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Abstract

Bilevel optimization recently has received tremen-

dous attention due to its great success in solving

important machine learning problems like meta

learning, reinforcement learning, and hyperparam-

eter optimization. Extending single-agent training

on bilevel problems to the decentralized setting

is a natural generalization, and there has been

a flurry of work studying decentralized bilevel

optimization algorithms. However, it remains un-

known how to design the distributed algorithm

with sample complexity and convergence rate

comparable to SGD for stochastic optimization,

and at the same time without directly computing

the exact Hessian or Jacobian matrices. In this

paper we propose such an algorithm. More specif-

ically, we propose a novel decentralized stochas-

tic bilevel optimization (DSBO) algorithm that

only requires first order stochastic oracle, Hessian-

vector product and Jacobian-vector product oracle.

The sample complexity of our algorithm matches

the currently best known results for DSBO, while

our algorithm does not require estimating the full

Hessian and Jacobian matrices, thereby possess-

ing to improved per-iteration complexity.

1. Introduction

Many machines learning problems can be formulated as a

bilevel optimization problem of the form,
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min
x∈Rp

Φ(x) = f(x, y∗(x))

s.t. y∗(x) = argmin
y∈Rq

g(x, y),
(1)

where we minimize the upper level function f with respect

to x subject to the constraint that y∗(x) is the minimizer of

the lower level function. Its applications can range from

classical optimization problems like compositional optimiza-

tion (Chen et al., 2021) to modern machine learning prob-

lems such as reinforcement learning (Hong et al., 2020),

meta learning (Snell et al., 2017; Bertinetto et al., 2018;

Rajeswaran et al., 2019; Ji et al., 2020), hyperparameter

optimization (Pedregosa, 2016; Franceschi et al., 2018), etc.

State-of-the-art bilevel optimization algorithms with non-

asymptotic analyses include BSA (Ghadimi & Wang, 2018),

TTSA (Hong et al., 2020), StocBiO (Ji et al., 2020), ALSET

(Chen et al., 2021), to name a few.

Decentralized bilevel optimization aims at solving bilevel

problems in a decentralized setting, which provides ad-

ditional benefits such as faster convergence, data privacy

preservation and robustness to low network bandwidth com-

pared to the centralized setting and the single-agent training

(Lian et al., 2017). For example, decentralized meta learn-

ing, which is a special case of decentralized bilevel optimiza-

tion, arise naturally in the context of medical data analysis

in the context of protecting patient privacy; see, for example,

Altae-Tran et al. (2017); Zhang et al. (2019); Kayaalp et al.

(2022). Motivated by such applications, the works of Lu

et al. (2022); Chen et al. (2022b); Yang et al. (2022); Gao

et al. (2022) proposed and analyzed various decentralized

stochastic bilevel optimization (DSBO) algorithms.

From a mathematical perspective, DSBO aims at solving

the following problem in a distributed setting:

min
x∈Rp

Φ(x) =
1

n

n∑

i=1

fi(x, y
∗(x))

s.t. y∗(x) = argmin
y∈Rq

g(x, y) :=
1

n

n∑

i=1

gi(x, y),

(2)

where x ∈ R
p, y ∈ R

q. fi is possibly nonconvex and gi is

strongly convex in y. Here n denotes the number of agents,
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and agent i only has access to stochastic oracles of fi, gi.

The local objectives fi and gi are defined as:

fi(x, y) = Eϕ∼Dfi
[F (x, y;ϕ)] ,

gi(x, y) = EÀ∼Dgi
[G(x, y; À)] .

Dfi and Dgi represent the data distributions used to gener-

ate the objectives for agent i, and each agent only has access

to fi and gi. In practice we can replace the expectation by

empirical loss, and then use samples to approximate the

gradients in the updates. Existing works on DSBO require

computing the full Hessian (or Jacobian) matrices in the

hypergradient estimation, whose per-iteration complexity is

O(q2) (or O(pq)). In problems like hyperparameter estima-

tion, the lower level corresponds to learning the parameters

of a model. When considering modern overparametrized

models, the order of q is hence extremely large. Hence,

to reduce the per-iteration complexity, it is of great inter-

est to have each iteration based only on Hessian-vector (or

Jacobian-vector) products, whose complexity is O(q) (or

O(p)); see, for example, Pearlmutter (1994).

1.1. Our contributions

Our contributions in this work are as follows.

• We propose a novel method to estimate the global hyper-

gradient. Our method estimates the product of the inverse

of the Hessian and vectors directly, without computing the

full Hessian or Jacobian matrices, and thus improves the

previous overall (both computational and communication)

complexity on hypergradient estimation from O(Nq2) to

O(Nq), where N is the total steps of the hypergradient

estimation subroutine.

• We design a DSBO algorithm (see Algorithm 3), and

in Theorem 3.3 and Corollary 3.4 we show the sample

complexity is of order O(ϵ−2 log 1
ϵ
), which matches the

currently well-known results of the single-agent bilevel

optimization (Chen et al., 2021). Our proof relies on

weaker assumptions comparing to Yang et al. (2022), and

is based on carefully combining moving average stochas-

tic gradient estimation analyses with the decentralized

bilevel algorithm analyses.

• We conduct experiments on several machine learning

problems. Our numerical results show the efficiency of

our algorithm in both the synthetic and the real-world

problems. Moreover, since our algorithm does not store

the full Hessian or Jacobian matrices, both the space com-

plexity and the communication complexity are improved

comparing to Chen et al. (2022b); Yang et al. (2022).

1.2. Related work

Bilevel optimization. Different from classical constrained

optimization, bilevel optimization restricts certain variables

to be the minimizer of the lower level function, which is

more applicable in modern machine learning problems like

meta learning (Snell et al., 2017; Bertinetto et al., 2018;

Rajeswaran et al., 2019) and hyperparameter optimization

(Pedregosa, 2016; Franceschi et al., 2018). In recent years,

Ghadimi & Wang (2018) gave the first non-asymptotic anal-

ysis of the bilevel stochastic approximation methods, which

attracted much attention to study more efficient bilevel op-

timization algorithms including AID-based (Domke, 2012;

Pedregosa, 2016; Gould et al., 2016; Ghadimi & Wang,

2018; Grazzi et al., 2020; Ji et al., 2021), ITD-based

(Domke, 2012; Maclaurin et al., 2015; Franceschi et al.,

2018; Grazzi et al., 2020; Ji et al., 2021), and Neumann

series-based (Chen et al., 2021; Hong et al., 2020; Ji et al.,

2021) methods. These methods only require access to first

order stochastic oracles and matrix-vector product (Hessian-

vector and Jacobian-vector) oracles, which demonstrate

great potential in solving bilevel optimization problems

and achieve Õ(ϵ−2) sample complexity (Chen et al., 2021;

Arbel & Mairal, 2021) that matches the result of SGD for

single level stochastic optimization ignoring the log factors.

Moreover, under stronger assumptions and variance reduc-

tion techniques, better complexity bounds are obtained (Guo

et al., 2021; Khanduri et al., 2021; Yang et al., 2021; Chen

et al., 2022a).

Decentralized optimization. Extending optimization algo-

rithms from a single-agent setting to a multi-agent setting

has been studied extensively in recent years thanks to the

modern parallel computing. Decentralized optimization,

which does not require a central node, serves as an impor-

tant part of distributed optimization. Because of data het-

erogeneity and the absence of a central node, decentralized

optimization is more challenging and each node communi-

cates with neighbors to exchange information and solve a

finite-sum optimization problem. Under certain scenarios,

decentralized algorithms are more preferable comparing to

centralized ones since the former preserve data privacy (Ram

et al., 2009; Yan et al., 2012; Wu et al., 2017; Koloskova

et al., 2020) and have been proved useful when the network

bandwidth is low (Lian et al., 2017).

Decentralized stochastic bilevel optimization. To make

bilevel optimization applicable in parallel computing, re-

cent work started to focus on distributed stochastic bilevel

optimization. FEDNEST (Tarzanagh et al., 2022) and Fed-

BiO (Li et al., 2022) impose federated learning, which is

essentially a centralized setting, on stochastic bilevel opti-

mization. Existing work on DSBO can be classified to two

categories: global DSBO and personalized DSBO. Problem

(2) that we consider in this paper is a global DSBO, where

both lower-level and upper-level functions are not directly

accessible to any local agent. Other works on global DSBO

include Chen et al. (2022b); Yang et al. (2022); Gao et al.
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(2022)1. The personalized DSBO (Lu et al., 2022) replaces

y∗(x) by the local one y∗i (x) = argminy∈Rq gi(x, y) in (2),

which leads to

min
x∈Rp

Φ(x) =
1

n

n
∑

i=1

fi(x, y
∗
i (x))

s.t. y∗i (x) = argmin
y∈Rq

gi(x, y), i = 1, . . . , n.

(3)

To solve global DSBO (2), Chen et al. (2022b) proposes a

JHIP oracle to estimate the Jacobian-Hessian-inverse prod-

uct while Yang et al. (2022) introduces a Hessian-inverse

estimation subroutine based on Neumann series approach

which can be dated back to Ghadimi & Wang (2018). How-

ever, they both require computing the full Jacobian or Hes-

sian matrices, which is extremely time-consuming when

q is large. In comparison, computing a Hessian-vector

or Jacobian-vector product is more efficient in large-scale

machine learning problems (Bottou et al., 2018), and is

commonly used in vanilla bilevel optimization (Ghadimi &

Wang, 2018; Ji et al., 2021; Chen et al., 2021) to avoid com-

puting the Hessian inverse. In personalized DSBO (3), local

computation is sufficient to approximate ∇fi(x, y
∗
i (x)), and

thus does not require computing the Hessian or Jacobian ma-

trices and single-agent bilevel optimization methods can be

directly incorporated in the distributed regime. In our paper

we propose a novel algorithm that estimates the global hy-

pergradient using only first-order oracle and matrix-vector

products oracle. Based on this we further design our algo-

rithm for solving DSBO that does not require to compute

the full Jacobian or Hessian matrices. We summarize the

results of aforementioned works and our results in Table 1.

Notation. We denote by ∇f(x, y) and ∇2f(x, y) the gradi-

ent and Hessian matrix of f , respectively. We use ∇xf(x, y)
and ∇yf(x, y) to represent the gradients of f with respect

to x and y, respectively. Denote by ∇2
xyf(x, y) ∈ R

p×q

the Jacobian matrix of f and ∇2
yf(x, y) the Hessian ma-

trix of f with respect to y. ∥ · ∥ denotes the ℓ2 norm

for vectors and Frobenius norm for matrices, unless spec-

ified. 1n is the all one vector in R
n, and Jn = 1n1

¦
n

is the n × n all one matrix. We use uppercase letters to

represent the matrix that collecting all the variables (cor-

responding lowercase) as columns. For example Xk =

(x1,k, ..., xn,k) , Y
(t)
k =

(

y
(t)
1,k, ..., y

(t)
n,k

)

. We add an over-

bar to a letter to denote the average over all nodes. For

example, x̄k = 1
n

∑n

i=1 xi,k, ȳ
(t)
k = 1

n

∑n

i=1 y
(t)
i,k.

1Here we point out that although Gao et al. (2022) claim that
they solve the global DSBO, based on equations (2) and (3) in
their paper (https://arxiv.org/abs/2206.15025v1),
it is clear that they are only solving a special case of global DSBO
problem. See appendix C.2 for detailed discussion.

2. Preliminaries

The following assumptions are used throughout this paper.

They are standard assumptions that are made in the literature

on bilevel optimization (Ghadimi & Wang, 2018; Hong

et al., 2020; Chen et al., 2021; Ji et al., 2021; Huang et al.,

2022) and decentralized optimization (Qu & Li, 2017; Nedic

et al., 2017; Lian et al., 2017; Tang et al., 2018).

Assumption 2.1 (Smoothness). There exist positive con-

stants µg, Lf,0, Lf,1, Lg,1, Lg,2 such that for any i, func-

tions fi, ∇fi, ∇gi, ∇2gi are Lf,0, Lf,1, Lg,1, Lg,2 Lips-

chitz continuous respectively, and function gi is µg-strongly

convex in y.

Assumption 2.2 (Network topology). The weight matrix

W = (wij) ∈ R
n×n is symmetric and doubly stochastic,

i.e.:

W = W¦, W1n = 1n, wij g 0, ∀i, j,

and its eigenvalues satisfy 1 = ¼1 > ¼2 g ... g ¼n and

Ä := max{|¼2|, |¼n|} < 1.

The weight matrix given in Assumption 2.2 characterizes the

network topology by setting the weight parameter between

agent i and agent j to be wij . The condition Ä < 1 is termed

as ’spectral gap’ (Lian et al., 2017), and is used in distributed

optimization to ensure the decay of the consensus error,

i.e.,
E[∥Xk−x̄k1

¦

n ∥2]
n

, among the agents, which eventually

guarantees the consensus among agents.

Assumption 2.3 (Gradient heterogeneity). There exists a

constant ¶ g 0 such that for all 1 f i f n, x ∈ R
p, y ∈ R

q,

∥∇ygi(x, y)−
1

n

n
∑

l=1

∇ygl(x, y)∥ f ¶.

The above assumption is commonly used in distributed op-

timization literature (see, e.g., Lian et al. (2017)), and it

indicates the level of similarity between the local gradient

and the global gradient. Moreover, it is weaker than the As-

sumption 3.4 (iv) of Yang et al. (2022) which assumes that

∇ygi(x, y; À) has a bounded second moment. This is be-

cause the bounded second moment implies the boundedness

of ∇yg(x, y), as we have

∥∇yg(x, y)∥2

fE
[

∥∇yg(x, y)−∇yg(x, y; À)∥2
]

+ ∥∇yg(x, y)∥2

=E
[

∥∇yg(x, y; À)∥2
]

– uniformly bounded,

where the equality holds since we have E
[

∥X∥2
]

=

E
[

∥X − E [X] ∥2
]

+ ∥E [X] ∥2 for any random vector X .

It directly gives the inequality in Assumption 2.3. How-

ever Assumption 2.3 does not imply the boundedness of

∇yg(x, y) (e.g., gi(x, y) = y¦y for all i satisfies Assump-

tion 2.3 but does not have bounded gradient.)
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Table 1. We compare our Algorithm 3 (MA-DSBO) with existing distributed bilevel optimization algorithms: FEDNEST (Tarzanagh et al.,

2022), SPDB (Lu et al., 2022), DSBO-JHIP (Chen et al., 2022b), and GBDSBO (Yang et al., 2022). The problem types include Federated

Bilevel Optimization (FBO), Personalized-Decentralized Stochastic Bilevel Optimization (P-DSBO), and Global-Decentralized Stochastic

Bilevel Optimization (G-DSBO). In the table we define d = max (p, q). ’Computation’ (See Section C.3 for details) and ’Samples’

represent the computational and sample complexity of finding an ϵ-stationary point, respectively. Õ hides the log( 1
ϵ
) factor. ’Jacobian’

refers to whether the algorithm requires computing full Hessian or Jacobian matrix. ’Mini-batch’ refers to whether the algorithm requires

their batch size depending on ϵ−1.

ALGORITHM PROBLEM COMPUTATION SAMPLES JACOBIAN MINI-BATCH NETWORK

FEDNEST FBO Õ(dϵ−2) Õ(ϵ−2) NO NO CENTRALIZED

SPDB P-DSBO Õ(dn−1ϵ−2) Õ(n−1ϵ−2) NO YES DECENTRALIZED

DSBO-JHIP G-DSBO Õ(pqϵ−3) Õ(ϵ−3) YES NO DECENTRALIZED

GBDSBO G-DSBO O((q2 log( 1
ϵ
) + pq)n−1ϵ−2) Õ(n−1ϵ−2) YES NO DECENTRALIZED

MA-DSBO G-DSBO Õ(dϵ−2) Õ(ϵ−2) NO NO DECENTRALIZED

Assumption 2.4 (Bounded variance). The stochastic deriva-

tives, ∇fi(x, y;ϕ), ∇gi(x, y; À), and ∇2gi(x, y; À), are un-

biased with bounded variances Ã2
f , Ã2

g,1, Ã2
g,2, respectively.

Note that we do not make any assumptions on whether

the data distributions are heterogeneous or identically dis-

tributed.

3. DSBO Algorithm with Improved

Per-Iteration Complexity

We start with following standard result in the bilevel opti-

mization literature (Ghadimi & Wang, 2018; Hong et al.,

2020; Ji et al., 2020; Chen et al., 2021) that gives a

closed form expression of the hypergradient ∇Φ(x), making

gradient-based bilevel optimization tractable.

Lemma 3.1. Suppose Assumption 2.1 holds. The hypergra-

dient ∇Φ(x) of (2) takes the form:

∇Φ(x) =
1

n

(

n
∑

i=1

∇xfi(x̃)

)

−∇2
xyg(x̃)

(

∇2
yg(x̃)

)−1

[

1

n

(

n
∑

i=1

∇yfi(x̃)

)]

,

(4)

where x̃ = (x, y∗(x)).

We also include smoothness properties of ∇Φ(x) and y∗(x)
in Section B in the appendix.

3.1. Main challenge

As discussed in Chen et al. (2022b) and Yang et al. (2022),

the main challenge in designing DSBO algorithms is to esti-

mate the global hypergradient. This is challenging because

of the data heterogeneity across agents, which leads to

∇2
xyg(x, y

∗(x))
(

∇2
yg(x, y

∗(x))
)−1

̸=1

n

n
∑

i=1

∇2
xygi(x, y

∗
i (x))

(

∇2
ygi(x, y

∗
i (x))

)−1
,

(5)

where y∗i (x) = argminy∈Rq gi(x, y). This shows that sim-

ply averaging the local hypergradients does not give a good

approximation to the global hypergradient. A decentral-

ized approach should be designed to estimate the global

hypergradient ∇Φ(x).

To this end, the JHIP oracle in Chen et al. (2022b) manages

to estimate

(

n
∑

i=1

∇2
xygi(x, y

∗(x))

)(

n
∑

i=1

∇2
ygi(x, y

∗(x))

)−1

using decentralized optimization approach, and Yang et al.

(2022) proposed to estimate the global Hessian-inverse, i.e.,

(

n
∑

i=1

∇2
ygi(x, y

∗(x))

)−1

via a Neumann series based approach. Instead of focusing

on full matrices computation, we consider approximating

z =

(

n
∑

i=1

∇2
ygi(x, y

∗(x))

)−1( n
∑

i=1

∇yfi(x, y
∗(x))

)

.

(6)

According to (4), the global hypergradient is given by

∇Φ(x) =
1

n

n
∑

i=1

(∇xfi(x, y
∗(x))−∇2

xygi(x, y
∗(x))z).

(7)

From the above expression we know that as long as

node i can have a good estimate of ∇xfi(x, y
∗(x)) and
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∇2
xygi(x, y

∗(x))z, then on average the update will be a

good approximation to the global hypergradient. More im-

portantly, the process of estimating z can avoid computing

the full Hessian or Jacobian matrices.

3.2. Hessian-Inverse-Gradient-Product oracle

Solving (6) is essentially a decentralized optimization with

a strongly convex quadratic objective function. Suppose

each agent only has access to Hi ∈ S
q×q
++ and bi ∈ R

q, and

all the agents collectively solve for

n
∑

i=1

Hiz =
n
∑

i=1

bi, or z =

(

n
∑

i=1

Hi

)−1( n
∑

i=1

bi

)

. (8)

From an optimization perspective, the above expression is

the optimality condition of:

min
z∈Rq

1

n

n
∑

i=1

hi(z), where hi(z) =
1

2
z¦Hiz − b¦i z. (9)

Hence we can design a decentralized algorithm to solve

for z without the presence of a central server. Based on

this observation and (7), we present our Hessian-Inverse-

Gradient Product oracle in Algorithm 1.

Algorithm 1 Hessian-Inverse-Gradient Product oracle

1: Input: (H
(k)
i,t , b

(k)
i,t ), for 0 f t f N accessible only

to agent i. Stepsize µ, iteration number N , d
(k)
i,0 =

−b
(k)
i,0 , s

(k)
i,0 = −b

(k)
i,0 , and z

(k)
i,0 = 0

2: for t = 0, 1, ..., N − 1 do

3: for i = 1, ..., n do

4: z
(k)
i,t+1 =

∑n

j=1 wijz
(k)
j,t − µd

(k)
i,t ,

5: s
(k)
i,t+1 = H

(k)
i,t+1z

(k)
i,t+1 − b

(k)
i,t+1,

6: d
(k)
i,t+1 =

∑n

j=1 wijd
(k)
j,t + s

(k)
i,t+1 − s

(k)
i,t

7: end for

8: end for

9: Output:z
(k)
i,N on each node.

It is known that vanilla decentralized gradient descent

(DGD) with a constant stepsize only converges to a neigh-

borhood of the optimal solution even under the determin-

istic setting (Yuan et al., 2016). Therefore, one must use

diminishing stepsize in DGD, and this leads to the sublin-

ear convergence rate even when the objective function is

strongly convex. To resolve this issue, there are various

decentralized algorithms with a fixed stepsize (Xu et al.,

2015; Shi et al., 2015; Di Lorenzo & Scutari, 2016; Nedic

et al., 2017; Qu & Li, 2017) achieving linear convergence

on a strongly convex function in the deterministic setting.

Among them, one widely used technique is the gradient

tracking method (Xu et al., 2015; Qu & Li, 2017; Nedic

et al., 2017; Pu & Nedić, 2021), which is also incorporated

in our Algorithm 1. Instead of using the local stochastic

gradient in line 4 of Algorithm 1, we maintain another set

of variables d
(k)
i,t+1 in line 6 as the gradient tracking step.

We will utilize the linear convergence property of gradient

tracking in our convergence analysis.

Algorithm 2 Hypergradient Estimation

1: Input: Samples ϕ = (ϕi,0, ..., ϕi,N ), À =
(Ài,0, ..., Ài,N ) on node i.

2: Run Algorithm 1 with

3: H
(k)
i,t = ∇2

ygi(xi,k, y
(T )
i,k ; Ài,t),

4: b
(k)
i,t = ∇yfi(xi,k, y

(T )
i,k ;ϕi,t)

5: to get z
(k)
i,N .

6: Set ui,k = ∇xfi(xi,k, y
(T )
i,k ;ϕi,0)

7: −∇2
xygi(xi,k, y

(T )
i,k ; Ài,0)z

(k)
i,N .

8: Output: ui,k on node i.

Note that for simplicity we write H
(k)
i,t =

∇2
ygi(xi,k, y

(T )
i,k ; Ài,t) in line 3 of Algorithm 2, how-

ever, the real implementation only requires Hessian-vector

products, as shown in Algorithm 1, and we do not need to

compute the full Hessian.

3.3. Decentralized Stochastic Bilevel Optimization

Now we are ready to present our DSBO algorithm with

the moving average technique, which we refer to as the

MA-DSBO algorithm. In Algorithm 3 we adopt the ba-

Algorithm 3 MA-DSBO Algorithm

1: Input: Stepsizes ³k, ´k, iteration numbers K,T,N ,

y
(0)
i,k = 0, and xi,0 = ri,0 = 0.

2: for k = 0, 1, ...,K − 1 do

3: y
(0)
i,k = y

(T )
i,k−1.

4: for t = 0, 1, ..., T − 1 do

5: for i = 1, ..., n do

6: y
(t+1)
i,k =

∑n

j=1 wijy
(t)
j,k − ´kv

(t)
i,k with v

(t)
i,k =

∇ygi(xi,k, y
(t)
i,k; À̃

(t)
i,k)

7: end for

8: end for

9: Run Algorithm 2 and set the output as ui,k.

10: for i = 1, ..., n do

11: xi,k+1 =
∑n

j=1 wijxj,k − ³kri,k.

12: ri,k+1 = (1− ³k)ri,k + ³kui,k.

13: end for

14: end for

15: Output: x̄K = 1
n

∑n

i=1 xi,K .

sic structure of double-loop bilevel optimization algorithm

(Ghadimi & Wang, 2018; Ji et al., 2021; Chen et al., 2021)

5



Decentralized Stochastic Bilevel Optimization

– we first run T -step inner loop (line 4-8) to obtain a good

approximation of y∗. Next, we run Algorithm 2 to estimate

the hypergradient. To reduce the order of the bias in hyper-

gradient estimation error (see Section 3.5.1 for details), we

introduce the moving average update to maintain another

set of variables ri,k as the update direction of x. The us-

ing of the moving average update helps reduce the order of

bias in the stochastic gradient estimate. It is worth noting

that similar techniques have been used in the context of

nested stochastic composition optimization in Ghadimi et al.

(2020); Balasubramanian et al. (2022). Note that all commu-

nication steps of our Algorithms (lines 4 and 6 of Algorithm

1, lines 6 and 11 of Algorithm 3) only include sending (resp.

receiving) vectors to (resp. from) neighbors, which greatly

reduce the per-iteration communication complexity from

max{pq, q2} of GBDSBO (see line 8 and 11 of Algorithm

1 in Yang et al. (2022)).) to max{p, q}.

We now introduce our notion of convergence. Specifically,

the ϵ-stationary point of (3) is defined as follows.

Definition 3.2. For a sequence {x̄k}Kk=0 generated by Al-

gorithm 3, if min0fkfK E
[

∥∇Φ(x̄k)∥2
]

f ϵ for some

positive integer K, then we say that we find an ϵ-stationary

point of (3).

The above notion of stationary point is commonly used

in decentralized non-convex stochastic optimization (Lian

et al., 2017). When ϵ = 0, it indicates that the hypergradi-

ent at some iterate x̄k is zero. The convergence result of

Algorithm 3 is given in Theorem 3.3.

Theorem 3.3. Suppose Assumptions 2.1, 2.2, 2.3, and 2.4

hold. There exist constants 2 0 < c1 < c2 such that in

Algorithm 3 if we set µ ∈ (c1, c2), T g 1, and

³k ≡ Θ

(

1√
K

)

, ´k ≡ Θ

(

1√
K

)

, N = Θ(logK) ,

then we have

min
0fkfK

E
[

∥∇Φ(x̄k)∥2
]

= O
(

1√
K

)

,

min
0fkfK

E
[

∥Xk − x̄k1
¦
n ∥2

]

n
= O

(

1

K

)

.

Note that this theorem indicates that the consensus error is of

order O
(

1
K

)

, and for any positive constant ϵ, the iteration

complexity of Algorithm 3 for obtaining an ϵ-stationary

point of (2) is O(ϵ−2). Moreover, we have the following

corollary that gives the sample complexity of our algorithm.

Corollary 3.4. Suppose the conditions of Theorem 3.3 hold.

For any ϵ > 0, if we set K = O
(

ϵ−2
)

, N = Θ(log 1
ϵ
),

and T = 1, then in Algorithm 3 the sample complexity to

find an ϵ-stationary point is O(ϵ−2 log( 1
ϵ
)).

2The constants are independent of K and the details are given
in the appendix.

It is worth noting that T g 1 in Theorem 3.3 implies, to

some extent, that by setting a single timescale, more inner

loop iterations will not help improve the convergence re-

sult in terms of K. This observation partially answers the

decentralized version of the question ‘Will Bilevel Optimiz-

ers Benefit from Loops?’ mentioned in the title of Ji et al.

(2022). It is interesting to study how setting T dependent

on other problem parameters will improve the dependency

on problem parameters in the final convergence rate. The

hypergradient estimation algorithms (i.e., HIGP oracle and

Algorithm 2) provide an additional O(log 1
ϵ
) factor in the

sample complexity, which matches Chen et al. (2021). To

further remove the log factor, Arbel & Mairal (2021) applies

warm start to hypergradient estimation and uses mini-batch

method (whose batch sizes are dependent on ϵ−1) to reduce

this complexity and eventually obtain O(ϵ−2). It would be

interesting to study how to apply the warm start strategy

to remove the log factor in our complexity bound without

using mini-batch method. One restriction of Theorem 3.3

is that we do not obtain the convergence rate O( 1√
nK

), i.e.,

the linear speedup in terms of the number of the agents. The

recent work of Yang et al. (2022) achieves linear speedup.

However, some of their assumptions are restrictive (see

Section C for a detailed discussion). Besides, according to

Table 1, our Algorithm is more efficient and preferable when

min{p, q} > n since we improve the per-iteration compu-

tational and communication complexity from max{pq, q2}
in Yang et al. (2022) to max{p, q}. It would be interest-

ing to study how to incorporate Jacobian-computing-free

algorithm in DSBO under the mild assumptions without

affecting linear speedup.

3.4. Consequences for Decentralized Stochastic

Compositional Optimization

Note that our algorithm can be used to solve Decentralized

Stochastic Compositional Optimization (DSCO) problem:

min
x∈Rp

Φ(x) =
1

n

n
∑

i=1

fi





1

n

n
∑

j=1

gj(x)



 , (10)

which can be written in a bilevel formulation:

min
x∈Rp

Φ(x) =
1

n

n
∑

i=1

fi(y
∗(x))

s.t. y∗(x) = argmin
y∈Rq

1

n

n
∑

i=1

(

1

2
y¦y − gi(x)

¦y

)

,

(11)

To solve DSCO, Zhao & Liu (2022) proposes D-ASCGD

and its compressed version. Both of them have O(ϵ−2) sam-

ple complexity. However, their algorithm requires stronger

assumptions (see Assumption 1 (a) in Zhao & Liu (2022))

and needs to compute full Jacobians (i.e., ∇gi(x; À)), which

6
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lead to O(pqϵ−2) computational complexity. By using our

Algorithm 3, we can obtain Õ(max(p, q)ϵ−2) computa-

tional complexity, which is preferable in high dimensional

problems. We state the result formally in the corollary be-

low; the proof is immediate.

Corollary 3.5. Suppose the conditions of Theorem 3.3 hold.

For any ϵ > 0, if we set K = O
(

ϵ−2
)

, N = Θ(log 1
ϵ
), and

T = 1, then the sample complexity of using Algorithm 3 to

find an ϵ-stationary point of Problem (11) is O(ϵ−2 log( 1
ϵ
)),

and the computational complexity is Õ(max(p, q)ϵ−2).

3.5. Proof sketch

In this section we briefly introduce a sketch of our proof for

Theorem 3.3 as well as the ideas of the algorithm design.

Throughout our analysis, we define the filtration as

Fk = Ã

(

n
⋃

i=1

{y(T )
i,0 , ..., y

(T )
i,k , xi,0, ..., xi,k, ri,0, ..., ri,k}

)

.

3.5.1. MOVING AVERAGE METHOD

The moving average method used in line 12 of Algorithm 3

serves as a key step in setting up the convergence analysis

framework. We focus on estimating

1

K

K
∑

k=0

E
[

∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2
]

,

which provides another optimality measure for finding the

ϵ-stationary point since we know

E
[

∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2
]

g 1

2
E
[

∥∇Φ(x̄k)∥2
]

.

It can then be shown that by appropriately choosing param-

eters (see Lemma B.11 and B.12 for details), we obtain

1

K

K
∑

k=0

E
[

∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2
]

=O
(

1√
K

+
1

K

K
∑

k=0

E
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

)

,

which implies that it suffices to bound the hypergradient

estimation error, namely, the second term on the right hand

side of the above equality. The moving average technique

reduces the bias in the hypergradient estimate so that we

can directly bound E
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

instead of

E
[

∥ūk −∇Φ(x̄k)∥2
]

, and the former one makes use of

the linear convergence property of the gradient tracking

methods, which is elaborated in the next section.

3.5.2. CONVERGENCE OF HIGP

Define

y∗k = y∗(x̄k),

z
(k)
∗ =

(

n
∑

i=1

∇2
ygi(x̄k, y

∗
k)

)−1( n
∑

i=1

∇yfi(x̄k, y
∗
k)

)

.

To bound the hypergradient estimation error, a

rough analysis (see Lemma B.13) shows that

E
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

=

O
(

E

[

∥Xk − x̄k1
¦∥2 + ∥Y (T )

k − ȳ
(T )
k 1

¦∥2 + ∥ȳ(T )
k − y∗k∥2

]

+E

[

∥E
[

z
(k)
i,N − z̄

(k)
N |Fk

]

∥2 + ∥E
[

z̄
(k)
N |Fk

]

− z
(k)
∗ ∥2

] )

,

where the first two terms on the right hand side denote the

consensus error among agents, and can be bounded via

techniques in decentralized optimization (Lemma B.7). The

third term represents the inner loop estimation error, which

can be bounded by considering its decrease as k increases

(Lemma B.8). Our novelty lies in bounding the last two

terms – the consensus and convergence analysis of the HIGP

oracle. Observe that by setting

ż
(k)
i,t = E

[

z
(k)
i,t |Fk

]

, ḋ
(k)
j,t = E

[

d
(k)
j,t |Fk

]

, ṡ
(k)
i,t = E

[

s
(k)
i,t |Fk

]

,

we know from Algorithm 1

ż
(k)
i,t+1 =

n
∑

j=1

wij ż
(k)
j,t − µḋ

(k)
i,t , Z

(k)
0 = 0,

ḋ
(k)
i,t+1 =

n
∑

i=1

wij ḋ
(k)
j,t + ṡ

(k)
i,t+1 − ṡ

(k)
i,t ,

ṡ
(k)
i,t = ∇2

ygi(xi,k, y
(T )
i,k )ż

(k)
i,t −∇yfi(xi,k, y

(T )
i,k ),

which is exactly a deterministic gradient descent scheme

with gradient tracking on a strongly convex and smooth

quadratic function. Hence the linear convergence results

in gradient tracking methods can be applied, and this also

explains why µ can be chosen as a constant that is indepen-

dent of K. Mathematically, in Lemmas B.9 and B.13 we

explicitly characterize the error and eventually obtain the

final convergence result in Theorem 3.3.

4. Numerical experiments

In this section we study the applications of Algorithm 3 on

hyperparameter optimization:

min
¼∈Rp

1

n

n
∑

i=1

fi(¼, É
∗(¼)),

s.t. É∗(¼) = argmin
w∈Rq

1

n

n
∑

i=1

gi(¼, É),

where we aim at finding the optimal hyperparameter ¼ under

the constraint that É∗(¼) is the optimal model parameter

given ¼. We consider both the synthetic and real world

7
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Figure 1. ℓ2-regularized logistic regression on synthetic data.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Test Accuracy, =0.3, =0.3
Test Accuracy, =0.9, =0.3
Test Accuracy, =0.3, =0.9
Test Accuracy, =0.9, =0.9

(a)

0 5 10 15 20 25 30
Iteration

0

10

20

30

40
Tr

ai
ni

ng
 L

os
s

Training Loss, =0.3, =0.3
Training Loss, =0.9, =0.3
Training Loss, =0.3, =0.9
Training Loss, =0.9, =0.9

(b)

0 5 10 15 20 25 30
Iteration

0

10

20

30

40

Te
st

 L
os

s

Test Loss, =0.3, =0.3
Test Loss, =0.9, =0.3
Test Loss, =0.3, =0.9
Test Loss, =0.9, =0.9

(c)

Figure 2. ℓ2-regularized logistic regression on MNIST.

data. Comparing to hypergradient estimation algorithms in

Chen et al. (2022b) and Yang et al. (2022), our HIGP oracle

(Algorithm 1) reduces both the per-iteration complexity and

storage from O(q2) to O(q). All the experiments are per-

formed on a local device with 8 cores (n = 8) using mpi4py

(Dalcin & Fang, 2021) for parallel computing and PyTorch

(Paszke et al., 2019) for computing stochastic oracles. The

network topology is set to be the ring topology with the

weight matrix W = (wij) given by

wii = w, wi,i+1 = wi,i−1 =
1− w

2
, for some w ∈ (0, 1).

Here w1,0 = w1,n and wn,n+1 = wn,1. In other words, the

neighbors of agent i only include i − 1 and i + 1 for i =
1, 2, ..., n with 0 and n+1 representing n and 1 respectively.

4.1. Heterogeneous and normally distributed data

Following Pedregosa (2016); Grazzi et al. (2020); Chen et al.

(2022b), fi and gi are defined as:

fi(¼, É) =
∑

(xe,ye)∈D′

i

È(yex
¦
e É),

gi(¼, É) =
∑

(xe,ye)∈Di

È(yex
¦
e É) +

1

2

p∑

i=1

eλiÉ2
i ,

where È(x) = log(1 + e−x) and p = 200 denotes the

dimension parameter. A ground truth vector w∗ is generated

in the beginning, and each xe ∈ R
p is generated according

to the normal distribution. The data distribution of xe on

node i is N (0, i2). Then we set ye = x¦e w + ε · z, where

ε = 0.1 denotes the noise rate and z ∈ R
p is the noise

vector sampled from standard normal distribution. The task

is to learn the optimal regularization parameter ¼ ∈ R
p.

We also compare our Algorithm 3 with GBDSBO (Yang

et al., 2022) and DSBO-JHIP (Chen et al., 2022b) under this

setting with dimension parameter p = 100. Figures 1(a),

1(b) and 1(c)3 demonstrate the efficiency of our algorithm

in both time and space complexity. Due to space limit, we

include our additional experiments in Section A.

4.2. MNIST

Now we consider hyperparameter optimization on MNIST

dataset (LeCun et al., 1998). Following Grazzi et al. (2020),

we have

fi(¼, É) =
1

|D′
i|

∑

(xe,ye)∈D′

i

L(x¦e É, ye),

gi(¼, É) =
1

|Di|

∑

(xe,ye)∈Di

L(x¦e É, ye) +
1

cp

c∑

i=1

p∑

j=1

eλjÉ2
ij ,

3The word ”block” is a term used in tracemalloc module
in Python (see https://docs.python.org/3/library/
tracemalloc.html) to measure the memory usage, and we
keep track of the number of the communicated blocks between
different agents as a direct measure for communication cost.
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where c = 10, p = 784 denote the number of classes and

the number of features, É ∈ R
c×p is the model parameter,

and L denotes the cross entropy loss. Di and D′
i denote the

training and validation set respectively. The batch size is

1000 in each stochastic oracle. We include the numerical

results of different stepsize choices in Figure 2. Note that in

previous algorithms (Chen et al., 2022b; Yang et al., 2022)

one Hessian matrix of the lower level function requires

O(c2p2) storage, while in our algorithm a Hessian-vector

product only requires O(cp) storage, which improves both

the space and the communication complexity. The accuracy

and the loss curves indicate that our MA-DSBO Algorithm 3

has a considerably good performance on real world dataset.

Note that this problem has larger dimension, and the other

algorithms took more time so we do not do the comparison.

5. Conclusion

In this paper, we propose a DSBO algorithm that does not re-

quire computing full Hessian and Jacobian matrices, thereby

improving the per-iteration complexity of currently known

DSBO algorithms, under mild assumptions. Moreover, we

prove that our algorithm achieves Õ(ϵ−2) sample complex-

ity, which matches the result in state-of-the-art single-agent

bilevel optimization algorithms. We would like to point out

that Assumption 2.3 (or bounded second moment condition

in Yang et al. (2022)) requires certain types of upper bounds

on ∥∇yg(x, y)∥, which may not hold in decentralized opti-

mization (see, e.g., Pu & Nedić (2021)). It is interesting to

study decentralized stochastic bilevel optimization without

this type of conditions, and one promising direction is to ap-

ply variance reduction techniques like in Tang et al. (2018).

It is also interesting to incorporate Hessian-free methods

(Sow et al., 2022) in DSBO, and we leave it as future work.
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Appendix

A. Additional experiments on heterogeneous data

To introduce heterogeneity, we set r as the heterogeneity rate, and the data distribution of xe in Section 4.1 on node i is

N (0, i2 · r2). In Figure 3(a), 3(b) and 3(c) (and similarly for 3(d), 3(e), and 3(f)) we set r as 0.5, 1.0, and 1.5 respectively.

The accuracy and loss results demonstrate that our algorithm works well under different heterogeneity rates.
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Figure 3. ℓ2-regularized logistic regression on synthetic data.

B. Analysis

Figure 4 represents the structure of the proof. For convenience we restate our notation convention here again:

• We use the first subscript (usually denoted as i) to represent the agent number, and the second subscript (usually denoted

as k or t) to represent the iteration number. For example xi,k represents the x variable of agent i at k-th iteration. For

the inner loop iterate like y
(t)
i,k, the superscript t represents the iteration number of the inner loop.

• We use uppercase letters to represent the matrix that collecting all the variables (corresponding lowercase) as columns.

For example Xk = (x1,k, ..., xn,k) , Y
(t)
k =

(

y
(t)
1,k, ..., y

(t)
n,k

)

.

• We add an overbar to a letter to denote the average over all nodes. For example, x̄k = 1
n

∑n
i=1 xi,k, ȳ

(t)
k = 1

n

∑n
i=1 y

(t)
i,k.

• The filtration is defined as

Fk = Ã

(

n
⋃

i=1

{y(T )
i,0 , ..., y

(T )
i,k , xi,0, ..., xi,k, ri,0, ..., ri,k}

)

.

We first state several well-known results in bilevel optimization literature (see, e.g., Lemma 2.2 in Ghadimi & Wang (2018).).
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Lemma B.1 Lemma B.2 Lemma B.3 Lemma B.6

Lemma B.4

Lemma B.7 Lemma B.5

Lemma B.9

Lemma B.11 Lemma B.8

Lemma B.10

Lemma B.12

Lemma B.13

Theorem 3.3

Figure 4. Structure of the proof

Lemma B.1. Suppose Assumptions 2.1 and 2.4 hold, we know ∇Φ(x) and y∗(x) defined in (2) are LΦ and Ly∗ -Lipschitz

continuous respectively with the constants given by

LΦ = Lf,1 +
2Lf,1Lg,1 + Lg,2L

2
f,0

µg

+
2Lg,1Lf,0Lg,2 + L2

g,1Lf,1

µ2
g

+
Lg,2L

2
g,1Lf,0

µ3
g

, Ly∗ =
Lg,1

µg

. (12)

The following inequality is a standard result and will be used in our later analysis. We prove it here for completeness.

Lemma B.2. Suppose we are given two sequences {ak} and {bk} that satisfy

ak+1 f ¶ak + bk, ak g 0, bk g 0 for all k g 0

for some ¶ ∈ (0, 1). Then we have

ak+1 f ¶k+1a0 +
k
∑

i=0

bi¶
k−i.

Proof of Lemma B.2. Setting ci =
ai

¶i
, we know

ci+1 f ci + bi · ¶−i−1 for all i g 0.

Taking summation on both sides (i from 0 to k) and multiplying ¶k+1, we know for k g 0,

ak+1 f ¶k+1a0 +

k
∑

i=0

bi¶
k−i,

which completes the proof.

The following lemma is standard in stochastic optimization (see, e.g., Lemma 10 in Qu & Li (2017)).

Lemma B.3. Suppose f(x) is µ-strongly convex and L−smooth. For any x and ¸ < 2
µ+L

, define x+ = x−¸∇f(x), x∗ =

argmin f(x). Then we have

∥x+ − x∗∥ f (1− ¸µ)∥x− x∗∥

Next, we characterize the bounded second moment of the HIGP oracle. Note that Algorithm 1 is essentially decentralized

stochastic gradient descent with gradient tracking on a strongly convex quadratic function.
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Lemma B.4. Suppose we are given matrices Ai and vectors bi such that there exist 0 < µ < L such that µI ¯ Ai ¯ LI

for 1 f i f n. W = (wij) satisfies Assumption 2.2. The sequences {xi,k}, {si,k} and {vi,k} satisfy for any k g 0 and

1 f i f n,

xi,k+1 =
n
∑

j=1

wijxj,k − ³si,k, si,k+1 =
n
∑

j=1

wijsj,k + vi,k+1 − vi,k, vi,k = Ai,kxi,k − bi,k, si,0 = vi,0,

E [Ai,k] = Ai, E [bi,k] = bi, E
[

∥Ai,k −Ai∥2
]

f Ã2
1 , E

[

∥bi,k − bi∥2
]

f Ã2
2 .

Moreover, we assume Ai,k, xj,k, bi,k are independent for any i, j ∈ {1, ..., n}, {Ai,k}ni=1 are independent and {bi,k}ni=1
are independent. Define

Ã̃2
1 = Ã2

1 + L2, Ã̃2
2 = Ã2

2 +max
i

∥bi∥2, x∗ :=

(

1

n

n
∑

i=1

Ai

)−1(

1

n

n
∑

i=1

bi

)

,

C1 = 9Ã2
1 + 6³2Ã̃2

1 +
18³2Ã2

1 Ã̃
2
1

n
, C2 = 12Ã̃2

1 + 9Ã2
1 + 12³2L2Ã̃2

1 +
18³2Ã2

1 Ã̃
2
1

n
,

C3 = 6Ä2Ã̃2
1 , C4 = 2Ã2

2 +
6³2Ã2

2 Ã̃
2
1

n
+

(

9Ã2
1 +

18³2Ã2
1 Ã̃

2
1

n

)

∥x∗∥2,

c =

(

³2

n
(3Ã2

1∥x∗∥2 + Ã2
2), 0,

(1 + Ä2)

1− Ä2
C4

)¦

, M =





M11 M12 0
0 M22 M23

M31 M32 M33



 ,

M11 = 1− ³µ, M12 =

(

2³

µ
+ 2³2

)

Ã̃2
1 , M22 =

1 + Ä2

2
, M23 = ³2 1 + Ä2

1− Ä2

M31 =
1 + Ä2

1− Ä2
C1, M32 =

1 + Ä2

1− Ä2
C2, M33 =

1 + Ä2

2
+

1 + Ä2

1− Ä2
C3³

2.

If ³ satisfies
(

1 +
³µ

2

)

(1− ³µ)2 +
3³2Ã2

1

n
< 1− ³µ, 0 < ³1 f ³ f ³2 for some 0 < ³1 < ³2,

Ä(M) < 1− 2³µ

3
, and M has 3 different positive eigenvalues,

(13)

then we have

E
[

∥x̄k+1 − x∗∥2
]

f (1− ³µ)E
[

∥x̄k − x∗∥2
]

+

(

2³

µ
+ 2³2

)

Ã̃2
1

n
E
[

∥Xk − x̄k1
¦∥2

]

+
³2

n
(3Ã2

1∥x∗∥2 + Ã2
2),

∥Xk+1 − x̄k+11
¦∥2 f (1 + Ä2)

2
∥Xk − x̄k1

¦∥2 + ³2 1 + Ä2

1− Ä2
∥Sk − s̄k1

¦∥2,

E

[∥Sk+1 − s̄k+11
¦∥2

n

]

f 1 + Ä2

1− Ä2
C1E

[

∥x̄k − x∗∥2
]

+
1 + Ä2

1− Ä2
C2E

[∥Xk − x̄k1
¦∥2

n

]

+

(

1 + Ä2

2
+

1 + Ä2

1− Ä2
C3³

2

)

E

[∥Sk − s̄k1
¦∥2

n

]

+
1 + Ä2

1− Ä2
C4.

(14)

Moreover, we set P such that M = P · diag(¼1, ¼2, ¼3)P
−1 with 0 < ¼3 < ¼2 < ¼1 being eigenvalues and each column of

P is a unit vector. Define CM := ∥P∥2∥P−1∥2, we have

max

(

1

n
E
[

∥Xk − x∗
1
¦∥2

]

,
1

n
E
[

∥Xk − x̄k1
¦∥2

]

)

f3CM

(

1− 2³µ

3

)k (

E
[

∥x̄0 − x∗∥2
]

+ E

[∥X0∥2 + ∥S0∥2
n

])

+
5CM∥c∥

³µ
, (15)

1

n
E
[

∥Xk∥2
]

f 6CM

(

1− 2³µ

3

)k (

E
[

∥x̄0 − x∗∥2
]

+ E

[∥X0∥2 + ∥S0∥2
n

])

+
10CM∥c∥

³µ
+ 2∥x∗∥2. (16)
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Proof of Lemma B.4. Note that by definition of Ã̃2
1 and Ã̃2

2 we have

E
[

∥Ai,k∥2
]

= E
[

∥Ai,k −Ai∥2
]

+ ∥Ai∥22 f Ã2
1 + L2 = Ã̃2

1 ,

E
[

∥bi,k∥2
]

= E
[

∥bi,k − bi∥2
]

+ ∥bi∥2 f Ã2
2 +max

i
∥bi∥2 = Ã̃2

2 .
(17)

By si,0 = vi,0 we know s̄0 = v̄0. From the recursion we know

s̄k+1 = s̄k + v̄k+1 − v̄k,

and hence s̄k = v̄k by induction. For x̄k we know

x̄k+1 − x∗

=x̄k − x∗ − ³

n

n
∑

i=1

(Ai,kxi,k − bi,k)

=x̄k − x∗ − ³

n

n
∑

i=1

(Aix̄k − bi) +
³

n

n
∑

i=1

(Aix̄k − bi)−
³

n

n
∑

i=1

(Ai,kxi,k − bi,k)

=

(

I − ³

n

n
∑

i=1

Ai

)

(x̄k − x∗) +
³

n

n
∑

i=1

Ai,k(x̄k − xi,k) +
³

n

n
∑

i=1

((Ai −Ai,k)x̄k + bi,k − bi).

Using the above equality, E [Ai,k] = Ai and E [bi,k] = bi, we know

E
[

∥x̄k+1 − x∗∥2
]

=E

[

∥
(

I − ³

n

n
∑

i=1

Ai

)

(x̄k − x∗) +
³

n

n
∑

i=1

Ai,k(x̄k − xi,k)∥2
]

+
³2

n2
E

[

∥
n
∑

i=1

((Ai −Ai,k)x̄k + bi,k − bi)∥2
]

+E

[

ï
(

I − ³

n

n
∑

i=1

Ai

)

(x̄k − x∗) +
³

n

n
∑

i=1

Ai,k(x̄k − xi,k),
³

n

n
∑

i=1

((Ai −Ai,k)x̄k + bi,k − bi)ð
]

f
(

1 +
³µ

2

)

(1− ³µ)2E
[

∥x̄k − x∗∥2
]

+

(

1 +
2

³µ

)

³2Ã̃2
1

n

n
∑

i=1

E
[

∥x̄k − xi,k∥2
]

+
³2

n2
(nÃ2

1E
[

∥x̄k∥2
]

+ nÃ2
2)

+
³2

2n2

n
∑

i=1

E
[

Ã2
1∥x̄k∥2 + Ã̃2

1∥x̄k − xi,k∥2
]

=
(

1 +
³µ

2

)

(1− ³µ)2E
[

∥x̄k − x∗∥2
]

+

(

2³

µ
+ ³2 +

³2

2n

)

Ã̃2
1

n
E
[

∥Xk − x̄k1
¦∥2

]

+
³2

n

(

3Ã2
1

2
E
[

∥x̄k∥2
]

+ Ã2
2

)

f
[

(

1 +
³µ

2

)

(1− ³µ)2 +
3³2Ã2

1

n

]

E
[

∥x̄k − x∗∥2
]

+

(

2³

µ
+ 2³2

)

Ã̃2
1

n
E
[

∥Xk − x̄k1
¦∥2

]

+
³2

n
(3Ã2

1∥x∗∥2 + Ã2
2)

f(1− ³µ)E
[

∥x̄k − x∗∥2
]

+

(

2³

µ
+ 2³2

)

Ã̃2
1

n
E
[

∥Xk − x̄k1
¦∥2

]

+
³2

n
(3Ã2

1∥x∗∥2 + Ã2
2).

The first inequality holds because we have

E

[

ï
(

I − ³

n

n
∑

i=1

Ai

)

(x̄k − x∗) +
³

n

n
∑

i=1

Ai,k(x̄k − xi,k),
³

n

n
∑

i=1

((Ai −Ai,k)x̄k + bi,k − bi)ð
]

=E

[

ï³
n

n
∑

i=1

Ai,k(x̄k − xi,k),
³

n

n
∑

i=1

((Ai −Ai,k)x̄k + bi,k − bi)ð
]

=E

[

ï³
n

n
∑

i=1

Ai,k(x̄k − xi,k),
³

n

n
∑

i=1

(Ai −Ai,k)x̄kð
]

=
³2

n2

n
∑

i=1

E
[

(x̄k − xi,k)
¦A¦

i,k(Ai −Ai,k)x̄k

]

f ³2

2n2

n
∑

i=1

E
[

Ã2
1∥x̄k∥2 + Ã̃2

1∥x̄k − xi,k∥2
]

,
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the second inequality uses ∥x̄k∥2 f 2∥x̄k − x∗∥2 + 2∥x∗∥2, and the third inequality uses (13). For ∥Xk+1 − x̄k+11
¦∥2

we know
∥Xk+1 − x̄k+11

¦∥2 = ∥XkW − x̄k1
¦ − ³(Sk − s̄k1

¦)∥2

f
(

1 +
1− Ä2

2Ä2

)

Ä2∥Xk − x̄k1
¦∥2 +

(

1 +
2Ä2

1− Ä2

)

³2∥Sk − s̄k1
¦∥2.

(18)

The inequality uses Cauchy-Schwarz inequality and the fact that

∥XkW − x̄k1
¦∥ = ∥

(

Xk − x̄k1
¦)
(

W − 11
¦

n

)

∥ = ∥
(

W − 11
¦

n

)

(

Xk − x̄k1
¦)¦ ∥

f∥W − 11
¦

n
∥2∥Xk − x̄k1

¦∥ f Ä∥Xk − x̄k1
¦∥,

where the last inequality uses Assumption 2.2. For ∥Sk − s̄k1
¦∥2 we know

∥Sk+1 − s̄k+11
¦∥2 = ∥SkW − s̄k1

¦ + Vk+1 − Vk − v̄k+11
¦ + v̄k1

¦∥2

f
(

1 +
1− Ä2

2Ä2

)

∥Sk − s̄k1
¦∥2 +

(

1 +
2Ä2

1− Ä2

)

∥ (Vk+1 − Vk)

(

I − 11
¦

n

)

∥2

=
1 + Ä2

2
∥Sk − s̄k1

¦∥2 + 1 + Ä2

1− Ä2
∥Vk+1 − Vk∥2.

(19)

For Vk+1 − Vk we have

E
[

∥Vk+1 − Vk∥2
]

=

n
∑

i=1

E
[

∥Ai,k+1(xi,k+1 − xi,k) + (Ai,k+1 −Ai +Ai −Ai,k)xi,k + (bi,k − bi + bi − bi,k+1)∥2
]

=

n
∑

i=1

E
[

∥Ai,k+1(xi,k+1 − xi,k) + (Ai,k+1 −Ai)xi,k∥2 + ∥(Ai −Ai,k)xi,k∥2 + ∥bi,k − bi∥2 + ∥bi − bi,k+1∥2
]

f
n
∑

i=1

E
[

2∥Ai,k+1(xi,k+1 − xi,k)∥2 + 2∥(Ai,k+1 −Ai)xi,k∥2 + ∥(Ai −Ai,k)xi,k∥2 + ∥bi,k − bi∥2 + ∥bi − bi,k+1∥2
]

f2Ã̃2
1E
[

∥Xk+1 −Xk∥2
]

+ 3Ã2
1E
[

∥Xk∥2
]

+ 2nÃ2
2 .

For ∥Xk+1 −Xk∥ we know

E
[

∥Xk+1 −Xk∥2
]

= E
[

∥XkW −Xk − ³SkW∥2
]

=E
[

∥
(

Xk − x̄k1
¦) (W − I)− ³(SkW − s̄k1

¦)− ³s̄k1
¦∥2

]

f3∥W − I∥22E
[

∥Xk − x̄k1
¦∥2

]

+ 3³2Ä2E
[

∥Sk − s̄k1
¦∥2

]

+ 3n³2
E
[

∥s̄k∥2
]

f6E
[

∥Xk − x̄k1
¦∥2

]

+ 3³2Ä2E
[

∥Sk − s̄k1
¦∥2

]

+ 3³2(
Ã2
1

n
E
[

∥Xk∥2
]

+ Ã2
2 + 2L2

E
[

∥Xk − x̄k1
¦∥2 + n∥x̄k − x∗∥2

]

)

=(6 + 6³2L2)E
[

∥Xk − x̄k1
¦∥2

]

+ 3³2Ä2E
[

∥Sk − s̄k1
¦∥2

]

+
3³2Ã2

1

n
E
[

∥Xk∥2
]

+ 3n³2
E
[

∥x̄k − x∗∥2
]

+ 3³2Ã2
2 ,

where the second inequality holds since

E
[

∥s̄k∥2
]

= E

[

∥ 1
n

n
∑

i=1

(Ai,kxi,k − bi,k)∥2
]

=E

[

∥ 1
n

n
∑

i=1

((Ai,k −Ai)xi,k − (bi,k − bi)) +
1

n

n
∑

i=1

(Aixi,k −Aix̄k) +
1

n

n
∑

i=1

Ai(x̄k − x∗)∥2
]

16
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=
1

n2

n
∑

i=1

E
[

∥(Ai,k −Ai)xi,k∥2 + ∥bi,k − bi∥2
]

+
1

n2
E

[

∥
n
∑

i=1

((Aixi,k −Aix̄k) +Ai(x̄k − x∗))∥2
]

fÃ2
1

n2
E
[

∥Xk∥2
]

+
Ã2
2

n
+

2L2

n
E
[

∥Xk − x̄k1
¦∥2 + n∥x̄k − x∗∥2

]

.

Hence we know

E
[

∥Vk+1 − Vk∥2
]

f 2Ã̃2
1E
[

∥Xk+1 −Xk∥2
]

+ 3Ã2
1E
[

∥Xk∥2
]

+ 2nÃ2
2

f2Ã̃2
1

{

(6 + 6³2L2)E
[

∥Xk − x̄k1
¦∥2

]

+ 3³2Ä2E
[

∥Sk − s̄k1
¦∥2

]

+ 3n³2
E
[

∥x̄k − x∗∥2
]}

+

(

3Ã2
1 +

6³2Ã2
1 Ã̃

2
1

n

)

E
[

∥Xk∥2
]

+ (2nÃ2
2 + 6³2Ã2

2 Ã̃
2
1)

fnC1E
[

∥x̄k − x∗∥2
]

+ C2E
[

∥Xk − x̄k1
¦∥2

]

+ ³2C3E
[

∥Sk − s̄k1
¦∥2

]

+ nC4,

where the second inequality uses

∥Xk∥2 f 3
[

∥Xk − x̄k1
¦∥2 + n∥x̄k − x∗∥2 + n∥x∗∥2

]

.

The above inequalities and (19) imply

1

n
E
[

∥Sk+1 − s̄k+11
¦∥2

]

f1 + Ä2

2n
∥Sk − s̄k1

¦∥2 + 1 + Ä2

1− Ä2

(

C1E
[

∥x̄k − x∗∥2
]

+ C2E

[∥Xk − x̄k1
¦∥2

n

]

+ ³2C3E

[∥Sk − s̄k1
¦∥2

n

]

+ C4

)

f1 + Ä2

1− Ä2
C1E

[

∥x̄k − x∗∥2
]

+
1 + Ä2

1− Ä2
C2E

[∥Xk − x̄k1
¦∥2

n

]

+

(

1 + Ä2

2
+

1 + Ä2

1− Ä2
C3³

2

)

E

[∥Sk − s̄k1
¦∥2

n

]

+
1 + Ä2

1− Ä2
C4.

(20)

Now if we define

Γk =

(

E
[

∥x̄k − x∗∥2
]

, E

[∥Xk − x̄k1
¦∥2

n

]

, E

[∥Sk − s̄k1
¦∥2

n

])¦

,

c =

(

³2

n
(3Ã2

1∥x∗∥2 + Ã2
2), 0,

(1 + Ä2)

1− Ä2
C4

)¦

, M =





M11 M12 0
0 M22 M23

M31 M32 M33



 ,

M11 = 1− ³µ, M12 =

(

2³

µ
+ 2³2

)

Ã̃2
1 , M22 =

1 + Ä2

2
, M23 = ³2 1 + Ä2

1− Ä2

M31 =
1 + Ä2

1− Ä2
C1, M32 =

1 + Ä2

1− Ä2
C2, M33 =

1 + Ä2

2
+

1 + Ä2

1− Ä2
C3³

2,

then by (14) we know Γi+1 f MΓi + c for any i, and thus

Γk+1 f MΓk + c f ... f Mk+1Γ0 +
k
∑

i=0

M ic,

where all the inequalities are element-wise. By (13) we know there exists an invertible matrix P ∈ R
3×3 such that

M = P · diag(¼1, ¼2, ¼3)P
−1, and 0 < ¼3 < ¼2 < ¼1 < 1− 2³µ

3 . Without loss of generality we may assume each column

of P (as an eigenvector) is a unit vector. Hence we know

∥Mk∥2 = ∥P · diag(¼k
1 , ¼

k
2 , ¼

k
3)P

−1∥2 f
(

1− 2³µ

3

)k

∥P∥2∥P−1∥2 = CM ·
(

1− 2³µ

3

)k

, (21)

where we define CM := ∥P∥2∥P−1∥2 in the last equality. Note that since we choose P such that each column is a unit

vector and M = P · diag(¼1, ¼2, ¼3)P
−1, P is uniquely determined and CM is a continuous function of ³ and other

17



Decentralized Stochastic Bilevel Optimization

constants (Ã1, Ã2, µ, L, maxi ∥bi∥, ∥x∗∥, n, Ä). On the other hand, observe that

∥
k
∑

i=0

M i∥2 = ∥
k
∑

i=0

P · diag(¼i
1, ¼

i
2, ¼

i
3)P

−1∥2 = ∥P · diag

(

k
∑

i=0

¼i
1,

k
∑

i=0

¼i
2,

k
∑

i=0

¼i
3

)

P−1∥2

f CM ·max
i

1

1− ¼i

<
3CM

2³µ
,

(22)

where the last inequality uses the upper bound of the eigenvalues. For (15) we have

max

(

1

n
E
[

∥Xk − x∗
1
¦∥2

]

,
1

n
E
[

∥Xk − x̄k1
¦∥2

]

)

f 2

n
E
[

∥Xk − x̄k1
¦∥2 + n∥x̄k − x∗∥2

]

f 2
√
2∥Γk∥

f2
√
2∥MkΓ0 +

k−1
∑

i=0

M ic∥ f 2
√
2(∥Mk∥2∥Γ0∥+ ∥

k−1
∑

i=1

M i∥2∥c∥)

f2
√
2CM

(

1− 2³µ

3

)k

∥Γ0∥+ 2
√
2 · 3CM

2³µ
∥c∥

f2
√
2CM

(

1− 2³µ

3

)k

(E
[

∥x̄0 − x∗∥2
]

+ E

[∥X0 − x̄01
¦∥2

n

]

+ E

[∥S0 − s̄01
¦∥2

n

]

) +
3
√
2CM∥c∥
³µ

f3CM

(

1− 2³µ

3

)k (

E
[

∥x̄0 − x∗∥2
]

+ E

[∥X0∥2 + ∥S0∥2
n

])

+
5CM∥c∥

³µ
,

where the fifth inequality uses (21) and (22), and the seventh inequality uses the fact that ∥X0 − x̄01
¦∥ =

∥X0

(

I − 11
¦

n

)

∥ f ∥X0∥ (same for S0). (16) can be viewed as a corollary of the above inequality by noticing that

1

n
E
[

∥Xk∥2
]

f 2

n
E
[

∥Xk − x∗
1
¦∥2 + n∥x∗∥2

]

f6CM

(

1− 2³µ

3

)k (

E
[

∥x̄0 − x∗∥2
]

+ E

[∥X0∥2 + ∥S0∥2
n

])

+
10CM∥c∥

³µ
+ 2∥x∗∥2.

Remark:

• Lemma B.4 characterizes convergence results of decentralized stochastic gradient descent with gradient tracking on

strongly convex quadratic functions. Moreover, it also indicates that the second moment of Xk can be bounded by

using (16), which will be used in proving the boundedness of second moment of Z
(k)
t of our HIGP oracle.

• If we consider the same updates under the deterministic setting, then Ã1 = Ã2 = 0 and thus ∥c∥ = 0 by definition,

which indicates the constant term in (15) vanishes (i.e., linear convergence). We will utilize this important observation

in the next lemma.

Lemma B.5. Suppose Assumptions 2.1, 2.2 and 2.4 hold. In Algorithm 1 define

C1 = 9Ã2
g,2 + 6µ2(Ã2

g,2 + L2
g,1) +

18µ2Ã2
g,2(Ã

2
g,2 + L2

g,1)

n
,

C2 = 12(Ã2
g,2 + L2

g,1) + 9Ã2
g,2 + 12µ2L2

g,1(Ã
2
g,2 + L2

g,1) +
18µ2Ã2

g,2(Ã
2
g,2 + L2

g,1)

n
,

C3 = 6Ä2(Ã2
g,2 + L2

g,1), C4 = 2Ã2
f +

6µ2Ã2
f (Ã

2
g,2 + L2

g,1)

n
+ (9Ã2

g,2 +
18µ2Ã2

g,2(Ã
2
g,2 + L2

g,1)

n
)∥x∗∥2,

c =

(

µ2

n

(

3Ã2
g,2

L2
f,0

µ2
g

+ Ã2
f

)

, 0,
(1 + Ä2)

1− Ä2
C4

)¦

, M =





M11 M12 0
0 M22 M23

M31 M32 M33



 ,

18
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M11 = 1− µµg, M12 =

(

2µ

µg

+ 2µ2

)

(Ã2
g,2 + L2

g,1), M22 =
1 + Ä2

2
, M23 = µ2 1 + Ä2

1− Ä2
,

M31 =
1 + Ä2

1− Ä2
C1, M32 =

1 + Ä2

1− Ä2
C2, M33 =

1 + Ä2

2
+

1 + Ä2

1− Ä2
C3µ

2.

Define M̃ to be matrix M and CM̃ to be CM when Ãg,2 = Ãf = 0. If µ satisfies

(

1 +
µµg

2

)

(1− µµg)
2 +

3µ2Ã2
g,2

n
< 1− µµg, 0 < µ1 f µ f µ2 for some 0 < µ1 < µ2,

max
(

Ä(M̃), Ä(M)
)

< 1− 2µµg

3
, both M and M̃have 3 different positive eigenvalues,

(23)

then for any 0 f t f N we have

E

[

∥z̄(k)t ∥2|Fk

]

f 1

n
E

[

∥Z(k)
t ∥2|Fk

]

f Ã2
z := 6CM

(

L2
f,0

µ2
g

+ Ã2
f + L2

f,0

)

+
10CM∥c∥

µµg

+
2L2

f,0

µ2
g

, (24)

1

n
∥E
[

Z
(k)
t − z̄

(k)
t 1

¦|Fk

]

∥2 f 3CM̃

(

1− 2µµg

3

)t
(

L2
f,0

µ2
g

+ L2
f,0

)

. (25)

Proof of Lemma B.5. Note that (24) is a direct results of Lemma B.4 by noticing that

z
(k)
i,t+1 =

n
∑

j=1

wijz
(k)
j,t − µd

(k)
i,t , Z

(k)
0 = 0,

d
(k)
i,t+1 =

n
∑

i=1

wijd
(k)
j,t + s

(k)
i,t+1 − s

(k)
i,t , s

(k)
i,t = H

(k)
i,t z

(k)
i,t − b

(k)
i,t ,

E

[

H
(k)
i,t |Fk

]

= ∇2
ygi(xi,k, y

(T )
i,k ), E

[

∥H(k)
i,t −∇2

ygi(xi,k, y
(T )
i,k )∥2|Fk

]

f Ã2
g,2,

E

[

b
(k)
i,t |Fk

]

= ∇yfi(xi,k, y
(T )
i,k ), E

[

∥b(k)i,t −∇yfi(xi,k, y
(T )
i,k )∥2|Fk

]

f Ã2
f ,

for any k g 0, 1 f i f n, and t g 0. Assumption 2.1 also indicates that

µgI ¯ ∇2
ygi(xi,k, y

(T )
i,k ) ¯ Lg,1I, ∥∇yfi(xi,k, y

(T )
i,k )∥ f Lf,0.

Hence we know by (16),

E

[

∥z̄(k)t ∥2|Fk

]

f 1

n
E

[

∥Z(k)
t ∥2|Fk

]

f 6CM

(

1− 2µµg

3

)k
(

L2
f,0

µ2
g

+ Ã2
f + L2

f,0

)

+
10CM∥c∥

µµg

+
2L2

f,0

µ2
g

f Ã2
z ,

which proves (24). To prove (25), we notice that in expectation, the updates can be written as

E

[

z
(k)
i,t+1|Fk

]

=

n
∑

j=1

wijE

[

z
(k)
j,t |Fk

]

− µE
[

d
(k)
i,t |Fk

]

, Z
(k)
0 = 0,

E

[

d
(k)
i,t+1|Fk

]

=
n
∑

i=1

wijE

[

d
(k)
j,t |Fk

]

+ E

[

s
(k)
i,t+1|Fk

]

− E

[

s
(k)
i,t |Fk

]

,

E

[

s
(k)
i,t |Fk

]

= ∇2
ygi(xi,k, y

(T )
i,k )E

[

z
(k)
i,t |Fk

]

−∇yfi(xi,k, y
(T )
i,k ).

The updates of E
[

z
(k)
i,t |Fk

]

can be viewed as a noiseless case (i.e., Ãg,2 = Ãf = 0) of Lemma B.4. Using this observation,

(15), and the definition of ∥c∥ and M̃ , we know (25) holds.

Now we provide a technical lemma that guarantees (13) and (23). For simplicity we can just consider (13).
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Lemma B.6. Let M be the matrix defined in Lemma B.4. There exist 0 < ³1 < ³2 such that ³ ∈ (³1, ³2) and

(

1 +
³µ

2

)

(1− ³µ)2 +
3³2Ã2

1

n
< 1− ³µ, (26)

Ä(M) < 1− 2³µ

3
, and M has 3 different positive eigenvalues. (27)

Proof of Lemma B.6. Note that (26) is equivalent to

µ3³2 +
6³Ã2

1

n
− µ < 0,

which implies any ³1, ³2 satisfying

0 < ³1 < ³2 <

√

9Ã4
1 + n2µ4 − 3Ã2

1

nµ3
(28)

will ensure (26). Next we consider (27). Define

φ(¼) := det(¼I −M) =

3
∏

i=1

(¼−Mii)−M23M32(¼−M11)−M12M23M31.

We know that a sufficient condition to guarantee (27) is

φ

(

1− 2³µ

3

)

> 0, φ(M11) < 0, φ(M22) > 0, φ(0) < 0, M11 > M22, (29)

since this implies 0 < M22 < M11 = 1− ³µ < 1− 2³µ
3 and

φ

(

1− 2³µ

3

)

· φ(M11) < 0, φ(M11) · φ(M22) < 0, φ(M22) · φ(0) < 0,

which together with continuity of φ indicate the roots of φ(¼) = 0 (i.e., the eigenvalues of M , denoted as ¼1, ¼2, ¼3 in

descending order) satisfy

0 < ¼3 < M22 < ¼2 < M11 < ¼1 < 1− 2³µ

3
.

The condition φ(M11) < 0 is automatically true by definition of φ and M , and for the rest of the conditions in (29) we have

φ

(

1− 2³µ

3

)

> 0

ô³ · φ1(³) :=
³µ

3

[

(

1− Ä2

2
− 2³µ

3

)(

1− Ä2

2
− 2³µ

3
− 1 + Ä2

1− Ä2
C3³

2

)

−
(

1 + Ä2

1− Ä2

)2

C2³
2

]

−
(

1 + Ä2

1− Ä2

)2

C1³
2

(

2³

µ
+ 2³2

)

Ã̃2
1 > 0,

φ(M22) > 0 ô M23((M11 −M22)M32 −M12M31) > 0 ô (M11 −M22)M32 −M12M31 > 0

ôφ2(³) :=

(

1− Ä2

2
− ³µ

)

1 + Ä2

1− Ä2
C2 −

1 + Ä2

1− Ä2
C1

(

2³

µ
+ 2³2

)

Ã̃2
1 > 0, (by definition of C2, C2 > 0 when ³ = 0)

φ(0) < 0 ô −M11(M22M33 −M23M32)−M12M23M31 < 0 ⇐ M22M33 −M23M32 > 0

ôφ3(³) :=
1 + Ä2

2

(

1 + Ä2

2
+

1 + Ä2

1− Ä2
C3³

2

)

−
(

1 + Ä2

1− Ä2

)2

C2³
2 > 0,

M11 > M22 ô ³ <
1− Ä2

2µ
.

Hence a sufficient condition for (29) is

φ1(³) > 0, φ2(³) > 0, φ3(³) > 0, ³ <
1− Ä2

2µ
.
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Given the expressions of φi(³) above, we know they satisfy φi(0) > 0. Hence we can define ´ to be the minimum positive

constant such that φ1(´)φ2(´)φ3(´) = 0, and

³2 = min

(

√

9Ã4
1 + n2µ4 − 3Ã2

1

nµ3
,
1− Ä2

2µ
, ´

)

, ³1 = any constant in (0, ³2),

which implies that for any ³ ∈ (³1, ³2), we always have

φ1(³) > 0, φ2(³) > 0, φ3(³) > 0, ³ <

√

9Ã4
1 + n2µ4 − 3Ã2

1

nµ3
, ³ <

1− Ä2

2µ
,

because of the definition of ´, and φi(0) = 0 for all 1 f i f 3. (28). The above expression implies (28) and (29), and

hence (26) and (27) are satisfied.

Remark:

• One can follow the proof of Corollary 1 in Pu & Nedić (2021) to obtain an explicit dependence between ³1, ³2 and

other parameters, which is purely technical and we omit it in this lemma.

• Define ³̃2 to be the constant ³2 when Ã1 = Ã2 = 0 in the above lemma. We can check that the proof is still valid and

thus for any ³ ∈ (min(³2,³̃2)
2 ,min (³2, ³̃2)) we have

(

1 +
³µ

2

)

(1− ³µ)2 +
3³2Ã2

1

n
< 1− ³µ,

max
(

Ä(M̃), Ä(M)
)

< 1− 2³µ

3
, both M and M̃ have 3 different positive eigenvalues,

and thus the existence of µ1 and µ2 in (23) is also guaranteed.

Using Lemma B.5 we could directly bound ∥Xk − x̄k1
¦∥2 and ∥Y (t+1)

k − ȳ
(t+1)
k 1

¦∥2.

Lemma B.7. Suppose Assumptions 2.1, 2.2, 2.3, and 2.4 hold. Define

Ã2
u = 2(L2

f,0 + Ã2
f ) + 2(L2

g,1 + Ã2
g,2)Ã

2
z , Ã

2
x =

1 + Ä2

1− Ä2
· Ã2

u, ³̃
2
k+1 =

k
∑

i=0

³2
i

(

1 + Ä2

2

)k−i

,

˜́2
k+1 =

1 + Ä2

1− Ä2

k
∑

i=0

´2
i (2Ã

2
g,1 + 6L2

g,1Ã
2
x³̃

2
i + 3¶2)

(

3 + Ä2

4

)k−i

, ³̃0 = ˜́
0 = 0.

If ´k satisfy

(1 + Ä2)

2
+ ´2

k

1 + Ä2

1− Ä2
· 6L2

g,1 f 3 + Ä2

4
< 1, (30)

then in Algorithm 3, for any k g 0 and 0 f t f T − 1 we have

E
[

∥Uk∥2
]

f nÃ2
u, E

[

∥Xk − x̄k1
¦∥2

]

f nÃ2
x³̃

2
k,

1

n
E

[

∥Y (t)
k − ȳ

(t)
k 1

¦∥2
]

f
[

(

3 + Ä2

4

)t

T − t

(

3 + Ä2

4

)

]

˜́2
k + t ˜́2k+1.

(31)

Proof of Lemma B.7. Note that the inner and outer loop updates satisfy

x̄k+1 = x̄k − ³kr̄k, Xk+1 − x̄k+11
¦ = XkW − x̄k1

¦ − ³k(Rk − r̄k1
¦),

ȳ
(t+1)
k = ȳ

(t)
k − ´kv̄

(t)
k , Y

(t+1)
k − ȳ

(t+1)
k = Y

(t)
k W − ȳ

(t)
k 1

¦ − ´k(V
(t)
k − v̄

(t)
k 1

¦),
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which gives

∥Xk+1 − x̄k+11
¦∥2 f (1 + Ä2)

2
∥Xk − x̄k1

¦∥2 + ³2
k

1 + Ä2

1− Ä2
∥Rk − r̄k1

¦∥2, (32)

∥Y (t+1)
k − ȳ

(t+1)
k 1

¦∥2 f (1 + Ä2)

2
∥Y (t)

k − ȳ
(t)
k 1

¦∥2 + ´2
k

1 + Ä2

1− Ä2
∥V (t)

k − v̄
(t)
k 1

¦∥2. (33)

The inequalities hold similarly as the inequality in (18). Notice that we have

∥Rk − r̄k1
¦∥ = ∥Rk

(

I − 11
¦

n

)

∥ = ∥ [(1− ³k)Rk−1 + ³kUk−1]

(

I − 11
¦

n

)

∥

fmax

(

∥Rk−1

(

I − 11
¦

n

)

∥, ∥Uk−1

(

I − 11
¦

n

)

∥
)

f max
0fifk−1

(

∥Ui

(

I − 11
¦

n

)

∥
)

.

The second inequality holds by repeating the first inequality multiple times. For each ∥Uk − ūk1
¦∥ we have

E
[

∥Uk − ūk1
¦∥2

]

= E

[

∥Uk

(

I − 11
¦

n

)

∥2
]

f E
[

∥Uk∥2
]

=

n
∑

i=1

E
[

∥ui,k∥2
]

f2

n
∑

i=1

(

E

[

∥∇xfi(xi,k, y
(T )
i,k ;ϕi,0)∥2

]

+ E

[

∥∇2
xygi(xi,k, y

(T )
i,k ; Ài,0)z

(k)
i,N∥2

])

f2

n
∑

i=1

(

L2
f,0 + Ã2

f + (L2
g,1 + Ã2

g,2)E
[

∥z(k)i,N∥2
])

f 2n(L2
f,0 + Ã2

f ) + 2n(L2
g,1 + Ã2

g,2)Ã
2
z = nÃ2

u.

The fourth inequality uses (24). Using the above two inequaities in (32) we know

∥Xk+1 − x̄k+11
¦∥2 f (1 + Ä2)

2
∥Xk − x̄k1

¦∥2 + n³2
kÃ

2
x.

Using Lemma B.2 and X0 = 0, we can obtain the first two results of (31). To analyze ∥V (t)
k − v̄

(t)
k 1

¦∥, we first notice that

v
(t)
i,k − v̄

(t)
k = v

(t)
i,k −∇ygi(xi,k, y

(t)
i,k)− (v̄

(t)
k − 1

n

n
∑

l=1

∇ygl(xl,k, y
(t)
l,k)) +∇ygi(xi,k, y

(t)
i,k)−∇ygi(x̄k, ȳ

(t)
k )

− 1

n

n
∑

l=1

(∇ygl(xl,k, y
(t)
l,k)−∇ygl(x̄k, ȳ

(t)
k )) +∇ygi(x̄k, ȳ

(t)
k )− 1

n

n
∑

l=1

∇ygl(x̄k, ȳ
(t)
k ).

Hence we know

E

[

∥V (t)
k − v̄

(t)
k 1

¦∥2
]

=

n
∑

i=1

E

[

∥v(t)i,k − v̄
(t)
k ∥2

]

f(n+ 1)Ã2
g,1 + 3

n
∑

i=1

E

[

L2
g,1(∥xi,k − x̄k∥2 + ∥y(t)i,k − ȳ

(t)
k ∥2) +

L2
g,1

n

n
∑

l=1

(∥xl,k − x̄k∥2 + ∥y(t)l,k − ȳ
(t)
k ∥2) + ¶2

]

=(n+ 1)Ã2
g,1 + 6L2

g,1E

[

∥Xk − x̄k1
¦∥2 + ∥Yk − ȳ

(t)
k 1

¦∥2
]

+ 3n¶2

f6L2
g,1E

[

∥Y (t)
k − ȳ

(t)
k 1

¦∥2
]

+ 2nÃ2
g,1 + 6nL2

g,1Ã
2
x³̃

2
k + 3n¶2,
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where the second inequality uses the first result of (31). The above inequality together with (33) imply

1

n
E

[

∥Y (t+1)
k − ȳ

(t+1)
k 1

¦∥2
]

f
[

(1 + Ä2)

2
+ ´2

k

1 + Ä2

1− Ä2
· 6L2

g,1

]

· 1
n
E

[

∥Y (t)
k − ȳ

(t)
k 1

¦∥2
]

+ ´2
k

1 + Ä2

1− Ä2
(2Ã2

g,1 + 6L2
g,1Ã

2
x³̃

2
k + 3¶2)

f
(

3 + Ä2

4

)t+1

· 1
n
E

[

∥Y (0)
k − ȳ

(0)
k 1

¦∥2
]

+ ´2
k

1 + Ä2

1− Ä2
(2Ã2

g,1 + 6L2
g,1Ã

2
x³̃

2
k + 3¶2)

t
∑

l=0

(

3 + Ä2

4

)i

f
(

3 + Ä2

4

)t+1

· 1
n
E

[

∥Y (0)
k − ȳ

(0)
k 1

¦∥2
]

+ (t+ 1)´2
k

1 + Ä2

1− Ä2
(2Ã2

g,1 + 6L2
g,1Ã

2
x³̃

2
k + 3¶2),

(34)

where the second inequality uses Lemma B.2 and (30). Notice that we use warm-start strategy (i.e., Y
(0)
k+1 = Y

(T )
k ), hence

we know

1

n
E

[

∥Y (0)
k+1 − ȳ

(0)
k+11

¦∥2
]

=
1

n
E

[

∥Y (T )
k − ȳ

(T )
k 1

¦∥2
]

f
(

3 + Ä2

4

)T

· 1
n
E

[

∥Y (0)
k − ȳ

(0)
k 1

¦∥2
]

+ T´2
k

1 + Ä2

1− Ä2
(2Ã2

g,1 + 6L2
g,1Ã

2
x³̃

2
k + 3¶2)

fT
1 + Ä2

1− Ä2

k
∑

i=0

´2
i (2Ã

2
g,1 + 6L2

g,1Ã
2
x³̃

2
i + 3¶2)

(

3 + Ä2

4

)k−i

= T ˜́2
k+1,

where the second inequality uses Lemma B.2. Using the above estimation in (34), we know

1

n
E

[

∥Y (t+1)
k − ȳ

(t+1)
k 1

¦∥2
]

f
(

3 + Ä2

4

)t+1

· 1
n
E

[

∥Y (0)
k − ȳ

(0)
k 1

¦∥2
]

+ (t+ 1)´2
k

1 + Ä2

1− Ä2
(2Ã2

g,1 + 6L2
g,1Ã

2
x³̃

2
k + 3¶2)

f
(

3 + Ä2

4

)t+1

T ˜́2
k + (t+ 1)

(

˜́2
k+1 −

(

3 + Ä2

4

)

˜́2
k

)

,

and thus the proof is complete by rearranging the terms.

Now we are ready to analyze the convergence of the inner loop of Algorithm 3.

Lemma B.8. Suppose Assumptions 2.1 and 2.4 hold. For any 0 f t f T − 1 define

Ck,t+1 =

t
∑

l=0

[

(

´k

µg

+ ´2
k

)

L2
g,1

(

Ã2
x³̃

2
k +

[

(

3 + Ä2

4

)l

T − l

(

3 + Ä2

4

)

]

˜́2
k + l ˜́2k+1

)

+
´2
kÃ

2
g,1

n

]

. (35)

If T g 1 and 0 < ´k f min{1, 1
µg

}, then in Algorithm 3, we have

µg

2

K
∑

k=1

´kE

[

∥ȳ(0)k − y∗k−1∥2
]

f E

[

∥ȳ(0)1 − y∗0∥2
]

+ L2
y∗

K
∑

k=1

(

2³2
k−1

´kµg

+ ³2
k−1

)

E
[

∥r̄k−1∥2
]

+

K
∑

k=1

Ck,T , (36)

where y∗k = y∗(x̄k) = argminy
∑n

i=1 gi(x̄k, y)

Proof of Lemma B.8. For any k g 0, 1 f t f T − 1, define

G(k)
t = Ã

(

n
⋃

i=1

{y(T )
i,0 , ..., y

(T )
i,k−1, y

(t)
i,k, xi,0, ..., xi,k, ri,0, ..., ri,k}

)

.
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We know

E

[

∥ȳ(t+1)
k − y∗k∥2|Gt

]

=E

[

∥ȳ(t)k − ´k∇yg(x̄k, ȳ
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(
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(t)
k − E

[
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(t)
k |Gt

])
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]
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(
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]
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k )
)
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]

+
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2
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n
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(
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1

´kµg

)
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[
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]
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(t)
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]

+
´2
kÃ

2
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n
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2∥ȳ(t)k − y∗k∥2 +

(

´k

µg
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k

)

∥ 1
n

n
∑

i=1

(

∇ygi(xi,k, y
(t)
i,k)−∇ygi(x̄k, ȳ

(t)
k )
)

∥2 +
´2
kÃ

2
g,1

n

f(1− ´kµg)∥ȳ(t)k − y∗k∥2 +

(

´k

µg
+ ´2

k

)

L2
g,1

n

(

∥Xk − x̄k1
¦∥2 + ∥Y (t)

k − ȳ
(t)
k 1

¦∥2
)

+
´2
kÃ

2
g,1

n
,

(37)

where the second equality holds since v̄
(t)
k − E

[

v̄
(t)
k |Gt

]

has expectation 0 and

E

[

∥v̄(t)k − E

[

v̄
(t)
k |Gt

]

∥2|Gt

]

= E

[

∥ 1
n

n
∑

i=1

(

v
(t)
i,k − E

[

v
(t)
i,k|Gt

])

∥2|Gt

]

f
Ã2
g,1

n
,

due to independence, the second inequality holds due to Lemma B.3 and ´k f 1, and the third inequality holds due to

Lipschitz continuity of ∇yg. Taking expectation on both sides and using (31) we know

E

[

∥ȳ(t+1)
k − y∗k∥2

]

f(1− ´kµg)E
[

∥ȳ(t)k − y∗k∥2
]

+

(

´k

µg

+ ´2
k

)

L2
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(
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x³̃

2
k +

[

(

3 + Ä2

4

)t
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(

3 + Ä2

4

)

]
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k + t ˜́2k+1

)

+
´2
kÃ

2
g,1

n

f(1− ´kµg)
t+1

E

[

∥ȳ(0)k − y∗k∥2
]

+ Ck,t+1,

where the second inequality uses Lemma B.2. Observe that we also have

E

[

∥ȳ(0)k+1 − y∗k∥2
]

= E

[

∥ȳ(T )
k − y∗k∥2

]

f (1− ´kµg)
T
E

[
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]
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E

[(
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2
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(

1 +
2
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)
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]
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f
(

1 +
´kµg

2

)
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T
E

[
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+

(
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k−1
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k−1

)

L2
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[

∥r̄k−1∥2
]

+ Ck,T ,

(38)

where the third inequality holds since (1 + a
2 )(1− a)T f (1− a

2 ) for any a > 0 and T g 1, and y∗(x) is Ly∗ -smooth. This

implies

´kµg

2
E

[

∥ȳ(0)k − y∗k−1∥2
]

f E

[
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[
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Taking summation on both sides, we have
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2
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[
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K
∑

k=1

(

2³2
k−1

´kµg

+ ³2
k−1

)

E
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Lemma B.9. Suppose Assumptions 2.1, 2.2, 2.3, and 2.4 hold. In Algorithm 1 define

H(k) :=
1

n

n
∑

i=1

∇2
ygi(x̄k, y

∗
k), b

(k) :=
1

n
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∑
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∇yfi(x̄k, y
∗
k),

z
(k)
∗ :=

(

H(k)
)−1

· b(k) =
(

n
∑

i=1
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∗
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,

If µ satisfies (23), then we have

E
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]
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(
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Proof of Lemma B.9. Define

żt,k := E

[
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t |Fk

]

, ṡt,k := E

[
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.

We know
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∗ = żt+1,k − z

(k)
∗ = E
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(
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where the second inequality uses Lemma B.3. For ṡt,k −
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we have
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H(k)żt,k − b(k)
)

∥2

=
1

n2
∥

n
∑

i=1

(

∇2
ygi(xi,k, y

(T )
i,k )E

[

z
(k)
i,t |Fk

]

−∇2
ygi(x̄k, y

∗
k)E

[

z̄
(k)
t |Fk

]

+∇yfi(x̄k, y
∗
k)−∇yfi(xi,k, y

(T )
i,k )

)

∥2

=
1

n2
∥

n
∑

i=1

[

∇2
ygi(xi,k, y

(T )
i,k )E

[

z
(k)
i,t − z̄

(k)
t |Fk

]

−
(

∇2
ygi(xi,k, y

(T )
i,k )−∇2

ygi(x̄k, ȳ
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żt,k +∇yfi(x̄k, y
∗
k)−∇yfi(x̄k, ȳ
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=
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The above inequality and (40) imply
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∥żN−1,k − z
(k)
∗ ∥2

]

+

(

µ

µg

+ µ2

)

E

[
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where the second inequality uses Lemma B.2, the third inequality uses (25), and the fourth inequality holds since

N−1−t
∑

t=0

(

1− µµg

2

)N−1−t
(

1− 2µµg

3

)t

=

(

1− 2µµg

3

)N−1 N−1
∑

t=0

1− 2µµg

3

1− µµg

2

<

(

1− 2µµg

3

)N−1

· 6

µµg

.

Lemma B.10. If 0 < ´k f 1 and ³k > 0 for any k g 0, then the parameters ³̃k, ˜́
k, and Ck,T defined in Lemmas B.7 and

B.8 satisfy

K
∑

k=0

³̃2
k f 2

1− Ä2

K−1
∑

i=0

³2
i = O

(

K
∑

k=0

³2
k

)

K
∑

k=0

˜́2
k+1 f 4(1 + Ä2)

(1− Ä2)2

[

(

10Ã2
g,1 + 5¶2

)

K
∑

i=0

´2
i +

20L2
g,1Ã

2
x

1− Ä2

K−1
∑

i=0

³2
i

]

= O
(

K
∑

k=0

(³2
k + ´2

k)

)

K
∑

k=1

Ck,T f
(

1

µg

+ 1

)

L2
g,1

[

TÃ2
x

K
∑

k=1

³̃2
k + 2T 2

K
∑

k=0

˜́2
k+1

]

+
TÃ2

g,1

n

K
∑

k=1

´2
k = O

(

K
∑

k=0

(³2
k + ´2

k)

)

.

Proof of Lemma B.10. The first inequality holds due to ³̃0 = 0 and

K−1
∑

k=0

³̃2
k+1 =

K−1
∑

k=0

k
∑

i=0

³2
i

(

1 + Ä2

2

)k−i

=

K−1
∑

i=0

K−1
∑

k=i

³2
i

(

1 + Ä2

2

)k−i

f 2

1− Ä2

K−1
∑

i=0

³2
i .

Similarly, we have

K
∑

k=0

˜́2
k+1 =

1 + Ä2

1− Ä2

K
∑

k=0

k
∑

i=0

´2
i (10Ã

2
g,1 + 10L2

g,1Ã
2
x³̃

2
i + 5¶2)

(

3 + Ä2

4

)k−i
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f4(1 + Ä2)

(1− Ä2)2

K
∑

i=0

´2
i (10Ã

2
g,1 + 10L2

g,1Ã
2
x³̃

2
i + 5¶2) f 4(1 + Ä2)

(1− Ä2)2

[

(10Ã2
g,1 + 5¶2)

K
∑

i=0

´2
i +

20L2
g,1Ã

2
x

1− Ä2

K−1
∑

i=0

³2
i

]

.

Lastly, we know

K
∑

k=1

Ck,T =
K
∑

k=1

T−1
∑

l=0

[

(

´k

µg

+ ´2
k

)

L2
g,1

(

Ã2
x³̃

2
k +

[

(

3 + Ä2

4

)l

T − l

(

3 + Ä2

4

)

]

˜́2
k + l ˜́2k+1

)

+
´2
kÃ

2
g,1

n

]

f
K
∑

k=1

(

´k

µg

+ ´2
k

)

L2
g,1

(

TÃ2
x³̃

2
k + T 2 ˜́2

k + T 2 ˜́2
k+1

)

+

K
∑

k=1

T
´2
kÃ

2
g,1

n

f
(

1

µg

+ 1

)

L2
g,1

[

TÃ2
x

K
∑

k=1

³̃2
k + 2T 2

K
∑

k=0

˜́2
k+1

]

+
TÃ2

g,1

n

K
∑

k=1

´2
k,

where the last inequality uses 0 < ´k f 1.

Now we are ready to give the proof of Theorem 3.3.

Lemma B.11. Suppose Assumptions 2.1, 2.2, 2.3, and 2.4 hold. For Algorithm 3 we have

K
∑

k=0

(

³k

2
− LΦ³

2
k

2

)

E
[

∥r̄k∥2
]

f 1

2

K
∑

k=0

³kE
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

+2Ã2
u

K
∑

k=0

³2
k +Φ(0)− inf

x
Φ(x)+

1

2
E
[

∥r̄0∥2
]

.

(42)

Proof of Lemma B.11. The LΦ-smoothness of Φ indicates that

Φ(x̄k+1)− Φ(x̄k) f ∇Φ(x̄k)
¦(−³kr̄k) +

LΦ³
2
k

2
∥r̄k∥2. (43)

Notice that we also have

1

2
E
[

∥r̄k+1∥2|Fk

]

− 1

2
∥r̄k∥2 = −³k∥r̄k∥2 + ³kE [ūk|Fk]

¦
r̄k +

1

2
E
[

∥r̄k+1 − r̄k∥2|Fk

]

. (44)

Hence we know

Φ(x̄k+1)− Φ(x̄k) +
1

2
E
[

∥r̄k+1∥2|Fk

]

− 1

2
∥r̄k∥2

f³k(E [ūk|Fk]−∇Φ(x̄k))
¦r̄k + (

LΦ³
2
k

2
− ³k)∥r̄k∥2 +

1

2
E
[

∥r̄k+1 − r̄k∥2|Fk

]

f³k

2

(

∥E [ūk|Fk]−∇Φ(x̄k)∥2 + ∥r̄k∥2
)

+ (
LΦ³

2
k

2
− ³k)∥r̄k∥2 +

1

2
E
[

∥r̄k+1 − r̄k∥2|Fk

]

,

which implies

(

³k

2
− LΦ³

2
k

2

)

E
[

∥r̄k∥2
]

f³k

2
E
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

+
1

2
E
[

∥r̄k+1 − r̄k∥2
]

+ E [Φ(x̄k)− Φ(x̄k+1)] +
1

2
E
[

∥r̄k∥2
]

− 1

2
E
[

∥r̄k+1∥2
]

f³k

2
E
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

+ 2³2
kÃ

2
u + E [Φ(x̄k)− Φ(x̄k+1)] +

1

2
E
[

∥r̄k∥2
]

− 1

2
E
[

∥r̄k+1∥2
]

,

(45)

where the second inequality holds since we know

E
[

∥r̄k∥2
]

f max
(

E
[

∥r̄k−1∥2
]

,E
[

∥ūk∥2
])

f max
0fifk

E
[

∥ūi∥2
]

f Ã2
u,

E
[

∥r̄k+1 − r̄k∥2
]

= ³2
kE
[

∥r̄k − ūk∥2
]

f 2³2
kE
[

∥r̄k∥2 + ∥ūk∥2
]

f 4Ã2
u.

In these two conclusions E
[

∥ūi∥2
]

f Ã2
u is due to the first inequality in (31). Taking summation on both sides of (45), we

have (42).
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Lemma B.12. For Algorithm 3 we have

K
∑

k=0

³kE
[

∥r̄k −∇Φ(x̄k)∥2
]

f E
[

∥r̄0 −∇Φ(0)∥2
]

+ 2

K
∑

k=0

³kE
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

+

2

K
∑

k=0

³kE
[

∥r̄k∥2
]

+ Ã2
u

K
∑

k=0

³2
k.

(46)

Proof of Lemma B.12. Recall that in Algorithm 3 we know

r̄k+1 = (1− ³k)r̄k + ³kūk,

which implies

∥r̄k+1 −∇Φ(x̄k+1)∥
=∥(1− ³k)(r̄k −∇Φ(x̄k)) + ³k(E [ūk|Fk]−∇Φ(x̄k)) +∇Φ(x̄k)−∇Φ(x̄k+1) + ³k(ūk − E [ūk|Fk])∥.

Hence we know

E
[

∥r̄k+1 −∇Φ(x̄k+1)∥2
]

=E
[

∥(1− ³k)(r̄k −∇Φ(x̄k)) + ³k(E [ūk|Fk]−∇Φ(x̄k)) +∇Φ(x̄k)−∇Φ(x̄k+1)∥2
]

+ ³2
kE
[

∥ūk − E [ūk|Fk] ∥2
]

f(1− ³k)E
[

∥r̄k −∇Φ(x̄k)∥2
]

+ ³kE

[

∥E [ūk|Fk]−∇Φ(x̄k) +
1

³k

(∇Φ(x̄k)−∇Φ(x̄k+1)∥2
]

+ ³2
kÃ

2
u

f(1− ³k)E
[

∥r̄k −∇Φ(x̄k)∥2
]

+ 2³kE
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2 + ∥r̄k∥2
]

+ ³2
kÃ

2
u.

Taking summation on both sides, we obtain (46).

The next lemma characterizes ∥∇Φ(x̄k)− E [ūk|Fk] ∥2, which together with previous lemmas prove Theorem 3.3.

Lemma B.13. In Algorithm 3 if we define

³k =
µ4
g

3L2
g,1Cy

· ´k ≡ 1√
K

, µ such that (23) holds, N = Θ(logK), T g 1,

Cy = 5

(

L2
f,1 +

L2
g,2L

2
f,0

µ2
g

)

+ 50L2
g,1

(

1

µ2
g

+
µ

µg

)

(

L2
g,2Ã

2
z + L2

f,1

)

.

we have

K
∑

k=0

³k∥E [ūk|Fk]−∇Φ(x̄k)∥2 = Cy

K
∑

k=0

³k∥ȳ(T )
k − y∗k∥2 +O

(

1 +
(

1− µµg

2

)N
K
∑

k=0

³k

)

,

1

K

K
∑

k=0

E
[

∥∇Φ(x̄k)∥2
]

= O
(

1√
K

)

.

Proof of Lemma B.13. Notice that we have

E [ūk|Fk] =
1

n

n
∑

i=1

∇xfi(xi,k, y
(T )
i,k )− 1

n

n
∑

i=1

∇2
xygi(xi,k, y

(T )
i,k )E

[

z
(k)
i,N |Fk

]

,

∇Φ(x̄k) =
1

n

n
∑

i=1

∇xfi(x̄k, y
∗
k)−

(

1

n

n
∑

i=1

∇2
xygi(x̄k, y

∗
k)

)(

1

n

n
∑

i=1

∇2
ygi(x̄k, y

∗
k)

)−1(

1

n

n
∑

i=1

∇yfi(x̄k, y
∗
k)

)

,

=
1

n

n
∑

i=1

∇xfi(x̄k, y
∗
k)−

1

n

(

n
∑

i=1

∇2
xygi(x̄k, y

∗
k)

)(

n
∑

i=1

∇2
ygi(x̄k, y

∗
k)

)−1( n
∑

i=1

∇yfi(x̄k, y
∗
k)

)
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=
1

n

n
∑

i=1

∇xfi(x̄k, y
∗
k)−

1

n

(

n
∑

i=1

∇2
xygi(x̄k, y

∗
k)

)

z
(k)
∗ .

Hence we know

∥E [ūk|Fk]−∇Φ(x̄k)∥

=
1

n

n
∑

i=1

(

∥∇xfi(xi,k, y
(T )
i,k )−∇xfi(x̄k, ȳ

(T )
k )∥+ ∥∇xfi(x̄k, ȳ

(T )
k )−∇xfi(x̄k, y

∗
k)∥
)

+
1

n

n
∑

i=1

(

∥∇2
xygi(xi,k, y

(T )
i,k )

(

E

[

z
(k)
i,N |Fk

]

− z
(k)
∗

)

∥+ ∥
(

∇2
xygi(xi,k, y

(T )
i,k )−∇2

xygi(x̄k, ȳ
(T )
k )

)

z
(k)
∗ ∥

)

+
1

n

n
∑

i=1

∥
(

∇2
xygi(x̄k, ȳ

(T )
k )−∇2

xygi(x̄k, y
∗
k)
)

z
(k)
∗ ∥,

which implies

∥E [ūk|Fk]−∇Φ(x̄k)∥2

f 5

n

n
∑

i=1

[

L2
f,1

(

∥xi,k − x̄k∥2 + ∥y(T )
i,k − ȳ

(T )
k ∥2 + ∥ȳ(T )

k − y∗k∥2
)

+ L2
g,1∥E

[

z
(k)
i,N |Fk

]

− z
(k)
∗ ∥2

]

+
5

n

n
∑

i=1

[

L2
g,2L

2
f,0

µ2
g

(

∥xi,k − x̄k∥2 + ∥y(T )
i,k − ȳ

(T )
k ∥2 + ∥ȳ(T )

k − y∗k∥2
)

]

f5

(

L2
f,1 +

L2
g,2L

2
f,0

µ2
g

)

· 1
n

(

∥Xk − x̄k1
¦∥2 + ∥Y (T )

k − ȳ
(T )
k 1

¦∥2 + n∥ȳ(T )
k − y∗k∥2

)

+10L2
g,1 ·

1

n

(

∥E
[

Z
(k)
N − z̄

(k)
N 1

¦|Fk

]

∥2
)

+ 10L2
g,1∥E

[

z̄
(k)
N |Fk

]

− z
(k)
∗ ∥2

f
[

5

(

L2
f,1 +

L2
g,2L

2
f,0

µ2
g

)

+ 50L2
g,1

(

1

µ2
g

+
µ

µg

)

(

L2
g,2Ã

2
z + L2

f,1

)

]

·
(

∥ȳ(T )
k − y∗k∥2 + Ã2

x³̃
2
k + T ˜́2

k+1

)

+30L2
g,1

(

1− µµg

2

)N
(

L2
f,0

µ2
g

+ L2
f,0

)

+10L2
g,1

[

(1− µµg)
N ·

L2
f,0

µ2
g

+ 90CM̃L2
g,1

(

1

µ2
g

+
µ

µg

)

(

L2
f,0

µ2
g

+ L2
f,0

)

(

1− 2µµg

3

)N−1
]

,

where the third inequality uses (31), (25) and (39). Taking summation on both sides, we have

K
∑

k=0

³k∥E [ūk|Fk]−∇Φ(x̄k)∥2 = Cy

K
∑

k=0

³k∥ȳ(T )
k − y∗k∥2 +O

(

K
∑

k=0

³k(³̃
2
k + ˜́2

k) +
(

1− µµg

2

)N−1 K
∑

k=0

³k

)

. (47)

Setting for all k that

³k = C³,´ · ´k ≡ 1√
K

, C³,´ =
µg

2
√

3CyLy∗

,

and using (36) and Lemma B.10, we know

1√
K

K
∑

k=0

E
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

= CyC³,´

K
∑

k=0

´k∥ȳ(T )
k − y∗k∥2 +O

(

1√
K

+
√
K
(

1− µµg

2

)N−1
)

=CyC³,´L
2
y∗

K
∑

k=0

(

4C³,´√
Kµ2

g

+
2

Kµg

)

E
[

∥r̄k∥2
]

+O
(

1 +
√
K
(

1− µµg

2

)N−1
)

=
K
∑

k=1

(

1

3
√
K

+
2CyC³,´L

2
y∗

Kµg

)

E
[

∥r̄k∥2
]

+O
(

1 +
√
K
(

1− µµg

2

)N−1
)

,

(48)
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which together with (42) and (12) imply

(

1

2
√
K

− LΦ

2K

) K
∑

k=0

E
[

∥r̄k∥2
]

f 1

2
√
K

K
∑

k=0

E
[

∥E [ūk|Fk]−∇Φ(x̄k)∥2
]

+ 2Ã2
u

K
∑

k=0

1

K
+Φ(0)− inf

x
Φ(x) +

1

2
E
[

∥r̄0∥2
]

f 1

2
√
K

K
∑

k=1

(

1

3
+

2CyC³,´L
2
y∗√

Kµg

)

E
[

∥r̄k∥2
]

+O
(

1 +
√
K
(

1− µµg

2

)N−1
)

.

Hence we know
(

1

3
√
K

− LΦ

2K
−

CyC³,´L
2
y∗

Kµg

)

K
∑

k=0

E
[

∥r̄k∥2
]

= O
(

1 +
√
K
(

1− µµg

2

)N−1
)

.

Using the above expression, (48) and Lemma B.12, we know

1√
K

K
∑

k=0

E
[

∥∇Φ(x̄k)∥2
]

f 2√
K

K
∑

k=0

E
[

∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2
]

= O
(

1 +
√
K
(

1− µµg

2

)N−1
)

,

for sufficiently large K. Note that µ is in a constant interval by (23), hence
(

1− µµg

2

)

is a constant that is independent of K.

Picking N = Θ(logK) such that
(

1− µµg

2

)N−1
= O

(

1√
K

)

, we know

1

K

K
∑

k=0

E
[

∥∇Φ(x̄k)∥2
]

= O
(

1√
K

)

.

Moreover, from (31) we know:

1

K

K
∑

k=0

E
[

∥Xk − x̄k1
¦∥2

]

n
= O

(

1

K

K
∑

k=0

³̃2
k

)

= O
(

1

K

)

,

where the second equality holds due to Lemma B.10 The above two equalities prove Theorem 3.3. To find an ϵ-stationary

point, we may set K = Θ(ϵ−2) and we know from T g 1, N = logK that the sample complexity will be Õ(ϵ−2).

C. Discussion

We briefly discuss Assumption 3.4 (iv) and (v) in Yang et al. (2022) and MDBO in (Gao et al., 2022) in this section.

C.1. Assumption 3.4 (iv) and (v) in Yang et al. (2022)

• Assumption 3.4 (iv) assumes bounded second moment of ∇ygi(x, y; À). It is stronger than our Assumption 2.3 as

discussed right after Assumption 2.3.

As pointed out by one reviewer during the discussion period, bounded moment condition on ∇ygi(x, y; À) is also

restrictive especially when gi is strongly convex in y. To see this, we notice that the unbiasedness of ∇ygi(x, y; À) and

its bounded second moment imply

∥∇yg(x, y)∥2 = E
[

∥∇yg(x, y; À)∥2
]

− E
[

∥∇g(x, y)− E [∇yg(x, y; À)] ∥2
]

f C2
g

for all x, y. Here ∇yg(x, y; À) :=
1
n

∑n
i=1 ∇ygi(x, y; Ài). Then for any y1, y2

2Cg g ∥∇yg(x, y1)−∇yg(x, y2)∥ g µg∥y1 − y2∥

where the second inequality uses the fact that g(x, y) is µg-strongly convex in y for any x. However supy1,y2
∥y1 −

y2∥ = +∞, which leads to the contradiction, meaning that there does not exist a function g satisfying all the

assumptions above. In short, a function cannot be strongly convex and have bounded gradient at the same time , but

both assumptions are used in Yang et al. (2022).
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• Assumption 3.4 (v) assumes each I − 1
Lg

∇2
ygi(x, y; À) has bounded second moment such that

E

[

∥I − 1

Lg

∇2
ygi(x, y; À)∥22

]

f (1− »g)
2,

for some constant »g ∈ (0,
µg

Lg
), where Lg =

√

L2
g,2 + Ã2

g,2. It serves as a key role in proving the linear convergence

of the Hessian matrix inverse estimator (see Lemma A.2, A.3 and the definition of b right under section B of the

Supplementary Material). However, it is restrictive under certain cases. For any given 0 < µg < Lg, consider

X ∈ R
2×2 to be a random matrix and

X =

(

2Lg 0
0 0

)

or

(

0 0
0 2µg

)

with equal probability,

then it is easy to verify that X has bounded variance and in expectation equals diag(L, µ), but

E

[

∥I − 1

Lg

X∥22
]

= 1,

and thus their Assumption 3.4 (v) does not hold in this example.

C.2. MDBO

Although Gao et al. (2022) claims that they solve the G-DSBO problem, their hypergradient (see equations (2) and (3) of

their paper accessed from arXiv at the time of the submission of our manuscript to ICML: https://arxiv.org/abs/

2206.15025v1) is defined as

∇F (x) :=
1

K

K
∑

k=1

∇F (k)(x),

where

∇F (k)(x) := ∇xf
(k)(x, y∗(x))−∇2

xyg
(k)(x, y∗(x))(∇2

yg
(k)(x, y∗(x)))−1∇yf

(k)(x, y∗(x)).

Clearly, this is not the hypergradient of G-DSBO, unless g(i)(x, y) = g(j)(x, y) for any 1 f i < j f n, which requires an

additional assumption that the data distributions that generate the lower level function g(i) are the same. Note that their

algorithm cannot be classified as P-DSBO either, because y∗(x) in the above expression is defined globally. Therefore, their

algorithm is not designed for neither G-DSBO nor P-DSBO. It is not clear what problem that their algorithm is designed for.

While we are preparing our camera-ready version, we find the latest version of Gao et al. (2022) (which is Gao et al. (2023)),

which implicitly uses the condition that all lower level functions are the same. See equation (2) on page 3 of (Gao et al.,

2023) and the description right above it: “Then, according to Lemma 1 of (Gao, 2022a), we can compute the gradient of

F (k)(x) as follows:”, where “(Gao, 2022a)” represents Gao (2022), in which their Lemma 1 explicitly states “When the

data distributions across all devices are homogeneous”. However, all assumptions about MDBO in Gao et al. (2022) do not

mention anything about the data distributions of the lower level functions g(i). It should be noted that once all lower level

functions g(i) are the same then their problem setup is one special case of ours in (2) (i.e., when g(i) = g(j) for any i ̸= j),

and it does not need to tackle the major challenge discussed in (5).

C.3. Computational complexity

Assume that computing a stochastic derivative with size m requires O(m) computational complexity. For example the

complexity of computing a stochastic Hessian matrix ∇2
ygi(x, y; À) is O(q2) and the complexity of computing a stochastic

gradient ∇xf(x, y;ϕ) is O(p). Note that computing a Hessian-vector product (or Jacobian-vector product) is as cheap

as computing a gradient (Pearlmutter, 1994; Bottou et al., 2018). FEDNEST (Tarzanagh et al., 2022), SPDB (Lu et al.,

2022), and our Algorithm 3 MA-DSBO only require stochastic first order and matrix-vector product oracles and thus

the computational complexity is Õ(dϵ−2), where d := max(p, q). Note that DSBO-JHIP (Chen et al., 2022b) requires

computing full Jacobian matrices which lead to Õ(pqϵ−3) complexity. GBDSBO (Yang et al., 2022) computes full

Hessian matrices in the Hessian inverse estimation inner loop (Line 10-13 of Algorithm 1 in Yang et al. (2022)), and full

Jacobian matrices in the outer loop (Line 8 of Algorithm 1 in Yang et al. (2022)), and thus their computational cost is

O((q2 log( 1
ϵ
) + pq)n−1ϵ−2).
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