
Towards an Effective Method of ReDoS Detection for Non-backtracking Engines

Weihao Su† ‡⇤ Hong Huang† ‡⇤ Rongchen Li† ‡⇤ Haiming Chen† Tingjian Ge¶

†Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences

‡University of Chinese Academy of Sciences
¶Miner School of Computer & Information Sciences, University of Massachusetts, Lowell

Abstract

Regular expressions (regexes) are a fundamental concept
across the fields of computer science. However, they can
also induce the Regular expression Denial of Service (Re-
DoS) attacks, which are a class of denial of service attacks,
caused by super-linear worst-case matching time. Due to the
severity and prevalence of ReDoS attacks, the detection of
ReDoS-vulnerable regexes in software is thus vital. Although
various ReDoS detection approaches have been proposed,
these methods have focused mainly on backtracking regex en-
gines, leaving the problem of ReDoS vulnerability detection
on non-backtracking regex engines largely open.

To address the above challenges, in this paper, we first sys-
tematically analyze the major causes that could contribute
to ReDoS vulnerabilities on non-backtracking regex engines.
We then propose a novel type of ReDoS attack strings that
builds on the concept of simple strings. Next we propose
EVILSTRGEN, a tool for generating attack strings for ReDoS-
vulnerable regexes on non-backtracking engines. It is based
on a novel incremental determinisation algorithm with heuris-
tic strategies to lazily find the k-simple strings without explicit
construction of finite automata. We evaluate EVILSTRGEN
against six state-of-the-art approaches on a broad range of
publicly available datasets containing 736,535 unique regexes.
The results illustrate the significant efficacy of our tool. We
also apply our tool to 85 intensively-tested projects, and have
identified 34 unrevealed ReDoS vulnerabilities.

1 Introduction

Regular expressions (regexes) are widely used in various
fields of computer science such as software engineering, net-
work security, string processing, and databases [9, 18, 21, 22,
45, 66], and are supported natively or via libraries in most
modern programming languages [35]. Recent studies have re-
ported [17,21,76] that 30-40% of Java, JavaScript, and Python

⇤These authors contributed equally to this work.

projects use regexes. Despite the popularity of regexes, stud-
ies have shown that Regular expression Denial-of-Service
(ReDoS) attacks are a widespread and serious security prob-
lem [10,21,45,69], where attackers use malicious inputs (i.e.,
attack strings) to trigger super-linear worst-case matching
time (e.g., quadratic or exponential time in the length of the
input string) [21]. Further, the threat of ReDoS has a grow-
ing trend in recent years, as evidenced by multiple studies
(e.g., [38, 67]).

Much research has been done on the detection of ReDoS
vulnerable regexes. However, current methods have focused
mainly on backtracking regex engines, leaving the problem
of ReDoS vulnerability detection on non-backtracking regex
engines largely open.

Basically, regex matching algorithms can be roughly
categorized into two types—those based on backtracking
search [68] and those based on finite automata (i.e., non-
deterministic finite automaton (NFA) or deterministic finite
automaton (DFA), or both). Backtracking approaches are usu-
ally simple to implement and easily extensible to support
non-regular features. However, the downside is that the worst-
case time complexity can be exponential in the length of the
input caused by backtracking. Backtracking engines are used
in, e.g., .NET, Python, Perl, PHP, Java, JavaScript, and Ruby.

On the other hand, non-backtracking automata-based ap-
proaches, which are based on the classical theory of automata,
are usually faster, yet harder to implement. Due to their high
performance capabilities, automata-based matchers are em-
ployed in many modern regex engines, e.g., RE2, and the
engines in Go, Rust, grep, Hyperscan, and SRM.

Since non-backtracking matchers are widely used in mod-
ern regex engines, and performance-critical industrial appli-
cations such as Network Intrusion Detection Systems (NID-
Ses) [25] and Credential Scanning [58] use non-backtracking
engines, it is important to systematically study the problem
of ReDoS detection for non-backtracking engines.

Currently, there has only been one line of work, i.e. Gad-
getCA [74], in this direction, which focused on the bounded
repetition (or bounded counting) operator of regexes. It ex-

perimentally showed that regexes using this operator have
the potential to cause ReDoS attacks on non-backtracking
matchers. However, the model used in GadgetCA is sound
only on a limited subclass of regexes with counting. For exam-
ple, .⇤(aa){100} and .⇤a{0,100}a{200}1are not within this sub-
class [50]. For such regexes, GadgetCA may return wrong
results. This suggests that the usability of the method pro-
posed in [74] is quite limited. In other words, the problem of

ReDoS detection on non-backtracking engines caused by

the full class of regexes with counting remains unsolved.
Example 1 shows a vulnerable regex from the intrusion de-
tection system Snort [25], which specifies the correct string
format of classids2. Since regexes with nested countings, e.g.
(\x26\x23\d{2,3}\x3B){2}, are forbidden from the subclass
mentioned above, GadgetCA reports an internal error.

Example 1. classid=\s⇤[\x22\x27]\s⇤[A-Za-z\:\{-]{0,42}

((\x26\x23\d{2,3}\x3B){2}[^\x22\x27]{0,25}){5}

Besides, the use of 50MB large-sized inputs as adapted in [74]
to trigger ReDoS vulnerabilities in their experiments is im-
practical and less likely to be exploitable, as it is rare to en-
counter such a single large input in real-world scenarios. This
reflects the relatively weak ability of the strings generated by
their detector to trigger ReDoS vulnerabilities, as shown in
our experiments, e.g., Table 5 and Table 7.

Moreover, there are other potential factors besides
bounded repetition that could contribute to ReDoS attacks
for non-backtracking engines, which, however, have not been
considered in the existing literature. Consider the regex in
Example 2, which is used in Regex101 [4] to match cardiac
surgery terms. It is counting-free, i.e. does not have any count-
ing operators, yet still has a descriptional complexity blow-up
up to 1,087,951 DFA states in RE2.

Example 2. .⇤cc.⇤(cor.⇤ang.⇤|heart.⇤|icd.⇤|pace.⇤|cardi.⇤|l
hc.⇤|aortic.⇤|.rhc.⇤|dual.⇤lead.⇤|cabg.⇤|trans.⇤).⇤echo

Yet GadgetCA fails to expose the vulnerability: The string
generated by GadgetCA only forces RE2 to construct 1,027
DFA states and run for less than 0.17 seconds.

To address the aforementioned challenges, our research
entails a systematic analysis of the diverse causes of ReDoS
attacks produced by non-backtracking engines, and a search
for effective techniques to analyze ReDoS attacks and gener-
ate attack strings for non-backtracking engines. Herein, we
summarize the main findings of our research.
(1) Causes. By distinguishing whether a matcher generates
the DFA in advance or not, non-backtracking matchers can

1Where .⇤ accepts any string and the bounded repetition E{m,n}/E{m}

accepts (m to n)/m repetitions of E for finite numbers m,n with 0 m n.
2Where \s⇤ matches any whitespace characters 0 or more times, \xh1h2

is the hexadecimal representation of the ASCII code “h1h2”, [] represents
a character class, which matches any character inside [], so [\x22\x27]
matches either a double quotation mark or a single quotation mark, sim-
ilarly [A-Za-z\:\{-] matches an uppercase or lowercase English letters or “:”
or “{” or “-”, while [^\x22\x27] matches any character other than a double
quotation mark or a single quotation mark, \d matches any digital number.

be categorized into online and offline DFA matchers. Since
constructing a DFA may explode doubly exponentially, the
majority of non-backtracking matchers opt for online DFA
matchers. We target this type of matchers and identify two
classes of causes that could contribute to ReDoS vulnerabili-
ties: (i) reaching the worst-case time complexity of NFA and
online DFA matchers as well as various matching functions;
and (ii) blow-up in DFA states, including determinisation
blow-up, counting, and discrete character classes (§4). Con-
sidering the examples above, the ReDoS vulnerability of the
regex in Example 1 is mainly resulted from the DFA state
blow-up due to nested counting, while for Example 2, it is
due to the use of discrete character classes.
(2) Techniques. At the heart of ReDoS detection are the at-
tack strings—indeed, a regex is only considered vulnerable if
such a string exists. Theoretically, finding an attack string is to
find a string that triggers the worst-case complexity on regex
engines. However, finding such a string is an arduous problem.
Similar concerns are raised by Turoňová et. al [74]: “Such
a text is, however, also highly specific and the probability of
generating it randomly is low.” To effectively deduce attack
strings for non-backtracking engines, our key idea is the use
of the simple strings and solving the k-SIMPLE STRING prob-
lem for regexes (defined in §5). Intuitively, a simple string
corresponds to an acyclic accepting path that is composed of
distinct states and contains only one final state in the DFA.
Thus using simple strings as attack strings will tend to force
engines to construct more new DFA states to match them.
We then model the attack string generation problem as the
k-SIMPLE STRING problem, which finds a simple string of
length at least k (i.e., a k-simple string), for a user-controlled
parameter k. Due to the hardness of k-SIMPLE STRING (The-
orem 1), to effectively accelerate the solving, we propose a
novel incremental determinisation algorithm with heuristic
strategies to lazily find the k-simple strings without explicit
construction of finite automata.

Based on the ideas above, we propose EVILSTRGEN,
a tool for generating attack strings for ReDoS vulnerable
regexes targeting non-backtracking engines. EVILSTRGEN
can effectively handle the full class of regexes used in non-
backtracking engines and generate attack strings that cause
severe ReDoS attacks on non-backtracking engines, while re-
ducing the average length of attack strings used in GadgetCA
by two orders of magnitude. Considering the Examples 1 and
2, EVILSTRGEN generates strings of length 100kB that run in
1.61 seconds and 2.26 seconds respectively on RE2, thereby
the vulnerabilities are successfully detected.

We assess EVILSTRGEN by comparing it to six state-of-
the-art approaches on 16 regex engines (comprising 8 non-
backtracking engines and 8 backtracking engines). Our analy-
sis covers a broad range of publicly available datasets from
different sources that contain 736,535 unique regexes. The
results illustrate the significant efficacy of EVILSTRGEN.

The main contributions of this paper are listed as follows.

• Novelty. We introduce a practical ReDoS detection and
attack string generation method for non-backtracking
engines which produces a novel form of attack strings
that are effective and concise for vulnerable regexes.

• Theoretical Analysis for ReDoS. We provide a com-
prehensive computational and descriptional complexity
analysis of the causes of ReDoS vulnerabilities on non-
backtracking engines in §4.

• Regex Constraint Solving. We propose the k-SIMPLE
STRING problem to model the attack string generation
problem, which has not been considered by any of the
regex solvers. We devise a novel incremental algorithm
extended with language-theoretic heuristics to solve this
problem and generate attack strings in §5.

• Effectiveness and Practicality. We give a comprehen-
sive empirical study of our tool, comparing with the
current state-of-the-art ReDoS detection tools in §6. The
effectiveness of our tool is demonstrated by the results.
We also apply our tool to 85 intensively-tested projects,
and have identified 34 unrevealed ReDoS vulnerabilities.

2 Preliminaries

We will introduce the necessary formal definitions. Let S be a
finite alphabet of symbols (or characters). Words (i.e. strings)
are finite sequences over S, and languages are sets of words.
The empty word and the empty language are denoted by ✏
and ?, respectively. The size of a word w, denoted |w|, is the
number of occurrences of symbols in w.
Regular Expression (Regex). Regexes are defined by the
syntax E ::= ✏ |? | a |C | E|E | EE | (E) | E{m,n} | E{m,n}?

| \b | \B | ˆ | $, where a 2 S, m 2 {0,1, . . .},n 2 {1,2, . . .}[
{+•} and m  n. C ✓ S are character classes, such as
\p{Greek}, which denotes all symbols from the Greek al-
phabet. E|E and EE (i.e. by juxtaposition) denote the alterna-
tion and concatenation of regexes, respectively. (E) denotes
a capturing group, which stores the submatch matched by E
for extraction, replacement, etc, e.g. a(b) matches an input
“ab”, and (b) stores “b”. E{m,n} and E{m,n}? denote the greedy
and lazy quantifiers respectively, i.e. the counting operators.
For an input “aa”, a{1,2} repeat matching a as many times
as possible to match “aa”, while a{1,2}? prefer fewer times
to match “a”. Anchors include word boundary \b, non-word
boundary \B, start-of-line anchor ˆ, and end-of-line anchor
$. Anchors do not consume characters, but specify the non-
character context. For the input “ab”, \b specifies positions
0 and 2, whose one side is a word and the other side is not.
\B specifies position 1, whose both sides are words (or non-
words). And ^ matches position 0, while $ matches position
2. Notice E?, E⇤, E+, E{m}, E{m,} are abbreviations of E{0,1},
E{0,+•}, E{1,+•}, E{m,m} and E{m,+•} respectively. The lan-
guage of a regex E, denoted as L(E), is the set of all strings
accepted by E.

In regex engines the matching behavior for regexes is
specified through the matching functions. Intuitively, for a
regex E and an input string w, the partial matching solves
the problem of sub-string matching by a regex (i.e. whether
w 2 L(S⇤ES⇤)), which can be implemented by prepending
S⇤ to the left of E [61]; while full matching solves the regex
membership problem (i.e. whether w 2 L(E)); more details
can be found in §4.1. Disambiguation rules [70] are used
in engines to guarantee a unique match, e.g. Perl-style pol-
icy [3] assigns the highest priority to the left-most matches
and POSIX [70] prefers the longest matches. For example,
(a|aa)⇤ matches “a” from an input “aa” in Perl style and “aa”
in POSIX style.
Finite automata. An NFA is a quintuple M = (Q,S,d,s,F),
where Q is a finite set of states, S is an alphabet, d ✓ Q⇥
S[{✏}!√(Q) is a transition function where √(Q) denotes
the power-set of Q, s 2 Q is the starting (or initial) state, and
F ✓ Q is a set of final states. The automaton is deterministic
(DFA) if d✓ Q⇥S! Q. NFAs are denoted as ✏NFAs if the
transitions can be labeled ✏, and ✏-free NFAs otherwise.

Next we discuss methods for transforming NFAs or regexes
into DFAs, which is a basis of the DFA matchers. The stan-
dard method for NFA-DFA transformation is the subset con-
struction [62]. For regex-DFA transformation, McNaughton
and Yamada [57] proposed a construction (MMY), which is
used in Hyperscan [77] whenever possible. Later, another
construction (which we denoted as Mgrep) was implemented
and described by Aho in [6], which is still being used by GNU
grep [31]. Mgrep is always smaller than or equal to MMY [13].
Non-backtracking Regex Engines. Normally, modern non-
backtracking regex engines are complex software systems,
which primarily consist of DFA matchers, also possibly NFA
matchers or even backtracking matchers, e.g. a backtracking
matcher is used in grep to support backreferences. In this
paper, we aim to find vulnerabilities for industrial-strength
regex engines, which are rather generalized3 as opposed to
those specialized to process some subclasses of regexes, e.g.
[40, 43, 50]. From now on, the term regex engine(s) refers to
generalized regex engine(s).

The classification of non-backtracking engines is shown in
Table 1. According to the type of DFA matchers, we catego-
rize non-backtracking engines into (i) ✏NFA-based engines,
such as RE2 [34], the regex engines in Go [32] , Rust [23],
as well as TDFA [46] and RE2C [73]; (ii) position-based en-
gines, which are based on Mgrep, e.g., grep [31], awk [30] and
sed [29] or MMY such as Hyperscan [77]; (iii) derivative-based
engines, such as OCaml-re [75], SRM [64] and NonBacktrack-
ing4 [60], by extending Brzozowski’s derivatives [14], whose

3Generalized regex engines can handle the unrestricted class of regexes
while specialized regex engines cannot. Though in fact, most such engines
put restrictions on regexes for practical considerations, e.g. the upper bound
of countings.

4To differentiate the two implementations written in C#, we write C#N
for NonBacktracking, and C#B for the backtracking implementation.

Table 1: Non-backtracking regex engines, categorized.

✏NFA Position Derivative

Online RE2, Go, Rust grep, awk, sed, Hyperscan SRM, C#N
Offline TDFA, RE2C – OCaml-re

states are called ACI-dissimilar derivatives.
Based on whether a matcher generates the DFA before

processing the input string, DFA matchers can be further cate-
gorized into matchers using ahead-of-time (offline) determini-
sation or just-in-time (online) determinisation (i.e. offline/on-
line DFA matchers). Offline DFA matchers process the input
strings in linear time once the DFAs are constructed [6]. How-
ever due to the average performance issue resulted from the
worst-case doubly exponentially large DFAs [27] , they are
rarely used in practice. In contrast, online DFA matchers con-
struct the DFAs lazily: by each symbol in the input, at most
one DFA state and transition are constructed and recorded.
ReDoS. We give the formal definition of a regex to be ReDoS
vulnerable on a regex engine:

Definition 1. A regex E is ReDoS vulnerable on a regex
engine M if and only if there exists an input word w, for
which M can not decide whether w 2 L(E) in time O(|w|).
The word w is called an attack string for E on M.

Definition 1 is based on the observation that ReDoS vul-
nerabilities are engine dependent, i.e. whether regexes are
vulnerable is contingent on the engine that executes them.

Investigation on backtracking engines has shown that while
the degree of the ReDoS vulnerabilities can be exponential,
most of the ReDoS vulnerable regexes are in polynomial
degree in the wild [21]. For non-backtracking engines, given
a regex, the degree of the ReDoS vulnerabilities is polynomial.
In this paper we use both machine-dependent and independent
criteria to evaluate ReDoS vulnerabilities.

3 Overview

In this section, we start with a walkthrough of the procedure
of ReDoS detection in EVILSTRGEN, and then analyse some
ReDoS vulnerable regexes to show how different structures
and matching functions result in vulnerability.
ReDoS Detection Framework. Figure 1 shows how to de-
tect ReDoS vulnerabilities with our incremental determin-
isation algorithm to generate candidate attack strings, i.e.
strings without being verified to be valid, and verify them
in EVILSTRGEN. The input of EVILSTRGEN includes the
regex, the expected attack string length, the matching function
and the engine. The tool first preprocesses the input, e.g. for
the functions using partial matching, a S⇤ is prepended to
the input regex, etc., in step 1� of Figure 1. Next, the tool
calls the k-SIMPLE STRING solver INC_DET0 to generate Re-
DoS attack strings bytewise with incremental determinisation
based on the DFA in the corresponding engine. The search
for k-simple strings uses two complete and an incomplete

Figure 1: The system architecture of EVILSTRGEN.

strategies to optimize its efficacy. In step 2�, the first strat-
egy exploits the power of nondeterminism in automata theory
to select the symbols that result in the largest DFA states in
attack strings. The second strategy, i.e. step 3�, mimics the
Perl-style disambiguation rules to select the DFA state with
the highest matching priority. When a considerable number
of conflicts (see §5.2) is detected, step 4� uses an incom-
plete non-chronological backtracking to prune the state space.
When the solver terminates, it outputs a k-simple string or
a currently longest simple string in step 5�. Next in step 6�,
considering matching function, anchors and the size of the
simple string, EVILSTRGEN decides to go to the validation,
or to step 7� to search repeatedly to obtain a candidate attack
string of proper length by appending outputs to the former
results. Finally in step 8�, a validator is used to verify the
string according to the criteria for ReDoS on corresponding
engines, and either reports the vulnerability with the effective
attack string or claims the regex to be safe.
Motivating Examples. To illustrate how EVILSTRGEN can
find ReDoS vulnerabilities for non-backtracking engines, we
list some ReDoS vulnerable regexes in Table 2. The time
used to match the regexes with candidate attack strings of
100kB generated by EVILSTRGEN and GadgetCA [74] under
different matching functions in RE2 is shown in milliseconds.

The 1st and 2nd regexes have exponential DFA states. Both
of them having over a million DFA states in RE2. However,
GadgetCA cannot expose an “enough” DFA states, thus fail-
ing to report the ReDoS vulnerabilities. In contrast, EVIL-
STRGEN successfully detects the vulnerabilities, showing the
effectiveness of the strings generated by EVILSTRGEN.

The 3rd and 4th regexes have nested counting, which are not
supported by GadgetCA. When the counting is forbidden to
be nested, the doubly exponential state complexity of counting
regexes [27] is never reached. Thus the ReDoS detectors that
only able to handle subclasses of counting regexes may cause
omission of ReDoS vulnerabilities or even errors.

The 5th regex has at most 651,608 DFA states in RE2,
which illustrates that regexes with only unbounded countings
can also be ReDoS vulnerable. The 6th regex is counting-free,
it is ReDoS vulnerable mainly due to the nondeterminism and
the discrete representation of the meta-character “.”. These
facts reveal that bounded countings are not the only Achilles-

Table 2: Time [ms] used to match examples of ReDoS vulnerable regexes by RE2 under different function calls.

No. Regex Source RE2::FullMatch RE2::PartialMatch
EVILSTRGEN GadgetCA EVILSTRGEN GadgetCA

1 .⇤a.{300} [2] 6,273 124 2,154 283
2 ^.⇤[aA][pP][oO][pP][^\x0a]{256} [26] 1,167 39 1,192 52
3 \A(\”.{60,}\”\n){2}\Z [22] 7,314 3 7,875 201

4 classid=\s⇤[\x22\x27]\s⇤[A-Za-z\:\{-]{0,42}
[25] 38 error 1,612 error

((\x26\x23\d{2,3}\x3B){2}[^\x22\x27]{0,25}){5}

5 filename\x3d[^\r\n]⇤(\x2e[^\x22\x27\r\n]{18,}[\x22\x27]) [25] 5,451 7 5,642 273

6 .⇤cc.⇤(cor.⇤ang.⇤|heart.⇤|icd.⇤|pace.⇤|cardi.⇤|lhc.⇤ [4] 2,176 6 2,261 167|aortic.⇤|.rhc.⇤|dual.⇤lead.⇤|cabg.⇤|trans.⇤).⇤echo
7 t[\d|\w]{32} [2] 2 2 3,706 21
8 [\p{L}\p{N}-]{1,25}$ [1] 7 5 2,355 64
9 (\W\D){5}$ Synthetic 3 3 5,789 78

heel of non-backtracking engines.
Under full matching, the 7th, 8th and 9th regexes denote fi-

nite languages, i.e. only match strings of bounded length, and
the engine terminates at the longest string in each language at
most to match any input. Due to higher nondeterminism under
partial matching, RE2 is slowed down by several orders of
magnitude than full matching. Furthermore the 8th regex also
suffers from the discrete representation of multi-byte char-
acter classes in UTF-8 encoding, where [\p{L}\p{N}-]
requires 1,344 states in RE2. The implementation of Gad-
getCA does not differentiate matching functions or encoding,
which results in the omission of detection.

The 9th regex and its variants are used as the running ex-
ample to explain the concepts and algorithms in this paper.

4 Analysis of Factors for ReDoS

This section gives an analysis of the major factors that could
contribute to ReDoS vulnerabilities for non-backtracking en-
gines, which is a prerequisite for effectively solving the Re-
DoS problem. From a theoretical point-of-view, we identify
two classes of causes for ReDoS: Reaching the worst-case
time complexity of matchers and matching functions (§4.1)
and blow-up in DFA states due to nondeterminism and suc-
cinctness of counting or character classes (§4.2). Notice that
the causes are not isolated or finitely enumerable into “pat-
terns”, but entangled and interactive. To better present the
effect of different causes in ReDoS, the results using the run-
ning examples as inputs in RE2 are listed in Table 3.

4.1 Time Complexity Analysis of Matchers

and Matching Functions

In this section, we denote the number of NFA states or the
size of counting-free regexes as m and the size of input as n.
Online DFA and NFA matchers. We first analyze the worst-
case time complexity of online DFA and NFA matchers.
Online DFA matchers are unsafe. To process each symbol
from the input, at most one state and transition is constructed
and recorded in online DFA matchers, i.e. O(n) states in total,
where each transition has a time cost O(m2) [16], which can

Table 3: The numbers of DFA states of two regexes under different
functions and encoding in RE2.

Function
\W\D$ (\W\D){5}$

ASCII UTF-8 ASCII UTF-8

RE2::FullMatch 4 399 12 1,987
RE2::PartialMatch 12 659 80 678,980

also be optimized into quasi-linear time w.r.t. m, e.g. using the
disjoint-set data structure [72]. If a state is already found to
be recorded by the matcher, it processes each symbol in O(1).
Using this lazy evaluation technique, online DFA matchers
perform well on safe inputs [44]. However the worst-case
time complexity of online DFA matchers is at least O(mn),
plus an exponential cost for DFA cache conflict testing [16].

The worst-case time complexity of an NFA matcher is
O(m2n) as described in [42]. In [6,20], it is considered O(mn),
when implemented properly, e.g. using the disjoint-set data
structure. Evidently the worst-case performance of online
DFA matchers is worse than NFA matchers, where the latter
is considered the slowest matcher in Rust [23]. Thus reaching
the worst-case time complexity of online DFA matchers is a
direct factor for ReDoS vulnerabilities.
Falling back to NFAs. Non-backtracking engines usually set
bounds for the DFA cache for online DFA matchers, e.g. C#N
keeps at most 10,000 ACI-dissimilar derivatives in cache
and Hyperscan’s threshold is 16,384 distinct position subsets.
When the bound is reached (some are reached twice [20]), or
the online DFA is considered slow, engines dump the cache
and fall back to NFA matchers (or even backtracking matchers,
e.g. grep). Recall that the worst-case time complexity of an
NFA is O(m2n) or O(mn), taking the exponential size of m
w.r.t. the regexes in the worst case [48] into account, falling
back to NFA makes non-backtracking engines unsafe, which
contributes to ReDoS vulnerabilities.
Matching Functions. Matching functions also have an im-
pact on ReDoS. There are two major algorithms to implement
partial matching in DFA-based regex engines: to convert a
regex E to S⇤E [61], e.g. RE2, C#N, or repeating DFA match
starting from each symbol in the input, e.g. grep, awk.

The first approach assures the search in texts to be per-
formed with the same time complexity as full matching. How-

ever this modification brings nondeterminism into the regex:
For our running example under ASCII encoding, the number
of DFA states for \W\D$ triples under partial matching, while
that of (\W\D){5}$ is enlarged 5.67⇥. This also contributes
to ReDoS vulnerabilities, as demonstrated in Table 2.

The second approach repeats the search with DFAs for
O(n) times, making the worst case time complexity O(mn2)
at least, which becomes a non-negligible factor for ReDoS
vulnerabilities. Indeed, ReDoS attacks on regexes with the
Starting-with-Large-Quantifier pattern [52] for backtracking
engines is directly connected to this algorithm.

Extracting or replacing submatch of the subregexes in cap-
ture groups as well as the find or replace all functions use
partial matching to locate the matched sub-strings, where en-
gines repeat partial matching for O(n) times, leading to the
worst case time complexity at O(mn2) at least. Those may
also contribute to ReDoS vulnerabilities, e.g. the submatch ex-
traction of RE2 can be 9.13⇥ slower than Java’s backtracking
engine on ordinary inputs [36].

4.2 Descriptional Complexity Blow-up

The descriptional complexity of DFA for regexes has direct
impact on the computational complexity of algorithms used
in non-backtracking engines, which contributes to ReDoS.

Descriptional complexity analysis for ReDoS studies the
size of automata to represent regexes, which is divided into the
following topics: Transformational state complexity studies
the complexity of transformations among regexes, NFAs and
DFAs, while operational state complexity focuses on the state
complexity of regex operators.
Determinisation Blow-up. Among transformational state
complexity results, determinisation blow-up studies the NFA
to DFA conversion due to nondeterminism: For an m state
NFA, the subset construction producing a DFA with 2m states
is proven worst-case optimal [62]. In practice, authors of [81]
observed that regexes having exponential DFA states cause
high costs both in time and storage in deep packet inspection
applications. So it is a factor for ReDoS vulnerabilities.

We list some forms of regexes that have linearly sized
NFAs, yet exponentially sized minimal DFAs in Table 4,
which we suggest the developers to avoid in practice. Part of
those is collected (and translated from automata) from the
literature (where the references are given), while others are
newly discovered variants. In each form, ↵, � and � represent
disjoint subsets of S. Notice the minimal DFAs in this table
are not completed with sink states.

Example 3. The 1st vulnerable regex in Table 2 is selected
from a real-world project in NuGet [2], which shows the
impact on ReDoS due to descriptional complexity from deter-
minisation blow-up in the wild. Consider the first example in
Table 4, by substituting ↵ by “a”,� by “[^a\n]”, and assigning
k as 300, .⇤a.{300} (i.e., the 1st regex in Table 2, considering
that a|[^a\n] = .) is obtained.

Table 4: Examples of regular languages Ek whose minimal DFAs
have exponential numbers of states for k � 1.

Regex Reference States

(↵|�)⇤↵(↵|�)k [6, 59] 2k+1

(↵|�)⇤↵(�↵⇤)k((�↵⇤)k+1)⇤ [82] 2k+1

(↵|�)k↵(↵|�)k [49, 65] 2k+2�2
(↵|�)⇤↵(↵|�)k↵(↵|�)⇤ [24] 2k+1 +1
(↵⇤(↵�⇤)k↵)⇤ [24] 2k+1 +2k�1�1
(↵|(↵�⇤)k↵)⇤ [51] 2k+1�1
(↵|�)⇤(↵|�)↵⇤((�|�)↵⇤)k [12] 2k+2�1
(↵⇤|(↵�⇤)k↵)⇤ New variant 2k+1�1
(↵|(↵�?)k↵)⇤ New variant 2k+1 +2k�2

(↵⇤(↵�?)k↵)⇤ New variant 2k+1 +2k�2
↵⇤((↵�?)k↵)⇤ New variant 2k+1 +2k + k�2

Next we discuss the impact on DFA size due to the suc-
cinctness of regex operators.
Countings. In non-backtracking engines, counting regexes
are unfolded into their semantically equivalent counting-free
forms (some are unfolded lazily [60, 64]). However those
unfolded regexes has exponential sizes in the worst case. Con-
sider the running example, due to the unfolding, under partial
matching and UTF-8 encoding, the DFA state number of
(\W\D){5}$ is 1030⇥ bigger than that of \W\D$, while the
size of (\W\D){5}$ is only 1⇥ larger than \W\D$.

Bounded counting has been considered in [74] for caus-
ing ReDoS vulnerabilities. Yet the automata that underlie
the generation algorithm of GadgetCA [74] may change (i.e.,
over-approximate) the language of a regex, which can result
in incorrect (e.g., false negative) output. Furthermore, un-
bounded counting in the form of E{m,} also contributes to
ReDoS vulnerabilities: see the 5th regex in Table 2.

Nested counting could make online DFA matchers to con-
struct DFA states in exponential size w.r.t. the regex: Con-
sider a DFA for a{0,k}{0,k} n�3z}|{. . .{0,k}, d(s,a) = ({a2,a3, ...,akn}),
requiring at least O(kn) time to compute. Notice this is only
triggered by a single symbol “a”.

Nesting of counting and determinisation blow-up jointly
lead to doubly-exponentially sized DFAs: For example,
Gelade proved the minimal DFA of En=(a|b)⇤a(a|b){2n} has
22n states [27], where En is derived from the first example in
Table 4. This can be achieved by an n-nested counting, i.e. En

equals to (a|b)⇤a(n�3z}|{. . . (((a|b){2}){2})
n�3z}|{. . .){2}.

Next we analyse the impact of character classes on the
descriptional complexity of regexes and ReDoS.
Discrete Representations of Character Classes. Resulted
from the variable length encoding of UTF-8, the Unicode to
UTF-8 conversion on non-backtracking regex engines can
turn multi-byte Unicode character classes into representations
with large numbers of states—which we call discrete repre-
sentations of character classes, which affects the performance
of engines [23], and becomes a common factor for ReDoS vul-
nerabilities. For example, in RE2, only 8 states are enough for

encoding the full Unicode range U+0000-U+10FFFF, i.e. the
meta-character “.”, while 1,441 states are needed to encode
a discrete non-ASCII character class “\W”.

A discrete representation of character classes increases the
cost of computation in engines to construct DFA states, which
results in ReDoS vulnerabilities, e.g. the 8th regex in Table 2.
Besides, this also enlarges DFAs by a huge constant factor. For
the running example under partial matching, when \W\D$ is
converted from ASCII to UTF-8, its DFA is enlarged by 55⇥,
for (\W\D){5}$ it is even by 8,487⇥.

Hooimeijer and Veanes [41] noted that the System.Text
namespace in the .NET class library contains more than a
dozen classes to deal with Unicode encoding. Because of
the intricacy to process multi-byte character classes, in grep,
some character classes can directly disallow DFA searches
and grep degenerates into a backtracking matcher.

5 ReDoS Detection

In this section, we first introduce the notion of simple strings
and the k-SIMPLE STRING problem in §5.1. Then we propose
an incremental determinisation algorithm with multi-layered
heuristic strategies to accelerate the search for k-simple strings
in §5.2.

5.1 Simple Strings

From the complexity analysis in §4, a proper and most ef-
fective attack string for online DFA matchers should avoid
being consumed by any recorded states, such that each byte
of the string forces the engine to construct a new DFA state.
In graph theory, finding the longest simple path between two
given nodes is known to be an NP-hard problem which is
even hard to approximate within a constant factor on bounded
degree graphs [47]. Inspired by this problem, we propose the
notion of simple strings for DFAs of regexes.

Definition 2. Given a DFA M of a regex E, a simple string
is a finite word w 2 L(E) where the states of the path of w on
M contain only one final state and are pairwise distinct.

Definition 2 depends on the specific DFA construction
method and the DFA is not necessarily minimal. Therefore,
different DFAs of E may result in different sets of simple
strings of E, which can be incomparable w.r.t set inclusion.

There has been work concerning descriptional complexity
and properties for simple languages of automata, e.g. [28, 37].
It is known that (i) any non-null regexes have non-empty
sets of simple strings; (ii) any of the simple strings of E is
not a prefix of any others and the path of a simple string is
acyclic [37]; (iii) the size of the minimal DFA to accept all
the simple strings of M is proven to be exponential in the
size of M [37].

For any DFA M of a regex E, the longest simple strings
of E correspond to the longest acceptable simple paths (i.e.,

simple paths form the initial state to a final state) on M . To
illustrate the hardness of finding the longest simple strings,
we define the decision problem k-SIMPLE STRING.

Problem 1. (k-SIMPLE STRING) The k-SIMPLE STRING
problem w.r.t. a DFA M of a regex E is to decide whether a
simple string of M whose length is at least k exists.

Theorem 1 shows the hardness of Problem 1.

Theorem 1. k-SIMPLE STRING is EXPSPACE-hard.

The proof is provided in Appendix A.2.

5.2 Incremental k-SIMPLE STRING Solving

Due to the hardness of Problem 1, a naïve algorithm based
on explicit automata construction can be very inefficient and
thus impractical. The key to accelerating k-SIMPLE STRING
solving is the lazy evaluation strategy: Algorithms should
construct DFAs on demand, during the search for k-simple
strings. Once a k-simple string is found, the unvisited DFA
states or transitions will never be constructed.

Additionally, two partial order relations are introduced
as heuristics, where wNondet (Equation 1 below) is used to
choose the path by the highest degree of nondeterminism and
vLex (Equation 6 below) for selecting the DFA states with the
lowest matching priority. The heuristics can be applied to the
specific DFAs and encodings in any engines mentioned in §2,
which may introduce subtle differences in implementation
details. Below we select the DFA for grep, i.e., Mgrep, as an
example to introduce our algorithm, i.e., Algorithm 1.

Algorithm 1 is composed of two procedures, INC_DET that
searches for k-simple strings incrementally without explicit
construction for automata and DECIDE that answers Problem
1. INC_DET starts the search with a non-null regex E and
an integer k, and the output is a k-simple string if it exists
and one of the longest simple strings otherwise. In the worst
case, Algorithm 1 requires doubly exponential space to ensure
completeness.
Supplementary Definitions. For any set X , its power-set
√(X) denotes the set of all the subsets of X . We write hX ;i
for ordered sets. The composition of two functions f : X !Y
and g : Y ! Z is denoted as g� f : X ! Z.

Let T denote true and F denote false. We mark symbols in
E with numerical subscripts and a linear regex E is obtained,
where all the symbols in E occur no more than once. Let
Pos(E) denote the alphabet of E, i.e. the positions. We use
the same notation for dropping off the subscripts from linear
regexes: E = E.

For a regex E over S and a symbol a2S, we define the fol-
lowing sets, which specify the first, the last and the characters
following a from E:First(E) = {b |bw2L(E),b2S,w2S⇤},
Last(E) = {b |wb2L(E),b2S,w2S⇤}, Follow(E,a) = {b |
uabv2L(E),u,v 2 S⇤,b 2 S}. Let 0 /2Pos(E), define Follow
(E,0) = First(E). For S 2√(Pos(E)), let Follow(E,S) =

(a) (b) (c)

Figure 2: Examples of the three strategies in EVILSTRGEN, where the states or transitions not yet been constructed are shown as dashed lines.
The runes preferred by wNondet are highlighted in green, and the state preferred by vLex is in purple, otherwise in beige.
S

s2SFollow(E,s). There are various ways to compute Mgrep,
e.g. [6, 7, 13]. We follow the definition in [13]:

Definition 3. The grep DFA of a regex E can be defined as
Mgrep(E) = (Qgrep,S,dgrep,sgrep,Fgrep) where

Qgrep ✓√(Pos(E))⇥{T,F},
dgrep(q,a) = (Follow(E, p), p\Last(E) 6=?), for q2Qgrep, p=

{s2q | s=a} and a 2 S,
sgrep = (First(E),First(E)\Last(E) 6=?),
Fgrep = {(_,o) 2 Qgrep | o = T}.

Preprocessing. In line 3, the first preprocessing procedure
of INC_DET is to unfold the counting regex into a counting-
free regex by the rules defined in Appendix A.1. Then the
linearization is applied to the character classes in Unicode
following the disambiguation rules of Perl, before encoded in
UTF-8, by assigning priority to the leftmost subregexes [70]:
A larger number of the subscripts implies a higher matching
priority. Furthermore, the lazy quantifiers are assigned with
reversed priority w.r.t. greedy quantifiers according to [20].

Due to its popularity among regex engines and operat-
ing systems, we use UTF-8 standard as the default encoding.
INC_DET then encodes the Unicode character classes of a
regex E into UTF-8 standard to obtain E. To implement this
conversion, we refer to [20], where a hexadecimal-encoded
range is called a rune. For example, [a-z] is converted to a
rune [\x61-\x7a]. All the runes transformed from a character
class share the same labels, i.e. numerical subscripts.

Since E is a static object throughout this algorithm, we
directly use the addresses of each rune as positions, instead
of assigning an extra integer variable. This section uses the
regex ⌧= .⇤(\W\D){5}$ from running examples to illustrate
INC_DET. Example 4 shows the above processing of ⌧.

Example 4. For ⌧= .⇤(\W\D){5}$, unfold(⌧) =.⇤\W\D
\W\D\W\D\W\D\W\D$, linearize�unfold(⌧) =.⇤1\W2
\D3\W4\D5\W6\D7\W8\D9\W10\D11$12.⌧=([\x00-\x7f]1|
[\xc2-\xdf]1|...)⇤[\x00-\x2f]2...$12.

Variables are initialized in line 4, including the current
prefix string wit, the longest current prefix ret, the current
Mgrep state cur and the set Q storing the visited states.
Nondeterminism-Guided Strategy.

Algorithm 1: An incremental determinisation algo-
rithm for k-SIMPLE STRING problem

1 INC_DET(Regex E, Int k)! String
2 begin

3 E encode� linearize�unfold(E);
4 (wit,ret,cur,Q) (✏,✏,{0},{?});
5 loop:
6 for Follow(E,cur) 6=? do

7 (C ,P) (?,Follow(E,cur));
8 for ↵ 2 hPart(P);wNondeti do

9 (q,o) ({p 2 P | ↵✓ p},q\ last(E)=?);
10 C C [{(↵,(Follow(E,q),o))};

11 for ([A]⌘Nondet ,S)✓ C do

12 for (↵,s) 2 ([A]⌘Nondet ,hS ;vLexi) do

13 if s /2 Q then

14 (wit,cur,Q)
(wit + random(↵),P ,Q [{P});

15 if s 2 Fgrep then

16 if |wit|� k then

17 return wit;

18 break;

19 else if |wit|> |ret| then

20 ret wit;

21 goto loop;

22 else

23 continue;

24 return ret;

25 DECIDE(Regex E, Int k)! Bool
26 begin

27 return |INC_DET(E,k)|� k;

Motivation. Nondeterminism is a well-established concept
in automata theory [49]. Mańdl [54] proved even a finite
amount of nondeterminism in NFAs may lead to exponen-
tial size blow-up in DFAs. Here we introduce the degree of
nondeterminism of a state.

Definition 4. For an ✏-free NFA M = (Q,S,d,s,F), the de-
gree of nondeterminism5 of a state q2Q w.r.t a symbol a2 S,

5Also called branching in [33].

denoted as nondet(q,a), is the number of nondeterministic
transitions labeled a from the state q, which is computed as
nondet(q,a) = |d(q,a)|.

If the degrees of nondeterminism of all of the states in an
✏-free NFA M are 1, then M is a DFA and each DFA state is
a singleton subset of Q.
Method. Nondeterminism-guided strategy chooses a rune that
has the highest degree of nondeterminism from the DFA
state, which also results in possibly bigger subsequent subsets.
To exploit the power of nondeterminism on Mgrep(E), let
nondet(s,�) = |{Follow(E,q) | s = (Q ,_),8q 2 Q ,�✓ q}|,
for s 2 Qgrep and � 2√(S). Next we define the following
binary relation vNondet✓√(S)⇥√(S): for s 2 Qgrep and
�,�0 2√(S), �vNondet �

0 if and only if
nondet(s,�) nondet(s,�0). (1)

Denote wNondet as the inverse of vNondet. By substitut-
ing  by = in Equation 1, an equivalence relation, denoted
as ⌘Nondet, is obtained, which will be used in the second
strategy below. In line 8, INC_DET first partitions

SP into
disjoint subsets according to identical successors and ob-
tain Part(P). For each ↵ from the partially ordered rune set
hPart(P);wNondeti, INC_DET computes the set of positions
q that include ↵ and a Boolean variable o implying if q in-
tersects Last(E), in line 9. Next INC_DET associates and
records ↵ with the Mgrep state in C in line 10.
Example 5. Consider a state s=(P ,F) from Mgrep(⌧) in Fig-
ure 2 (a), where P = {[\x00-\x7f]1, [\xc2-\xdf]1, ..., [\xf4-
\xf4]3}. Then Part(P) = {[\x00-\x2f],...,[\xf5-\xff]}.
For [\x41-\x5a], ..., [\xd2-\xd2],[\xd9-\xd9] 2 Part(P),
nondet(s,[\xd2-\xd2]))=10 , nondet(s,[\xd9-\xd9]))=10 ,
..., and nondet(s,[\x41-\x5a])) = 2. hPart(P);wNondeti=
{ [\xd2-\xd2] , [\xd9-\xd9] , ..., [\x41-\x5a]}.
Effect. Choosing the rune that has the maximal degree of non-
determinism results in higher costs in constructing the DFA
states in online DFA matchers (recall §4.1). Also higher non-
determinism tends to lead to larger successor states, making
the states less likely to be identical with the already visited
Mgrep states, consequently decreasing backtracks in the search
and accelerating k-simple string generation.
Generalized Lexical Order Strategy.

Motivation. In UTF-8 encoding, each discrete character class
in the partially ordered set hPart(P);wNondeti usually consists
of a large number of runes, where plenty of those have equal
degrees of nondeterminism. To select a rune that reduces the
chance of a search reaching a final state early, we introduce
the generalized lexical order strategy.
Definition 5. (See [11].) Let hS;5i be a partially ordered
finite alphabet. The generalized lexical order on S⇤ is defined
as follows: Let u = a0...ah and v = b0...bk be two words
(where a0, ...,ah,b0, ...,bk 2 S). u,v are ordered, i.e., uLex v,
if and only if |u|< |v|, or |u|= |v| and (1) u is a prefix of v or
(2) u = paix, v = pbiy and ai <Lex bi, where p is the longest
common prefix of u and v.

For a,b 2 hPos(E);Lexi, define a⌘Lex b to indicate that
the labels of a and b are identical. When Algorithm 1 reaches
a state s0=(P0,_), for a0, ...,an 2 hPart(P0);wNondeti, the sim-
ple strings going through s0 can be represented as u = paix,
where 0  i  n. Since elements in hPart(P0);wNondeti are
disjoint, p is the longest common prefix among pa0, ..., pan.
We then utilize the generalized lexical order to choose the
DFA states (e.g. from dgrep(s0,a0), ...,dgrep(s0,an)) that pos-
sibly lead to longer successor suffixes (e.g. the string x) by
introducing a novel partial order between DFA states.
Method.Since the linearization applies to the character classes,
each states in Mgrep(E) has an ordered set from hPos(E);Lex

i and a multiset of labels, i.e. a partially ordered multiset of
integers: The runes from the same labeled character class
have identical labels, representing the same priority.

To establish the order between ordered multisets, we use
the concept of the support [71] of multiset: Let Supp(q)=
{[Q]⌘Lex |q = (Q ,_)}, for a state q 2 Qgrep. Next we define
the following binary relation vLex✓ Q2

grep:

Definition 6. For q1,q2 2 Qgrep, p0, ..., pn 2 Supp(q1) and
p00, ..., p0m 2 Supp(q2), q1vLex q2 if and only if

1. q1 2 Fgrep(q2 2 Fgrep,
2. n <m_n=m^90< jn,8i< j, p0i= pi^p0j <Lex p j.

When the supports of two states are identical, INC_DET
randomly chooses one to continue, since the matching pri-
orities of those states are exactly the same. In line 11, Algo-
rithm 1 divide the runes in A into equivalence classes based
on ⌘Nondet. For each candidate state sorted by vLex (line 12),
we start to test whether it is already recorded in Q in line
13. If not, the current state cur is assigned as the candidate
state s; moreover, P is recorded in Q , and a random symbol
from ↵ is appended to wit in line 14. If the state s is not a
final state (line 15) and |wit| has exceeded |ret| (line 19), ret
is replaced with wit (line 20). Then INC_DET continues the
search in line 21. If s is already visited, INC_DET continues
the search in line 23 and chooses another pair of (↵,s) from
([A]⌘Nondet ,hS ;vLexi).

Example 6. For the state s from Example 5, Supp(s) =
{{[\x00-\x7f]1, ..., [\xe1-\xef]1},{[\x00-\x2f]2, ..., [\xf4-
\xf4]2},{[\x00-\x2f]3, ...,[\xf4-\xf4]3}}6. In Figure 2 (b),
s1 and s2 are both resulted from runes with the highest
degree of nondeterminism at 10 in Figure 2 (a). Since
Supp(s1)={1,2,4} and Supp(s2)={1,2} ,h{s1,s2};vLexi
={ s2 , s1 }, i.e. s2 vLex s1 . INC_DET continues with s2 .

Effect. The effectiveness of generalized lexical order strat-
egy is profoundly connected to Perl-style disambiguation
rules, i.e. the Greedy rules, which are commonly used in non-
backtracking engines. By exploiting vLex, we maintain the
consistency with engines using Greedy rules and also select
the DFA states that are less likely to lead to early termination.

6For ease of representation, we write Supp(s)={1,2,3}.

1 (b,Q 0) AnalyzeConfl(b,wit,Q);
2 if b� CONFLICT_RATE then

3 backtrack(b,Q 0);

Figure 3: Code fragment for non-chronological backtracking.

Output. When a k-simple string is found (line 16), in line 17,
the witness is returned. When the states of Mgrep have been
fully explored, yet there does not exist a k-simple string,
INC_DET returns the longest simple string found in line 24.
By deciding whether the length of output from INC_DET ex-
ceeds k in line 27, the algorithm DECIDE solves k-SIMPLE
STRING for Mgrep in a sound and complete manner.

Theorem 2. DECIDE(E,k) is sound and complete.

The proof is provided in Appendix A.3.
Non-Chronological Backtracking. To further improve the
efficiency of our algorithm, we introduce an incomplete non-
chronological backtracking algorithm [55] into INC_DET,
resulting in INC_DET0. This algorithm allows INC_DET0

to jump back over several levels in the automata when a
considerable number of conflicts7 are detected.

The non-chronological backtracking is applied to INC_DET
by substituting line 18 and 23 by the code fragment in Figure
3, where the integer b for the level of backtracking and state
set Q 0 storing the currently visited states are global variables.
When a conflict occurs, we analyze the conflict in line 1 by
the rate between the increment in the length of ret and the
increment in b: If INC_DET0 executes backtracking or the
increment in length of ret exceeds a threshold8, b is reset
and Q 0 is updated as Q . When the rate of conflicts exceeds
CONFLICT_RATE, the search backtracks to the state implied
by b, where the search is continued with another choice and
Q is rewritten as Q 0 to eliminate the pruned states. Figure 2
(c) illustrates the situation when the rate of conflict exceeds
the threshold in the left part of the automaton; the algorithm
prunes the state space and then jumps back several levels
to find more promising branches. This mechanism acceler-
ates the search at the cost of completeness, i.e. some of the
solutions may be pruned, even though they are valid.

6 Evaluation

In this section, we describe the evaluation of EVILSTRGEN,
our C++ implemention9 of the methodology presented.
Research Questions. We conducted experiments to compare
EVILSTRGEN with the current state-of-the-art ReDoS detec-
tors to answer the following research questions (RQs): RQ1:

How is the capacity of EVILSTRGEN compared to the state-
of-the-art ReDoS detectors on large-scale real-world regex
benchmarks?

7A choice that coincides with a previously visited DFA state in Q or a
final state before k is reached is considered a conflict.

8Empirically we set this value to k
20 .

9https://doi.org/10.5281/zenodo.11502706

RQ2: Specifically, how is the performance of EVILSTRGEN
compared to GadgetCA [74] on the datasets that GadgetCA
supports?
RQ3: How do different heuristic strategies described in §5
affect the efficiency of EVILSTRGEN?
RQ4: How is the performance of our approach for detecting
vulnerabilities in real-world applications?

6.1 Experiment Setup

Benchmark. Non-backtracking engines were considered as
a “safe” substitute for backtracking engines [8] to mitigate
ReDoS vulnerabilities. To demonstrate that EVILSTRGEN is
able to detect ReDoS in non-backtracking engines which are
comparably severe to those in backtracking engines, we use
SET736535, a large-scale real-world benchmark of 736,535
regexes from a wide variety of sources for evaluation.

SET736535 is obtained from a collection of 850,279
regexes composed of nine datasets: (i) Corpus [17], (ii)
RegExLib [52] and (iii) Regex101 [4] from ReDoS-related
literature; (iv) Large-scale regex dataset extracted from over
190,000 software projects by Davis et al. [22]; (v) Maven [1],
(vi) NuGet [2] and (vii) PyPI10 obtained from real-world
code repositories by Wang et al. [78]; (vii) Snort [25]; (viii)
Zeek [26]; and (ix) Sagan [5] from network intrusion detec-
tion systems. We integrated and deduplicated the aforemen-
tioned datasets, resulting in a set of 839,670 unique regexes.
By removing regexes having features not commonly sup-
ported by non-backtracking engines (e.g. lookarounds and
backreferences), SET736535 is obtained.
Engines. We selected 8 non-backtracking engines using on-
line DFA matchers and 8 backtracking engines for evaluating
our approach. Among the engines discussed in §2, the se-
lected non-backtracking engines include RE2, regex engine
used in Rust and Go, SRM, C#N, awk, grep and Hyperscan.
No comparison is made to sed, since GNU sed and awk share
the same DFA implementation. The standard library back-
tracking engines for programming languages selected include
Java, JavaScript, PCRE2, Perl, php, Python, Boost, and C#.
Baselines. To comprehensively evaluate the performance of
EVILSTRGEN, we identified six state-of-the-art ReDoS detec-
tion tools for comparison, categorized into: (i) static analysis
(GadgetCA [74], RegexStatic [79] and Rexploiter [80]); (ii)
dynamic analysis (Regulator [56], ReScue [66]); (iii) hybrid
approach (ReDoSHunter [52]). Among the baselines, the only
tool designed for non-backtracking engines is GadgetCA.
Criteria for ReDoS. In previous literature addressing ReDoS,
several different criteria have been proposed. For example11:
Davis et al. [21] suggest that a regex is vulnerable if a string
of 100K to 1M characters takes the (backtracking) engines
10s to match; Regulator [56] uses 1M characters for 10s as the

10https://pypi.org/
11Notice all the characters and strings mentioned here are in Unicode, and

a Unicode character can be as long as 4 bytes.

https://doi.org/10.5281/zenodo.11502706
https://pypi.org/

criterion; To obtain attack strings, ReDoSHunter [52] repeats
“pump” strings 30,000 times and tests if the string takes engine
more than 1s to match; [78] repeats pump strings 15,000 times
and tests if the string takes Java’s regex engine more than 105

matching steps.
To better characterize the features of ReDoS on non-

backtracking engines, we propose both machine-dependent
and independent ReDoS criteria as follows:

<100kB/s: To detect ReDoS on non-backtracking engines
which are comparable to those on backtracking engines, we
unified machine-dependent criteria for ReDoS on different
engines by proposing a throughput threshold of 100kB/s, i.e.
the engine cannot process 100kB input per second. This crite-
rion is prominently more stringent than the lowest criterion
(0.5MB/s) in [74], and conforms with the criteria for ReDoS
on backtracking engines [21, 52] to be closer to practice.

>10,000 states: From the analysis in §4.1, the number of
DFA states constructed in a non-backtracking engine to match
an attack string reveals the theoretical effectiveness of the
string. Considering the state cache thresholds used in engines,
we introduce a novel machine-independent DFA state number
measure in non-backtracking engines, i.e. an attack string of
100kB should force the engine to construct more than 10,000
distinct subsets or ACI-disimilar derivatives.
Configurations. All evaluations were performed on a PC
with 3.40GHz Intel i7-6700 8 CPU and 8GB of memory,
running Ubuntu 20. We deployed the baselines as their newest
stable releases and configured in the settings reported in their
original documents. A 10 minutes timeout was used. We cross-
verified the strings generated by each detector for concrete
vulnerabilities on engines to establish the ground truth.

We experiment with different configurations of our algo-
rithm as follows. We denote the algorithm with all three strate-
gies off as BRUTE-FORCE; When only the nondeterminism-
guided strategy is enabled, the configuration is denoted as
NONDETON; The tool with both nondeterminism-guided and
generalized lexical order strategies enabled is denoted as LEX-
ICALON; The default configuration in EVILSTRGEN, with
all strategies enabled, is denoted as ALLSTRATON.

To maintain consistency with research on backtracking en-
gines and avoid the highly impractical size at 50MB in [74],
we keep the size of inputs at 100kB in all experiments. Anal-
yses on related work [52, 78] and CVEs [21] show 100kB
is practical to detect ReDoS for backtracking engines. It is
common among network intrusion detection systems to im-
pose length restrictions on the input. Also, inputs of 100kB
can be used in web services such as those using Spread
Toolkit12, etc. In EVILSTRGEN, the length is user-adjustable
according to practical demands. Since baselines targeting
on backtracking engines generate strings in the form of
prefix+pumpn+suffix for some n [52], we set n to satisfy
|prefix|+ |pump|⇥n+ |suffix|⇡ 100kB.

12http://www.spread.org/index.html

6.2 Performance on Large-Scale Real-World

Regex Benchmark

The various results under the criterion of <100kB/s for each
ReDoS detector on all 16 engines for SET736535 are shown in
Table 5. The numbers show the sum of ReDoS vulnerabilities
found by each tool on engines and the best numbers are in
bold. The results reveal that the non-backtracking engines can
also be ReDoS vulnerable, where some may even perform
worse than backtracking engines.

As depicted in Table 5, for all of the selected non-
backtracking engines, EVILSTRGEN achieved higher effec-
tiveness than all the baselines. In comparison with Gad-
getCA, using all the strategies together, EVILSTRGEN identi-
fied 1.75⇥, 2.29⇥, 5.54⇥, 3.30⇥, 3.44⇥, 0.31⇥, 0.05⇥ and
580.75⇥more ReDoS vulnerabilities on RE2, Rust, Go, SRM,
C#N, awk, grep and Hyperscan, respectively. Noticeably, we
found 2,327 ReDoS vulnerabilities in Hyperscan, which was
considered invincible in [74]. This is due to the effective
encoding of UTF-8 standard and bytewise generation in
EVILSTRGEN, while GadgetCA, ReDoSHunter, etc. generate
strings characterwise.

Furthermore, EVILSTRGEN is also the best ReDoS de-
tector among baselines for backtracking engines in Java,
JavaScript, PCRE2, Python, Boost and C#, with 13,465, 9,797,
1,633, 4,395, 3,811, and 10,947 more ReDoS vulnerabilities
detected than the second best respectively.

The results also show the incapability of the detectors
designed for backtracking engines to find ReDoS for non-
backtracking engines. Our investigation further reveals many
of the regexes in the benchmark causes awk and grep to fall
back to use backtracking matchers due to reasons mentioned
in §4.2, which explains the relatively better performance of
some detectors for backtracking engines on those engines.

Next we give more detailed analyses of GadgetCA and
EVILSTRGEN, the tools targeting non-backtracking en-
gines. Figure 4 (a)-(h) show vulnerable regexes identified in
SET736535 by each tool using an enhanced scatter plot. Each
point displays a regex’s throughput rates handling strings from
EVILSTRGEN (x-axis) and GadgetCA (y-axis) but groups
overlapping points into hexagonal bins and coloring them to
represent density using Kernel Density Estimation (KDE),
where the darker colors indicate the denser areas. A piecewise
linear transformation is applied to safe regexes (both through-
put�100kB/s) to enhance the visibility of the vulnerable ones.
Points below the diagonal suggest EvilStrGen causes lower
throughput, otherwise GadgetCA does. We also calculate the
percentage of regexes for which EVILSTRGEN causes a more
severe slowdown (e.g., “wins in 100.00% regexes”). EVIL-
STRGEN wins in 85.71% , 100%, 91.06%, 98.57%, 97.90%,
100%, 56.86%, 99.95% vulnerable regexes on RE2, Rust, Go,
SRM, C#N, awk, grep and Hyperscan, respectively.

Figure 5 (a) displays a distribution of the number of DFA
states constructed in RE2 to match the strings generated by

http://www.spread.org/index.html

Table 5: Comparison on the effectiveness of different configurations of EVILSTRGEN and baselines on SET736535.

Non-backtracking Regex Engines Backtracking Regex Engines

RE2 Rust Go SRM C#N awk grep Hyperscan Java JavaScript PCRE2 Perl php Python Boost C#B

E
V

IL
ST

R
G

E
N BRUTE-FORCE 175 29 196 149 182 211 179 41 4,142 3,873 1,438 1,202 121 3,982 800 3,334

NONDETON 470 80 536 653 499 586 651 219 11,318 10,617 3,907 3,267 338 10,945 2,194 9114
LEXICALON 1,296 221 1,470 2,672 7,636 2,115 1,417 731 31,090 29,106 10,783 8,933 928 30,017 5,940 24,936
ALLSTRATON 3,479 728 4,737 8,404 23,872 5,156 3,018 2,327 51,365 48,120 17,890 14,816 1,531 49,605 9,820 41,236

GadgetCA 1,264 226 724 1,954 5,370 3,938 2,884 4 10,305 9,230 9825 2,289 237 10,360 899 11,335
RegexStatic 6 6 6 3 40 137 154 0 3,516 3,937 816 1,988 475 3,797 935 3,458
Regexploit 2 0 1 0 21 23 26 0 1,552 1,637 493 668 42 1,837 900 1545
ReScue 1 0 4 0 9 1 1 1 142 190 41 45 2 200 118 174
Regulator 243 241 478 17 257 449 517 5 34,076 35,516 6,639 4,285 1,287 34,335 4,083 19,060
ReDoSHunter 311 253 299 69 324 1,967 1,623 3 37,900 38,323 16,257 16,280 1,554 45,210 6,009 30,289

Table 6: Performance of EVILSTRGEN (ALLSTRATON) on different subclasses
of regexes from SET736535.

RE2 Rust Go SRM C#N awk grep Hyperscan Total

Counting-free 86 108 768 1,652 5,499 454 369 116 412,785
Nested Counting 256 4 36 51 322 80 39 93 6,727
Unbounded Counting 1,461 602 3,730 5,534 16,073 4,118 2,118 1,074 285,516
Discrete Char Classes 2,133 488 3,260 4,776 13,229 2,458 1,367 2,148 239,319
Finite Languages 1,490 2 114 665 1,274 398 372 1,047 314,294

Table 7: Comparison on the effectiveness of different configu-
rations of EVILSTRGEN and GadgetCA on ABOVE20.

RE2 Rust Go SRM C#N awk grep Hyperscan

E
V

IL
ST

R
G

E
N BRUTE-FORCE 19 2 4 10 1 3 4 3

NONDETON 43 4 2 51 20 15 23 15
LEXICALON 87 11 12 96 44 26 68 22
ALLSTRATON 294 30 23 165 57 74 104 32

GadgetCA 16 9 5 29 6 28 37 2

both tools using KDE. The higher the curve, the higher the
density. The sum of the values represented by each curve
equals 1, i.e. the entire set. The distribution shows that EVIL-
STRGEN can explore a larger state space on more regexes.

Furthermore, the dashed line marks the position correspond-
ing to 10,000 states, with the area to the right of it considered
to contain vulnerable regexes. EVILSTRGEN found 1.55% of
regexes vulnerable w.r.t >10,000 states criterion, while only
0.4% of regexes are found vulnerable by GadgetCA. The re-
sults indicate that EVILSTRGEN is generally more effective
than GadgetCA, achieving an average of 17,846 DFA states
and a median of 14,813 states, whereas GadgetCA has only
7,535 and 4,459 states respectively.

We further analyze ReDoS in some subclasses of regexes.
Table 6 shows the total numbers of regexes with (and without)
some specific structures from SET736535 (the column “To-
tal”) and vulnerable regexes from those subclasses detected by
our tool (the other columns). The statistics reveal that regexes
from these subclasses are not rare to appear in practice. Own-
ing to the effectiveness of the k-simple strings, EVILSTRGEN
is capable of exposing vulnerabilities for different engines
on seemingly safe subclasses such as counting-free regexes.
However, the method is still not sufficient to ensure all the
vulnerabilities are found, see discussions in §6.6.
Summary. Due to its capability to detect various kinds of
ReDoS vulnerabilities on non-backtracking regex engines,
EVILSTRGEN is far more effective than all baselines, detect-
ing overall 2.16�3,042.41⇥ times more ReDoS vulnerabil-
ities. Besides, EVILSTRGEN is also the best or close to the
best detector for backtracking regex engines.

6.3 Comparison with GadgetCA on ABOVE20

As GadgetCA focused on ReDoS detection in a subclass of
regexes, to evaluate RQ2, we fairly compare EVILSTRGEN
with GadgetCA on the ABOVE20 benchmark. ABOVE20 is a

restricted dataset of 8,099 regexes with counting whose sum
of upper bounds are above 20 excluding those unsupported
by GadgetCA from [74].

Under the criterion of <100kB/s, the ReDoS vulnerabil-
ities detected by both tools are depicted in Table 7. From
Table 7, it can be observed that using all of the strategies
collectively, EVILSTRGEN identified 17.37⇥, 2.33⇥, 3.60⇥,
4.69⇥, 8.50⇥, 1.64⇥, 1.81⇥ and 15.00⇥ more ReDoS vul-
nerabilities compared to GadgetCA on RE2, Rust, Go, SRM,
C#N, awk, grep and Hyperscan, respectively.

Figure 4 (i)-(p) shows the ReDoS vulnerable regexes found
by each tool in ABOVE20 under the criterion of <100kB/s.
The result shows that EVILSTRGEN wins in 94.83%, 92.59%,
85.71%, 83.64%, 92.81%, 78.75%, 77.49%, 96.42% vulner-
able regexes on RE2, Rust, Go, SRM, C#N, awk, grep and
Hyperscan, respectively. Figure 5 (b) displays a distribution
of results on ABOVE20, which shows that EVILSTRGEN
achieves an average of 54,730 DFA states and a median of
38,990 states, in contrast to GadgetCA’s average and median
of only 39,300 and 29,270 states, respectively. EVILSTR-
GEN found 7.2% of regexes vulnerable w.r.t >10,000 states
criterion, while only 0.74% of regexes are found vulnerable
by GadgetCA.
Summary. EVILSTRGEN outperforms GadgetCA in terms
of both the number of vulnerabilities found among non-
backtracking engines and the severity of vulnerabilities trig-
gered on the benchmark which GadgetCA is specialized in.

6.4 Analysis of Different Configurations

The efficiency of different configurations of EVILSTRGEN
is depicted in Figure 6 on SET736535, measuring the av-
erage length of candidate attack strings generated by each
algorithm within 50s, where ALLSTRATON achieves an aver-
age length of 19,308 bytes in 50s, while LEXICALON, NON-

SET736535
(a) RE2

G
ad

ge
tC

A

EVILSTRGEN
(e) C#n

G
ad

ge
tC

A

EVILSTRGEN

(b) Rust

G
ad

ge
tC

A

EVILSTRGEN
(f) awk

G
ad

ge
tC

A

EVILSTRGEN

(c) Go

G
ad

ge
tC

A

EVILSTRGEN
(g) grep

G
ad

ge
tC

A

EVILSTRGEN

(d) SRM

G
ad

ge
tC

A

EVILSTRGEN
(h) Hyperscan

G
ad

ge
tC

A

EVILSTRGEN
ABOVE20

(i) RE2

G
ad

ge
tC

A

EVILSTRGEN
(m) C#n

G
ad

ge
tC

A

EVILSTRGEN

(j) Rust

G
ad

ge
tC

A

EVILSTRGEN
(n) awk

G
ad

ge
tC

A

EVILSTRGEN

(k) Go

G
ad

ge
tC

A

EVILSTRGEN
(o) grep

G
ad

ge
tC

A

EVILSTRGEN

(l) SRM

G
ad

ge
tC

A

EVILSTRGEN
(p) Hyperscan

G
ad

ge
tC

A

EVILSTRGEN

Figure 4: Throughput rate [kB/s] comparison of non-backtracking engines to match strings
generated by EVILSTRGEN and GadgetCA.

Figure 5: DFA states in RE2 to match strings
generated by EVILSTRGEN and GadgetCA.

Figure 6: The average length of candidate
attack strings generated by different configu-
rations of EVILSTRGEN on SET736535.

DETON and BRUTE-FORCE achieve 17,602 bytes, 12,882
bytes and 9,825 bytes respectively.

In Figure 6, with more strategy enabled, the curves be-
come flatter. Though more strategies enabled may deceler-
ate the tool at the beginning, e.g. to generate 6,000 bytes,
ALLSTRATON uses 11.37s on average, while LEXICALON,
NONDETON and BRUTE-FORCE require 10.21s, 8.35s, 8.06s
respectively, the curves for the other three configurations tend
to stabilize in 50s, before reaching 100kB. From the overall
results in Table 5 and Table 7, EVILSTRGEN is 13.4⇥ more
effective in ReDoS detection on non-backtracking engines
using all our heuristics than using none.

The results also show a general improvement of each strat-
egy on the BRUTE-FORCE algorithm. In addition, the com-
plete algorithm LEXICALON also shows advantages over
GadgetCA particularly on RE2, Go, SRM, C#N and Hyper-
scan on SET736535.
Summary. The results demonstrate empirically that each strat-
egy that we have introduced provides a remarkable benefit in
the efficiency of candidate attack string generation. For maxi-
mum efficiency, all of the strategies are used simultaneously
in EVILSTRGEN.

6.5 Real-world Application

To illustrate the efficacy of EVILSTRGEN, it was deployed on
real-world projects to identify exploitable ReDoS vulnerabili-
ties. We have applied EVILSTRGEN on the well-starred and
widely downloaded projects in Rust and Go from GitHub. The
initial step involved crafting a script for extracting code seg-
ments using regexes from these projects. Next, EVILSTRGEN
was employed to generate and verify attack strings accord-
ing to different matching functions and engines. A manual
examination was then conducted to ascertain the presence of
code segment interfaces linked to the regexes that might be
vulnerable to external injections.

Our investigation led to the identification and manual veri-
fication of 85 projects having potential ReDoS vulnerabilities,
out of which 34 regexes were confirmed as ReDoS vulnerable
within the real-world projects. Strikingly, GadgetCA was not
able to recognize any of the newly revealed vulnerabilities.
For details, see Appendix B.

Example 7. unknwon/com is an open-source project for com-
monly used functions for the Go programming language.
As illustrated in Figure 7, a regex used for HTML tag re-

// ReDoS vulnerability
func StripTags (src string) string {

re := regexp.MustCompile(’(?s)<(?:style|script)[^<>]*>.*?</(?:style|script)

>|</?[a-z][a-z0-9]*[^<>]*>|<!–.*?–>’)
src = re . ReplaceAllString (src , "")

...
}
// PoC: An 10MB input attack string was injected into CLI interface of the program
, taking 769s for the program to process.

StripTags (" <!- -\x04+\x05\x16\x0B<!- -<!- -X\x1A?<!- -LE*\x1A<!- -I\x09\x18

\xF1<!- -\x04+\x05\x16\x0<!- -<!- -X\x1A?<!- -LE*\x1A<!- -I\x09\x18

\x3C< <!- -\x04+\x05\x16\x0B... ")

Figure 7: A vulnerable regex in package unknwon/com.

moval is vulnerable to ReDoS. A PoC targeting this vul-
nerability significantly slows down the program, with the
throughput rate of the engine dropping below 11kB/s and
causing a 99% CPU load on average during the search on
the attack string. This vulnerability affects 54 projects, pos-
ing significant risks, especially to cloud services, by poten-
tially causing hardware failures or system shutdowns. Key
affected projects include seccome/Ehoney, a honeypot man-
agement system, and huaweicloud/external-sfs, a cloud
storage solution on Huawei Cloud, where disruptions could
severely impact network security and data availability. Addi-
tionally, vulnerabilities in cloud management platforms like
nttcom/terraform-provider-ecl could lead to extensive
service outages and endangering data integrity.

Summary. The results show the high usability of EVILSTR-
GEN to reveal ReDoS vulnerabilities for programs using non-
backtracking engines in practice.

6.6 Discussion

Limitations. Though EVILSTRGEN performs well in prac-
tice, there are following directions to improve. Firstly, the al-
gorithm selection in engines, e.g. from DFA to NFA, is rather
complex. As shown in the experiment, attack strings gener-
ated for backtracking engines might also perform well on grep.
EVILSTRGEN should be combined with a non-trivial exten-
sion to dynamic symbolic execution to monitor the engines
and know from which byte the different matchers are used
and switch to generating targeted attack strings. Secondly,
EVILSTRGEN selects the runes by the degree of nondetermin-
ism greedily. However this does not guarantee to maximize

the degree of nondeterminism in the whole attack string,
or even performs worse than baselines. To avoid this, more
comprehensive branching strategies should be introduced to
avoid finding sub-optimal attack strings.
Discussion for Practioners. Cox has given several good
suggestions on using non-backtracking engines in [20]. Apart
from these, we strongly suggest using regexes from some
rather safe subclasses of regexes for online DFA matchers,
such as deterministic regular expressions [15, 19]. We also
suggest to not using the structures and operators that may
result in high descriptional complexity as mentioned in §4.2.

7 Related Work

ReDoS Detection for Backtracking engines. Previous works
on ReDoS detection mainly focus on backtracking engines,
which can be classified into the following methods.
Static Analysis. Static analysis methods for backtracking en-
gines model ReDoS vulnerabilities but often fail due to mod-
eling limitations, leading to high false positives and nega-
tives. RXXR2 [63] detects ReDoS vulnerabilities by pumping
analysis, struggling with polynomial ReDoS vulnerabilities.
RegexStatic [79] estimates the worst case cost (linear, poly-
nomial, or exponential) of regexes but faces challenges due
to its less comprehensive modeling approach.
Dynamic Analysis. Dynamic analysis detects ReDoS vulner-
abilities during actual runtime, having higher precision than
static methods in the cost of efficiency. ReScue [66] targets
time-intensive input strings using genetic algorithms, which
leads to omission in lower polynomial instances due to the
vast search space and the selection bias of genetic algorithms
results in further limitations. Regulator [56] applies fuzz test-
ing to regex byte-code with a mutation approach, which may
cost too much time for generating attack strings.
Hybrid Approaches. Hybrid tools combine static and dynamic
analysis. Revealer [53] uses an extended NFA based on regex
engine in Java for static analysis. ReDoSHunter [52] identi-
fies and verifies regexes with more fine-grained vulnerability
patterns. RENGAR [78] mitigates ReDoS vulnerabilities by
combining “loop subregex”-based vulnerability modeling and
disturbance-free attack string generation. However the exist-
ing work lacks theoretical foundations.
ReDoS Detection for Non-Backtracking engines. Gad-
getCA [74] is a detector targeting ReDoS vulnerabilities in
non-backtracking engines, relying on the determinisation of
counting automata to generate candidate attack strings for a
restricted subclass of regexes, which may lead to false neg-
atives in regexes that have non-uniform automata. Different
from GadgetCA, EVILSTRGEN leverages a sound and com-
plete algorithm and aims to find the “evilest” attack strings for
online DFA matchers, i.e. simple strings, thus giving a better
performance in detecting real-world ReDoS vulnerabilities.

8 Conclusion

In this paper, we presented a novel and effective approach
to detect ReDoS vulnerabilities for non-backtracking regex
engines. Our ReDoS detector EVILSTRGEN shows state-
of-the-art performance on large-scale real-world benchmark
for both non-backtracking and backtracking engines and ex-
poses 34 new vulnerabilities in popular open-source projects.
There are many promising optimizations remained to be ex-
plored, such as cooperating local search to accelerate the
k-SIMPLE STRING solving and introducing symbolic execu-
tion to reveal more ReDoS vulnerabilities in programs using
non-backtracking engines.

Acknowledgements. We would like to thank our shepherd
and reviewers for their helpful comments and suggestions.
We thank Ping Lu for his valuable advice on computational
complexity and Zhiwu Xu for his careful reading and helpful
comments on an earlier version of the paper. Work supported
by the National Natural Science Foundation of China (Grant
Nos. 62372439 and 61872339) and the Natural Science Foun-
dation of Beijing, China (Grant No. 4232038). Tingjian Ge
is supported in part by NSF grants IIS-2124704 and OAC-
2106740.

References

[1] Maven. https://maven.apache.org/.

[2] NuGet. https://www.nuget.org/.

[3] Pcre - perl compatible regular expressions. http://
www.pcre.org/.

[4] Regex101. https://regex101.com.

[5] The Sagan Log Analysis Engine. https://
quadrantsec.com/sagan_log_analysis_engine/.

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 2006.

[7] A. Asperti, C. S. Coen, and E. Tassi. Regular Expres-
sions, au point, 2010. arXiv:1010.2604[cs].

[8] E. Barlas, X. Du, and J. C. Davis. Exploiting Input
Sanitization for Regex Denial of Service. In ICSE 2022,
pages 883–895, 2022.

[9] A. Bartoli, A. de Lorenzo, E. Medvet, and F. Tarlao. In-
ference of Regular Expressions for Text Extraction from
Examples. IEEE Trans. Knowl. Data Eng., 28(5):1217–
1230, 2016.

[10] M. H. M. Bhuiyan, A. S. Parthasarathy, N. Vasilakis,
M. Pradel, and C.-A. Staicu. SECBENCH.JS: An
Executable Security Benchmark Suite for Server-Side
JavaScript. In ICSE 2023, pages 1059–1070, 2023.

[11] J.-C. Birget. Partial Orders on Words, Minimal Elements
of Regular Languages, and State Complexity. Theor.
Comput. Sci., 119(2):267–291, 1993.

[12] H. Bordihn, M. Holzer, and M. Kutrib. Determination
of Finite Automata Accepting Subregular Languages.
Theor. Comput. Sci., 410(35):3209–3222, 2009.

[13] S. Broda, M. Holzer, E. Maia, N. Moreira, and R. Reis.
A Mesh of Automata. Inf. Comput., 265:94–111, 2019.

[14] J. A. Brzozowski. Derivatives of Regular Expressions.
J. ACM, 11(4):481–494, 1964.

[15] A. Brüggemann-Klein. Regular Expressions into Finite
Automata. Theor. Comput. Sci., 120:197–213, 1993.

[16] J.-M. Champarnaud. Subset Construction Complexity
for Homogeneous Automata, Position Automata and
ZPC-Structures. Theor. Comput. Sci., 267(1-2):17–34,
2001.

[17] C. Chapman and K. T. Stolee. Exploring Regular Ex-
pression Usage and Context in Python. In ISSTA 2016,
pages 282–293, 2016.

[18] C. Chapman, P. Wang, and K. T. Stolee. Exploring Reg-
ular Expression Comprehension. In ASE 2017, pages
405–416, 2017.

[19] H. Chen and P. Lu. Checking Determinism of Regular
Expressions with Counting. Inf. Comput., 241:302–320,
2015.

[20] R. Cox. Regular Expression Matching in the Wild, 2010.
https://swtch.com/~rsc/regexp/regexp3.html.

[21] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee. The
Impact of Regular Expression Denial of Service (Re-
DoS) in Practice: an Empirical Study at the Ecosystem
Scale. In ESEC/FSE 2018, pages 246–256, 2018.

[22] J. C. Davis, L. G. Michael IV, C. A. Coghlan, F. Ser-
vant, and D. Lee. Why Aren’t Regular Expressions a
Lingua Franca? An Empirical Study on the Re-Use and
Portability of Regular Expressions. In ESEC/FSE 2019,
pages 443–454, 2019.

[23] Docs.rs. "regex - Rust", 2023. https://docs.rs/
regex/1.9.1/regex/.

[24] K. Ellul, B. Krawetz, J. O. Shallit, and M.-w. Wang.
Regular Expressions: New Results and Open Problems.
J. Autom. Lang. Comb., 10(4):407–437, 2005.

[25] M. Roesch et al. Snort: A Network Intrusion Detection
and Prevention System. http://www.snort.org.

[26] R. Sommer et al. The Bro Network Security Monitor.
http://www.bro.org.

[27] W. Gelade. Succinctness of Regular Expressions with
Interleaving, Intersection and Counting. Theor. Comput.
Sci., 411(31):2987–2998, 2010.

[28] D. Giammarresi, J.-L. Ponty, and D. Wood. Thompson
Languages. In Jewels are Forever, Contributions on The-
oretical Computer Science in Honor of Arto Salomaa,
pages 16–24. 1999.

[29] GNU. "GNU Sed: a stream editor", 2020. https:
//www.gnu.org/software/sed/manual/.

https://maven.apache.org/
https://www.nuget.org/
http://www.pcre.org/
http://www.pcre.org/
https://regex101.com
https://swtch.com/~rsc/regexp/regexp3.html
https://docs.rs/regex/1.9.1/regex/
https://docs.rs/regex/1.9.1/regex/
http://www.snort.org
http://www.bro.org
https://www.gnu.org/software/sed/manual/
https://www.gnu.org/software/sed/manual/

[30] GNU. "Gawk: Effective AWK Programming", 2023.
https://www.gnu.org/software/gawk/manual/.

[31] GNU. "GNU Grep: Print lines matching a pattern", 2023.
https://www.gnu.org/software/grep/manual/.

[32] Go. Go regexp, 2023. https://pkg.go.dev/regexp.

[33] J. Goldstine, C.M.R. Kintala, and D. Wotschke. On
measuring nondeterminism in regular languages. Inf.
Comput., 86(2):179–194, 1990.

[34] Google. RE2, 2023. https://github.com/google/
re2.

[35] J. Goyvaerts. Popular tools, utilities and program-
ming languages that support regular expressions,
2021. https://www.regular-expressions.info/
tools.html.

[36] S. Haber, W. Horne, P. Manadhata, M. Mowbray, and
P. Rao. Efficient Submatch Extraction for Practical
Regular Expressions. In LATA 2013, pages 323–334,
2013.

[37] Y.-S. Han, G. Trippen, and D. Wood. Simple-Regular
Expressions and Languages. J. Autom. Lang. Comb.,
12(1-2):181–194, 2007.

[38] S. A. Hassan, Z. Aamir, D. Lee, J. C. Davis, and F. Ser-
vant. Improving Developers’ Understanding of Regex
Denial of Service Tools through Anti-Patterns and Fix
Strategies. In S&P 2023, pages 1238–1255, 2023.

[39] M. Holzer and M. Kutrib. The Complexity of Regular(-
like) Expressions. In DLT 2010, pages 16–30, 2010.

[40] L. Holík, J. Síčč, L. Turoňová, and T. Vojnar. Fast Match-
ing of Regular Patterns with Synchronizing Counting.
In FoSSaCS 2023, pages 392–412, 2023.

[41] P. Hooimeijer and M. Veanes. An Evaluation of Au-
tomata Algorithms for String Analysis. In VMCAI 2011,
pages 248–262, 2011.

[42] J. E. Hopcroft and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-
Wesley, 1979.

[43] D. Hovland. Regular Expressions with Numerical Con-
straints and Automata with Counters. In ICTAC 2009,
volume 5684, pages 231–245. 2009.

[44] A. Hume. A Tale of Two Greps. Softw. - Pract. Exp.,
18(11):1063–1072, 1988.

[45] L. G. Michael IV, J. Donohue, J. C. Davis, D. Lee, and
F. Servant. Regexes are Hard: Decision-Making, Diffi-
culties, and Risks in Programming Regular Expressions.
In ASE 2019, pages 415–426, 2019.

[46] Christopher K. regex-tdfa: A new all haskell tagged
dfa regex engine, inspired by libtre., 2023. https://
github.com/haskell-hvr/regex-tdfa.

[47] D. Karger, R. Motwani, and G. D. S. Ramkumar. On Ap-
proximating the Longest Path in a Graph. Algorithmica,
18(1):82–98, 1997.

[48] P. Kilpeläinen and R. Tuhkanen. Regular Expressions
with Numerical Occurrence Indicators - preliminary re-
sults. In SPLST’03, pages 163–173, 2003.

[49] C. M. R. Kintala and D. Wotschke. Amounts of Nonde-
terminism in Finite Automata. Acta Inform., 13(2):199–
204, 1980.

[50] A. Le Glaunec, L. Kong, and K. Mamouras. Regular
Expression Matching using Bit Vector Automata. In
OOPSLA 2023, pages 492–521, 2023.

[51] H. Leung. Separating Exponentially Ambiguous Fi-
nite Automata from Polynomially Ambiguous Finite
Automata. SIAM J. Comput., 27(4):1073–1082, 1998.

[52] Y. Li, Z. Chen, J. Cao, Z. Xu, Q. Peng, H. Chen, L. Chen,
and S. C. Cheung. ReDoSHunter: A Combined Static
and Dynamic Approach for Regular Expression DoS
Detection. In USENIX Security ’21, pages 3847–3864,
2021.

[53] Y. Liu, M. Zhang, and W. Meng. Revealer: Detecting
and Exploiting Regular Expression Denial-of-Service
Vulnerabilities. In S&P 2021, pages 1468–1484, 2021.

[54] R. Mańdl. Precise bounds associated with the subset
construction on various classes of nondeterministic fi-
nite automata. In CISS 1973, pages 263–267, 1973.

[55] J. P. Marques Silva and K. A. Sakallah. Grasp - A
New Search Algorithm for Satisfiability. In The Best of
ICCAD, pages 73–89. 2003.

[56] R. McLaughlin, F. Pagani, N. Spahn, C. Kruegel, and
G. Vigna. Regulator: Dynamic Analysis to Detect Re-
DoS. In USENIX Security ’22, pages 4219–4235, 2022.

[57] R. McNaughton and H. Yamada. Regular Expressions
and State Graphs for Automata. IRE Trans. Electron.
Comput., 9:39–47, 1960.

[58] Microsoft. CredScan, 2021. https://secdevtools.
azurewebsites.net/helpcredscan.html.

[59] F. R. Moore. On the Bounds for State-Set Size in the
Proofs of Equivalence Between Deterministic, Nonde-
terministic, and Two-Way Finite Automata. IEEE Trans.
Comput., C-20(10):1211–1214, 1971.

https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/grep/manual/
https://pkg.go.dev/regexp
https://github.com/google/re2
https://github.com/google/re2
https://www.regular-expressions.info/tools.html
https://www.regular-expressions.info/tools.html
https://github.com/haskell-hvr/regex-tdfa
https://github.com/haskell-hvr/regex-tdfa
https://secdevtools.azurewebsites.net/helpcredscan.html
https://secdevtools.azurewebsites.net/helpcredscan.html

[60] D. Moseley, M. Nishio, Jose Perez R., O. Saarikivi,
S. Toub, M. Veanes, T. Wan, and E. Xu. Derivative
Based Nonbacktracking Real-World Regex Matching
with Backtracking Semantics. PLDI 2023, 7:1026–1049,
2023.

[61] G. Navarro and M. Raffinot. Flexible Pattern Matching
in Strings: Practical On-Line Search Algorithms for
Texts and Biological Sequences. Cambridge University
Press, 2002.

[62] M. O. Rabin and D. Scott. Finite Automata and Their
Decision Problems. IBM J. Res. Dev., 3(2):114–125,
1959.

[63] A. Rathnayake and H. Thielecke. Static Analysis for
Regular Expression Exponential Runtime via Substruc-
tural Logics. CoRR abs/1405.7058, 2014.

[64] O. Saarikivi, M. Veanes, T. Wan, and E. Xu. Symbolic
Regex Matcher. In TACAS 2019, pages 372–378, 2019.

[65] K. Salomaa and S. Yu. NFA to DFA Transformation for
Finite Languages. In WIA 1996, pages 149–158, 1996.

[66] Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu. Rescue:
Crafting Novel Regular Expression DoS Attacks. In ASE
2018, pages 225–235, 2018.

[67] Snyk. The State of Open-source Security, 2020. https:
//snyk.io/.

[68] H. Spencer. A Regular Expression Matcher. In Software
Solutions in C, pages 35–71. 1994.

[69] C.-A. Staicu and M. Pradel. Freezing the Web: A
Study of ReDoS Vulnerabilities in JavaScript-based Web
Servers. In USENIX Security ’18, pages 361–376, 2018.

[70] M. Sulzmann and K. Z. M. Lu. POSIX Regular Expres-
sion Parsing with Derivatives. In FLOPS 2014, pages
203–220, 2014.

[71] A. Syropoulos. Mathematics of Multisets. In Multiset
Processing, pages 347–358, 2001.

[72] R. E. Tarjan. Efficiency of a Good But Not Linear Set
Union Algorithm. J. ACM, 22(2):215–225, 1975.

[73] U. Trofimovich. RE2C: A Lexer Generator Based on
Lookahead-TDFA. Softw. Impacts, 6:100027, 2020.

[74] L. Turoňová, L. Holík, I. Homoliak, O. Lengál,
M. Veanes, and T. Vojnar. Counting in Regexes Consid-
ered Harmful: Exposing ReDoS Vulnerability of Non-
backtracking Matchers. In USENIX Security ’22, pages
4165–4182, 2022.

[75] Jerome V. Ocaml-re, 2023. https://github.com/
ocaml/ocaml-re.

[76] P. Wang and K. T. Stolee. How Well are Regular Ex-
pressions Tested in the Wild? In ESEC/FSE 2018, pages
668–678, 2018.

[77] X. Wang, Y. Hong, H. Chang, G. Langdale, and J. Hu.
Hyperscan: A Fast Multi-pattern Regex Matcher for
Modern CPUs. In NSDI 19, pages 631–648, 2019.

[78] X. Wang, C. Zhang, Y. Li, Z. Xu, S. Huang, Y. Liu,
Y. Yao, Y. Xiao, Y. Zou, Y. Liu, and W. Huo. Effective
ReDoS Detection by Principled Vulnerability Modeling
and Exploit Generation. In S&P 2023, pages 2427–2443,
2023.

[79] N. Weideman, B. van der Merwe, M. Berglund, and
B. Watson. Analyzing Matching Time Behavior of
Backtracking Regular Expression Matchers by Using
Ambiguity of NFA. In CIAA 2016, pages 322–334,
2016.

[80] V. Wüstholz, O. Olivo, M. J. H. Heule, and I. Dillig.
Static Detection of DoS Vulnerabilities in Programs that
Use Regular Expressions. In TACAS 2017, pages 3–20.

[81] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.
Katz. Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection. In ANCS06, pages
93–102, 2006.

[82] S. Yu, Q. Zhuang, and K. Salomaa. The State Complex-
ities of Some Basic Operations on Regular Languages.
Theor. Comput. Sci., 125(2):315–328, 1994.

A Omitted Definitions and Proofs

A.1 Unfolding Rules

A regex E can be transformed into an equivalent counting-free
regex by recursively applying the rules:
E{0,}! E⇤, E{0,}?! E⇤?, E{0,0}!?, E{0,0}?!?,
E+! EE⇤, E+?! EE⇤?,
E{m,n}! EE{m�1,n�1}, E{m,n}?! EE{m�1,n�1}?, for n� m > 0,
E{0,n}! E?E{0,n�1}, E{0,n}?! E??E{0,n�1}?, for n > 1,
E{m,}! EE{m�1,}, E{m,}?! EE{m�1,}?, for m� 1.

A.2 Proof for Theorem 1

Theorem 1. k-SIMPLE STRING is EXPSPACE-hard.

Proof. We show that k-SIMPLE STRING is EXPSPACE-hard
by a reduction to NON-EMPTY COMPLEMENT. Given a regex
E defined on an alphabet S, the NON-EMPTY COMPLEMENT
problem of E is to decide whether L(¬E) 6=?. In [39], this
problem is proven to be EXPSPACE-complete.

We note that a DFA M of E can be easily completed [42],
thus we assume that all DFAs under consideration are com-
plete and the sink state is denoted as d. Define the comple-
mented M as M c = (Qc,S,dc,sc,Fc), where Fc = (Q�F)[

https://snyk.io/
https://snyk.io/
https://github.com/ocaml/ocaml-re
https://github.com/ocaml/ocaml-re

{d}. We modify the Definition 2 as a simple string wc is a
finite word w 2 L(M c), where the states of the path of w on
M c of E contains only one final state and are pairwise distinct.
This transformation is done in polynomial time. Therefore,
any 0-simple string wc of M c of E satisfies wc 2 L(¬E), i.e.
an witness of NON-EMPTY COMPLEMENT.

A.3 Proof for Theorem 2

Theorem 2. DECIDE(E,k) is sound and complete.

Proof. Let E be the regex and k the integer on which the algo-
rithm is executed. First, we show the soundness of DECIDE.
When DECIDE returns T, consequently INC_DET returns a
string with at least length k. Any returned string of INC_DET
has a path on Mgrep thus is a string in L(E). As the search
avoids recording identical states by condition s /2Q within the
loop (line 13) and keep only one final state in a searching path
by terminating this search once encountering a final state (line
15), thus the string is a k-simple string of E, w.r.t Mgrep. When
DECIDE returns F, INC_DET returns a string shorter than k,
indicating that the string is not a k-simple string. Above all,
the algorithm DECIDE is sound.

For any given input regex E, INC_DET produces a sim-
ple string (as discussed above). If the length of this output
string exceeds k by the termination condition |wit|� k, i.e.,
INC_DET finds a simple string longer than k and DECIDE
returns T. If there is no simple string of length greater than
k, when the finite set of states of Mgrep is fully constructed,
the algorithm terminates and returns a longest string found,
which is lower than k, then DECIDE returns F. Accordingly,
DECIDE is guaranteed to terminate correctly.

From the argument above, DECIDE(E,k) is sound and com-
plete in solving k-SIMPLE STRING w.r.t. Mgrep.

B Real-World Vulnerabilities

Table 8 shows ReDoS vulnerable regexes from Go and Rust
projects, where their names and stars are listed. Only the
source projects are shown for these regexes in supply chains.

Table 8: Real-world ReDoS vulnerable regexes and corresponding projects.

No. Regex Project Stars GadgetCA EVILSTRGEN

1 \x1bPtmux;\x1b\x1b.⇤?[ˆ\x1b]\x1b\\|\x1b(_G|P[0-9;]⇤q).⇤?\x1b\\\r?|\x1b]1337; .⇤?\a junegunn/fzf 56,859 % "

2 (?s)<(?:style|script)[ˆ<>]⇤>.⇤?</(?:style|script)>|</?[a-z][a-z0-9]⇤[ˆ<>]⇤>|<!--.⇤?--> unknwon/com and other 56 projects 13,265 in total % "

3 \$(?:\{([ˆ}]+)\}|([a-zA-Z\d_]+)) sxyazi/yazi 5,521 % "
4 (?:[ˆ”])⇤[ˆ,]”|“(?:[ˆ”])⇤[ˆ,]” jdkato/prose and other 4 projects 3,136 in total % "
5 <[ˆ>]⇤>|&#?\w+; |[gl]t; ajour/ajour 1,000 % "
6 \$(\$|[a-zA-Z0-9_]+|\([ˆ)]+\)|\{[ˆ}]+\}) getsentry/sentry-cli 855 % "

7 ^-i | –indexonly and -x | –indexfirst can’t be present at the
same time. Try to remove the -x | –indexfirst flag.⇤ feliixx/mgodatagen 307 % "

8 (\([ˆ)]⇤\)|♪[ˆ♪]⇤♪|[A-Z]{2,} ?:) emk/subtitles-rs 285 % "
9 ˆ([a-zA-Z0-9-_./]+) m\\|([ˆ|]+)\\|([is]{0,2})(?: (.⇤))?$ qiwentaidi/Slack 282 % "

10 (?i)X-Amz-Signature|File|Policy|X-Ignore-.+ sodafoundation/strato 231 % "
11 \r\n|\r|\n+|\<[\S\s]+?\> Away0x/gin_bbs 161 % "
12 (\[\”(.⇤?)\”\])|(\[\’(.⇤?)\’\]) TIBCOSoftware/mashling 86 % "
13 (\(.⇤\))|([.,]+(com|inc)[, .]⇤$)|()|(ˆ@)|([&@].⇤)$ istio-ecosystem/istio-coredns-plugin 41 % "
14 \$(\w+)|\[\[([\s\S]+?)(?::(\w+))?\]\]|\${(\w+)(?:\.([ˆ:ˆ\}]+))?(?::(\w+))?}/g paveldanilin/grafana-csv-plugin 35 % "
15 <([ˆ>]|\n)⇤>|\t|\r kevinwatt/ed2kcrawler 32 % "
16 (\x1b[ˆm]⇤m|\x1b\[\d+C) roosta/oozz 24 % "
17 \x1B(?:\[[0-?]⇤[- /]⇤[@-˜]|_[ˆ\\]⇤; [ˆ\\]⇤\\) Notarin/hayabusa 20 % "
18 \s⇤impl(<.⇤?>)?\s+(\w+)(<.⇤?>)?(\s+for\s+(\w+))? colin353/universe 19 % "
19 ˆ\\|(\\d+)\\|\\W+?(.+)$ psaia/allwrite-docs 15 % "
20 !\[.⇤?\]\((.⇤?)\)|<img.⇤?src=[\’\”](.⇤?)[\’\”].⇤?> cnych/sinaimgmover 14 % "
21 (\[\”(.⇤?)\”\])|(\[\’(.⇤?)\’\]) jvanderl/flogo-components 13 % "
22 <[ˆ>]⇤>|&#?\w+; |[gl]t; mimblewimble/grin-gui 13 % "
23 \$\$|\$(\w+)|\$\{(\w+)(?::-([ˆ}]+)?)?\} f1shl3gs/vertex 12 % "
24 (?ims).+?src=\s⇤?”(.+?)”|’(.+?)’ crawlerclub/ce 11 % "
25 <[ˆ>]⇤>|\\n|\\t| + emiruz/textextract 11 % "
26 (?ims).+?src=\s⇤?”(.+?)”|’(.+?)’+ crawlerclub/ce 11 % "
27 \$\d+|\$\{\d+:.+} Universal-Variability-Language/uvl-lsp 9 % "
28 (\[http[\S]+)(\{\{)|(\}\})|(\[\[)|(\]\])|(==)|:|\||\⇤ aryamancodes/xkcd-search 9 % "
29 ##.⇤?##|\{#.⇤?#\} enginestein/aksarantara.ruby 7 % "
30 **/|*|[ˆ[?*{]+|{[ˆ}]+}|\? alecthomas/bit 7 % "
31 /*{1,2}[\s\S]⇤?*/|//[\s\S]⇤?\n sjqzhang/gdi 5 % "
32 *|\[([ˆ\]]⇤)\] subdgtl/WFC 5 % "
33 (, |#[ˆ\n]⇤\n) mrshoe/sol 5 % "
34 ##.⇤?##|\{#.⇤?#\} ubcsanskrit/sanscript.rb 5 % "

1 "and%denote whether the corresponding method can successfully detect the vulnerability or not.

	Introduction
	Preliminaries
	Overview
	Analysis of Factors for ReDoS
	Time Complexity Analysis of Matchers and Matching Functions
	Descriptional Complexity Blow-up

	ReDoS Detection
	Simple Strings
	Incremental k-Simple String Solving

	Evaluation
	Experiment Setup
	Performance on Large-Scale Real-World Regex Benchmark
	Comparison with GadgetCA on ABOVE20
	Analysis of Different Configurations
	Real-world Application
	Discussion

	Related Work
	Conclusion
	Omitted Definitions and Proofs
	Unfolding Rules
	Proof for Theorem 1
	Proof for Theorem 2

	Real-World Vulnerabilities

