.707+0.126  0.587+0.021
GraphMSL;; _;.,.;  0.84310.094 1.60140.057 0.562+0.005

the potential of GraphMSL framework by including both
graph (molecule) and node (atom) levels to assess possible
performance improvements. Our findings indicate that:

1) For Clintox, GraphMSL,,_,.,..; exhibits superior perfor-
mance, compared with the baselines and GraphMSL ., .
Notably, GraphMSL,,_,...; achieves a 5% enhancement in
ROC-AUC on the Clintox dataset over GraphMSL ...,

2) For tasks such as BBBP, BACE, HIV, MUYV, and TOX21,
GraphMSL;, _;.,.; outperforms all compared models,
though GraphMSL;,_;.,.; is better than GraphMSL
by a marginal degree.

graph

3) Conversely, GraphMSL,;, ;. ,.; underperforms relative
to GraphMSLgmph in Sider, ToxCast, ESOL, FreeSolv, and
Lipo datasets. This discrepancy in performance may stem
from small portion of unresolved interactions or slight dis-
cord between the graph-level and node-level similarities
under the scenarios of these tasks.

4.4. Explainability of Learnt Representations

To demonstrate the interpretability of learnt representa-
tions, we present post-hoc analysis for two tasks, ESOL

and BACE, as demonstration. The results showcase learnt
representations can capture task-specific patterns and offer
valuable insights for molecular design.

ESOL. We apply t-SNE to reduce molecule embeddings
from 300 to 2, generating a heatmap correlating Log solu-
bility (Figure 3.a). The heatmap visually depicts a smooth
transition from high solubility (depicted in red) to low sol-
ubility (depicted in blue). The embeddings adeptly cap-
ture essential structural information and solubility-related
patterns, organizing molecules with analogous solubility
in close proximity within the embedding space. Through
our investigation, we discovered that molecules with com-
parable solubility share common graph features, such as
recurring motifs or an increased frequency of specific nodes
(atoms). For example, in the region of lowest solubility
(enclosed by blue dashed line), the molecular graphs all
contain biphenyl groups. Biphenyls are nonpolar molecules,
and as a consequence, they have limited interaction with
water, leading to low solubility in aqueous environments. In
the region of highest solubility (enclosed by red solid line),
molecules exhibit high polarity, characterized by the preva-
lence of nitrogen (N) and oxygen (O) atoms. This specific
graph configuration facilitates the formation of hydrogen
bonds with water molecules, thereby enhancing solubility.

BACE. We explore the binding potential of positive in-
hibitor molecules targeting BACE and their associated key
functional substructures, referred to as minimum positive
subgraphs (MPS). To identify MPS, we employ a Monte
Carlo Tree Search (MCTS) approach integrated into our
BACE classification model, as implemented in RationalRL
(Jin et al., 2020). MCTS, being an iterative process, allows
us to evaluate each candidate substructure for its binding
potential with our model. Following the determination of
MPSs, we categorize the original positive BACE molecules
based on their respective MPSs and subsequently compute
the maximum common subgraph (MCS) for each group. In
Figure 3.b, we present the top 10 most frequently occurring
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Table 3. Ablation study on the performances of GraphMSL

graph*

The best results are denoted in boldf, and the second-best are indicated
with underlining. The first 8 tasks are for classification under evaluation of ROC-AUC, while the last three are for regression with
evaluation of RMSE. See the detailed performance of GraphMSL,, ;.. .; upon different similarity metrics in Appendix Table E.1.

DATA SET BBBP BACE SIDER CLINTOX HIV MUV Tox21 ToxCAST ‘ ESOL FREESOLV Liro
SMILES 92.94+1.5 90.94+3.3 64.9+0.3 78.2+1.9 83.3+1.1 80.1£2.5 85.7£1.2 70.5£2.5/0.8114+0.109 1.623+ 0.168 0.539+0.017
NMR 91.0+2.0 93.24+2.7 68.1+1.5 87.7+6.5 80.9£5.0 80.9£5.0 85.1£0.4 71.1£0.8|0.8444+0.123 2.417+ 0.495 0.609+ 0.031
IMAGE 93.1+2.4 92.9+1.8 65.3+1.5 86.24+6.5 82.3+£0.6 78.7£1.7 86.0£1.0 71.0£1.6|0.7614+ 0.068 1.648+ 0.045 0.537+ 0.005
FINGERPRINT 92.942.3 91.7+3.6 65.6+0.7 87.5+6.0 81.2+2.5 82.9+£3.1 85.3+1.3 70.0£1.4|0.8084+ 0.071 1.437+ 0.134 0.565+ 0.017
FUSIONSuiies 93.1+1.4 91.4+39 66.1+1.0 86.6+6.6 82.7+1.1 82.2+4.1 86.1£0.6 71.3£1.3]0.800+0.068 1.505+£0.177 0.53740.145
FUSIONNMR 93.0+1.6 93.0+2.4 64.3+1.9 83.5+10.6 81.4+3.1 84.5+£2.9 85.8+t1.1 70.9£1.1|0.7834+0.105 1.472+0.072 0.55240.029
FUSIONIvaGE 92.94+3.4 929424 64.3+1.6 88.6+4.6 83.0£0.9 81.6+£4.8 85.8+£3.8 70.6£1.7|0.7461+0.060 1.587 £0.143 0.54940.025
FUSIONEngerprint 93.2£0.8 93.6£2.7 65.8+£0.7 85.4+9.4 82.443.1 81.6+2.5 85.3+1.1 71.1+1.1|0.818+0.054 1.5354+0.080 0.573+0.040
FUSION averacE 90.2+6.8 93.44+2.7 67.0+0.6 88.8+4.6 80.8+£2.2 79.2+5.4 85.4+0.8 71.4£0.2|0.7814+0.082 1.528+0.180 0.55940.018
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Figure 2. T-SNE visualization depicting the ESOL molecule embeddings alongside molecules within the highlighted region. Each point in
the heatmap corresponds to the embeddings of respective molecules in ESOL, with color indicating solubility levels. Red denotes higher

solubility, while blue indicates lower solubility.

MPSs, accompanied by their respective groups. As ex-
pected, molecular graph embeddings within the same group
exhibit proximity after T-SNE reduction. This proximity is
a result of shared identical motifs among graphs within each
group.

In the development of new inhibitors, it is common to in-
troduce additional functional groups or complex motifs to
have more interactions with enzyme, thereby increasing the
complexity of the molecules and making synthesis more
challenging. However, such modifications do not guarantee
a positive contribution or reward to inhibitor design. It is
evident by the results of extending molecules from MPS
to original molecules, which demonstrate both positive and
negative contributions to binding potential. Negative Con-
tribution: The complex molecules exhibits lower binding
potentials than simple MPS 4. This disparity can be illus-
trated by the distinction between MPS 4 and MCS 4a: in
MPS 4, one of the NH groups, as a secondary amine, estab-
lishes a strong binding interaction with the enzyme, but this
NH group transforms into an amide group in MCS 4a, re-

sulting in a significant decrease in binding capability. There-
fore, these designs do not receive commensurate rewards
considering the increased difficulty in synthesis. Positive
Contribution: the complex molecules demonstrates higher
binding potentials than MPS 9, indicating successful design.
This outcome can be attributed to MCS 9a, which features
more nitrogen and fluorine atoms capable of forming strong
bindings with the enzyme. In summary, this experiment
can serve as valuable guidelines for advancing inhibitor
development.

5. Related work

Contrastive Learning on Molecular Graphs. The primary
focus within the domain of contrastive learning applied to
molecular graphs centers on 2D-2D graphs comparisons.
Noteworthy representative examples: InfoGraph (Sun et al.,
2019) maximizes the mutual information between the rep-
resentations of the graph and its substructures to guide the
molecular representation learning; GraphCL (You et al.,
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Figure 3. T-SNE Visualization of BACE embedding and clustering based on minimum positive subgraph (MPS). MPS represents minimum
positive subgraph of a positive molecule; MCS represents maximum common subgraph of several positive molecules, sharing the same
MPS. Pink nodes represent MPS, blue nodes depict molecules, and edge colors indicate binding potential differences. Red edges denote
successful designs (original higher than MPS), while blue indicates less efficient designs (original lower than MPS).

2020a), MoCL (Sun et al., 2021), and MolCLR (Wang et al.,
2022b) employs graph augmentation techniques to construct
positive pairs; MoLR (Wang et al., 2022a) establishes posi-
tive pairs with reactant-product relationships. In addition to
2D-2D graph contrastive learning, there are also noteworthy
efforts exploring 2D-3D and 3D-3D contrastive learning
in the field. 3DGCL (Moon et al., 2023) is 3D-3D con-
trastive learning model, establishing positive pairs with con-
formers from the same molecules. GraphM VP (Liu et al.,
2022b), GeomGCL (Li et al., 2022), and 3D Informax (Stirk
et al., 2022) proposes 2D-3D view contrastive learning ap-
proaches. To conclude, 2D-2D and 3D-3D comparisons
are intra-modality contratsive leraning, as only one graph
encoder is employed in these studies. And these approaches
often focus on the motif and graph levels, leaving atom-level
contrastive learning less explored.

Multi-Similarity Learning. Instance-wise discrimination,
a crucial facet of similarity learning, involves evaluating
the similarity between instances directly based on their la-
tent representations or features (Wu et al., 2018b). Naive
instance-wise discrimination relies on self-similarity, lead-
ing to the development of contrastive loss (Hadsell et al.,
2006). Although there are improved loss functions such as
triplet loss (Hoffer & Ailon, 2015), quadruplet loss (Law
et al., 2013), lifted structure loss (Oh Song et al., 2016), N-
pairs loss (Sohn, 2016), and angular loss (Wang et al., 2017),
these methods still fall short in thoroughly capturing relative
similarities (Wang et al., 2019). To address this limitation,
a joint multi-similarity loss has been proposed, incorporat-
ing pair weighting for each pair to enhance instance-wise
discrimination (Wang et al., 2019; Zhang et al., 2021). No-

tably, it is crucial to emphasize that employing these pair
weightings requires the manual categorization of negative
and positive pairs, as distinct weights are assigned to losses
based on their categories.

6. Discussion

In summary, unlike other multi-similarity learning ap-
proaches that require explicit categorization of negative and
positive pairs, our method enables a straightforward gen-
eralization of similarity measures, encapsulating both self-
similarities and relative-similarities. Meanwhile, the gen-
eralized multi-similarity metrics satisfy the requirement of
convergent similarity learning. Notably, our model adeptly
integrates chemical semantics from diverse modalities, en-
hancing its performance across various downstream tasks.
Additionally, our framework bridges machine learning and
chemical domain knowledge through post-hoc experiment
by identifying easily synthesizable and functional substruc-
tures, which can be refined into appropriate configurations
by experts. Despite these accomplishments, further explo-
ration is needed to achieve more effective integration of
graph- and node-level similarities. Looking ahead, we are
enthusiastic about the prospect of applying our model to
additional fields, such as social science, thereby broadening
its applicability and impact.

Accessibility

The code and dataset will be made available upon the date
of publication.
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Appendix

A. Multi-Similarity & Contrastive Learning
A.1. Multi-Similarities in Contrastive Learning

Two distinct types of similarities, as illustrated in Appendix Figure A.1, can be identified: self-similarity (the pairwise
similarity between two objects, typically defined through cosine similarity) and relative similarity (distinctions in self-
similarity with other pairs) (Wang et al., 2019).

Multi-Similarities

Positive Pairs
<+“—>

Negative Pairs
<+—>

Anchor * .

Self-Similarity: Sy, S, S3, S4

Relative Similarity:
= Positive-Positive: S; vs. S,
= Negative-Negative: S3 vs. Sy
= Positive-Negative: S1 vs. S3, S1 vs. Sy, Sp vs. S3, S, vs. S,

Figure A.1. Illustration of Different Types of Similarities.

A.2. Current Molecular Graph Contrastive Learning Approaches

In current molecular graph contrastive learning approaches, positive pairs are commonly formed through either data
augmentation (Sun et al., 2021; You et al., 2020a), employing techniques such as node deletion, edge perturbation, subgraph
extraction, attribute masking, and subgraph substitution, or domain knowledge, as demonstrated by reactant-product pairing
(Wang et al., 2022a) or conformer grouping (Moon et al., 2023).

General Framework of Intra-Modality Graph Contrastive Learning Discrete Binary Pairs
= 1. Graph Augmentation:
1< \2 Negativ = atom/node deletion
2 egative Minimize . /nod Ki
/ \‘ Pair v, Agreement atom/node masking
- f = bond/edge deletion
Positive AN Maximize | k) = bond/edge perturbation
Pair I . /:ls $ g(v Ag::::;ti = fragment/subgraph extraction
A N 4 * v o
—g 2 h=f() 2. Knowledge Determination
4/4 = reactant-product pair
= conformer pools
Construct Binary Pairs Shared GNN Projection Contrastive Learning "o

Figure A.2. General framework of Intra-Modality Graph Contrastive Learning. It relies on definition of positive and negative pairs.

B. Supplementary Proof
B.1. Revisiting Theorem of Convergent Similarity Learning

Let S be a set of instances with size |S|, and let P represent the tunable latent representations of instances in S such that
|P| = |S|. For any two instances %, j € S, their latent representations are denoted by P; and P;, respectively. Let ¢; ;

represent the target similarity between instances ¢ and j in a given domain, and d; ; be the similarity between P; and P; in
the latent space.

12
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Theorem B.1 (Theorem of Convergent Similarity learning). Given t; ; is non-negative and {t; ;} satisfies the constraint
ZIJ'S:ll t;; = 1, consider the loss function for an instance i defined as follows:

S| di
L(i) == t;;log (Zlgldk> (B.1)

j=1 k=1¢
then when it reaches ideal optimum, the relationship between t; ; and d; ; satisfies:

softmax(d; ;) = t; ; (B.2)

Proof. In order to optimize the loss L(i), we need to set the following partial derivative to be O for each d; ; with
1 < j < |M|. Here are the detailed steps:

OL(i) 0 ik

t; i1 et 49 Y —tixl c
=—|—tijlo —t; i lo
8di,j 8di7j 4108 edii + Zk;ﬁj edik 8dz‘,j oy k108 edii + Zk;ﬁj edik

ator i dij . .
When the numerator includes ™7 When the numerator does not include e%i.3

= —(t;; — t;,; - softmax(d; ;)) — thk - softmax(d; ;)
k#j

—|ti;— | ti; + Zti,k - softmax(d; ;)
k#j

Since Zi/:\/g t;; = 1, we can further simplify it as

OL(7)

9d; ;

In order to optimize, we need to see the above partial derivative to be 0:

OL(7)

= —(t;,; — softmax(d; ;))

= —(tiﬁj — softmax(diﬁj)) =0

AL(i)

In addition, the corresponding second partial derivative denoted as 7>~ manifests as follows:
(2%

AL(i)
Odz,

= softmax(d; ;)(1 — softmax(d; ;))

AL()
adf‘j

As softmax(d; ;) takes values within the open interval (0,1), it follows that is always positive. Consequently, the

global optimum is global minimum.
Furthermore, when it comes to optimum:

t;,; = softmax(d; ;)

dij =log(t; ;) +log | D> ehs
1<I<|M|

It is easy to show that when it reaches optimum, d; ; is consistent with target similarity metric ¢; ;. Without loss of generosity,
suppose t; ; > t; j/ :

dij —dijo =log(tij) +log | D e | = [log(ti;) +log [ D e
1<I<| M| 1<i<|M|

= log(t;,;) — log(ti )

ti,j/

13
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B.2. Guarantee of Sum of Fused Multimodal Similarity

Given sets of uni-modal generalized similarity {¢®*} and }_ w;r = 1, the sum of fused multimodal similarity also equals 1,
as demonstrated below:

D) =D (we-tfh)
= (wr ) tfy)
=> wr-1=1

C. Revisiting Multi-Similarity Settings
C.1. Encoders & Packages

To derive the self-similarities, we need to reply on pre-trained encoders or well-defined packages as follows:

Table C.1. Encoders and packages used to produce self-similarities

Unimodal Representation Encoder/Package Pre-trained Source

Image 2D image CNN Img2mol (Clevert et al., 2021)
SMILES Sequence Transformer CReSS (Yang et al., 2021)
BCNMR Spectrum|  Sequence 1D CNN AutoEncoder (Costanti et al., 2023)
BCNMR peak Scalar NMRShiftDB2 (Steinbeck et al., 2003) N/A

Fingerprint Sequence RDKit (Landrum, 2006) N/A

C.2. Self-Similarity at Graph Level

Fingerprint. The mathematical formula of fingerprint similarity, denoted as Sfj, can be viewed as follows:

P : _ |ANB]
S; ; = Tanimoto(A, B) = 40D (C.1DH

where A and B are sets of molecular fragments for molecule ¢ and j, and |[A N B| and |A U B| denote the size of their
intersection and union, respectively.

Image. The self-similarity for Image, denoted as S ., can be defined as follows:

0,5°
y, - VT
S = Cos(V;, V) = ——3— (C.2)
N il vl
where V;, V; represents the embedding of Image for two given molecules.
NMR Spectrum. The self-similarity for NMR spectrum, denoted as Sfj, can be defined as follows:
\RRVER
SC = Cos(Vy, V) = ——3— (C.3)
N vl vl
where V;, V; represents the embedding of NMR spectra for two given molecules.
Smiles. The self-similarity for Smiles, denoted as Sf ;> can be defined as follows:
S5 = Cos(Vi,V;) Vi-Vy (C.4)
P =Cos(V;, V) =~ .
X il vl

where V;, V; represents the embedding of Smiles for two given molecules.

14



Submission to ICML 2024

C.3. A Brief Introduction to PPM

In chemistry, 13C NMR stands out as a common technique for structural analysis by revealing molecular structures by
elucidating the chemical environments of carbon atoms and their magnetic responses to external fields (Gerothanassis et al.,
2002; Lambert et al., 2019). It quantifies these features in parts per million (ppm) relative to a reference compound, such as
tetramethylsilane (TMS), thereby simplifying comparisons across experiments. As a result, the continuous peak positions,
measured in parts per million (ppm), offer a robust knowledge span—a natural ordering metric that can be employed to
derive measures of similarity (Xu et al., 2023b).

C.4. Configuration of Fused Multimodal Generalized Similarity Metric

A simple linear combination is used to formulate the multimodal multi-similarity t ; between the 7*" and j** molecules,
represented as a graph-level similarity tm, as follows:
=t =wsn - 7} +we 5 +wr -t +we -t (C.5)

where tS M denotes the similarity based on SMILES, tcj denotes the similarity with respect to 13C NMR spectrum, t
denotes the similarity regarding images, and f denotes the similarity based on fingerprints, wgys, we, wy, and wg are the
pre-defined weights for their respective similarity, and wgps + we + wy + wrp = 1.

For pre-defined weights, denoted as wg s, we, wr, and wg, we configure them with various settings for ablation studies, as
shown in the following table:

Table C.2. The configuration of weight for each unimodality similarity in different Fusion. In particular ws, wn, wa and wr represents
the weight of Smiles, NMR, Image and Fingerprint, respectively.

FUSED MULTIMODAL wsy WN Wam WE

SMILES 1.00 0.00 0.00 0.00
NMR 0.00 1.00 0.00 0.00
IMAGE 0.00 0.00 1.00 0.00
FINGPERPRINT 0.00 0.00 0.00 1.00
FUSIONsmiLes 0.70 0.10 0.10 0.10
FUSIONNMR 0.10 0.70 0.10 0.10
FUSIONace 0.10 0.10 0.70 0.10
FUSIONENGERPRINT 0.10 0.10 0.10 0.70
FUSIONavErace 0.25 0.25 0.25 0.25

D. Experimental Settings
D.1. Pre-Training Setting

During pretraining, we utilized an Adam optimizer with a learning rate set to 0.001, spanning 200 epochs and employing a
batch size of 256. The model was trained on 30,000 data points. The NMR data were experimental data, extracted from
NMRShiftDB2 (Steinbeck et al., 2003). Other chemical modalities, such as images, fingerprints and graphs, were produced
from SMILES by RDKit (Landrum, 2006).

D.2. Fine-Tuning Setting
D.2.1. DATASETS

For fine-tuning, our model was trained on 11 drug discovery-related benchmarks sourced from MoleculeNet (Wu et al.,
2018a). Eight of these benchmarks were designated for classification downstream tasks, including BBBP, BACE, SIDER,
CLINTOX, HIV, MUYV, TOX21, and ToxCast, while three were allocated for regression tasks, namely ESOL, Freesolv, and
Lipo. The datasets were divided into train/validation/test sets using a ratio of 80%:10%:10%, accomplished through the
scaffold splitter (Halgren, 1996; Landrum, 2006) from Chemprop (Yang et al., 2019; Heid et al., 2023), like previous works.
The scaffold splitter categorizes molecular data based on substructures, ensuring diverse structures in each set. Molecules
are partitioned into bins, with those exceeding half of the test set size assigned to training, promoting scaffold diversity
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in validation and test sets. Remaining bins are randomly allocated until reaching the desired set sizes, creating multiple
scaffold splits for comprehensive evaluation.

D.2.2. BASELINES

We systematically compared GraphMSL’s performance with various state-of-the-art baseline models across different
categories. In the realm of supervised models, AttentiveFP (Xiong et al., 2019) and DMPNN (Yang et al., 2019) stand
out by leveraging graph attention networks and node-edge interactive message passing, respectively. The unsupervised
learning method N-Gram (Liu et al., 2019) employs graph embeddings and short walks for graph representation. Predictive
self-supervised learning methods, such as GEM (Fang et al., 2022) and Uni-Mol (Zhou et al., 2023), are specifically designed
for predicting molecular geometric information. GROVER (Rong et al., 2020) integrates Message Passing Networks into
a Transformer-style architecture, creating a class of more expressive encoders for molecules. Moreover, our evaluation
encompasses a range of contrastive learning methods, namely InfoGraph (Sun et al., 2019), GraphCL (You et al., 2020a),
MoICLR (Wang et al., 2022b), and GraphM VP (Liu et al., 2022b), all serving as essential baselines. The baseline results are
collected from recent works (Fang et al., 2022; Zhou et al., 2023; Moon et al., 2023; Fang et al., 2023).

D.2.3. EVALUATION

To assess the effectiveness of our fine-tuned model, we measure the ROC-AUC for classification downstream tasks, and the
root mean squared error (RMSE) metric for regression tasks. In order to ensure a fair and robust comparisons, we conduct
three independent runs using three different random seeds for scaffold splitting across all datasets. The reported performance
metrics are then averaged across these runs, and the standard deviation is computed as prior works.

E. More Ablation Study

GraphMSL,; .. demonstrates top performance in BBBP, BACE, CLINTOX, HIV, MUYV, and Tox21. Additionally, within
the GraphMSLbi-level framework, FusionSmiles enhances performance in Sider, CLINTOX, and MUV. FusionNMR
improves results in BBBP and HIV, while Fusionyy,g. contributes to better outcomes in the Tox21 and ToxCast tasks.

Table E.1. Ablation study on the performances of GraphMSL with bi-level (Graph + Node) and solo-node-level. The best results are
denoted in boldf, and the second-best are indicated with underlining.

DATA SET BBBP BACE SIDER CLINTOX HIV MUV Tox21  TOXCAST \ ESOL FREESOLV Liro

SMILES + NODE 93.74+1.3 93.243.7 65.94+1.7 87.7+7.8 82.3+1.8 80.9+5.5 84.7+1.7 70.4+1.5]0.873£0.085 1.658+ 0.243 0.594+ 0.031
NMR + NODE 91.943.1 92.841.6 65.7+1.6 89.5+3.4 81.24+1.2 80.6+5.5 85.1+£0.2 69.34£0.1|1.052+ 0.105 2.391+ 0.175 0.654+ 0.025
IMAGE + NODE 94.14+1.7 90.840.7 63.842.8 86.5+8.0 80.3+1.5 76.7+2.7 85.3+1.1 70.8+1.5|0.843+ 0.094 1.601+ 0.057 0.562+ 0.005
FINGERPRINT + NODE 90.24+8.4 94.54+0.7 64.3+2.9 91.0+1.5 82.0+2.4 79.24+59 85.7+0.5 69.7+1.3|1.170+ 0.174 2.801+ 0.276 0.607+ 0.034
FUSIONgy1.gs + NODE 91.7+£5.3 91.5+1.7 67.3+£0.6 93.84+0.8 82.1+1.7 81.5+3.7 85.1+0.1 70.4+1.3] 0.965+0.085 2.859+0.281 0.647+0.029
FUSIONNMR + NODE 94.34+0.8 93.6+1.9 66.84+1.4 90.4+3.1 83.0+0.7 80.1+3.5 85.5+0.6 70.6+£1.8| 1.0094+0.160 2.224+0.368 0.589+0.038
FUSION[yaGe + NODE 94.241.2 93.14+2.5 66.4+1.6 90.7+3.5 82.0+2.4 80.8+3.8 86.1+0.8 71.2+1.1| 0.8984+0.098 1.691+£0.386 0.579+0.018
FUSIONENGErpriNT + NODE 91.64:5.0 94.3+2.4 66.441.9 85.3+6.8 82.0+2.4 80.643.2 85.240.2 69.841.1| 1.03740.170 2.09340.090 0.607-0.034
FUSION pAygrage + NODE 92.74+1.5 92.64+2.1 65.64+0.7 89.3+4.0 81.84+1.7 81.0+£5.0 854+1.3 71.241.9| 1.01940.118 1.733+£0.267 0.593+0.004
NODE 93.44+2.7 89.3+1.7 62.8+£2.1 86.1+5.4 82.1£0.4 75.4+5.2 84.9%+1.0 70.6£0.8] 0.9244+0.083 1.70710.126 0.58740.021
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