
OPTISAN: Using Multiple Spatial Error Defenses
to Optimize Stack Memory Protection within a Budget

Rahul George2, Mingming Chen1, Kaiming Huang1,
Zhiyun Qian2, Thomas La Porta1, Trent Jaeger2

1The Pennsylvania State University
2University of California, Riverside

Abstract
Spatial memory errors continue to be the cause of many vul-
nerabilities. While researchers have proposed several defenses
to prevent exploitation of spatial memory errors, systems cur-
rently rely on defenses that only protect a small fraction of
stack data (e.g., return addresses) and leave a window of vul-
nerability (e.g., by only enforcing on function returns). One
proposal to address this problem is to place defenses at the
lowest cost locations until a cost budget was met, but this ap-
proach only considers a single defense and does not account
for the security implications of possible placements. In this
paper, we propose the OPTISAN system, which is the first
system to apply multiple spatial memory defenses to maxi-
mize the number of objects protected from spatial memory
errors within a cost budget. OPTISAN analyzes each program
to identify the stack objects that may be exploited by spa-
tial memory errors, called usable targets, and estimates the
overhead for individual defense operations, for both metadata
management and spatial checks, to enable flexibility in place-
ment choices. OPTISAN applies this information in a novel
Mixed-Integer Non-Linear Programming formulation to gen-
erate an optimal placement. We apply OPTISAN to generate
placements using a combination of identity-based (i.e., influ-
ential BaggyBounds) and location-based (i.e., widely used Ad-
dressSanitizer (ASan)) spatial memory defenses, finding that
OPTISAN utilizes the more effective Baggy Bounds defense
broadly, augmenting it with ASan to increase the number of
memory operations with usable targets protected by 18.4%
on average across a set of benchmark and server programs.
OPTISAN shows that using multiple spatial memory defenses
provides valuable flexibility to prevent the exploitation of
many spatial memory errors within a cost budget.

1 Introduction

Since the “Anderson report” [7] in 1972, researchers have
understood that spatial memory errors, such as buffer over-
flows [54], could be exploited to compromise process execu-
tion. A spatial memory error allows a program instruction to

access memory locations outside of the memory region of the
intended object. By exploiting spatial memory errors, adver-
saries may read unauthorized stack data (i.e., stack buffer over-
read or disclosure attacks) and/or modify unauthorized data
(i.e., stack buffer underflow or overflow). Such attacks have
been exploited in-the-wild at least since the Morris Worm [58]
in 1988 to hijack process execution, and recent vulnerabilities
show that such attacks remain a high priority problem even
for stack memory (e.g., [9, 47–49, 53]).

Despite broad awareness of spatial memory errors and their
impact, only a small fraction of stack data is protected from
only a subset of spatial memory errors. First, deployed de-
fenses only check for the modification of return addresses
(e.g., due to buffer overflows), traditionally using stack ca-
naries [17] and now using shadow stacks [2, 15]. However,
current defenses do not detect spatial memory attacks that
modify local variables without affecting return addresses, nor
will they detect illicit reads to stack memory that could lead to
disclosure attacks [23, 57, 63]. Second, probabilistic defenses,
such as ASLR [55] make some attacks more difficult, but ad-
versaries can still exploit objects at relative offsets to perform
data-oriented attacks [29,32]. Third, such defenses only detect
illicit stack modification when the vulnerable function returns,
leaving a window of opportunity for an adversary to exploit
the error fully prior to detection. For example, an adversary
could exploit a spatial memory error within the execution of
one long-running function to achieve their goals (e.g., per-
form necessary system calls to modify or leak sensitive data)
prior to the vulnerable function returning.

To address the limitations above, researchers have proposed
many techniques to detect spatial memory errors more com-
prehensively. Researchers categorize such defenses [64] into
identity-based defenses [6, 19, 21, 50, 72], which validate that
every memory access is within the expected memory region,
and location-based defenses [20, 59, 66, 73, 74], which detect
memory accesses to invalid memory outside the expected
memory region. Despite efforts to improve the performance
of both techniques [6,19,21,25,39,72–74], their performance
overhead still remains too high for broad adoption. A question



is how we can take advantage of such defenses effectively to
improve program security.

In this paper, we leverage two insights. First, we find that
identity-based and location-based defenses can have signif-
icantly different overheads for protecting the same unsafe
memory operations due to differences in their implementa-
tions. For some operations, location-based defenses may be
much more efficient, but for other operations, identity-based
defenses may be much more efficient. Thus, a method for
placing multiple spatial memory defenses may be beneficial
and should account for the performance implications of each
defense placement, including the residual overheads [38, 69]
(e.g., metadata management) of defenses.

Second, even a combination of strong defenses may not
be able to prevent all spatial memory errors within a desired
performance budget. Thus, we need a technique to determine
how to place multiple defenses within a budget. The ASAP
system proposed applying individual defenses to operations
in increasing order of frequency until an overhead budget
is consumed [69]. However, ASAP does not consider the
security implications of these choices nor does it account for
the residual overheads, acknowledging that the total residual
overheads of some programs are greater than the budget. We
want to devise a defense placement approach that accounts for
performance and security to utilize a combination of location-
based and identity-based defenses effectively.

In this paper, we present OPTISAN, which is a tool for
generating placements of spatial memory defenses for stack
objects that utilizes multiple defenses, where the goal is to
maximize the protection of stack memory from spatial mem-
ory errors within a cost budget. We develop a tool, OPTISAN,
that constructs and solves protection budget problems, which
includes: (1) a static analysis to compute which stack objects
may be exploited by unsafe memory operations, which we
call usable targets, to estimate the security impact; (2) a per-
formance model of each defense that captures the costs for the
placement of metadata management and bounds checks for
each operation to enable flexible selection of placements; and
(3) a mixed-integer non-linear program (MINLP) formulation
to generate an optimal solution for protecting usable targets
within a cost budget. While (1) and (2) are customized to
protect stack objects, the protection budget formulation (3) is
independent of the memory region being protected as long as
security impact and defense cost models can be provided.

We apply OPTISAN to SPEC CPU 2006 programs, SPEC
CPU 2017 programs and five server programs1. First, by ap-
plying a combination of Baggy Bounds [6] (i.e., an influential
identity-based defense) with AddressSanitizer [59] (ASan)
(i.e., a widely used location-based defense), OPTISAN is able
to generate placements that cover 18.4% more unsafe opera-
tions with usable targets on average than Baggy Bounds alone

1Only five SPEC CPU 2006 and four SPEC CPU 2017 programs run
more than 100 stack memory operations that may violate spatial memory
safety. We evaluate our approach on these programs only.

for the same cost budget. Second, we show that OPTISAN
makes placement decisions that account for the number of
target objects to increase the protection from each operation
defended, when compared to ASAP [69]. Third, we examine
nine recent CVEs, finding that these vulnerable unsafe opera-
tions are not run frequently, which is consistent with ASAP’s
hypothesis of most CVEs [69], but nonetheless, OPTISAN
places defenses for these unsafe operations earlier than ASAP
in six instances and at the same point for the other three, indi-
cating that OPTISAN is able to robustly balance performance
and security. Fourth, OPTISAN is also reasonably accurate
in predicting the overhead of placements, where the average
difference from each budget is 1.47%, enabling us to generate
desired placements in three runs or fewer.

This work contributes the following:
• We develop a novel model of spatial error defenses that

captures both metadata and check operation costs at the
granularity of individual program locations, enabling
accurate cost estimates.

• We propose a novel mixed-integer non-linear program
(MINLP) formulation to generate solutions that use mul-
tiple defenses to maximize the protection of stack objects
from spatial errors within a cost budget.

• OPTISAN generates placements for a combination of
ASan and Baggy Bounds defenses, increasing the num-
ber of unsafe operations protected by 18.5% on average
over Baggy Bounds alone, while biasing the protection
of stack objects and providing predictable performance.

2 Motivation

2.1 Stack Spatial Memory Errors
A spatial memory error occurs when a memory access is per-
formed outside of the memory region of the intended referent,
which is possible in programming languages that do not en-
force memory safety (C/C++). The intended referent [18] of a
pointer is the object from whose base address the pointer was
derived. Spatial memory errors may either read (e.g., buffer
over-read) or write (e.g., buffer overflow) memory illicitly.
While spatial memory errors have been known for over 50
years [7], they are difficult to identify, even with automated
static and dynamic (e.g., fuzzing) analyses. As a result, pro-
grams written in C/C++ often have latent spatial memory
errors. For example, over 200 stack buffer overflow vulnera-
bilities were found in the last three years, 122 of which have
a severity rating of at least 7. These include vulnerabilities in
Adobe Acrobat Reader (CVE-2023-21610), Adobe Animate
(CVE-2023-22243), and OpenSSL (CVE-2022-3786).

Consider Figure 1, which contains code snippets for three
stack memory accesses in different functions in the Apache
web server (httpd 2.4.32). Researchers have proposed tech-
niques [6, 30] to identify the memory accesses cannot violate
spatial memory safety, such as by using value-range analy-
sis [62]. Using such techniques, the stack memory access in



1 AP_DECLARE( i n t ) a p _ p a r s e _ f o r m _ d a t a ( r e q u e s t _ r e c * r , a p _ f i l t e r _ t * f ,
a p r _ a r r a y _ h e a d e r _ t ** p t r , a p r _ s i z e _ t num , a p r _ s i z e _ t u s i z e )

2 {
3 . . .
4 c h a r b u f f e r [HUGE_STRING_LEN + 1 ] ;
5 . . .
6 i f ( o f f s e t < HUGE_STRING_LEN) {
7 / / S t a c k memory a c c e s s 1
8 b u f f e r [ o f f s e t ++] = c ;
9 }

10 }

Listing 1: Stack Memory Access 1

1 s t a t i c i n t check_nonce ( r e q u e s t _ r e c * r , d i g e s t _ h e a d e r _ r e c * re sp ,
2 c o n s t d i g e s t _ c o n f i g _ r e c * c on f )
3 {
4 a p r _ t i m e _ t d t ;
5 c h a r tmp , hash [NONCE_HASH_LEN+ 1 ] ;
6 t i m e _ r e c nonce_ t ime ;
7 . . . . . . . . .
8 tmp = resp −>nonce [NONCE_TIME_LEN ] ;
9 re sp −>nonce [NONCE_TIME_LEN] = ’ \ 0 ’ ;

10 / / S t a c k memory a c c e s s 2
11 a p r _ b a s e 6 4 _ d e c o d e _ b i n a r y ( nonce_ t ime . a r r , r e sp −>nonce ) ;
12 . . . . . . . . .

Listing 2: Stack Memory Access 2

1 s t a t i c r e m o t e i p _ p a r s e _ s t a t u s _ t r e m o t e i p _ p r o c e s s _ v 1 _ h e a d e r ( c o n n _ r e c *c ,
2 r e m o t e i p _ c o n n _ c o n f i g _ t * conn_conf , p r o x y _ h e a d e r * hdr , a p r _ s i z e _ t l en ,
3 a p r _ s i z e _ t * h d r _ l e n )
4 {
5 / / Loca l T a r g e t
6 c h a r * h o s t ;
7 c h a r buf [ s i z e o f ( hdr −>v1 . l i n e ) ] ;
8 . . . . . . . . . . .
9 / / S t a c k memory a c c e s s 3

10 s t r c p y ( buf , hdr −>v1 . l i n e ) ;
11 . . . . . . . . .
12 / / Reachab l e use 1
13 conn_conf −> c l i e n t _ a d d r = c−> c l i e n t _ a d d r ;
14 . . . . . . . . . . .
15 / / Reachab l e use 2
16 conn_conf −> c l i e n t _ i p = a p r _ p s t r d u p ( c−>pool , h o s t ) ;
17 . . . . . . . . . . .
18 }

Listing 3: Stack Memory Access 3

Figure 1: Stack memory accesses in the Apache web server

Line 8 of Listing 1 will always remain within the memory
region of the intended referent, buffer. However, the stack
memory accesses in Listings 2 and 3 cannot be validated stat-
ically to satisfy spatial memory safety. For these operations,
developers can either apply defenses proactively to prevent
possible spatial memory errors or hope that the stack mem-
ory access is actually safe or not exploitable. We find that
the Apache web server (httpd 2.4.32) has 2,969 memory op-
erations (i.e., instructions in the LLVM IR) that cannot be
proven to be safe from spatial memory errors (called unsafe
operations in Table 3 in Section 6) via value-range analysis.

Consider the code snippet in Listing 3, which has been re-
ported as a recent vulnerability (CVE-2019-10097 [52]). List-
ing 3 shows a function named remoteip_process_v1_header
that copies a packet header into a stack buffer buf, using str-
cpy. The function strcpy cannot be proven to comply with the
bounds allocated for either the buffer buf or the header hdr, so
it may result in a buffer overflow and/or buffer over-read. In
this case, adversaries can overflow the buffer buf to overwrite
stack objects allocated above buf on the stack. As a result,
the local pointer variable host can be modified to point to
any desired payload, which can be used to corrupt important
fields in the configuration object conn_conf in line 17. 14
stack objects may be targeted by this vulnerability.

1 ShadowAddr = ( Addr >> 3) + O f f s e t ;
2 k = *ShadowAddr ;
3 i f ( k != 0 && ( ( Addr & 7) + A c c e s s S i z e > k ) )
4 Repor tAndCrash ( Addr ) ;
5 / / Memory a c c e s s ( s t o r e )
6 *Addr = . . .

Listing 4: ASan Check Operation
1 / / P o i n t e r a r i t h m e t i c
2 p = baseAddr + o f f s e t ;
3 k = b o u n d s _ t a b l e [ baseAddr >> s l o t _ s i z e ] ;
4 i f ( ( baseAddr ^p ) >> k ! = 0 )
5 p = BaggySlowPath ( baseAddr , p ) ;
6 . . . . .
7 / / Memory a c c e s s ( S t o r e )
8 *p = . . .

Listing 5: Baggy Bounds Check Operation

2.2 Spatial Error Defenses
Programmers currently apply inexpensive, but incomplete
and/or probabilistic defenses, such as stack canaries [17] and
Address Space Layout Randomization [55] (ASLR). Stack
canaries (and shadow stacks [11, 15]) check that the value
of the return address at the function’s return is the same as
when the function was called. However, the function’s local
variables may be illicitly modified or read without detection.
In addition, attacks that complete prior to the function return-
ing and attacks where the adversary controls the offset will
also not be detected by these defenses. ASLR randomizes
the base location of the stack and code memory segment to
prevent attackers from predicting the location of target code
or data. However, attacks whose target is at a relative offset
from a vulnerable memory region may still be accessed illic-
itly. For example, the vulnerability in Listing 3 above allows
attackers to modify a local variable illicitly that is located at
a known offset from the vulnerable buffer buf, but canaries
do not prevent illicit access to local variables and ASLR does
not prevent targeting objects at known offsets.

As a result, researchers have proposed defenses specifically
targeted at preventing spatial memory errors. Researchers
recognize two classes of spatial memory defenses, as identity-
based and location-based defenses [64]. First, identity-based
defenses rely on the intended referent of the memory access
to determine validity of the access. For example, the Soft-
Bound defense [51] tracks whether a pointer to an intended
referent may ever reference memory outside of the bounds of
its allocated region. Because identity-based defenses check
whether a pointer value is within a memory range, these de-
fenses instrument every pointer arithmetic operation. The
Baggy Bounds defense [6] removes instrumentation for mem-
ory accesses that can be proven to satisfy spatial safety and
reduces the cost of checks by aligning and padding allocations
to the next power of two. The Listing 5 shows this efficient
check which involves a single memory load (i.e., bounds ta-
ble lookup), arithmetic operations, and a comparison. Baggy
Bounds is currently the most efficient identity-based defense,
so we examine its use in this paper.

Alternatively, location-based defenses detect spatial mem-
ory errors that access an invalid memory region. The idea
is to use a metadata store, such as a shadow memory, to



Program ASan (%) Baggy (%) ASan is
Slower (%)

Baggy Im-
proves (%)

httpd 13.15 19.66 2.43 16.76
sqlite3 0.45 0.63 0.84 12.69
sjeng 33.08 53.08 5.45 12.10
povray 5.50 6.63 30.22 49.45
gcc 8.94 14.17 1.02 17.37
perlbench 10.75 20.95 3.05 2.33

The first two columns contain the performance overhead to protect all un-
safe operations using ASan and Baggy Bounds, respectively. The third and
fourth columns show the percentage of cases where ASan is slower and the
percentage reduction in cost if Baggy Bounds is used instead.

Table 1: Performance Trade-offs between ASan and Baggy Bounds

track state for each byte (or a portion) of the usable address
space. This metadata store is consulted on each memory ac-
cess to detect (illegal) accesses to invalid memory. These
defenses differ in how they encode invalid memory, as either
red-zones [26,27,59,61] around the object encoded in shadow
memory or separate unallocated (guard) pages [45,56] outside
legitimate memory regions. Address Sanitizer [59] (ASan) is
a widely used location-based defense, often used in fuzz test-
ing [46] to detect bugs. For example, ASan has detected more
than 10,000 memory bugs [24,68] across various applications
including over 3,000 memory bugs in Chrome [24]. It is de-
signed to be more efficient than prior techniques [26, 27, 61].

ASan employs a directly mapped, compact shadow memory
to detect operations that access memory outside the expected
bounds using red-zones. For stack objects, a red-zone is 32
bytes. Listing 4 shows an ASan check, which involves a single
memory load (shadow memory lookup), arithmetic operations,
and a comparison. In this paper, we examine the use of the
ASan defense2. We note that location-based defenses may be
bypassed, e.g., by incrementing a pointer beyond an object’s
red zone , or through an unaligned access that is partially out-
of-bounds [60]. Identity-based defenses cannot be bypassed,
but may not be applicable to all scenarios (e.g., buffers within
objects).

Neither identity-based nor location-based defenses are de-
ployed in production environments because their performance
overheads are not yet acceptable. Table 1 shows the overheads
of ASan and Baggy Bounds for spatial memory error protec-
tion for all unsafe operations (i.e., stack memory accesses
that cannot be proven safe by value-range analysis) for a set
of programs. For benchmarking these programs, we use the
test suite provided with the program such as Apache HTTP
Test project [8] for Apache, the TCL test suite [65] for sqlite,
and ref workload for the SPEC CPU 2006 programs. ASan
always has a lower overall performance overhead than Baggy
Bounds for these programs, but we observe that ASan may
have a higher overhead than Baggy Bounds for some frac-
tion of the unsafe operations in the program (ASan Is Slower
column). In these cases, the number of memory accesses

2ASan– [74] is an optimized version of ASan, but there are implemen-
tation issues in applying it incrementally with another defense, so we will
explore using it in future work.

(checked by ASan) is greater than the number of pointer arith-
metic operations for those objects, leading ASan to incur a
higher performance overhead than Baggy Bounds. The fourth
column (Baggy Improves column) shows the percent over-
head reduction (i.e., relative to the ASan column) if Baggy
Bounds is used instead of ASan in those cases only.

2.3 Managing Spatial Defense Performance
Researchers have proposed methods to apply spatial mem-
ory defenses in ways that limit their overhead. For example,
the ASAP system [69] applies the Address Sanitizer [59]
(ASan) spatial memory defense to as many operations as pos-
sible within a cost (i.e., performance overhead) budget. ASAP
chooses which operations to defend in the order of their ex-
pected execution frequency (e.g., from an execution profile),
starting with the least frequent operations, until a budget is
exhausted. ASAP demonstrates that a significant fraction of
memory operations can be defended (87% on average for
the programs tested) within a cost budget of 5% for some
programs in the SPEC CPU 2006 and Phoronix benchmarks.

While ASAP takes an important first step towards a method
to utilize stronger memory defenses wisely, challenges remain.
First, ASAP cannot combine multiple defenses, which may
be desirable based on their performance trade-offs. As seen in
Table 1, in some cases the BaggyBounds defense [6] enforces
memory safety more efficiently than ASan, as explained ear-
lier in Section 2.2. ASAP does not account for the frequencies
of operations performed by defenses nor their overheads. Sec-
ond, ASAP does not account for the residual costs [38, 69]
of a defense (e.g., ASan’s red-zone metadata management),
but these costs can be significant. As a result, ASAP cannot
generate placements for a desired budget for programs us-
ing ASan with high residual costs (i.e., more than the cost
budget), such as gcc and perlbench. Third, ASAP does not
account for whether a memory operation can actually enable
any exploitation. As a result, ASAP may waste the valuable
performance budget unnecessarily on operations that cannot
be exploited. Fourth, for a desired budget ASAP may choose
to protect operations that are inexpensive to protect (low exe-
cution frequency), but present fewer risks (e.g., fewer stack
objects at risk) than other operations. While vulnerabilities
along frequently executed paths appear to be less common,
such vulnerabilities have been found in the wild as seen in
recent work [74]. Thus, ASAP’s approach may lead to such
vulnerabilities being left unprotected even when they present
a high risk. Instead, we propose that considering multiple de-
fenses (i.e., performance trade-offs), the risk associated with
the unsafe operations (i.e., stack objects at risk), and all their
costs (i.e., check and residual costs) may enable a protection
budget to be used more effectively.

Ultimately, we still lack an effective approach to apply spa-
tial memory defenses to protect the stack. Ideally, we would
like to apply the complete identity-based defenses compre-
hensively, but they are too expensive in many cases. Given



that location-based defenses, even though they are incomplete,
would be a significant improvement over the current defenses,
we would like to be able to leverage them as well to maximize
our protection of stack memory within a cost budget. However,
we lack techniques that understand the performance implica-
tions of defenses comprehensively (e.g., including metadata)
to apply defenses efficiently and predictably (i.e., incur the ex-
pected overhead overall after placement). In addition, we lack
techniques that can utilize accurate performance modeling to
maximize the defense we can obtain with location-based and
identity-based defenses in combination. While Baggy Bounds
avoids placing defenses when operations are safe from spatial
errors, it does not account for whether operations are actually
exploitable (i.e., any illicitly accessed target may be used). In
addition, while ASAP accounts for cost [69] imprecisely, it
does not consider whether a placement of multiple defenses
and whether it protects the maximal amount of stack data
within a cost budget.

3 System Overview
Threat Model We assume that programs may contain spa-
tial memory errors on accesses to stack data, such as stack
buffer under/overflows and buffer over-reads. We assume that
adversaries can exploit any spatial memory error to access
other objects illicitly in stack memory. We assume that mem-
ory accesses that are validated to satisfy memory safety are
not exploitable, and that the techniques used to validate mem-
ory safety [6, 30, 62] do not misclassify any unsafe accesses
as safe (i.e., are sound). In addition, we assume that any stack
memory modified illicitly must have a use (i.e., a memory
access to the illicitly modified stack object) after the unsafe
operation to be exploitable. We assume any stack data that
may be accessed by an illicit read can be exploited (e.g., by
using the buffer into which the illicitly accessed data is read).
We leave the problem of extending protection to heap and
global objects for future work, as discussed in Section 7.

We assume the following defenses are already applied to
the program. First, we assume that the program employs a
defense to prevent the modification of code and the execution
of data, such as Data Execution Prevention [4] (DEP). We as-
sume that these protections cannot be disabled (e.g., no bugs
exploit changing memory permissions using mprotect). Sec-
ond, we assume that the ASan and Baggy Bounds defenses
prevent illicit modification of their metadata and execute cor-
rectly. We assume that no attacks on memory accesses to the
heap or globals can access stack memory or can circumvent
ASan and Baggy Bounds.

OPTISAN System The OPTISAN system is shown in Fig-
ure 2. OPTISAN generates a placement of defenses, in this
case for the ASan [59] and Baggy Bounds [6] defenses, to
maximize the protection of stack objects from spatial memory
errors within a cost budget. To do this, OPTISAN first identi-
fies the operations that may violate memory safety (i.e., unsafe

operations) using known techniques (e.g., value-range anal-
ysis [62]) in Step (0). For each unsafe operation, OPTISAN
computes the stack objects that may be exploited by spatial
memory errors, called usable targets, in Step (1), which is de-
scribed in Section 4.3. Next, OPTISAN estimates the expected
cost of defenses at each location where defense code may
be placed, called monitoring points, both for spatial memory
checks and for initialization and cleanup of metadata used by
these defenses, using offline profiles in Step (2), as described
in Section 4.1. OPTISAN then applies a novel optimization for-
mulation to generate a defense placement that maximizes the
protection of stack objects from spatial memory errors within
a given performance cost budget in Step (3), as described in
Section 4.2. Finally, OPTISAN instruments the program with
the computed placement automatically in Step (4), including
the incremental metadata support for the limited set of checks
placed. The placement of instrumentation utilizes the existing
ASan and Baggy Bounds methods, as described in Section 5.

4 OPTISAN Design

In this section, we describe how to develop an accurate and
flexible performance model of defenses to enable maximizing
the protection of stack objects within a cost budget.

4.1 Modeling Defense Performance Overheads

The goal is to apply defenses within a cost budget in a man-
ner that accounts for the performance overhead of each de-
fense accurately and thus the performance trade-offs between
defenses. To estimate the cost of a particular defense place-
ment accurately, we must develop a model of the performance
overhead of defenses that is comprehensive (i.e., accounts
for all significant costs), fine-grained (i.e., can reason about
any placement), and flexible (i.e., can apply either defense to
each unsafe operation). The key to achieving this goal is to
accurately model the overheads of both check (i.e., prevent
accesses that violate spatial memory errors) and metadata
operations (i.e., setup and update the state for checks, such
as red-zones and bounds). Past work [69] acknowledged that
metadata operations could add significant overhead to enforce-
ment due to residual overheads [38, 69], which were found
to be greater than the placement budget for some programs,
such as perlbench and gcc. However, modeling metadata op-
erations presents challenges because metadata operations are
associated with objects that may have multiple unsafe opera-
tions and require multiple spatial checks. In addition, since
OPTISAN considers the placement of multiple defenses with
different metadata representations and operations, OPTISAN
must reason about the impact of redundant metadata.

OPTISAN is designed to model each check and metadata
operation required to account for all defense operations (i.e.,
be comprehensive) at the granularity of individual defense
operations per unsafe operation (i.e., be fine-grained). This en-
ables OPTISAN to choose among multiple defenses for each



Prior
Memory
Safety

Analysis

Unsafe 
Stack 

Operations

Program
Source

(2) Compute
Usable
Targets

Usable
Targets

(1) Model
Defense

Overheads

Check and 
Metadata 

Overheads

(4) 
Instrument

Program

Instrumented
BinarySafe Stack 

Operations
Program 
Profiling

(3) Optimize
Defense

Placement

Defense
Placements

Figure 2: OPTISAN Steps: (1) model the cost of defense operations to assess the impact of their use to prevent spatial errors; (2) compute the
target stack objects that may exploited by spatial memory errors in unsafe operations; (3) generate optimal defense placements to maximize
prevention of the exploitation of usable targets within a cost budget; (4) instrument the program with the optimal defense placement.

unsafe operation (i.e., be flexible). The key to this approach is
to model the check and metadata operations for each defense
explicitly through what we call monitoring points: the code
locations where such operations may be applied. For apply-
ing a defense to an unsafe operation, OPTISAN identifies the
code locations where its check and metadata operation(s) are
required to enforce spatial safety as monitoring points. This
enables OPTISAN to determine the cost when a defense is
chosen for an unsafe operation based on each of the monitor-
ing points required for the check and metadata operations for
that unsafe operation, the cost of each operation individually,
and the frequency of execution of each monitoring point used.
In addition, monitoring points allow OPTISAN to capture
shared operations for each defense, i.e., metadata operations
that may be amortized over multiple unsafe operations.

Cost Estimation To estimate the average cost of individual
check and metadata operations for each defense, we profile
programs to determine the costs attributable to individual
check and metadata operations for each defense. We identify
check and metadata operations for each defense by matching
the IR description of each operation, similar to prior work [69].
We then execute the program instrumented in a variety of
ways, similar to recent work [74], to determine the total over-
head for all check and metadata operations as separate groups.
We execute the program in the following ways for each de-
fense: (1) natively (i.e., without any instrumentation); (2) with
full instrumentation; (3) with all metadata operations (includ-
ing heap), but no checks; and (4) with only stack metadata
operations, but without checks. Note that for (2) and (3), we
include both heap and stack instrumentation, which is func-
tionally the same for both types of objects, mainly for ease of
testing. The total cost of the spatial memory checks (for the
heap and stack) is determined by subtracting the runtime of
(3) from (2). The total cost of the metadata operations for the
stack is determined by subtracting (1) from (4). The average
cost for each class of operations is determined by dividing the
total cost of each class by the total frequency of the relevant
operations obtained using profiling (gcov). The costs of any
initialization operations for these defenses are built into the
metadata costs at present. We then associate the average check
and metadata operation costs with the individual, fine-grained
operations, monitoring points. This fine-grained association

of costs with individual monitoring points enables us to esti-
mate the cost of any placement of spatial memory checks and
metadata operations of any defense.

One issue that we had to address to apply the performance
modeling technique above is to enable the application of
metadata operations to individual stack objects as desired.
Currently, Baggy Bounds and ASan add stack metadata at
the granularity of a function rather than for indivdiual stack
objects. That is, should any stack object in a function require
a spatial check, then metadata is allocated for all the func-
tion’s stack objects for both Baggy Bounds and ASan. As we
apply defenses for a smaller fraction of objects, many meta-
data operations may become spurious. In addition, since we
may apply multiple defenses to different stack objects in the
same function, redundant metadata operations may be created.
Thus, we modified ASan and Baggy Bounds to enable the
creation of metadata per stack object. We discuss how the
metadata can be further improved in Section 7.

4.2 Optimizing Defense Placement
In this section, we formulate a Mixed Integer Non-Linear
Programming (MINLP) problem to compute optimal defense
placements to maximize the protection of the targets of at-
tacks on spatial memory errors from exploitation within a
cost budget. Designing this formulation requires us to de-
velop a method to estimate protection from spatial memory
errors to compare possible solutions. Then, we integrate the
performance modeling from Section 4.1 to determine which
solutions are within budget.

Figure 3 shows a view of the intuition behind our proposed
method to estimate protection. Given the call graph on the
left, unsafe operations are distributed among the program’s
functions (e.g., Unsafe 1 in Func A). Should an unsafe func-
tion have a spatial memory error, this may allow an adversary
to illicitly access targets, i.e., stack objects other than the in-
tended reference of the operation. Figure 3 shows a mapping
between unsafe operations and targets. However, only a sub-
set of the targets that may be illicitly accessed may be used by
another instruction after the unsafe operation. We call these
usable targets, which are associated with unsafe operations
by bold edges in Figure 3. The placement of defenses may
prevent spatial memory errors, indicated by the Xs in Figure 3.
However, applying a defense for one unsafe operation may



Target: 
A1

Unsafe 1
Func A

Unsafe 3
Func B

Unsafe 2
Func A

Unsafe 4
Func C

Target: 
B1

Target: 
C1

Func A

Func B Func C

Call Graph

X
X

Figure 3: Shows how unsafe operations map to target stack objects in
the program represented by the call graph shown. Edges map unsafe
operations (e.g., Unsafe 1) to target stack objects (e.g., variable A1 in
function A. Bold edges indicate that a target is used in after the unsafe
operation (i.e., is a usable target). Xs indicate defenses prevent
spatial memory errors. However, target A1 may still be exploited by
a spatial memory error from operation Unsafe 2.

Table 2: Definitions and Parameters

x j,p Indicator of defense p at unsafe operation j.
yk,p Indicator of monitoring point k of defense p.
a j,p Accuracy of defense p at unsafe operation j.
Ti Set of unsafe operations for target i.
M j,p Monitor points of defense p for unsafe operation j.
Di Minimum detection accuracy threshold for target i.
fk Frequency of monitoring point k.
cp Cost of defense p.
gi Gain of target i.
B Monitoring budget.
Sk Set of unsafe operations for object i.
l Number of stack objects to be monitored.
n Number of unsafe operations.
m Number of targets.
o Number of sanitizer types, o≥ 2.
q Number of monitor points.

not fully protect a target. While target C1 is fully protected by
enforcing spatial memory safety on unsafe operation Unsafe
4, target A1 may still be exploited by an attack on unsafe
operation Unsafe 2 followed by its use (i.e., A1 is a usable
target of Unsafe 2). In general, for a target to be protected
from spatial memory errors a complete defense must guard
every unsafe operation in which that target is usable.

We formalize the model shown in Figure 3, based on the
parameters definitions in Table 2, as follows. First, any im-
provement in attack prevention depends on how comprehen-
sively each target is protected from illicit access via unsafe
operations. We refer to this as the gain, gi, of target object i.
We use the equation below to estimate the gain gi for each
target object, as Constraint (3) in the formulation.

gi =
∑ j∈Ti ∑

o
p=1 gi, j,p

|Ti|
,

where: (1) Ti is the set of unsafe operations for target i; o is
the number of defense types considered; and gi, j,p is the gain
attributable to defending each unsafe operation j with defense
p for target object i. For a specific defense p applied to an

unsafe operation j for which target i is a usable target, the
gain of the said unsafe operation is gi, j,p = a j,p · x j,p, where
a j,p is the accuracy of the defense p at unsafe operation j and
x j,p is a boolean indicating whether defense p is applied at
unsafe operation j 3.

A question is how to estimate the impact of defending each
unsafe operation individually for each target. For example,
the effect of defenses for a target could be the minimum de-
fense applied to any unsafe operation that could illicitly access
this target. However, using the minimum defense means that
any individual unsafe operations left unprotected by only one
unsafe operation may undermine the defense rating overall.
Since we have only a limited budget, we assume that some
unsafe operations may be unguarded. As a result, we aggre-
gate impact of each unsafe operation by averaging the defense
provided, as shown above. Should any or all targets require
defense, the formulation includes a threshold constraint to
specify the minimum required defense accuracy for each tar-
get in a solution, as Constraint (4) in the formulation below.

To model the performance overhead, we utilize the esti-
mates of the overheads of check and metadata operations
determined using the methods described in Section 4.1. For
each defense, we determine where to place check and meta-
data operations by computing its monitoring points per unsafe
operation. We define yk,p to represent whether a monitoring
point k of defense p is used.

yk,p =

{
1, if monitoring point k active for defense p
0, otherwise

Constraint (5) of the formulation below ensures that when a
defense p is applied for unsafe operation j, all the monitoring
points M j,p for that defense are activated.

The overall formulation is shown below. The objective is
to maximize the sum of the gain for all of the target objects in
Equation 1. The objective value represents the protection of
all usable targets, aggregating the protection at each relevant
unsafe operation for each usable target.

max
m

∑
i=1

gi (1)

Subject to :
o

∑
p=1

x j,p ≤ 1, ∀ j ∈ {1, ...,n} (2)

∀i ∈ {1, ...,m}, gi−
∑ j∈Ti ∑

o
p=1 a j,p · x j,p

|Ti|
= 0 (3)

gi ≥ Di, ∀i ∈ {1, ...,m}, (4)

3The accuracy of a defense applied to an unsafe operation is the same for
all targets of that operation and dependent on the defense technique chosen,
as discussed in Section 6.



Algorithm 1: findUsableTargets(op, OBJs, PDG)
1: {op:an unsafe operation}
2: {PDG: inter-procedural program dependence graph}
3: U ←− φ

4: Funcs←− φ

5: {Collect Allocating Functions of OBJs to Funcs}
6: Funcs←− FuncsAllocObjs(OBJs)
7: while Funcs do
8: for each function F ∈ Funcs do
9: { Collect Stack Objects from F as Target Objects}

10: T ←− StackOb jects(F)
11: { Usable Targets Have a Use Reachable without a Kill}
12: for each target t ∈ T do
13: for each use u ∈Uses(t) do
14: K←− Kills(t)
15: if !GraphCut(op,u,K,PDG) then
16: U ←−U ∪ t
17: end if
18: end for
19: end for
20: end for
21: Funcs←− Funcs ∪ FindCaller(F,PDG)
22: end while
23: return U

x j,p = 1⇒ yk,p = 1, ∀yk,p ∈M j,p (5)
o

∑
p=1

cp

q

∑
k=1

fk · yk,p ≤ B (6)

x j,p ∈ {0,1} (7)

yk,p ∈ {0,1} (8)

Each unsafe operation can select at most one defense, Con-
straint (2). Constraint (6) is the budget constraint, which re-
stricts the placement selected to the cost budget.

One issue of the formulation above is that we place de-
fenses at the unsafe operation granularity, rather than stack
object granularity. This allows the solver to employ one de-
fense at one unsafe operation and another defense at a dif-
ferent unsafe operation for the same stack object. The use of
multiple defenses for the same stack object may be wasteful
because the system has to maintain multiple copies of meta-
data for the same object. We propose an optional constraint
to select defenses at the object granularity instead to prevent
the creation of redundant metadata. In this case, the unsafe
operations of the same object, Sk, are limited to use the same
defense by adding the Constraint (9).

∑
p,q∈{1,...,o},p̸=q

( ∑
j∈Sk

x j,p · ∑
j∈Sk

x j,q) = 0, ∀k ∈ {1, ..., l} (9)

However, we find that allowing the solver flexibility to
choose among defenses, even when accounting for the cre-
ation of redundant metadata, results in better solutions in
many cases, as discussed in Section 6.

4.3 Computing Usable Targets
In this section, we describe a method to compute the usable

targets of an unsafe operation in the stack memory region.

Solving this problem consists of two main tasks: (1) collecting
the target objects of an unsafe operation and (2) determining
whether each target object is usable in an exploit. Algorithm 1
shows this approach, where lines 6-10 collect the targets of an
unsafe operation and lines 12-16 determine whether the target
is usable. As research in triaging vulnerabilities to determine
what exploits may be possible is a nascent and emerging
field [14, 32], we propose preliminary, conservative solutions
to these two problems. We hope that future work will develop
more precise techniques to solve these problems.

Algorithm 1 uses a program dependence graph [34] (PDG),
which represents the program’s control flows and data flows
in one model. We use the PtrSplit [40] PDG representation,
which provides a sound alias analysis to ensure an over-
approximation of all control and data flows. We apply value-
range analysis [62] to the program’s PDG representation to
identify unsafe operations based on a prior, open-source im-
plementation [30]. Value-range analysis over-approximates
unsafe behaviors, classifying an operation as unsafe if it can-
not be proven safe. Thus, some operations classified as unsafe
operations may not actually be unsafe.

Next, the task is identify all target objects for each unsafe
operation. Currently, we take a naive, but conservative, posi-
tion that any object that could be present on the stack at the
time of an unsafe operation may be illicitly accessed by the
unsafe operation. Thus, we use the call graph to identify all
functions that may be present on the stack for each unsafe
operation. The set of stack objects for each of these functions
(including the unsafe operation’s function) forms the set of
target objects.

Recall Figure 3 from Section 4.2. In the given call graph, an
unsafe operation in Function A can only illicitly access objects
in that function. However, unsafe operations in Functions B
and C can both access stack objects of Function A, although
not each other’s stack objects.

OPTISAN determines whether a target object is a usable
target in two ways. For the targets of read operations, we
assume that they all have uses (i.e., are all usable targets)
since read operations typically aim to use the data read. This
assumption is an overapproximation as some data may be read
and found not to match a criteria for use, but these criteria are
often ad hoc. We will explore more refined interpretations of
uses of read operations in future work.

For the targets of write operations, OPTISAN determines
whether there are any operations that use the target after it
may be illicitly modified. OPTISAN first identifies operations
that may perform a memory access to the target. We compute
these operations using the intra-procedural data flows (i.e.,
based on the alias analysis) for the function in which the
target object was allocated. We prune operations prior to the
unsafe operation using the control flow. In addition, we prune
operations that are dominated by a kill operation for the target.
We stop the computation at uses that pass a target object to a
callee or escape the function through global or heap memory,



declaring the target as usable in those cases.

5 Implementation
We develop a tool, OPTISAN, to automate the proposed ap-
proach. It comprises of four key components: (1) LLVM-
based [37] static analyses to compute usable target objects for
unsafe operations in Step 1 of Figure 2; (2) an LLVM-based
static analysis to estimate defense overheads from profiling
information, as described in Section 4.1, in Step 2 of Figure 2;
(3) a mixed-integer, non-linear program solver [1] to com-
pute the optimal placement within a performance overhead
budget for Step 3 of Figure 2; (4) LLVM-based static instru-
mentation pipeline to instrument the program in Step 4 of
Figure 2 using ASan and Baggy Bounds as per the computed
placement. OPTISAN’s static analyses, performance utility
pass, and instrumentation passes are built using LLVM-10.0
in around 5K lines of code (LOC). We decouple the LLVM
analyses for Step 1 (i.e., computing usable targets) and Step
4 (i.e., placing instrumentation) by using a graph database,
Neo4j [3] to store the results of Step 1 to apply the com-
puted placement in Step 4. This enables us to perform the
safety analysis [6, 30] and compute usable targets once, and
apply the solver (Step 3) to produce solutions that are instru-
mented (Step 4) independently. Our tool is publicly accessible
at https://github.com/rahultgeorge/OptiSan.

Modeling Defense Overheads To obtain the defense over-
heads in Step 1 in Figure 2, we compute the execution profile
to enable OPTISAN to estimate the overheads of check and
metadata operations for ASan and Baggy Bounds defenses as
described in Section 4.1. To obtain the execution profile of the
program it is instrumented using gcov. The execution profile
is stored in a Neo4j graph database [3]. To assign the defense
overheads per monitoring point using the profile results, we
use an LLVM-based static analysis pass.

Computing Usable Targets In Step 2 of Figure 2, OPTI-
SAN computes the usable targets for unsafe operations. To
compute the unsafe operations, OPTISAN leverages the well-
known value-range analysis [62] on the program dependence
graph (PDG) constructed from prior work [40]. We leverage
the SVF [67] points-to analysis to compute the aliases used in
the PDG to identify all stack objects that may be referenced
by these unsafe operations. To compute the usable targets, we
implement the Algorithm 1 described in Section 4.3 using
LLVM-based static analyses [37] in around 2K LOC. We rely
on LLVM IR to identify stack objects. The passes save the
results in a Neo4j graph database.

Optimizing Defense Placements In Step 3 of Figure 2,
OPTISAN computes optimal placements using the MNLIP
formulation proposed in Section 4.2 implemented using the
Gurobi solver [1]. The solver stores the selected placement
in the graph database by annotating the specific unsafe opera-
tions. The static analysis performed in the Step 1 computes

the necessary information needed to instrument any of the
unsafe operations with the selected defense.

Instrumenting Defense Placements To instrument a pro-
gram as per the computed placement, Step 4 of Figure 2,
OPTISAN applies the results from the prior steps stored in the
Neo4j graph database in LLVM-based static instrumentation
passes [37]. The specific unsafe operations and necessary
functions are fetched from the database. The pass uses debug
information to identify the operations and relevant functions.
The functions and unsafe operations are annotated in the IR.
This avoids instrumenting unnecessary functions.

The program is instrumented using Baggy Bounds first
and then Address Sanitizer as per the computed placement to
prevent conflicts. However, there may be redundant checks
as each defense is unaware of the specific unsafe operations
and instruments each annotated function completely. Subse-
quently, another instrumentation pass checks for any such
redundant checks and removes them using a technique from
prior work [69]. The compiler then proceeds as normal and
generates the instrumented binary.

6 Evaluation
To demonstrate the efficacy of the proposed placement ap-
proach, we attempt to answer the following questions:

• Does OPTISAN’s ability to consider multiple defenses
protect more unsafe operations? How are the multiple
defenses used together?

• Does the security impact of unsafe operations improve
the choice of which operations are protected?

• Does considering security impact with cost enable OP-
TISAN to apply protection for the unsafe operations ex-
ploited in real CVEs earlier than prior work?

• Can OPTISAN produce an optimal placement with the
desired overhead budget?

We evaluate OPTISAN on the SPEC CPU 2006 programs,
SPEC CPU 2017 programs, and seven real-world programs,
including five programs from an open-source fuzzing bench-
mark4. We analyze the sixteen C/C++ programs in the SPEC
CPU 2017 benchmark (i.e., all the non-Fortran programs).
For profiling these programs, we use the test suites provided,
such as Apache HTTP Test project [8] for Apache, the TCL
test suite [65] for sqlite and the ref workloads for the SPEC
CPU (2006, 2017) benchmarks 5.

The counts of unsafe operations and targets per program are
shown in Table 3. Notably, we find by leveraging value-range
analysis [62] that only five of the SPEC CPU 2006 programs,
four of the SPEC CPU 2017 programs, and five of the real-
world programs have a significant number of unsafe stack

4We select all the programs from the Magma benchmark [28] that have a
large number of non-free unsafe operations and a test suite.

5We modify the Apache HTTP Test to ignore modules without any unsafe
operations.

https://github.com/rahultgeorge/OptiSan


Name Unsafe Operations Usable Targets
Read Write Non-Free Total Objects Pointers Non-Free Total

SPEC CPU 2006

mcf 0 0 0 0 - - - -
libquantum 1 0 0 1 7 0 0 7

bzip2 4 5 0 9 34 6 0 40
hmmer 2 6 4 8 16 5 9 21
h264ref 43 51 17 94 86 8 13 94

astar 4 2 6 6 42 11 53 53
milc 30 21 49 51 83 18 93 101

sphinx3 12 3 14 15 19 8 3 27
sjeng 247 54 220 301 878 104 803 982

gobmk 1,465 932 2,397 2,397 9,965 548 10,513 10,513
povray 281 201 139 482 675 255 497 930

gcc 3,893 1,894 4,438 5,787 14,630 7,243 15,881 21,873
perlbench 1,721 648 2,129 2,369 4,302 6,427 6,647 10,729

SPEC CPU 2017

511.povray 1,714 505 2,147 2,219 4,505 2,887 7,250 7,392
600.perlbench 136 522 658 658 7,982 10,717 18,699 18,699

602.gcc 69 162 189 231 31,209 57,453 73,752 88,662
625.x264_s 217 732 829 949 895 256 980 1,151

Real programs

httpd 1,834 1,135 1,565 2,969 1,208 900 1,452 2,108
sqlite3 130 47 119 177 461 392 573 853

redis-cli 307 144 358 451 1,316 1,332 2,561 2,648
libxml2 1,885 729 2,607 2,614 2,402 5,609 8,004 8,011
openssl 50 48 98 98 14,529 23,585 38,114 38,114
libtiff 2 18 20 20 16 23 39 39

The columns contain the number of unsafe operations and usable targets for various SPEC CPU2006 programs, SPEC CPU2017 programs, and six server
programs.

Table 3: Counts of Unsafe Operations (relative to spatial memory safety) and Their Usable Target Objects

operations (Table 3 under the column Unsafe Operations, To-
tal). For SPEC CPU 2006 and server programs, Table 3 shows
that many have under 100 non-free, unsafe operations. For the
SPEC CPU 2017 programs, seven of the sixteen programs do
not have any unsafe stack operations and five of the remaining
nine programs can be protected with a negligible overhead
of 0.30% or less, on average. Furthermore, as identified in
prior work [69], a significant number of unsafe operations are
never executed in the provided workloads, which can be cov-
ered for free (i.e., relative to the workload). For the programs
in Table 3, 28% of the unsafe operations on average can be
protected for free, leaving the remaining unsafe operations to
be consider for protection by OPTISAN, as listed in Table 3
under the column Unsafe Operations, Non-Free.

As described in Section 4.2, the potential security impact
of unsafe operations can be characterized through the usable
targets, also shown in Table 3. Examining the impact of the
workload on usable targets, 33% of the usable targets can be
protected for free on average (i.e., they may only be accessed
by unsafe operations that are not run in the workloads). In the
following experiments, we only consider the non-free, unsafe
operations and the usable targets accessed by those operations,
in the Usable Targets, Non-Free column in Table 3.

ASan Accuracy Recall that unlike Baggy Bounds, in some
cases the ASan checks may be circumvented, as described in
Section 2.2, so ASan may not prevent all attacks on spatial er-
rors. To account for this, we want to estimate ASan’s accuracy
of enforcement between 0 (i.e., defense can be bypassed) and
1 (i.e., defense cannot be bypassed). Recent work [74] used
the Juliet test suite to validate the correctness of their pro-

CWE Description ASan Accuracy
CWE 121 Stack Buffer Overflow 0.95
CWE 124 Stack Under-write 0.77
CWE 126 Buffer Overread 0.70
CWE 127 Buffer Underread 0.76

Table 4: ASan accuracy estimates for the NIST Juliet test suite using
its bad tests. Bad tests check cases that may bypass red-zones.

posed ASan optimizations, so we use the NIST Juliet C/C++
v1.3 test suite [10] to estimate the accuracy of the ASan de-
fense. As shown in Table 4, there are four CWEs [5] relevant
to stack spatial memory errors in the test suite. For CWE
126 and CWE 127, we only examine the stack test cases. To
estimate the accuracy of ASan, we identify the test cases (i.e.,
one unsafe operation per test case) for each of these CWEs in
the Juliet test suite [10] where ASan can be bypassed. Similar
to recent work [74], we estimate accuracy by finding the test
cases where ASan may be bypassed because an offset used
in the memory access is variable and may be larger than the
red-zone size. For example, in several cases offsets are only
restricted to be a positive value. We estimate ASan accuracy
for each CWE as the fraction of the remaining Juliet test cases
that do not exhibit possible bypass as shown in Table 4. We
take the average across these four CWEs to obtain an average
accuracy of 0.80 for ASan, which we use in this evaluation.

Baggy Bounds Accuracy While Baggy Bounds is a com-
plete defense in many cases, it cannot prevent spatial errors in
some specific cases identified in Section 2.2. We do not apply
Baggy Bounds in cases where it cannot provide an accurate
defense (e.g., scalar field within a structure).



Figure 4: OPTISAN’s defense placement solutions: Compare the number of unsafe operations protected by Baggy Bounds alone (OPTISAN

Baggy, Pink) to both Baggy and ASan together (OPTISAN Both, Red). The dashed vertical lines show the cost budget where the maximum
difference in unsafe operations protected. Also shown are the effective number of unsafe operations protected when accounting for the limited
accuracy of ASan for the combination of Baggy Bounds and ASan (OPTISAN Both Effective, Brown) and ASan alone (OPTISAN ASan, Blue).

6.1 Applying Multiple Defenses
The key benefit of applying OPTISAN is to leverage the capa-
bilities of multiple defenses to maximize protection of usable
targets. The plots in Figure 5 a) show the measured impact
of applying Baggy Bounds and ASan together to protect non-
free unsafe operations with usable targets6. The OPTISAN
Baggy line (Pink) shows the number of unsafe operations that
are protected by Baggy Bounds for a budget in the optimal
placement using the formulation in Section 4.2. We compare
this to the number of unsafe operations that can be protected
when both Baggy Bounds and ASan are available in the OPTI-
SAN Both line (Red). In many cases, the combination enables
many more unsafe operations to be protected at particular
budget levels. The dotted vertical line shows the budget with
the greatest improvement by using both defenses over Baggy
alone. Note that in some cases, the number of unsafe opera-
tions protected decreases as the budget increases, but this is
because the formulation is maximizing the gain in protection
for usable targets, not the number of unsafe operations.

Figure 4 also accounts for the limited accuracy of ASan
in the OPTISAN Both Effective line (Brown). Because ASan
may be bypassed in some cases, the effective number of un-

6 Twelve of the fourteen test programs from Table 3 are shown in Figure 4.
The remaining two programs, povray and perlbench in SPEC CPU 2006, do
not exhibit a significant improvement compared to OPTISAN Baggy alone
when applying both defenses.

safe operations protected is lower than the number in which
it and Baggy Bounds are applied. However, even the OPTI-
SAN Both Effective line shows a significant improvement over
Baggy Bounds alone in many cases for particular budgets,
showing that OPTISAN provides an opportunity to improve
security within a budget by combining defenses. Finally, the
curve for OPTISAN ASan Effective (Blue) shows the effective
protection provided by ASan alone for the unsafe operations.
Although ASan is more efficient (performance-wise) overall,
its limited accuracy reduces its impact below that of the other
options in most cases, which is the common assumption.

We find that OPTISAN Both (Red) protects 18.4% more
non-free unsafe operations on average across all fourteen
programs for all budgets evaluated, ranging from a minimum
of 0% to a maximum of 52%, compared to OPTISAN Baggy
(Pink). We note that Baggy Bounds is the more cost efficient
choice for all the unsafe stack operations for three programs
(i.e., 625.x264_s, 602.gcc_s, and libxml2) 7. This along with
frequency distribution of the unsafe operations for 602.gcc_s
leads to only Baggy Bounds being used. When accounting
for accuracy, we find that OPTISAN Both Effective (Brown)
effectively protects 14% more non-free unsafe operations

7 We note that for 511.povray_r the OPTISAN Both and OPTISAN Baggy
lines do not overlap completely i.e., there is minor improvement compared
to OPTISAN Baggy alone. ASan is only selected for a maximum of 4.7% of
the unsafe operations covered.



across all fourteen programs for all budgets evaluated, ranging
from a minimum of 0% to a maximum of 41%, compared to
OPTISAN Baggy Effective. Further, we focus on the maximum
difference at any budget shown in Figure 4 by the dotted
vertical lines. The average maximum difference shown is
51.27% with a minimum of 0% and a maximum of 256%.

Finally, we also evaluate OPTISAN by limiting each unsafe
stack object to only one defense to remove all redundant
metadata. This restriction causes fewer unsafe operations, 3%
on average, to be protected effectively across all programs
compared to OPTISAN Both. By allowing the formulation to
consider redundant metadata, OPTISAN is able to find more
optimal solutions that use multiple defenses for objects used
in multiple unsafe operations.
Usage of Defenses We find that when both defenses are
considered Baggy Bounds is selected for 86% of the unsafe
operations on average across programs for all budgets. In
addition to the greater enforcement accuracy, we find two
factors that affect Baggy Bound’s usage when considering
both defenses. First, most programs have a skewed frequency
distribution (positively skewed) for the unsafe operations [69],
i.e., only a small fraction of operations are really hot and incur
majority of the cost to defend, as shown for Apache in Figure 5
a). We find that on average across all the programs evaluated
19% of the non-free, unsafe operations account for 80% of the
cost. Intuitively, Baggy Bounds tends to be applied to unsafe
operations that have a lower frequency (cost), which is the
common case. Second, as shown in Section 2.2 quantitatively,
we find that Baggy Bounds can be a more efficient option
than ASan in some cases. As shown in Table 1, there is an
average overhead reduction of 18% if Baggy Bounds is used
in all cases where it is more efficient than ASan. We also
note that the Baggy’s stack metadata operations can be more
cost efficient than ASan’s for some programs, such as for
511.povray_r.

6.2 Protecting Usable Targets
Not all unsafe operations have the same security impact. Thus,
we want to evaluate whether using multiple defenses can help
maximize the security impact within a cost budget. In this pa-
per, we have proposed that the security impact should be mea-
sured in terms of usable targets, as explained in Section 4.2.

To better understand the benefit of OPTISAN, we analyze
the placements produced by OPTISAN and ASAP for the
Apache program with a 7% budget in Figure 5b). On the x-
axis, we show the check costs (i.e., the operation frequency
multiplied by the cost per check) of each non-free unsafe op-
eration for simplicity. However, metadata cost is accounted
for when computing the placement. On the y-axis, Figure 5b)
shows the effective usable targets protected by covering each
unsafe operation. We find that OPTISAN covers at least 7
unsafe operations (i.e., shown as green X’s), not covered by
ASAP. We find 6 of them to be very important, as they protect
more than 10 usable targets each. In addition, we find ASAP

Program CVE (severity) Freq
Rank

Target
Rank

Place
Rank

Total
Unsafe

libtiff 2022-1355 (6.1) 2 4 2 20

openssl 2016-2176 (8.2) 33 5 29 98
2022-3602 (7.5) 2 2 2 98
2022-3786 (7.5) 1 1 1 98

libxml2 2017-9047 (7.5) 155 39 149 2,614
2017-9048 (7.5) 116 39 110 2,614

httpd 2019-10097 (7.2) 1,448 2,869 1,406 2,969
2020-35452 (7.3) 1,900 2,598 1,831 2,969

readelf 2021-20294 (7.8) 348 356 322 361
The ranks shown are from lowest to highest in the set of all unsafe operations.

Table 5: CVE Analysis - Frequency (Freq) rank and target rank with
associated placement (Place) rank for OPTISAN. ASAP places at
the frequency rank.

covers multiple unsafe operations that have low check costs
and protects close to zero usable targets, as can be seen by the
orange star in the bottom-left corner. Thus, the OPTISAN for-
mulation biases the choice of unsafe operations to those with
more usable targets to increase the stack memory protection.

We also measure the number of usable targets protected
from all unsafe operations that may access the target for the
defense placements produced. Figure 5c) shows the fraction
of usable targets protected from all unsafe operations (i.e.,
using Baggy or ASan) in the placement computed (y-axis) for
the three budgets amounting to 25%, 50% and 75% of the bud-
gets necessary to fully protect all unsafe memory operations8

(x-axis). As Figure 5c) shows, the fraction of usable targets
protected can vary significantly at lower budgets (25%), but
are approaching full coverage at 75% budget. However, we
find that on average only a small fraction of the usable targets
(i.e., about 20%) are fully protected for the povray program,
even at a 75% budget. After investigation, we find that 3% of
the unsafe stack operations in povray may access over 70%
of the total usable targets. Hence, if only one of these unsafe
operations remains unprotected at least (70%) of the usable
targets would not be fully protected. Furthermore, we find
that 6.56% of these high-impact, unsafe operations account
for 99% of the total cost to cover all of them. These high-cost,
high-impact unsafe operations remain unprotected even at
the 75% budget evaluated. OPTISAN can help programmers
identify these high-cost, high-impact operations, providing
motivation for code changes to prevent spatial errors.

6.3 Protecting Unsafe Operations for CVEs
To consider the impact of OPTISAN in preventing the ex-
ploitation real CVEs, we examine nine CVEs, consisting of
six known stack vulnerabilities from an open-source fuzzing
dataset [28] and three stack vulnerabilities in other open-
source programs - two in Apache and one in the binutils
program, readelf. As shown in Table 5, we evaluate whether
considering performance (Freq Rank for frequency) and us-
able targets (Target Rank) enables OPTISAN to prioritize the

8The specific budgets at these levels are shown in Table 6.



Figure 5: a) Frequency distribution for unsafe operations in Apache b) Distribution of the number of effective usable targets vs. the cost of
defending for unsafe operations protected by ASAP, OPTISAN, and both for Apache using ASan. c) Fraction of usable targets protected fully
vs. the fraction of the budget to protect all operations.

Program Baseline (s) Full Protection
Budget (s)

25 (%) 50 (%) 75 (%) Mem (%)
Exp (%) Obs (%) It Exp (%) Obs (%) It Exp (%) Obs (%) It

sjeng 400.76 133.71 8.34 6.85 2 16.68 15.32 2 25.02 20.34 3 1.00

perlbench* 243.97 26.52 2.26 1.85 1 3.81 1.87 1 10.27 10.98 2 0.25

httpd 104.44 14.83 3.54 2.63 2 7.09 6.07 1 10.65 7.54 3 0.30

libxml2 74.10 2.53 0.85 0.39 2 1.71 1.78 1 2.70 2.79 1 0.44

625.x264_s 240.65 2.44 0.25 0.40 2 0.50 0.40 1 0.75 0.80 2 0.51

511.povray_r 452.55 383.15 21.17 17.94 1 42.33 42.22 2 63.50 59.61 1 0.13

511.povray_r 452.55 383.15 4.23 2.75 2 8.47 5.01 5 12.70 12.73 1 0.13

Table 6: Performance metrics for programs instrumented with OPTISAN placements and iterations to achieve desired budgets. The columns
contain the expected overhead Exp , the final observed runtime overhead Obs and the number of iterations performed It for each budget.
* - For perlbench, the budgets at 25, 50, and 75% did not generate distinct placements (see Figure 4), so we chose lower budgets (2.26,3.81 and
10.27 %).

placement of defenses for unsafe operations (Place Rank), be-
fore a cost-based heuristic ASAP [70], which only considers
performance (Freq Rank).

We find that OPTISAN places defenses for these CVEs
prior to ASAP for six of the nine unsafe operations and at the
same rank for the other three. The other three cases have low
frequencies, so they are prioritized for placement early using
the frequency rank alone. While this is not a statistically sig-
nificant sample and OPTISAN does not guarantees placement
prior to ASAP for all CVEs, these results illustrate how at
certain budgets ASAP may choose not to protect these vulner-
abilities, as it decides solely based on the frequency rank. By
considering the usable targets (Target Rank) as well as perfor-
mance (Freq Rank), OPTISAN protects these vulnerabilities
earlier (Place Rank) in these cases.

6.4 Instrumentation Overheads
The practicality of OPTISAN relies on it producing defense
placements close to the desired budget. To measure this, we
instrument the two SPEC CPU 2006 programs, two SPEC
CPU 2017 programs, and two real-world programs as shown
in Table 6. We specify three budgets for each program - 25, 50,
and 75% of the estimated cost to cover all unsafe operations

(Full Protection Budget) using ASan [59], or Baggy Bounds
in cases where it is cheaper (libxml2 and 625.x264_s). Since
povray has a high overhead, we also show that we can generate
placements on tighter budgets for programs that are expensive
to defend. We also measure the average memory overhead,
by measuring the percentage increase in max RSS (kbytes).

On average, the final observed run-time overhead deviates
from the specified overhead by 1.47% of the program exe-
cution time, or 3.40 seconds, as seen in Table 6. There are 9
cases where we apply OPTISAN iteratively. We change the
budget each iteration based on the difference between the
expected and observed run-time overhead for each budget
evaluated for a program. We find that within two iterations,
on average, OPTISAN finds solutions with an average run-
time overhead close to the desired budget for each of these
programs. There are 5 cases that are slightly over the specified
budget on average. Three of the cases are within budget in 3
out of 5 executions and within one standard deviation. The
other two cases may be caused by: (1) folding initialization
costs in metadata costs which may impact placement at low
overheads (625.x264_s at 25%) and (2) the step-function ef-
fect of perlbench placements (see Figure 4). On average the
memory overhead of the defense placement is 0.44%.



7 Discussion
In this section we discuss some current limitations of our
approach and possible extensions.

One issue is that OPTISAN considers spatial memory er-
rors with respect to stack memory only. Our approach can
be extended to consider global memory, as one can identify
usable targets, similar to the stack. To extend OPTISAN to
the heap requires a reasonable technique to compute usable
targets. This is challenging because heap objects may be
reallocated to different locations, commonly have many more
aliases, and have much larger lifetimes than stack objects.

OPTISAN’s use of value range analysis to prune safe oper-
ations along with the application of ASan and Baggy Bounds
defenses still leaves some operations unprotected at desired
budgets, as shown in Figure 4. Ideally, we could integrate
other defenses and proposed optimizations [25, 39, 74] to
enable the coverage of all unsafe operations using cheaper
defenses. In addition, we could use more comprehensive anal-
yses to identify operations that must satisfy spatial safety to
reduce checks and isolate usable targets from attack. One
possible approach is to apply the recent DataGuard work [30]
to identify safe objects using a combination of static analysis
and symbolic execution, and isolate the safe stack objects
using Safe Stack [16]. We leave this to future work.

OPTISAN currently supports placement using multiple
metadata schemes, but this may lead to redundant metadata.
However, a single unified and compact metadata scheme could
be applied [20] to improve performance [33].

OPTISAN’s Mixed Integer Non-Linear Programming
(MINLP) formulation can be used to include additional de-
fenses such as CFI [44], DFI [13]. They could be modelled
as defense options for a group of unsafe operations such as
enforcing CFI for a function. We leave this to future work.

8 Related Work
Sanitizer Placement ASAP [69] proposed a greedy approach
to sanitize programs. For a given cost level, the most expen-
sive checks are removed until a user-provided cost budget is
met. The idea being that a few hot checks account for most
of the overhead and that most bugs are along cold paths. Sub-
sequent work [38] extended this idea to runtime partitioning
wherein bugs along hot paths are detected probabilistically
based on when the sanitized variants of functions are invoked.

Similarly, SanRazor [73] proposes identifying likely re-
dundant checks to improve performance. This approach aims
to leverage the execution profile and data flow facts of the
checks to eliminate likely redundant checks. However, these
approaches aim to improve performance based on heuristics
that do not consider the security impact of the elided checks.

Recent work [74] developed multiple optimizations to im-
prove Address Sanitizer [59]’s performance. The first opti-
mization improves the safety analysis employed by identify-
ing safe accesses related to stack and global objects. They
remove redundant checks that are dominated by or post-

dominated by the other accesses that refer to the same object
(including aliases). They merge neighboring checks (memory
accesses that access neighboring memory locations). They
also optimize checks in loops i.e., loop invariant addresses and
memory accesses which monotonically increase or decrease
with the loop (change by a constant value).

Optimizing Defense Placements Researchers have long
argued for applying systematic techniques based on optimiza-
tion to make decisions rather than ad hoc heuristics [35].
However, few works consider the problem of optimizing de-
fense placements for security. ProgramMandering [41] (PM)
provides a method to generate privilege-separated domains
that enables the programmer to optimize one metric while con-
straining others. The PM system defines four metrics covering
security and performance properties that may be impacted by
the choice of protection domain boundaries for a privilege-
separated domain. PM uses a binary Integer Programming
model for the partitioning problem given the metrics, propos-
ing a semi-automated, iterative approach for programmers
to determine the code to include in a domain. OPTISAN ap-
plies a Mixed-Integer Non-Linear Programming (MINLP)
approach to solving a different problem.

Automatic Patch Generation Several approaches [22, 31,
36, 42, 43, 71] have been proposed to automate patch genera-
tion for vulnerabilities in programs. These include approaches
which generate patches based on fixed patterns [36], such as
adding a null check or a memory de-allocation statement to
fix memory leaks [22]. Such approaches are not robust as
they depend on these fixed patterns. Additional, approaches
based on program mutation [71], symbolic execution [43] and
machine learning [42] have been proposed.

Recent work [31] proposed using safety properties to au-
tomate program repair. The safety properties are manually
specified and program-independent. This approach relies on
concolic execution [12] to identify the safety property vio-
lated. These approaches are limited by their reliance on the
knowledge of the vulnerability (i.e., proof-of-vulnerability).

9 Conclusions
We present OPTISAN, which is the first system to produce
spatial memory defense placements that optimize security
and performance within a cost budget. OPTISAN estimates
the expected costs of spatial memory defenses, accounting
for check and metadata operations and identifies the usable
targets that may be exploited. OPTISAN provides an optimiza-
tion formulation to compute a placement that maximizes the
defense of such targets within a prescribed cost budget. Our
evaluation shows that OPTISAN can produce placements that
protect 18.4% more operations with usable targets using a
combination of Baggy Bounds and ASan than Baggy Bounds
alone at the same cost budget across fourteen programs. OP-
TISAN is shown to predict overheads accurately by modeling
both metadata costs and bounds checks, making it a practical
tool to place defenses.



10 Acknowledgment

We would like to thank the anonymous reviewers for their
insightful comments that helped improve the quality of the pa-
per. We would also like to thank our shepherd for guiding us
through the revision. This research was sponsored by the U.S.
Army Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Coopera-
tive Agreement Number W911NF-13-2- 0045 (ARL Cyber
Security CRA). The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or
implied, of the Combat Capabilities Development Command
Army Research Laboratory of the U.S. government. The U.S.
government is authorized to reproduce and distribute reprints
for government purposes notwithstanding any copyright nota-
tion here on.

References

[1] Gurobi. http://gurobi.com.

[2] Intel CET. https://software.intel.com/
sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.
pdf.

[3] Neo4j. https://neo4j.com/.

[4] Linux 2.6.7. NX (no execute) support for x86.
https://lkml.org/lkml/2004/6/2/228, 2004.

[5] MITRE CWE. https://cwe.mitre.org/, 2019.

[6] Periklis Akritidis, Manuel Costa, Miguel Castro, and
Steven Hand. Baggy Bounds Checking: An efficient and
backwards-compatible defense against out-of-bounds
errors. In Proceedings of the 18th USENIX Security
Symposium, 2009.

[7] J. P. Anderson. Computer Security Technology Planning
Study, Volume II. Technical Report ESD-TR-73-51,
Deputy for Command and Management Systems, HQ
Electronics Systems Division (AFSC), October 1972.

[8] Apache. Apache HTTPD Test Framework. https:
//github.com/apache/httpd-tests.

[9] AttackerKB. CVE-2021-20038. https:
//attackerkb.com/topics/QyXRC1wbvC/
cve-2021-20038/rapid7-analysis, 2019.

[10] Paul E. Black. Juliet 1.3 test suite: Changes from 1.2.
US Department of Commerce, National Institute of Stan-
dards and Technology, 2018.

[11] Nathan Burow, Xinping Zhang, and Mathias Payer. SoK:
Shining Light on Shadow Stacks. 2019 IEEE Sympo-
sium on Security and Privacy (S&P), pages 985–999,
2019.

[12] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the 2008 Conference on Operating Systems
Design and Implementation (OSDI), pages 209–224,
2008.

[13] Miguel Castro, Manuel Costa, and Tim Harris. Securing
Software by Enforcing Data-flow Integrity. In Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI), 2006.

[14] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun
Qian. KOOBE: towards facilitating exploit generation
of kernel Out-Of-Bounds write vulnerabilities. In Pro-
ceedings of the 29th USENIX Security Symposium, pages
1093–1110, 2020.

[15] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A Compile-
time Solution to Buffer Overflow Attacks. In Proceed-
ings 21st International Conference on Distributed Com-
puting Systems (ICDCS), 2001.

[16] Clang Documentation - SafeStack. Clang document at
https://clang.llvm.org/docs/SafeStack.html,
2020.

[17] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic Adaptive Detection and Preven-
tion of Buffer-overflow Attacks. In Proceedings of the
7th USENIX Security Symposium (USENIX Security),
1998.

[18] Dinakar Dhurjati and Vikram Adve. Backwards-
compatible bounds checking for arrays and pointers in
C programs. In Proceedings of the 28th International
Conference on Software Engineering, 2006.

[19] Gregory J. Duck and Roland H.C. Yap. Heap bounds
protection with low fat pointers. In Proceedings of the
25th International Conference on Compiler Construc-
tion, pages 132–142, 2016.

[20] Gregory J. Duck and Roland H.C. Yap. Effectivesan:
type and memory error detection using dynamically
typed c/c++. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 181–195, 2018.

[21] Gregory J. Duck, Roland H.C. Yap, and Lorenzo Cav-
allaro. Stack bounds protection with low fat pointers.
In Proceedings of the 2017 Network and Distributed
Systems Security Symposium, pages 1–15, 2017.

http://gurobi.com
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://neo4j.com/
https://cwe.mitre.org/
https://github.com/apache/httpd-tests
https://github.com/apache/httpd-tests
https://attackerkb.com/topics/QyXRC1wbvC/cve-2021-20038/rapid7-analysis
https://attackerkb.com/topics/QyXRC1wbvC/cve-2021-20038/rapid7-analysis
https://attackerkb.com/topics/QyXRC1wbvC/cve-2021-20038/rapid7-analysis
https://clang.llvm.org/docs/SafeStack.html


[22] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun
Yang, Zhaoping Zhou, Bing Xie, and Hong Mei. Safe
memory-leak fixing for C programs. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engi-
neering, volume 1, pages 459–470. IEEE, 2015.

[23] E. Goktas, B. Kollenda, P. Koppe, E. Bosman, G. Por-
tokalidis, T. Holz, H. Bos, and C. Giuffrida. Position-
independent Code Reuse: On the Effectiveness of ASLR
in the Absence of Information Disclosure. In Proceed-
ings of 3rd IEEE European Symposium on Security and
Privacy (EuroS&P), 2018.

[24] Google. Address sanitizer found bugs.
https://github.com/google/sanitizers/wiki/
AddressSanitizerFoundBugs.

[25] Floris Gorter, Enrico Barberis, Raphael Isemann, Erik
Van Der Kouwe, Cristiano Giuffrida, and Herbert Bos.
{FloatZone}: Accelerating memory error detection us-
ing the floating point unit. In 32nd USENIX Secu-
rity Symposium (USENIX Security 23), pages 805–822,
2023.

[26] Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-
weight bounds checking. In Proceedings of the Tenth
International Symposium on Code Generation and Opti-
mization, pages 135–144, 2012.

[27] Reed Hastings. Purify: Fast detection of memory leaks
and access errors. In Proc. 1992 Winter USENIX Con-
ference, pages 125–136, 1992.

[28] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. Proc. ACM
Meas. Anal. Comput. Syst., 4(3), December 2020.

[29] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang. Data-Oriented Programming: On the Expres-
siveness of Non-control Data Attacks. In Proceedings
of the 37th IEEE Symposium on Security and Privacy
(S&P), 2016.

[30] Kaiming Huang, Yongzhe Huang, Mathias Payer,
Zhiyun Qian, Jack Sampson, Gang Tan, and Trent Jaeger.
The taming of the stack: Isolating stack data from mem-
ory errors. In Proceedings of the 2022 Network and
Distributed System Security Symposium (NDSS), 2022.

[31] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger.
Using safety properties to generate vulnerability patches.
In Proceeding of the 2019 IEEE Symposium on Security
and Privacy (SP), pages 539–554. IEEE, 2019.

[32] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block Oriented Programming: Au-
tomating Data-Only Attacks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2018.

[33] Yuseok Jeon, WookHyun Han, Nathan Burow, and Math-
ias Payer. FuZZan: Efficient sanitizer metadata design
for fuzzing. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC), pages 249–263,
2020.

[34] Andrew Johnson, Lucas Waye, Scott Moore, and
Stephen Chong. Exploring and enforcing security guar-
antees via program dependence graphs. In Proceedings
of the 2015 Conference on Programming Language De-
sign and Implementation, pages 291–302, June 2015.

[35] Kimberly Keeton, Terence Kelly, Arif Merchant, Cipri-
ano Santos, Janet Wiener, Xiaoyun Zhu, and Dirk Breyer.
Don’t settle for less than the best: Use optimizationg
to make decisions. In 11th Workshop on Hot Topics in
Operating Systems, 2007.

[36] Dongsun Kim, Jaechang Nam, Jaewoo Song, and
Sunghun Kim. Automatic patch generation learned from
human-written patches. In 2013 35th International Con-
ference on Software Engineering (ICSE), pages 802–811.
IEEE, 2013.

[37] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the 2004 International Sym-
posium on Code Generation and Optimization, pages
75–86. IEEE, 2004.

[38] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen,
Stijn Volckaert, and Michael Franz. Partisan: fast and
flexible sanitization via run-time partitioning. In Re-
search in Attacks, Intrusions, and Defenses: 21st In-
ternational Symposium, RAID 2018, Heraklion, Crete,
Greece, September 10-12, 2018, Proceedings 21, pages
403–422. Springer, 2018.

[39] Hao Ling, Heqing Huang, Chengpeng Wang, Yuandao
Cai, and Charles Zhang. Giantsan: Efficient memory
sanitization with segment folding. In Proceedings of the
29th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, pages 433–449, 2024.

[40] Shen Liu, Gang Tan, and Trent Jaeger. PtrSplit: Support-
ing general pointers in automatic program partitioning.
In Proceedings of the 24th ACM Conference on Com-
puter and Communications Security (CCS), 2017.

[41] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capo-
bianco, Stephen McCamant, Trent Jaeger, and Gang Tan.
Program-mandering: Quantitative privilege separation.
In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1023–
1040, 2019.

https://github.com/google/sanitizers/wiki/ AddressSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/ AddressSanitizerFoundBugs


[42] Fan Long and Martin Rinard. Automatic patch gener-
ation by learning correct code. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 298–312,
2016.

[43] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury.
Angelix: Scalable multiline program patch synthesis via
symbolic analysis. In Proceedings of the 38th Inter-
national Conference on Software Engineering, pages
691–701, 2016.

[44] Control Flow Guard. https://msdn.microsoft.
com/en-us/library/windows/desktop/
mt637065(v=vs.85).aspx.

[45] Microsoft. BWorld Robot Control Software. https:
//codeantenna.com/a/dp00Qd37wy, 2000.

[46] Barton P. Miller, Louis Fredriksen, and Bryan So. An
empirical study of the reliability of UNIX utilities. Com-
munications of the ACM, 33(12):32–44, December 1990.

[47] MITRE. Nginx CVE-2020-14147. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-14147, 2020.

[48] MITRE. Nginx CVE-2020-25624. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-25624, 2020.

[49] MITRE. Nginx CVE-2021-3444. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3444, 2021.

[50] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for C. In Pro-
ceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 2009.

[51] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Softbound: Highly compatible
and complete spatial memory safety for c. In Proceed-
ings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
245–258, 2009.

[52] NIST. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2014-0226.

[53] NVD. HTTPD CVE. https://nvd.nist.gov/vuln/
detail/CVE-2019-10097, 2019.

[54] A. One. Smashing the Stack for Fun and Profit. Phrack,
7(49), 1997. Available at http://www.phrack.org/
issues.html?id=14&issue=49.

[55] PAX. Address Space Layout Randomization. https:
//pax.grsecurity.net/docs/aslr.txt., 1993.

[56] Bruce Perens. Electric fence malloc debugger. https:
//elinux.org/Electric_Fence, 1993.

[57] Roman Rogowski, Micah Morton, Forrest Li, Fabian
Monrose, Kevin Z. Snow, and Michalis Polychronakis.
Revisiting Browser Security in the Modern Era: New
Data-Only Attacks and Defenses. In Proceedings of
the 2017 IEEE European Symposium on Security and
Privacy (EuroS&P), 2017.

[58] Donn Seeley. A Tour of the Worm. https:
//www.cs.unc.edu/~jeffay/courses/nidsS05/
attacks/seely-RTMworm-89.html.

[59] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Annual Technical Conference, pages 309–318,
2012.

[60] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In ATC ’12, 2012.

[61] Julian Seward and Nicholas Nethercote. Using Valgrind
to detect undefined value errors with bit-precision. In
USENIX Annual Technical Conference, General Track,
pages 17–30, 2005.

[62] Axel Simon. Value-Range Analysis of C Programs:
Towards Proving the Absence of Buffer Overflow Vulner-
abilities. Springer Publishing Company, Incorporated, 1
edition, 2008.

[63] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-in-time Code Reuse: On the Effectiveness
of Fine-grained Address Space Layout Randomization.
In Proceedings of the 34th IEEE Symposium on Security
and Privacy (S&P), 2013.

[64] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. Sok: Sanitizing for security. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 1275–1295.
IEEE, 2019.

[65] Sqlite. How SQLite Is Tested. https://www.sqlite.
org/testing.html.

[66] Evgeniy Stepanov and Konstantin Serebryany. Mem-
orysanitizer: fast detector of uninitialized memory use
in c++. In 2015 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages
46–55. IEEE, 2015.

https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://codeantenna.com/a/dp00Qd37wy
https://codeantenna.com/a/dp00Qd37wy
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14147
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14147
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14147
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25624
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25624
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25624
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3444
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0226
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0226
https://nvd.nist.gov/vuln/detail/CVE-2019-10097
https://nvd.nist.gov/vuln/detail/CVE-2019-10097
http://www.phrack.org/issues.html?id=14&issue=49
http://www.phrack.org/issues.html?id=14&issue=49
https://pax.grsecurity.net/docs/aslr.txt.
https://pax.grsecurity.net/docs/aslr.txt.
https://elinux.org/Electric_Fence
https://elinux.org/Electric_Fence
https://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/seely-RTMworm-89.html.
https://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/seely-RTMworm-89.html.
https://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/seely-RTMworm-89.html.
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html


[67] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the
25th international conference on compiler construction,
pages 265–266, 2016.

[68] Dmitry Vyukov. Address/thread/memorysanitizer
slaughtering c++ bugs. https://www.slideshare.
net/sermp/sanitizer-cppcon-russia.

[69] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In 2015 IEEE Symposium on Security
and Privacy, pages 866–879. IEEE, 2015.

[70] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In SP ’15, 2015.

[71] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. Automatically finding patches
using genetic programming. In 2009 IEEE 31st Inter-
national Conference on Software Engineering, pages
364–374. IEEE, 2009.

[72] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro,
R. Sekar, Frank Piessens, and Wouter Joosen. AriCheck:
An Efficient Pointer Arithmetic Checker for C Programs.
Proceedings of the 5th International Symposium on
Information, Computer and Communications Security
(AsiaCCS), 2010.

[73] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and
Zhendong Su. SanRazor: Reducing redundant sanitizer
checks in C/C++ programs. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 479–494, 2021.

[74] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis,
Nikos Triandopoulos, and Jun Xu. Debloating address
sanitizer. In Proceedings of the 2022 Usenix Security
Symposium, 2022.

https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://www.slideshare.net/sermp/sanitizer-cppcon-russia

	Introduction
	 Motivation
	Stack Spatial Memory Errors
	Spatial Error Defenses
	Managing Spatial Defense Performance

	System Overview
	OptiSan Design
	Modeling Defense Performance Overheads
	Optimizing Defense Placement
	Computing Usable Targets

	Implementation
	Evaluation
	Applying Multiple Defenses
	Protecting Usable Targets
	Protecting Unsafe Operations for CVEs
	Instrumentation Overheads

	Discussion
	Related Work
	Conclusions
	Acknowledgment

