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Abstract

Hybrid models composing mechanistic ODE-
based dynamics with flexible and expressive neu-
ral network components have grown rapidly in
popularity, especially in scientific domains where
such ODE-based modeling offers important inter-
pretability and validated causal grounding (e.g.,
for counterfactual reasoning). The incorporation
of mechanistic models also provides inductive
bias in standard blackbox modeling approaches,
critical when learning from small datasets or par-
tially observed, complex systems. Unfortunately,
as the hybrid models become more flexible, the
causal grounding provided by the mechanistic
model can quickly be lost. We address this prob-
lem by leveraging another common source of do-
main knowledge: ranking of treatment effects for
a set of interventions, even if the precise treatment
effect is unknown. We encode this information in
a causal loss that we combine with the standard
predictive loss to arrive at a hybrid loss that biases
our learning towards causally valid hybrid models.
We demonstrate our ability to achieve a win-win,
state-of-the-art predictive performance and causal
validity, in the challenging task of modeling glu-
cose dynamics post-exercise in individuals with
type 1 diabetes.

1. Introduction

In many scientific and clinical domains, an influx of high res-
olution sensing data has brought the promise of more refined
and informed scientific discovery and decision-making. The
motivating example we consider in this paper is type 1 dia-

'Institute for Computational and Mathematical Engineer-
ing, Stanford University *Broad Institute of MIT and Harvard
3Department of Pediatrics, Stanford University *Department
of Management Science and Engineering, Stanford University
SDepartment of Statistics and Department of Computer Science,
Stanford University °Chan Zuckerberg Biohub — San Francisco.
Correspondence to: Emily B. Fox <ebfox@stanford.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

betes (T1D) management, where continuous glucose moni-
toring (CGM) and smart insulin pumps are revolutionizing
care by offering near-real-time insights into physiological
states (Tauschmann et al., 2022). To provide data-driven
management strategies, there is a pressing need for inter-
pretable models that not only make accurate predictions,
but also grasp the causal mechanisms behind physiologi-
cal responses (e.g., for counterfactual reasoning over various
potential interventions). The target of causally-grounded,
performant models is critical in many scientific disciplines
ranging from astronomy to cell biology to neuroscience; in
many of these settings, we are faced with only partial or
indirect observations of a complex physiological or physical
process we aim to reason about.

Blackbox sequence models have demonstrated extraordinary
performance in numerous fields, ranging from natural lan-
guage processing to forecasting. Popular methods include
recurrent neural networks (RNNs), such as long short-term
memory networks (LSTMs) (Hochreiter & Schmidhuber,
1997) and gated recurrent units (GRUs) (Chung et al., 2014);
(temporal) convolutional neural networks (CNNs) (Lea et al.,
2016; Bai et al., 2018; Shi et al., 2023); Transformer models,
including Informer (Zhou et al., 2021) and Autoformer (Wu
et al., 2021); and state space sequence models, such as
S4 (Gu et al., 2022b). Despite their transformative role in
many fields, the application of these models to various sci-
entific domains has encountered challenges. An obvious
hurdle is the limited size of some scientific datasets. But
even in the presence of lots of data, these methods are still
crippled by the incomplete nature of what can be measured.
This problem is exacerbated by the fact that most data is
observational: blackbox models are adept at identifying
associations leading to good predictions, but may not learn
causally coherent models. For example, in our T1D setting,
insulin delivery frequently coincides with a planned meal or
snack, which initially causes glucose to rise; the model may
incorrectly infer that insulin causes glucose to rise, when
the reality is the opposite.

Sophisticated mechanistic models—specified via a set of
ordinary differential equations (ODEs)—remain a preferred
method in many scientific domains, as they capture lab-
validated or otherwise known physical or physiological
causal properties of the system. Examples include cardiac
and renal modeling (Hilgemann & Noble, 1987; ten Tuss-
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cher et al., 2004; Marsh et al., 2005; Passini et al., 2017),
immunology and viral kinetics (Perelson et al., 1996; Canini
& Perelson, 2014), epidemiology (He et al., 2020), neu-
ral circuits (Hodgkin & Huxley, 1952; Ladenbauer et al.,
2019), and pharmacokinetics (Holz & Fahr, 2001). The
UVA/Padova simulator (Man et al., 2014) of insulin-glucose
dynamics we consider in this paper has been FDA approved
as a substitute for pre-clinical trials in the development of
artificial pancreas algorithms. Notably, sophisticated mech-
anistic models often introduce additional states to capture
intricate, non-Markovian dynamics such as delays. While
this approach preserves the tractability of linear ODEs, it
can lead to over-parameterization. The latest version of
the UVA/Padova simulator has over 30 states. Yet, these
models fail to capture important dynamics observed in real-
world data; moreover, their parameter inference is highly
sensitive. Further limiting this class of models is the typical
assumption of a fixed mechanistic structure with a static
set of simulator parameters. In T1D, many unobserved
or partially-observed time-varying factors affect glycemic
responses, including stress, hormone cycles, sleep, and ac-
tivity levels (cf., Wellen et al., 2005). Likewise, the causal
mechanism governing glycemic responses can vary—e.g.,
during certain types of physical activity, multiple underlying
processes (not modeled in UVA/Padova) are activated based
on available energy sources (McArdle et al., 2006).

Given these limitations, we focus on an alternative approach
that hybridizes machine learning (ML) with domain knowl-
edge encoded in mechanistic models. These hybrid models
have gained traction across the natural and physical sci-
ences (Willard et al., 2022), while being given different
names and interpretations such as graybox modeling (Rico-
Martinez et al., 1994), physics-informed machine learn-
ing (Karniadakis et al., 2021), universal differential equa-
tions (Rackauckas et al., 2020) and neural closure learn-
ing (Gupta & Lermusiaux, 2021). The core idea of hybrid
modeling is to infuse domain inductive bias such that the
trained model can gain the best of both worlds—mechanistic
rigor with the flexibility and expressivity of deep learning.
The hope is that hybrid methods not only allow one to solve
complex modeling problems with improved precision and
accuracy (Pathak et al., 2018; Willard et al., 2022), but also
reduce the demand on data (Rackauckas et al., 2020), en-
hance reliability and robustness (Didona et al., 2015), and
make the ML algorithms interpretable (Karniadakis et al.,
2021; Du et al., 2019). Examples of successes of hybrid
modeling in healthcare can be found in Qian et al. (2021);
Sottile et al. (2021); Hussain et al. (2021).

Indeed, in Fig. 1 (left), we see the important inductive bias
such mechanistic models provide. On the one hand, the pure
mechanistic model makes poor predictions due to its brittle
nature while on the other hand, the flexible blackbox models
are subject to overfitting. The hybrid models generally
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Figure 1. Prediction RMSE and standard error (left) vs. 10/50/90-
th (lower/bar/upper) percentile classification error rate (right) for
(1) UVA/Padova mechanistic model (UVA); (2) hybrid models:
latent parameter dynamics (LP), latent parameter dynamics + state
closure (LPSC), MNODE; and (3) blackbox models: neural ODE
(BNODE), temporal convolutional network (TCN), LSTM, Trans-
former (Trans) and S4D, all trained on pure predictive loss (ov = 0).
The dashed gray line in the second figure corresponds to the causal
classification error rate of random guessing (2/3).

outperform either alternative in terms of prediction error.

Unfortunately, as we also see in Fig. 1 (right), hybrid models
can quickly lose their valid causal grounding as more and
more flexible modeling components are deployed. When
tasked with selecting the intervention with the largest treat-
ment effect amongst a set of three counterfactual simulations
(see Sec. 5), classification error for hybrid models gradually
deteriorates as the model becomes more blackbox. Amongst
the hybrid and blackbox models, we see that the majority
have a classification error rate statistically indistinguishable
from random guessing, 67%.

To address these challenges, we leverage another common
source of domain knowledge: rankings of various treatment
effects. While domain knowledge is often insufficient to
specify expected treatment effects under counterfactually-
applied interventions, we are still often able to make quan-
titative claims about relative magnitudes of different treat-
ment effects. For example, while we may not know the
precise treatment effect of eating a small salad versus a
whole birthday cake (all else held constant), we do know
the sign and relative scale of treatment effect. As this prior
knowledge is challenging to encode in the hybrid model it-
self, we introduce a causal loss function that encourages our
learned model to perform well in these comparison tasks.
Our hybrid loss is a convex combination of predictive loss
and causal loss. When applied to training hybrid models,
we refer to the overall method as hybrid? neural ODE
causal modeling (H>NCM). In a real-world task of guiding
individuals with T1D on the impact of interventions so they
can safely exercise, we show that our HXNCM approach
achieves the best of both worlds: state-of-the-art predictive
accuracy with causal validity.

2. The Hybrid Modeling Spectrum

In this section, we provide background on hybrid modeling.
For this paper, it is useful to think of hybrid modeling as a
spectrum from pure mechanistic whitebox models to fully
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Figure 2. Visualization of hybrid modeling spectrum for a sim-
ple mechanistic model of insulin-glucose dynamics. From left
to right: (1) mechanistic model; (2) latent parameter dynamics;
(3) MNODE; (4) neural ODE. Dependencies between states are
maintained until (4), with state dynamics increasingly flexible.

blackbox approaches, as illustrated in Fig. 2. There are two
important components to the hybrid modeling spectrum: the
degree to which neural networks learn the state dynamics
and the degree to which the dependencies between states
encoded in the mechanistic model are maintained.

The notion of a hybrid spectrum is an oversimplification as
the space of possible hybrid models involves any number of
combinations of hybridizations that are not easily ordered
along a single axis. However, this framework is helpful
for pedagogical purposes. Further, the hybrid models we
focus on in our experiments can be ordered in terms of
increasing model flexibility, which helps illustrate the risk
that hybrid models can lose causal validity as we walk along
this spectrum (see Fig. 1).

2.1. Mechanistic Models

On the far left-hand side of our hybrid modeling spectrum
in Fig. 2 is the pure mechanistic model specified via a set of
ordinary differential equations (ODE),

— =m(s(t); B), 4))

where s is a vector representing the state, and [ is a vector
representing the simulator parameters. In applications where
interventions or other external controls, x, are being applied
to the observed dynamical system, we obtain a controlled
ordinary differential equation (CDE),

ds

o = m(s(@),2(0); B). @)

For simplicity, we still refer to such systems as ODEs, just
as controlled state space models are often simply called state
space models. Our focus will be on this controlled setting
since our interest is in causal hybrid modeling to produce
(valid) counterfactual simulations for an intervention x.' In
Fig. 2, we introduce a cartoon version of such a (controlled)
ODE for insulin-glucose dynamics.

'We use x to represent both possible controls or interventions,
as well as exogenous covariates relevant to the state dynamics.

2.2. Neural ODE

In the absence of mechanistic domain knowledge, neural
ODE:s (Rico-Martinez et al., 1992; Weinan, 2017; Haber
& Ruthotto, 2017; Chen et al., 2018; Kidger, 2021) have
been proposed as a blackbox approach to learning such a
dynamical system:

% = Fse),x(0); 0). G
Here, f denotes a neural network with parameters 6. Neu-
ral ODEs represent the far right side of the spectrum in
Fig. 2. These methods have proven useful in many dynami-
cal system modeling and simulation tasks, especially in the
sciences where ODE:s are a standard language for describing
systems (Qian et al., 2021; Lu et al., 2021; Owoyele & Pal,
2022; Asikis et al., 2022; Li et al., 2022).

2.3. Hybrid Models

For our purposes, we introduce a general hybrid model that
can be used to represent several different sub-methods:

% = cim(s(t), z(t); B(t)) + cafr(s(t), z(t), c32(t); 0)
dz
= = f2(2(0),2(2); 0)

B(t) = B+ cafs(x(t), 2(); 0).

“
This class of hybrid models can improve upon the nomi-
nal mechanistic model in Eq. (2) by introducing (i) time-
varying parameters ((t); (ii) a flexible correction term
to the mechanistic ODE given by fi; and (iii) a time-
dependent latent state vector z(t). We introduce constants
c1,c2,¢3,¢4 € {0,1} to “switch” between different sub-
methods. If c; = 1 and ¢ = ¢3 = ¢4 = 0, we recover a
fully mechanistic model. On the other hand, if c; = 1 and
c1 = c3 = ¢4 = 0, we obtain a blackbox neural ODE.

For other choices of these constants, we obtain various pre-
vious hybrid methods. When ¢; = ¢4 = 1 and ¢ = ¢c3 = 0,
we have a method that addresses infidelities of the mechanis-
tic model solely via time-dependent parameters governed by
latent dynamics z; we refer to this hybrid approach as latent
parameter dynamics. In the context of glycemic modeling,
Miller et al. (2020) use a deep state space model to capture
time- and context-dependence of the simulator parameters.
When ¢; = ¢ = 1, we learn a flexible correction f; to
the mechanistic model in Eq. (2). We refer to this hybrid
approach as state closure. If we also have c3 = 1, we learn
a correction f; that is additionally dependent on latent states
z(t). If instead we have c5 = ¢4 = 0, we learn a simple
closure model f; which only depends on the mechanistic
states s(t) (Rico-Martinez et al., 1994).

Yin et al. (2021), Levine & Stuart (2022), and Karniadakis
et al. (2021) provide related frameworks for defining the
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space of hybrid models. The above schemes, and those
further described in Levine & Stuart (2022); Karniadakis
et al. (2021); Yin et al. (2021), are not mutually exclusive
and are often combined (Qian et al., 2021; Wu et al., 2022;
Wang et al., 2022).

Another important component of the mechanistic model
that has been ignored to this point is the set of dependencies
between states encoded by the mechanistic model. To make
these dependencies explicit, and to explore hybrid models
that—at a dynamical modeling level—maintain the same
dependencies, we introduce the notion of connectivity of
the state dynamics via a set of adjacency matrices A, A, :

% = clm(s(t),x(t); AS,AI,B(t))

cafi(s(t), x(t), c32(t); As, Az,
. +eafi(s(t),2(t), ca2(t) 0) )
o = Be(0), 20 )

B(t) = B+ cafs(x(t), 2(t); 0).

Here the (4, j) entry of Ay is 1 if ds; /dt is allowed to depend
on s;(t), and similarly for A,. In this way, the adjacency
matrices Ag, A, encode a structural equation model that
constrains which state variables in s, z are allowed to in-
fluence each component of %. When ¢; = ¢ = 1, in
contrast to the state closure model of Eq. (4), here the addi-
tive neural network correction is also forced to respect the

dependencies between states.

Note that in Eq. (5), when ¢; = 0 but co = 1, we maintain
the dependencies between states (specified via Ag and A,.),
but allow the resulting state dynamics to be fully learned
via neural networks. We refer to this model as a mechanis-
tic neural ODE (MNODE). MNODE represents the third
illustrated model in the hybrid spectrum of Fig. 2.

3. Hybrid?> Modeling

Hybrid models offer significant promise in many scientific
domains where ODE-based mechanistic models are com-
monly deployed: they can provide important inductive bias,
interpretability, and causal grounding as compared to their
black-box alternatives; and, compared to pure mechanistic
modeling, hybrid models can reduce bias through the flexi-
bility of neural network components. However, as one walks
along the hybrid modeling spectrum—from pure mechanis-
tic to pure blackbox—these touted advantages can quickly
disappear, as illustrated in Fig. 1. In particular, there is noth-
ing constraining a hybrid model—trained on a predictive
performance objective—to maintain the causal structure and
interpretability of the original mechanistic model.

We address this challenge in Sec. 3.2 by introducing a hybrid
loss that mixes predictive performance with causal validity.
For the latter, we again lean on domain knowledge (as we

did in our use of a mechanistic model), but this time cast
as knowledge about the direction of treatment effects. In
other words, we presume that we know in advance that
applying, e.g., 2x instead of x to the system will increase (or
decrease) the value of a score function that depends on the
observed dynamic (counterfactual) response. Encoding this
information in the loss function helps us achieve a win-win
of increased modeling flexibility while biasing the learning
towards solutions that match our causal knowledge.

3.1. Limitations of Hybrid Models

To illustrate the potential for hybrid models to lose causal
validity, take the MNODE model of Eq. (5) where ¢; = 0.
Relying solely on the mechanistic dependency graph be-
tween states while learning state dynamics can fail to distin-
guish parameters leading to correct directions of treatment
effects. Consider data generated by a mechanistic ODE
ds/dt = —as + bx + ¢, where a, b, c are positive. Here, the
rate of change of s is monotonically increasing with x and
therefore an intervention that increases x should have a pos-
itive treatment effect on s. However, after turning these dy-
namics into MNODE, we instead have ds/dt = f(s, x; 6);
here, we lose the monotonicity with respect to =, unless
a monotone neural network is intentionally used—which
would severely constrain the flexibility of MNODE, the
original motivation for adopting this modeling approach.

One might argue that while not explicitly encoded in the
architecture, neural networks should be able to learn rela-
tively simple signals like monotonicity from the data. Un-
fortunately, this is not the case when learning from noisy,
observational datasets. For example, in T1D, the dosing of
bolus insulin (negative effect on glucose) frequently occurs
in close succession with a planned intake of carbohydrates
(positive effect). Due to the confounding effect of insulin,
the hybrid model may incorrectly infer that if an individual
consumes carbohydrates, glucose drops; see Fig. 3. We
provide an exploration of this effect in Sec. 5.4. The result-
ing dilemma is, while we do not want to make simplifying
assumptions like linearity and monotonicity, we want to
encourage our hybrid models to learn dynamics and interac-
tions consistent with known signs of treatment effects.

3.2. The Hybrid Objective

Motivated by the preceding discussion, we encode causally
relevant domain knowledge in hybrid models through the
loss function itself, with the goal of biasing the learning
towards causally valid models.

Preliminaries Let X(7) = {x(t);t € T} be the set of
control inputs at times in 7, 7 C R. In our diabetes ex-
ample, z can represent interventions such as carbohydrate
intake or insulin dosing for a single patient. In our preced-
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Figure 3. Counterfactual simulations of 3 levels of carbohydrate in-
take: none (blue), 50g ( ), 100g (green), comparing MNODE
trained using predictive loss (o = 0) and a hybrid loss (o« = 0.1).
For v = 0, MNODE incorrectly selects “none” as the intervention
causing the largest resulting average blood glucose, because it
incorrectly infers that carb intake decreases glucose. The model
using o = 0.1 correctly selects “100g”, consistent with causally
valid domain knowledge (Z* = D).

ing development, we described models for the evolution
of the full state [s(t); z(t)]. Here we assume we have a
partial observation of that state; for example, in our dia-
betes case study, we observe glucose measurements via a
continuous glucose monitor (CGM). We denote this partial
state observation by y(t) and assume without loss of gener-
ality that y(t) = H|[s(t); z(t)] for some projection matrix
H (which can be the identity matrix, I, if we have complete
observations). We then define Y (7") = {y(t);t € T } as the
corresponding set of (partial) observations over 7 .

We assume a context window 7.ontext Of controls and ob-
servations, (X (Tcontext), Y (Teontext)). We are interested
in the behavior of y(t) over a prediction window Tpyred,
represented by Y (7Tpreq), given future controls X (7Tpred)-
A model M takes as input (X (Tcontext)s Y (Teontext),
X (Tprea)) and produces an output trajectory of y over the
prediction window. Below we use M to represent the un-
known ground truth model; this is the model that generated
the observations Y (Tpreq). We use M to denote a fitted
model. Throughout we use Y (Tpred) = {3(t);t € Tpred}
to denote our predicted output from such a fitted model.

Predictive Loss We evaluate the predictive loss of an
estimated model using mean squared error:

. 2
Lowa3D) = Y [y =30, ©
t€Tpred

In practice, we have a collection of observed sequences (e.g.,
one per patient) and compute the loss summing over all
sequences. We then normalize our loss by the total number
of observed time points aggregated over the sequences.

Causal Loss To incorporate causal validity into the loss
function, we develop a causal loss that examines coun-
terfactual simulations rather than predictions. For fixed
context X (Teontext)s Y (Teontext ), We consider a range of
hypothetical interventions X (Tpped), i = 1,..., K,
that differ from the observed X (7jreq). The ground
truth model would produce observations Y(i)('];md) =
MT (X(']zontext)v Y(%ontext)v X(l) (%red)) for the 7’th in-
tervention. If we could observe these counterfactuals, then
we could compute the causal effect of each intervention:

7_(1) = ’U,(Y(l) (Ered)) - U(Y(%red»‘

Here, u is a score function that computes a meaningful
scalar-valued output from a sequence input. For example, in
diabetes, this score might correspond to the average glucose
level over Tpreq. In other settings, the relevant quantity may
be related to extremes, in which case © may compute, e.g.,
the maximum or minimum value of the sequence.

In many settings with complex dynamics or only very partial
observations, such as in modeling glycemic response, the
latent sources of variation (e.g., sleep, stress, physiology,
etc.) render attempts to precisely estimate treatment effects
nearly impossible. Importantly, in our setting the clinically
relevant quantity for guiding patient care is the ordering
of interventions; the same would be true in a multitude
of settings where the model is guiding decision making.
This ordinal domain knowledge is often readily available;
for example, we know that holding other context constant,
increasing insulin dosing should lower glucose levels, and
increasingly larger insulin doses lead to greater reductions
in glucose levels. Even such ordinal causal grounding is
absent in purely predictive models.

To bias our training towards models that capture this ordinal
causal domain knowledge, we introduce a causal loss where
we evaluate whether the model can indentify the intervention
with the maximum score. We define:

7* = argmax, 7" = argmax;u(Y ) (T req))-

In principle, we can compare this intervention to an esti-
mated maximum score intervention under the trained model
M,ie.,

7 = argmax,u(Y D (Thred)),

where for the i’th intervention we have Y (© (Tpred) =
M(X(%ontext)a Y(%ontext)» X(’L) (%red))-

Of course, to enable model training, we need a loss function
that admits a gradient. Accordingly, rather than computing
the exact maximum score intervention under the estimated
model, we compute the softmax vector:

Q = U((bu(}}(l)(,];red)) LR ¢u(Y(K)(7;)red)))'
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Here o is the softmax function and ¢ > 0 is a scalar “temper-
ature” parameter: the larger ¢ is, the closer Qisto approxi-
mating a one-hot encoding of the true argmax. In practice
we choose ¢ as large as possible while maintaining stable
training. We compute the cross entropy (CE) loss between
Q and a one-hot encoding of the true argmax Z*, denoted
CE(Q,T*). We refer to this as our causal loss:

Lca.usa.l(M) = CE(Q) I*) (7)

Again, in practice, we average over all observed sequences,
as well as all intervention scenarios under consideration.

If one instead wants to evaluate a loss that considers the
entire ranking over interventions, then we can in principle
evaluate the CE loss in Eq. (7) for every possible subset of
interventions. Of course, this rapidly becomes intractable
with increasing K; in future work we plan to directly con-
sider a loss function on the estimated ranking from M.

Hybrid loss For « € [0, 1], we define our hybrid loss as:

Lhybrid(M) - (1 - a)Lprcd(M) + aLcausal(M)a (8)

where we have overloaded notation to interpret L,,.q and
Lcausal as the average predictive and causal losses, respec-
tively, over all sequences and scenarios. Note that when
o = 0, model fitting focuses entirely on prediction; when
a = 1, model fitting focuses entirely on causal validity.

Model Fitting: The HNCM Approach A critical ques-
tion in fitting hybrid ODE models is the initial condition
(so = s(to), z0 = 2(tp)), where tg is the beginning of our
prediction window. Two primary approaches exist for per-
forming initial state estimation jointly with hybrid ODE
parameter learning: (1) statistical state estimation meth-
ods (Chen et al., 2022; Brajard et al., 2021; Ribera et al.,
2022; Levine & Stuart, 2022) and (2) blackbox encoder
models (Chen et al., 2018). We take the latter approach,
viewing initial state estimation through the lens of sequence-
to-sequence (seq2seq) modeling.

In particular, we produce the predicted sequence Y(%red)
using X (7Tprea) and the initial condition (sg, zp) encoded
from the context data (X (Tcontext), Y (Teontext ) )- We con-
sider a general blackbox encoder M ontext for the initial
conditions:

(50, 20) = Meontext (X(%ontext)a Y (Teontext); Gcontext)v

where Ocontext are the parameters of M ontext-

We take the decoder, M,.cq, to be a hybrid ODE that takes
as input the initial condition (s, z0), controls X (Tpred),
and parameters 0,..q = {5, 6}, where 5 are the simulator
parameters and 6 the neural network parameters. We as-
sume the hybrid model indicator variables cq,...,cq and

adjacency matrices Ay, A, are specified. The predicted val-
ues are produced as the output of numerical integration of
this hybrid ODE decoder over the window 7pyeq:

g(tk) = H'Integrate(Mpreda 7;)red; X(ﬂ)red)a S50, 20, epred)-

Here, H is an indicator matrix selecting the observed states.
The parameters Goontext and Opreq are jointly optimized to
obtain a fitted model M that minimizes the hybrid loss of
Eq. (8). We refer to this approach of training such a model
by optimization of hybrid loss as HXNCM.>

4. Related Work

Neural Causal Models (NCMs) NCMs use feed-forward
neural networks to extend the flexibility of structural equa-
tion models (SEM) (Pearl, 1998). Note that both NCM and
MNODE face the flexibility-causality dilemma in observa-
tional data settings where causal inference is challenging.
Similar to the role of SEM in NCM, MNODE replaces
system equations—here, dynamical systems defining mech-
anistic ODEs—with neural networks, while retaining the
original state-connectivity graph encoding specific causal re-
lationships. Xia et al. (2021) highlighted NCM’s limitations
in treatment effect estimation without strong assumptions,
while we empirically show MNODE’s inability to learn the
ordering of treatment effects without causal constraints. For
MNODE and related hybrid modeling approaches, we ad-
dress this challenge through introducing a causal loss; in
contrast, Xia et al. (2023) rely on strong distributional as-
sumptions to maintain causality. Similarities between our
work may suggest that our hybrid loss can be applied to
improve causal alignment of general NCMs.

Physics-informed Neural Networks (PINNs) PINNS, in-
troduced by Raissi et al. (2019), use neural networks for
solving partial differential equations (PDEs) by approximat-
ing solutions that conform to known differential equations.
In contrast to the hybrid models of this work, PINNs: 1)
typically focus on learning solutions to PDEs (rather than
a governing vector field), and 2) do so via regularization
in which a physics-based loss encourages the learned so-
lution to comply with known physical laws. This method
is advantageous when the system’s underlying physics are
well-understood, but computationally intensive or costly to
simulate directly. Related is the systems-biology-informed
deep learning approach by Yazdani et al. (2020), which con-
strains the learned models to exhibit properties similar to
pre-specified mechanistic ODE:s.

Graph Network Simulator (GNS) GNS applies the mes-
sage passing architecture of graph convolution networks
(GCN) to physical system simulation (Sanchez-Gonzalez

2Our implementation of H2NCM is available at

https://github.com/bobjz/H2NCM.
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et al., 2018; 2020; Pfaff et al., 2021; Wu et al., 2022; Allen
et al., 2023). Poli et al. (2019) connect GNS with blackbox
neural ODEs (GNODE) (see also Jin et al., 2022; Bishnoi
et al., 2023; Wu et al., 2022; Allen et al., 2023; Li et al.,
2022). MNODE focuses on causal relationships between
features across time, rather than between spatial interac-
tions; as such, we use directed rather than undirected graphs.

5. Experiments
5.1. Motivation: Safely Managing Exercise in T1D

Type 1 diabetes (T1D) is an autoimmune condition charac-
terized by the destruction of insulin producing beta-cells. To
manage glucose concentrations and prevent diabetes-related
complications, intensive insulin therapy through externally
delivered sources (e.g., insulin pumps) is required. Regu-
lar physical activity and exercise lead to numerous health
benefits such as increased insulin sensitivity, weight man-
agement, and improved psychosocial well-being. However,
for individuals with T1D, due to the inability to rapidly de-
crease circulating insulin concentrations, exercise can also
increase the risk of hypoglycemia. Despite technological ad-
vancements such as continuous glucose monitoring (CGM)
and automated insulin delivery systems, individuals with
T1D still face significant challenges with managing glucose
concentrations around exercise. Many adults with T1D are
not meeting current exercise recommendations of at least
30-minutes of moderate-to-vigorous physical activity per
day (Riddell et al., 2017), with fear of exercise-related hypo-
glycemia a leading barrier (Brazeau et al., 2008). To address
these challenges, there is a pressing demand for precise,
reliable models that can predict individualized glycemic re-
sponses during and after exercise and encourage safe physi-
cal activity for all individuals with T1D.

Past efforts on modeling glycemic response to physical ac-
tivity have focused on developing more intricate mechanistic
models (Dalla Man et al., 2009; Liu et al., 2018; Deichmann
et al., 2023), rather than devising a performant predictive
model. Although glucose prediction using ML and, more
recently, deep learning methods has received significant at-
tention, a dearth of papers consider exercise periods (Oviedo
et al., 2017) and the few that do do not perform well (Hobbs
et al., 2019; Xie & Wang, 2020; Tyler et al., 2022). We
aim to leverage hybrid modeling to predict glucose concen-
trations of an individual with T1D in the first 30 minutes
following physical activity, given historical context and ex-
pected future covariates. Exercise leads to increased insulin
sensitivity post-exercise and this may in turn contribute to
a heightened risk of hypoglycemia after activity. The post-
exercise period represents both a period of glycemic risk
and one in which interventions can be readily applied; our
goal is to enable better guidance during this period.

5.2. Data Preparation

Our data come from the Type 1 Diabetes Exercise Initiative
(T1DEXI) (Riddell et al., 2023), which can be requested via
https://doi.org/10.25934/PR00008428. This
is a real-world study of exercise effects on 497 adults with
T1D. Participants in the study were randomly assigned to
aerobic, resistance, or interval exercise videos for a total
of six sessions over four weeks. Participants were asked to
self-report their food intake and exercise habits, while their
insulin dosage and relevant physiological responses were
recorded by corresponding wearable devices such as insulin
pumps, CGM devices, and smart watches.

We select participants on open-loop pumps, which enables
real-time recording of insulin dosing with levels not proac-
tively adjusted (and thus correlated with proximal CGM
readings). We also limit our cohort to participants under
40 years old and with BMI below 30 because these partici-
pants tend to exercise more regularly and thus represent the
general physically-active T1D population better.

For selected participants, we filter out exercises shorter than
30 minutes. Then, for each exercise instance, we extract the
participant’s metabolic history (basal/bolus insulin delivery,
carbohydrate intake, heart rate, step count, and CGM read-
ings) 4 hours before to 30 minutes after the end of exercise
to form a 5-dimensional time series. The 4-hour context
window was chosen because the effect of most bolus insulin
(fast-acting insulin) lasts for around 4 hours. It is common
within the T1D community to consider this time range when
historical context is relevant in decision making. Finally, we
filter out exercise instances with missing heart rate values.
We end up with 143 exercise instances from 78 participants.
See the Appendix for further data preprocessing details.

Intervention Sets Our causal loss relies on the intro-
duction of intervention sets. Here, we consider sets of
size¢ K = 3. For our training procedure, for each
training post-exercise instance, we create 3 replicates of
(X (Teontext )Y (Teontext)) and append each replicate with
an input sequence X (i)(%red) from a set selected uni-
formly at random from the following categories: (1) adding
0/50/100 grams (g) of carbohydrates at the end of exer-
cise; (2) adding 0/2.5/5.0 units of insulin uniformly through-
out the first 30 minutes post-exercise; (3) no-change/50g
carbs/10.0 units of insulin at the end of exercise; (4) replac-
ing the real post-exercise heart rate trajectory with a proto-
typical trajectory seen in aerobic/resistance/interval training.
All of these modifications are relative to the observed inputs
X (Tprea)- These intervention sets capture the most inte-
gral pieces of well-understood and well-researched domain
knowledge, allowing us to compute a reliable true rank-
ing. In particular, increasing levels of carbohydrates (resp.,
decreasing levels of insulin) progressively increase mean
glucose; and increasing exercise intensity (as measured by
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heart rate) leads to progressively increasing mean glucose
during the short exercise period being considered (Aronson
et al., 2019; Riddell et al., 2017). For our evaluation, we
consider counterfactual simulations defined similarly. For
each test exercise instance, we create a set of three instances
(X (Teontext ) Y (Teontext ), X @ (Tprea)) used to generate a
counterfactual simulation v (©) (Tprea), @ = 1,2,3. The
intervention sets defining X ()(7;,cq) are again drawn uni-
formly at random. In all cases (train and test), we take score
to be average glucose in the 30-minute prediction window.

5.3. Key Implementation Details

Discretization There are currently two mainstream meth-
ods to obtain approximate solutions to hybrid ODE
variants: differentiate-then-discretize and discretize-then-
differentiate (Ayed et al., 2019). We choose the latter for its
simplicity and adaptability. This method approximates the
hybrid ODE system with stacks of residual networks (He
et al., 2016) via a forward-Euler discretization scheme

St41 = se+At[cim(sy, vy As, Ag, Br)

+ o f1(se, e, c32e5 As, Ay, 0)]
zi41 = 2+ AL fo(se, x5 0)
Biy1 = Btcafs(Tirr, ze1; 0),

and then computes the gradient via backpropagation. Here,
we use subscript instead of parentheses to indicate the tran-
sition from the continuous to discrete time. In our imple-
mentation, we set At to be 5 minutes, which is the sampling
rate of CGM readings in the TIDEXI data.

Model Reduction Instead of the highly parameterized
UVA/Padova S2013 model (Man et al., 2014), our hy-
brid models build upon a reduced model with the aim of
(1) reducing variance and improving generalization per-
formance, and (2) reducing training time. We applied a
data-driven reduction method to the full UVA/Padova mech-
anistic model and its causal graph; see the Appendix. An em-
pirical comparison to hybridizations of the full, non-reduced
UVA/Padova model are in the Appendix. The results illus-
trate that the flexibility of the neural networks in the hybrid
models is a satisfactory replacement for many of the full
mechanistic model compartments.

Model Variants and Evaluation Procedure We consider
3 hybrid models in the form of Eq. (§) with increasing
amounts of flexibility: (1) latent parameter dynamics (LP)
defined via ¢c; = ¢4 = 1l,co = c3 = 0; (2) latent pa-
rameter dynamics plus state closure (LPSC) defined via
c1 = co = ¢4 = 1, c3 = 0; and (3) mechanistic neural ODE
(MNODE) defined via co = 1,¢; = ¢3 = ¢4 = 0. In all of
these cases, the adjacency matrices A, and A, are specified
based on our reduced UVA/Padova mechanistic model. We
implement MNODE by defining a neural network for each
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Figure 4. For the synthetic data, predictive loss (RMSE) and stan-
dard error (top) and 10/50/90-th(upper/bar/lower) percentile causal
classification error rate (bottom). Within each bar group for a sin-
gle model, the parameter o (hybrid loss parameter) increases from
left to right, taking the values {0, le—4,1le—3,1le—2,le—1,1}.
The dashed line in the bottom figure corresponds to the causal
classification error of random guessing (2/3).

output dimension and masking appropriate inputs, though
the methods of Chen et al. (2024) could be adapted to our
setting to provide a more efficient alternative. We also con-
sider the blackbox neural ODE model (BNODE) of Eq. (3)
and tune the latent state dimension. Finally, we provide
a set of non-ODE-based blackbox sequence models: the
LSTM, Transformer (Trans), temporal convolutional net-
work (TCN), and diagonal approximation to S4 (S4D) (Gu
et al., 2022a). For our mechanistic model baseline, we
consider the full (not reduced) UVA/Padova S2013 simula-
tor (UVA). We limit all models to have fewer than 25,000
parameters for fair comparison. For all of our ODE-based
models, we use a multi-stack LSTM for our initial-condition
encoder; the non-ODE baseline models also take the histori-
cal context as input, with model-specific encoding choices.
See the Appendix for further model implementation details.

To tune our models and compute test error, due to the small
dataset size, we use repeated nested cross validation (CV)
with 3 repeats, 6 outer folds and 4 inner folds. The inner
folds are used to tune hyperparameters and outer folds to
estimate generalization error; results are averaged over three
runs for which the sequences are randomly shuffled. For
more details of the evaluation procedure, see the Appendix.

5.4. Results

Synthetic Data We start by exploring a synthetic data
example generated by a simple, single-state ODE with two
correlated inputs, mimicking the carb/insulin correlation in
the TIDEXI data. In particular, the ODE is specified as:

dy/dt = —y(t) + z1(t) — x2(t), y(0)=0
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x1(t) = aexp(—bt), a ~ Unif[1, 2], b ~ Unif[5, 15]
xo(t) = 1.5z1(t) + ¢, €~ N(0,le—4).

We simulate 600 training, 200 validation, and 200 test
sequences and corresponding intervention sets, each se-
lected uniformly at random from: (1) raising x1 by 0/+1/+2;
(2) raising x5 by 0/+1/42; or (3) no-change/adding +1 to
x1/adding +1 to x5. The sequences are of length 100.

In Fig. 4, we show prediction root mean squared error
(RMSE) and classification error, calculated using the nested
CV procedure described above, for each of the considered
models as a function of «. Here, the classification task is
to correctly predict the intervention that yields the highest
score (taken to be average of y (’E,rcd)) among the set
of 3 choices. We see that even when the true mechanistic
model is used in the hybrid modeling—and even when that
system is very simple—our causal loss is critical in disam-
biguating the sign of the treatment effects for x; and .
For example, when o = 0 (fully predictive loss), MNODE
(and the blackbox models) have large causal loss because
of lack of identifiability between the sign of the treatment
effects of x; and x5. However, even a small o > 0 rapidly
enables disambiguation between z1 and z5. These synthetic
results illustrate the importance of moving beyond predic-
tive loss, especially when there is significant correlation
between inputs; the importance is heightened when working
with partial observations, as in our real-data setting below.

TIDEXI Data We now turn to our results on the real-
world T1DEXI data. In Fig. 5, we see that as a—the amount
we emphasize the causal loss component of our hybrid loss—
increases, all hybrid and blackbox models have significant
decreases in classification error; however, the hybrid causal
error rate decreases more rapidly. Critically, across a broad
range of « values, the hybrid models have stable RMSE; the
blackbox models appear to be more sensitive to increasing
a. (The RMSE of all models is impacted for sufficiently
large o, notably a = 1 when a purely causal loss is consid-
ered.) Note that the UVA/Padova mechanistic model does
not achieve zero classification error because the mechanistic
model does not include all mechanistic components relevant
to exercise. Our hybrid loss provides a win-win for hybrid
ODEs: predictive performance exceeding pure mechanistic
or blackbox approaches while also having extremely low
classification error, again outperforming both the mechanis-
tic and blackbox baselines.

Although our causal loss focuses on intervention ranking,
this information alone may bias learning towards causally-
grounded models that better capture the direction of treat-
ment effects even outside the domain knowledge encoded in
the causal loss. For example, in the Appendix, we define our
causal loss in terms of rankings on carbohydrate and insulin
intervention sets, but evaluate on insulin-to-carbohydrate
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Figure 5. As in Fig. 4, but for TIDEXI data and using a full
UVA/Padova mechanistic model baseline and hybridizations of the
reduced UVA/Padova simulator for LP, LPSC, and MNODE.

ratios, which represents the most common intervention con-
sidered by clinicians for T1D. Our experiments demonstrate
that even when we train with limited domain knowledge
(i-e., the impact of carbohydrates or insulin individually), all
models appear to exhibit improved insulin-to-carbohydrate
rankings relative to models that do not leverage causal loss.

In the Appendix, we also consider the impact of increasing
levels of corrupted domain knowledge where our causal
loss is given the incorrect label for the top-ranked interven-
tion, Z*, for some fraction of intervention sets. The results
indicate robustness to moderate amounts of corruption.

6. Discussion

We presented HZNCM, a method for integrating domain
knowledge not only through a hybrid model, but also
through a hybrid loss that encourages causal validity. We
consider this in the challenging real-world setting of pre-
dicting post-exercise glycemic response in T1D. Our experi-
ments illustrate a win-win where—across a wide range of
settings of a—our state-of-the-art predictive performance
does not drop while the causal validity dramatically im-
proves. In theory, models that can do both tasks well should
align better with the true underlying system M and thus
generalize better to unseen data, especially in the presence
of distribution shifts, noise, and incompleteness, as our
promising initial results in the Appendices suggest.

We assume a known mechanistic model from which to build
our hybrid models. One could instead consider softer forms
of prior mechanistic knowledge. For example, Wang et al.
(2024) specify priors over graphical structures in neural
differential equations. Indeed, our hybrid loss may be for-
mulated in a Bayesian context as well, and could aid other
modeling frameworks (cf., Takeishi & Kalousis, 2021).
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Figure 6. UVA/Padova Simulator S2013, taken from Figure 1 of Man et al. (2014)

A. UVA-Padova Simulator S2013

Here we provide the exact full UVA-Padova S2013 model equations. Variables that are not given meaningful interpretations
are model parameters.
A.1. Summary Diagram

At a high level, UVA-Padova can be summarized by the diagram in Figure 6, which is taken from Figure 1 in Man et al.
(2014). It divides the complex physiological system into 10 subsystems, which are linked by key causal states such as Rate
of Appearance, Endogenous Glucose Production and Utilization. Next, we will introduce each subsystem one by one and
also explain the physiological meanings behind state variables.

A.2. Glucose Subsystem

Gp = EGP+RQ—UZ$ —E—lep+k2Gt (9)
Gi = —Uia + k1Gp — koG, (10)
G=G,/Vs (11

Gyp: Plasma Glucose, G, Tissue Glucose, £G P: Endogenous Glucose Production Rate, Ra Rate of Glucose Appearance,
Ui;: Insulin-independent Utilization Rate, U;4: Insulin-dependent Utilization Rate, E' Excretion Rate, Vi Volume Parameter,
G Plasma Glucose Concentration
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A.3. Insulin Subsystem

I, = —(mg +m4)I, + miI, + Rai (12)
I = —(my +m3) I + maol, (13)
I=1,/V; (14)

1, Plasma Insulin, /; Liver Insulin, Ra: Rate of Insulin Appearance, V; Volume Parameter, I Plasma Insulin Concentration

A.4. Glucose Rate of Appearance

Qsto = Qsto1 + Qsto2 (15)
Qstor = —kgriQstor + D+ 4 (16)
Qstor = —kempt(Qsto) * Qstor + kgriQstor (17)
qut = —kabsQgut + kempt (Qsto) - Qsto2 (18)
Ra = fkabsQgut/(BW) (19)
Eempt(Qsto) = kmin + (kmaz — Emin) (tanh (aQsto — abD) — tanh (8Qsi0 — feD) +2)/2 (20)

Qsto1: First Stomach Compartment, Qs02: Second Stomach Compartment, ()4,;: Gut Compartment, § Carbohydrate
Ingestion Rate

A.5. Endogenous Glucose Production

EGP = kp — kpoGp — kps X & +ex (21)
Xt = k(X" -1, (22)
I = —ki(I, —I) (23)
XH = — kg X" 4 kymax(H — Hy) (24)

XL: Remote Insulin Action on EGP, X *: Glucagon Action on EGP, I,. Remote Insulin Concentration, H Plasma Glucagon
Concentration, Hy: Basal Glucagon Concentration Parameter

A.6. Glucose Utilization

Uii = Fens (25)
(‘/ﬂ’LO + ‘/nch(l + T TZSk))Gt
Uig = 26
¢ KmO + Gt ( )
X = —pov X +pov(I — 1) 27
0 Gy, <@
risk = ¢ 10(log(G) —log(Gp))?™? G, <G < Gy (28)

10(log(G) — log(Gy))?™2 G < Gy,
F,,s: Glucose Independent Utilization Constant, X : Insulin Action on Glucose Utilization, I; Basal Insulin Concentration

Constant, risk Hypoglycemia Risk Factor, G; Basal Glucose Concentration Parameter, G, Hypoglycemia Glucose
Concentration Threshold.
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A.7. Renal Excretion

E = key max(Gp — ke, 0) (29)
A.8. Subcutaneous Insulin Kinetics
Rai = kallscl + ka2lsc2 (30)
Iier = —(ka + ka1)Ise1 + IIR 31)
Iseo = kalser — kazlseo (32)

I.:: First Subcutaneous Insulin Compartment, I;.o: Second Subcutaneous Insulin Compartment, /1 R Exogenous Insulin
Delivery Rate

A.9. Subcutaneous Glucose Kinetics

Gs = -T,Gs +T,G (33)
Gs: Subcutaneous Glucose Concentration
A.10. Glucagon Secretion and Kinetics

H = —nH + SRy + Ray (34)

SRy = SRS, + SR, (35)

o —p [SR?I — max (O’Q(Gth - G) + SRY, O)] G > Gy 36

T\ e [SRy — max (29272 + SRy, 0)] G <Gy (0

SR?{ = nmax(—G, 0) (37

SR3,: First Glucagon Secretion Compartment, SR%: Second Glucagon Secretion Compartment, S RY,: Basal Glucagon
Secretion Parameter, Ray: Rate of Glucagon Appearance

A.11. Subcutaneous Glucagon Kinetics

Hoor = —(kn1 + kn2)Hoer + Hing (38)
Heoer = kpiHoer — knzHoeo 39)
RCLH - khBHSCQ (40)

H1: First Subcutaneous Glucagon Compartment, H.2: Second Subcutaneous Glucagon Compartment, H;, ; Subcuta-
neous Glucagon Infusion Rate.
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B. Reduced UVA-Padova for DTDSim?2

We used the a reduced version of UVA-Padova S2013 in the implementation of Latent Parameter Model and Latent Parameter
with State Closure Model. It comprises the following equations:

Gp = EGP + Ra — Uy — k1Gyp + kaGy (41)
G = —Uia + k1Gyp — koG (42)
I, = —(mg +my)l, + mi [ + IIR (43)
I = —(my +m3) I + mal, (44)
Qsto = Qsto1 + Qsto2 45)
Qstor = —kgriQstor + D+ 0 (46)
Qsto2 = —kempt(Qsto) - Qston + kigriQsto1 (47)
qut = —kabsQgut + kempt (Qsto) - Qsto2 (48)
Ra = fkapsQgut/(BW) 49)
Eempt (Qsto) = Emin + (Emaz — kmin)(tanh (aQsio — abD) — tanh (Qr0 — BeD) + 2)/2 (50)
EGP = kyy — kpoGp — ks X (S
XE = —ky(xt -1, (52)
Uii = Fens (53)
Vino + Vina X)G

Vg = o Gt) t (54)
X = —pov X +povl, (55)

(56)

Comparing to the full model, we performed the following:

1. We replaced states G, I with G}, I,, as they only differ by a constant.

2. We removed the whole glucagon system to reduce model variance because most T1D patients do not have exogenous
glucagon delivery, and their body’s own glucagon regulation system is often impaired, a common symptom of T1D
(Bisgaard Bengtsen & Mgller, 2021).

3. We removed the renal excretion system, as renal excretion of glucose only takes place during episodes of severe
hyperglycemia, which does not happen very often to patients on insulin pumps.

4. We removed the subcutaneous glucose/insulin kinetics systems/the remote insulin state they are solely meant to
introduce delays, which already exist in the data (CGM readings are only taken every 5 minutes).

5. We removed the hypoglycemia risk factor risk as it is used to model a relatively uncommon phenomenon.

We verified these reduction changes on a validation set that was taken out of the training set to make sure they do not break
our models.

C. MNODE Graph Reduction Heuristic

We start with the full UVA/Padova causal graph as shown in Figure 7, this graph is obtained by adding the physical activity
model graph from Dalla Man et al. (2009) to the UVA/Padova S2013 (Man et al., 2014) causal graph. Note that in the
illustration, the node HR actually refers to both heart rate and step count, as we consider these two features both crucial
indicators of physical activity intensity.

1. Step 1: For each Strongly Connected Component in the graph (indicated in Figure 8a), try collapsing it into a single
node and evaluate MNODE’s performance with the resulting graph on the validation set. Adopt the change that (1) has
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Figure 8. Illustration of the Collapsing SCC Step of Our Heuristic

the least loss among all trials and (2) has loss that is within 10 percent increase of the best loss ever achieved so far.
The second condition is to make sure we are not picking among a set of bad choices and at the same time to encourage
exploration (i.e. can proceed as long as loss does not increase too much). The metric we use is the hybrid loss with
o = 0.6 (we picked an « that is not used in the actual experiments to avoid bias).

2. Step 2: Repeat step 1 until no change satisfy both criteria. Figure 8 shows an illustrative summary of step 1 and step 2.

3. Step 3: For each group of non-overlapping paths with same source and destination nodes, try merge them by keeping
only the path of greatest length and evaluate MNODE’s performance with the resulting graph on the validation set.
Adopt the change with the same criteria as in step 1.

4. Step 4: Repeat step 3 until no change satisfy both criteria. Figure Figure 9 shows an illustrative summary of step 3 and
step 4.

5. Step 5: For each path between an input node and the output node (at this point they should all be disjoint), try reducing
its length by 1 via removing one intermediate node and evaluate MNODE’s performance with the resulting graph on
the validation set. Adopt the change with the same criteria as in step 1.
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Figure 9. Illustration of the Combining Non-overlapping Paths Step of Our Heuristic
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Figure 11. Final Graph used by MNODE

6. Step 6: Repeat step 5 until no change satisfy both criteria. Figure Figure 10 shows an illustrative summary of step 3
and step 4. Figure is the final graph we used in MNODE. The final graph we use for MNODE is therefore Figure 11,
we showed it again with larger size for better readability.

D. Detailed Data Preparation Procedure for TIDEXI
D.1. TIDEXI Exercise Instances
Here we provide a step-by-step procedure of how we pre-processed the TIDEXI dataset described in Section 5.2.

We select patients on open-loop pumps with age under 40 and body mass index (BMI) less than 30. For each selected
exercise instance in our dataset, we focus on the time window from 4 hours prior to the end of exercise, to 30 minutes after
the end of exercise. We anchor time zero as the end of exercise, so this time window (in minutes) is [—240, 30]. Since CGM
measurements are taken in 5 minute increments, we divide this time window into 5 minute increments, and divide the end
time of each interval by 5, so that we obtain 54 discrete time steps: t = —47, —46, —45,...,4,5, 6, with ¢ = 0 denoting the
end of exercise.

For each exercise instance, we use the following (54-dimensional) features derived from the TIDEXI data:

1. CGM readings. CGM readings are taken every 5 minutes for all patients in TIDEXI.

2. Insulin injection. If the patient injected insulin at a given time in the T1DEXI dataset, we add that amount of insulin to
the corresponding 5 minute interval to create a bolus insulin injection time series. We add basal insulin to the bolus
insulin time series to produce the (total) insulin time series used in our experiments.

3. Carbohydrate intake. Suppose the patient consumed carbohydrates at a given time in the TIDEXI dataset. We assume
a constant meal consumption rate of 45 grams per minute, and then compute the average consumption rate over each 5
minute interval to create a carbohydrate consumption time series.
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4. Heart rate. We average the heart rate over each 5 minute interval to obtain a heart rate time series.

5. Step count. Similarly, we average step counts over each 5 minute interval to obtain a step count time series.

We only consider exercise instances for which:

—

all 54 CGM readings were available;

2. the patient logged carbohydrates during the instance;

3. the exercise duration was at least 30 minutes;

4. it was either the first or second exercise instance for that patient; and
5

. HR was consistently recorded every 10 seconds without any missingness throughout the 54 5-min intervals.

After this process we end up with 143 exercise instances (13 patients with 1 exercise instance, and 65 patients with 2 exercise
instances).

Figure 12 depicts the raw and processed data for a single exercise time-window for a single patient. The first row shows
a complete timeseries of CGM, while the second row shows the recorded changes in basal insulin rates. While insulin
pump data only includes the change points (red dots in the second plot), the devices function by executing the new constant
rate (blue line) until a new basal rate is set (a subsequent red dot). The third plot shows bolus insulin recordings (red
dots), which are sometimes thought of as being delivered instantaneously. However, insulin pumps in fact administer these
doses by delivering insulin at a constant rate over a suitable short time window (typically < 5 min), such that the sum
total of disbursed bolus (integral of the blue curve in the third plot) corresponds to the recorded dose (red dot). In the
case of insulin pumps, both the basal and bolus insulins are fundamentally the same drug and are only distinguishable by
their administration pattern; for this reason, we convert all insulin administration to U/min and sum the basal and bolus,
producing the black curve in the fourth figure.

The fifth plot shows the amount of carbohydrates (g) that were recorded by the participant (either as a meal or as part
of the clinical study as “rescue” carbohydrates explicitly intended to mitigate hypoglycemia). We assume that meals are
consumed at a constant 45g/min and plot the corresponding carbohydrate consumption rate in the sixth plot (blue); we then
align this impulse function with the 5 minute grid defined by CGM data (black). Finally, the last two figures show heart
rate and step counts, respectively. In both cases, we average the raw data (red) over each 5 minute window, and perform
piecewise-constant interpolation of these values (blue). Observe that step count and heart rate begin to rise at ¢ = —60; the
exercise lasts for approximately 1 hour, then the step counts and heart rates drop for ¢ > 0, once exercise is complete.

D.2. Intervention Sets

For each exercise time series, we first create an intervention set containing three copies of the original time series. And then
we uniformly randomly (simulated by the numpy default random number generator with seed 2024) apply one of the four
following intervention sets to it:
1. Add 0/50/100 grams of carbohydrate to the three copies at the end of exercise (time step ¢ = 0);
. Add 0/2.5/5 units of insulin to the three copies from the end of exercise onwards (time steps t = 0, 1,...,6);

2
3. Add nothing/50 grams of carbohydrate/10 units of insulin to the three copies at the end of exercise (time step £ = 0);
4

. Change the recorded heart rate in the last 7 time steps ¢ = 0, 1,...,6 to typical medium intensity aerobic training
(80,90,100,110,120,130,120)/ typical interval training (80,170,80,170,80,170,80)/typical high intensity resistance
training (160,170,180,170,160,180,160).

For each exercise instance this leads to four time series (each consisting of 5 features and 54 time steps): the original
observed time series, and three copies corresponding to the intervention set.

In addition, we compute the class label for each intervention set as the index of the intervention that leads to the highest
mean glucose: 100 grams of carbohydrates for category 1; zero insulin for category 2; 50 grams of carbohydrate for category
3; and the highest heart rate level for category 4.
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Figure 12. We show an example of the raw and processed data from a single patient window. Here, time O represents the end of exercise,
and we plot all features for the 4 hours prior to exercise termination, as well as the subsequent 30 minutes. In all plots, red dots indicate
raw measurements, blue lines represent our clinically-informed representations and interpolations of the raw data, and the black curves
(when relevant) represent subsequent mapping of the interpolated data to 5 minute intervals.

E. Model Implementations and Hyperparameters

Set-up For each model mentioned in the experiment section, here we offer a detailed description of the corresponding
computational method and the hyperparameters used. Throughout this section we are given an exercise time series of 54
time steps (corresponding to 54 5 minute intervals that made up the time window starting from 4 hours prior to exercise
termination, and ending at 30 minutes after exercise termination) and 5 features (corresponding to CGM reading, insulin,
carbohydrate, heart rate, and step count, in that order). We denote the first feature (CGM reading) as y, and the other 4
features as x. We use a subscript to indicate discrete time steps and superscript to indicate feature indices. For example, 22
is the 2nd feature of = (carbohydrate) at discrete time step ¢t = 1.

Our goal is to predict the CGM trace during the first 30 minutes following exercise completion corresponding to the output
y1.6 € RS and therefore we set the number of prediction steps ¢ to be 6 for all models. We further split the given time series
into historical context p = (y,x)_47._1 € R*7*5, starting glucose 3o € R, inputs during exercise x¢.5 € R** (six inputs
that are recorded 1 time step ahead of the expected outputs). We use § € R® to indicate the CGM trace predicted by models,
s for modeled states and z for latent states. h, ¢ for the final hidden state and cell state of the LSTM initial condition learner.
For ease of computation and without loss of generality, we set the At term in forward-Euler style discretization to be 1 for
all relevant models, and thus we omit it in the equations.

Learning Rate, Initialization and Optimizer For all experiments, we use the Adam optimizer (Kingma & Ba, 2015) to
perform gradient descent.

Learning rates and weight initialization are set with model stability as a consideration. In particular, in all experiments using
T1DEXI data, we set the default learning rate to be 2 x 10~ for all models except UVA, for which we use a larger learning
rate of 10~!. For all models except UVA, we initialize model weights with the PyTorch default setting if they are part of
a pre-defined PyTorch model class or standard normal if they are custom weights. For UVA we initialize model weights
from a normal distribution with mean zero and variance 1/400. UVA is treated differently because ODE-based mechanistic
models are notoriously highly sensitive to parameter initialization, and it is both important to initialize the parameters to be
small in magnitude, and to make sure they do not get too close to zero during training.
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For synthetic experiments, we set the learning rate of the purely mechanistic model to 5 x 10~ %; to 1 x 102 for LP and
LPSC; and to 2 x 103 for the remainder of the models.

Training Epochs Unless otherwise specified in the model description (LPSC), in TIDEXI experiments, we train for 100
epochs and pick the epoch with best validation loss. In synthetic experiments, we train for 50 epochs and pick the epoch
with best validation loss.

Dropout For the hybrid models, we use O dropout rate. This is because we are already doing regularization via early
stopping, and our trial runs indicate that there is no need for additional dropout. This is not true for black-box models, for
which we still tune the dropout rate.

Hyperparameter Search We use grid search to tune hyperparameters. When choosing the grid, we restrict the search
space to areas where the models have less than 20000 parameters and we also try to limit the number of grid points to around
10. This is to make sure the computational cost of the experiments is capped at a reasonable level for small data sets and
individual users. The grid used for each model in each experiment will be provided below together with model descriptions.

E.1. UVA

UVA is our baseline mechanisitc model, whose description is given in Appendix A. The computation equation for the UVA
model is given in Algorithm 1.

Algorithm 1 UVA Padova Model

Input: number of prediction steps ¢ = 6, historical context p, starting glucose ¥, exogenous inputs xg.5, the original
UVA mechanistic ODEs myva, At = 1

h,c = LSTM(p)
h' = Yo
So = h

fori =0:q—1do
Siy1 = 8; + At - myva(si, zi; B)
|
Yit+1 = Sip1

end for

Output: 7.,

T1DEXI Experiments The LSTM network has 2 layers and 21 hidden dimensions (same as the UVA/Padova model), and
we set the first state of the estimated initial condition (represented by hidden state h) to be the true initial value of CGM yj
to keep consistency with the assumption that s' represents glucose. The UVA/Padova Simulator has 53 trainable parameters
B € R53, We do not tune hyperparameters for the UVA model.

Synthetic Experiments In the synthetic setting, we assume to know the ground truth model. And therefore we remove
the LSTM initial condition encoder and instead set sy = ¥ since in the synthetic setting, there is only one state. Same as
T1DEXI, we do not tune hyperparameters.

E.2. Reduced UVA Latent Parameter Learning

The Reduced UVA Latent Parameter Learning model uses a lower-fidelity, reduced version of UVA/Padova defined in
Appendix B, and applies the idea of latent parameter learning to it. The computation equations are given in Algorithm 2

T1DEXI Experiments In our implementation, the latent dynamics of z only depends on itself and inputs that are not used
by the UVA S2013 model (the 3rd and 4th feature, which correspond to heart rate and step count). We made this choice to
keep consistency with the implementation in Miller et al. (2020). The LSTM has 2 layers and d hidden dimension (since
this time the cell states are used to initialize latent state z, whose dimension needs to be tuned) and MLP2 serves to map d
dimensional hg to a 8-dimensional initial condition vector. All MLPs have n hidden layers and m hidden units with dropout
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Algorithm 2 Reduced UVA Latent Parameter Learning Model

Input: number of prediction steps g, historical context p, starting glucose ¥y, exogenous inputs z, the reduced UVA
mechanistic ODEs mgryvya, At = 1

h,c = LSTM(p)
sp = concatenate(y0, MLP1(h))
zZop = ¢C

fori =0:q¢q—1do
Si+1 = 8; + At - mruva(si, i ;i = MLP2(z;))
Zit1 = Az + B$§N4
Yir1 = St

end for

Output: 7.,

0 and activation ReLu, we tune these hyperpameters with grid search on the following grid:

n=1{2,3,4} x m = {16, 32,48} x d = {8,12,16}

Synthetic Experiments Similar to the purely mechanistic model, in the synthetic setting we directly set so = yo and
therefore do not use h or MLP1. We still need the 2-layer LSTM to generate zy. The search grid for synthetic experiments
is:

n={2,3} xm = {16,32} x d = {2,4}

E.3. Reduced UVA Latent Parameter and State Closure Learning

The Reduced UVA Latent Parameter and State Closure Learning model uses the same reduced UVA/Padova defined in
Appendix B, and applies both the idea of latent parameter learning and state closure learning to it. The computation equations
are given in Algorithm 3

Algorithm 3 Reduced UVA Latent Parameter and State Closure Learning Model

Input: number of prediction steps ¢ = 6, historical context p, starting glucose o, exogenous inputs x.5, the reduced
UVA mechanistic ODEs mgyva the adjacency matrices (as defined in Section 3) of reduced UVA: A, A, closure switch
constant w, At =1

h,c =LSTM(p)
s8¢ = concatenate(yo, MLP1(h))
zZ0 = C

fori=0:q—1do
Si+1 = Si + At . mRUVA(SZ‘, i3 B, = MLP2(21)) —+ w - MLPS(SZ‘, i3 As, Am)
Zi+1 — AZl + B.’E:?N4
i1 = Si4q

end for

Output: 7.,

T1DEXI Experiments The LSTM has 2 layers and d hidden dimension (since this time the cell states are used to initialize
latent state z, whose dimension needs to be tuned). MLP1 and MLP2 have n hidden layers and m hidden units with dropout
0 and activation ReLu, while MLPs that form the closure learning network have 2 hidden layers and m hidden units with
dropout 0 and activation ReL.u. We tune these hyperpameters with grid search on the following grid:

n={2,3} x m = {16,32} x d = {8, 16}

Note that our search space is smaller as the introduction of extra MLPs significantly increases the total number of parameters.

Synthetic Experiments We again set sg = ¥ and do not use h or MLP1. The hyperparameter grid is:
n=1{2,3} xm={16,32} x d = {8,16}

23



Hybrid Squared Neural ODE Causal Modeling

Special Training Routine The training routine of models adopting state closure is more complicated. We first set w = 0
and just train the reduced UVA latent parameter model and the initial condition learner LSTM for 100(T1DEXI)/50(Synthetic)
epochs (the closure part is masked out by w). Then we freeze the weights of the reduced UVA latent parameter model and
the LSTM, set w = 1 and train the closure neural network on the residuals for 50 more epochs. This trick makes sure the
closure network is truly learning the residuals as intended and not subsuming the mechanistic model.

E.4. Mechanistic Neural ODE

The MNODE model no longer relies on the functional forms of UVA models, and therefore does not require any ODE
equations m. Instead, it uses the adjacency matrices of a reduced version of the UVA/Padova graph. We obtain this reduced
graph with the reduction heuristic described in Appendix C. We provide its computation equations in Algorithm 4.

Algorithm 4 Mechanistic Neural ODE Model

Input: number of prediction steps ¢ = 6, historical context p,starting glucose yg, exogenous inputs x.5, the adjacency
matrices (as defined in Section 3) of the reduced UVA graph Ag, A,, At =1

h,c =LSTM(p)
ht = yo
S = h

fori=0:q—1do
Sit1 = Si + At - MLPS(S,‘, i3 Asg, AJ)
PR |
Yi+1 = Sp1

end for

Output: §.,

T1DEXI Experiments The LSTM has 2 layers and 5 hidden dimension (this corresponds to the number of states in the
reduced graph) and for the same reason we set the 1st features of the initial condition state vector to be yy. All MLPs have n
hidden layers and m hidden units with dropout 0 and activation ReLu, we tune these hyperpameters with grid search on the
following grid:

n=1{2,3} x m = {16,24, 32}.

Synthetic Experiments We set so = yo and do not use / or the LSTM (note that our code implementation still has the
LSTM component for the sake of consistency but its output is actually never used by MNODE.) The search grid is:

n={2,3} x m = {16,32}.

E.S5. BNODE

For BNODE and the subsequent black-box models, we point the reader to implementations referenced in the associated
citations in the main paper. Here we describe our implementation.

Algorithm 5 Black-box Neural ODE Model

Input: number of prediction steps g = 6, historical context p, starting glucose ¥, exogenous inputs xg.5, At = 1

h,c = LSTM(p)
ht = Yo
So = h

fori=0:q—1do
Sit1 = 8; + At - MLPs(s;, .%‘i)
|
Yit1 = St41

end for

Output: 7.,
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T1DEXI Experiments The LSTM has 2 layers and d hidden dimension. Note that here the hidden dimension of LSTM
also determines the state dimension of the neural ODE, which is a tunable hyperparameter. All MLPs have n hidden layers
and m hidden units with dropout a and activation ReLLU, we tune these hyperpameters with grid search on the following
grid:

d={4,5,6} x n=1{2,3} x m = {32,48,60} x a = {0,0.1,0.2}.

Synthetic Experiments We keep all the settings the same (note we can no longer assume there is only 1 state as
in the black-box regime we have zero domain knowledge) as the TIDEXI experiments except that the search grid for
hyperparameters is now:

d={2,3} xn={2,3} xm = {64} x a ={0,0.2}.

E.6. TCN

Algorithm 6 Temporal Convolutional Network Model

Input: number of prediction steps ¢ = 6, historical context p, starting glucose ¥, exogenous inputs xg.s

rT=0€eR?
Zo = Yo
a2’ = concatenate(Z, z,dim = —1)

seq;, = concatenate(p, z’, dim = 0)
seqout = TCN(seg;n)

¢ = Linear(seqout)

Output: ¢

T1DEXI Experiments The TCN model is taken directly from the code repository posted on https://github.com/
locuslab/TCN/blob/master/TCN/tcn.py, with input size set to 5, number of channels set to a list of n copies of
m, kernel size set to [ and dropout set to a. We tune these hyperpameters with grid search on the following grid:

n={2,3} x m = {16,24,32} x | = {2,3,4} x a = {0,0.1,0.2}.

Synthetic Experiments We keep all the settings the same as the TIDEXI experiments except that the input size is set to 3
and the search grid for hyperparameters is now:

n={2,3} x m={16,32} x | = {2,3,4} x a = {0,0.2}.

E.7. LSTM

Algorithm 7 Long Short Term Memory Model

Input: number of prediction steps ¢ = 6, historical context p, starting glucose g, exogenous inputs xg.s
h, ¢ = Encoder LSTM(p)

Set initial hidden state and cell state of Decoder LSTM to h, c respectively

Seqout, hq, cq = Decoder LSTM(z¢:5)

¢ = Linear(seqout)

Output: ¢

T1DEXI Experiments Both Encoder and Decoder LSTM have n layers and d hidden states with dropout set to a. We
tune these hyperpameters with grid search on the following grid:

n=1{2,34} x m = {8,12,16} x a = {0,0.1,0.2}.

Synthetic Experiments
n={2,3} xm = {8,16} x a = {0,0.2}.
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Algorithm 8 Transformer Model

Input: number of prediction steps ¢ = 6, historical context p, starting glucose g, exogenous inputs xg.q—1, true output
Y1:9—1 (needed during training)

rT=0€eR?
Zo = Yo
x’ = concatenate(z, xz, dim = —1)

encoder_in = concatenate(p, ', dim = 0) (concatenating all inputs to form a masked context)
if Model in Training Mode then
decoder_in = concatenate(yo, Y1:q—1) (expected output shifted to the right)
decode_out = Transformer(encoder-in, decoder_in, decoder_causal_mask)
end if
if Model in Evaluation Mode then
decoder_in = concatenate(yg,0 € RY71)
fori=1:¢q—1do
decode_out = Transformer(encoder_in, decoder_in)
decoder_in;;; = decode_out;

end for

decode_out = Transformer(encoder_in, decoder_in)
end if
y = Linear(decode_out)
Output: y

E.8. Transformer

T1DEXI Experiments We use the transformer model provided by the pytorch nn class, and its hyperparameters are set as
follows: d_model set to d, number of encoder layers set to 1, number of decoder layers set to [, the dim_feedforward is set
to m and dropout is set to a. We tune the hyperparameters with the following grid:

d={4,8} xI; = {2,3} x I, = {2,3} x m = {32,64} x a = {0,0.1}

Synthetic Experiments We keep all experiment settings the same except setting ¢ = 10 and the hyperparameter search
grid to be:
d={4,8} x 11 ={2} xls = {2} x m = {32,64} x a = {0,0.2}

E.9. S4D

Algorithm 9 S4 Diagonal Model

Input: number of prediction steps ¢ = 6, historical context p, starting glucose o, exogenous inputs xo.q—1

z=0eR?
To = Yo
a’ = concatenate(Z, z¢.5, dim = —1)

seq;n = concatenate(p, z’, dim = 0)
seq;, = Linear(Seq;y,)

seq;n = Transpose(Seqin, 1,2)
seqout = S4D(seq;n)

seqoyt = Transpose(Seqout, 1,2)

§ = Linear(seqout ) —q:

Output: ¢

T1DEXI Experiments We take the S4D model directly from the following github repository https://github.com/
thjashin/multires—-conv/blob/main/layers/s4d.py, and its hyperparameters are set as: d_model set to d,
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d_state set to m, dropout set to a.We tune the hyperparameters with the following grid:

d = {4,6,8} x {m = {32,64} x a = {0,0.1,0.2}

Synthetic Experiments We set ¢ = 10 and the hyperparameter search grid to be:

d=1{3,4,5} x {m = {32,64} x a = {0,0.2}

F. Repeated Nested Cross Validation

We use the following algorithm to evaluate both predictive and causal generalization errors of our models.

Algorithm 10 Repeated Nested Cross Validation

Input: Data D, Model M, Hybrid Loss Function /5, Alpha for Hybrid Loss «, List of Hyperparameter Settings A,
Number of Repeats R = 3, Number of Outer Fold N = 6, Number of Inner Fold M = 4, Random Seed s = 2024
Generate R different permutations of [1,...,length(D)]: P, ..., Pgr with numpy default random number generator and
seed s
Initialize Error Lists €pred, Ccausal
forr=1:Rdo

Permute D with permutation P,, save the resulting data as D,

Split D, into N folds D}, ... DN

fori=1: N do
Form the outer training set as Dyoy = D, \ DL, and set the test set as Dyt = D7
Split Doy into M folds D}, ..., DM,

forj =1:Mdo 4
Form the training set as Dyain = Diout \ Dl
Form the validation set as Dyy = D[,
if j < M then
for each \ € A do
Set pytorch seed to s + r — 2
Standardize Dyyyin, Dyal, Diest With sample mean and standard deviation of Dy,
Train M on Dy, with hyperparameter setting A, add the best validation hybrid loss I, (-, Dy,; o) achieved
during training to the score of A
end for
end if
if j = M then
Select A* from A with the lowest score
Set pytorch seed to s + r — 2
Standardize Dirain, Dval, Drest With sample mean and standard deviation of Dy
Train M on Dy, with hyperparameter setting A*, select the epoch M™* with best validation hybrid loss
Ih (-, Dya; @).
Add I}, (M*, Diegt; o0 = 0) t0 €pred
Add lh(M*7 Diest; o = 1) {0 €causal
end if
end for
end for
end for
Output: €pred; Ecausal

G. Additional Experiments

In this section we provide details of additional experiments that may be of interest to readers. We carried out three sets of
additional experiments: (1) we apply novel interventions to the test set that are unseen in the training set; (2) we corrupt a
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small portion of training ranking information; and (3) we test hybrid models that are based on full (un-reduced) mechanistic
models.

G.1. Different Intervention Sets in Training and Test Sets

In this experiment, the training intervention sets consist of only category (1) and (2) described in Section 5.2 (Intervention
Sets). Crucially, note that our training intervention sets do not include interventions where both insulin and carbohydrates
can vary, as in category (3) in Section 5.2; this ensures that our training is only teaching the models about dependence on
insulin alone and carbs alone. On the other hand, the test intervention set contains only the following category: add 45
grams of carbohydrate at the end of exercise, and at the same time add 2.25/3.00/4.50 units of insulin. These interventions
correspond to a insulin-carb ratio of 1:20/1:15/1:10 respectively. We keep other experimental settings the same as the main
T1DEXI experiments.

Results The results of the experiments are summarized in Figure 13. The results illustrate that for moderate values of
« that balance the prediction loss with the causal loss, the causal error rate of most models improves even in this setting
where the test intervention set contains interventions not seen in the training data. Further, we see that in general, the hybrid
models offer more rapid improvement in causal loss as « increases, with virtually no increase in predictive loss. BNODE
appears to offer comparable performance to MNODE, but with generally higher variance in its causal loss.

Prediction RMSE (Hybrid Loss)
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Figure 13. As in Fig. 4, but for TIDEXI data and using a full UVA/Padova mechanistic model baseline and hybridizations of the reduced
UVA/Padova simulator for LP, LPSC, and MNODE. In these experiments, the training data includes only interventions on either insulin or
carb intake, but not both together; however, the test data includes interventions on the insulin-carb ratio.

G.2. Corrupted Ranking Knowledge in Training Set

In this experiment, the ground truth ranking of each training intervention set in Z* has a probability of p € {0.05,0.10,0.20}
of being corrupted by circularly shifting the ranking to the right by 1 position. We carry out these simulations only for
MNODE as a representative example. We keep the testing ground truth intact and other experimental settings the same as
the main TIDEXI experiments.

Results The results of the experiments are summarized in Figure 14. We see that at moderate values of «, the performance
on causal tasks degrades with increasing levels of corruption. Notably, we also see that when the corruption rate is high, high
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« (high weight on the causal loss) can actually deteriorate causal performance, suggesting that the model is erroneously
overemphasizing rankings from the corrupted data (introducing bias). Regardless, even when the corruption rate is high,
choosing any o > 0 (i.e., using a hybrid loss) lowers the causal error rate relative to a pure predictive loss (o = 0).
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Figure 14. As in Fig. 4, but for TIDEXI data with MNODE, using a hybridization of the reduced UVA/Padova simulator. In these
experiments, a fraction p of the training data is corrupted.

G.3. Hybrid Models Based on Full UVA/Padova

In the main paper, we work with a reduced UVA/Padova model. For completeness, we also implemented the latent parameter
(LP) model and mechanistic neural ODE (MNODE) model using the full UVA/Padova model described in Appendix A.
Their implementations are exactly the same as described in Appendix E except that they use model equations/adjacency
matrices of the full UVA/Padova model, and their hyperparameters are tuned on slightly different grids to count for the
drastic increase in the number of mechanistic states and parameters. The search grid for hyperparameters of each full hybrid
model is given below:

1. LP:
n={2,3} x m = {16,24,32} x d = {20, 24, 28}

2. MNODE:
n={2,3} x m = {16, 32}.

Note that we did not include latent parameter learning with state closure (LPSC) in this set of simulations, as its full version
requires an unreasonably large number of both states and model parameters when applied to the full UVA/Padova model.

Results The results of the experiments are summarized in Figure 15. We see that in general, the hybrid models based on
the reduced UVA/Padova simulator offer generalization performance on par with those of hybrid models based on the full
simulator. One of the primary benefits of building off of a reduced mechanistic model is that the resulting hybrid model has
significantly reduced training time. These results suggest model reduction is a valuable (but not necessary) implementation
step in applying H2NCM in practice.
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Figure 15. As in Fig. 4, but for TIDEXI data and comparing LP and MNODE hybrid models based on both the full and reduced
UVA/Padova simulator as the mechanistic model.
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