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Abstract—The allocation of the 5G mmWave spectrum in the
26 GHz range, known as 3GPP band n258, has raised wide
concern among the remote sensing and weather forecast commu-
nities due to the adjacency of this band with a frequency band
used by passive sensors in Earth Exploration-Satellite Service
(EESS). The concern stems from the potential radio frequency
interference (RFI) caused by transmissions in the n258 band into
the 23.8 GHz frequency, one of the key frequencies employed by
weather satellite passive sensing instruments, such as AMSU-
A and ATMS, to measure atmospheric water vapor using its
emission spectrum. Such RFI can bias satellite observations and
compromise weather forecasting. In this paper, we develop a
modeling and numerical framework to evaluate the potential
effect of the 5G mmWave n258 band’s commercial deployment on
numerical weather forecast accuracy. We first estimate and map
the spatio-temporal distribution of 5G mmWave base stations
at the county-level throughout the contiguous United States (US)
using a model for technology adoption prediction. Then, the inter-
ference power received by the AMSU-A radiometer is estimated
for a single base station based on models for signal transmission,
out-of-band radiation, and radio propagation. Then, the aggre-
gate interference power for each satellite observation footprint
is calculated. Using the contaminated microwave observations,
a series of simulations using a numerical weather prediction
(NWP) model are conducted to study the impact of 5G-induced
contamination on weather forecasting accuracy. For example, our
results show that when the interference power at the radiometer
from a single base station is at a level of −175 dBW for a network
of base stations with spectral efficiency of 15 bit/s/Hz/BS, the
aggregate interference power has limited impact in the year 2025
but can result in an induced noise in brightness temperature
(contamination) of up to 17 K in the year 2040. Furthermore,
that level of RFI can significantly impact the 12-hour forecast
of a severe weather event such as the Super Tuesday Tornado
Outbreak with forecasting errors of up to 10 mm in precipitation
or a mean absolute error of 12.5%. It is also estimated that when
the level of interference power received by the radiometer from
a single base station is −200 dBW, then there is no impact on
forecasting errors even in 2040.

Index Terms—Radio Frequency Interference (RFI), 5G
mmWave, n258 band, Passive Sensors, AMSU-A, Numerical
Weather Prediction (NWP)
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I. INTRODUCTION

The sub-6 GHz frequency bands, traditionally employed for
cellular communications, are facing increased demands due
to the proliferation of connected devices and services. To
accommodate these demands, 5G communication standards
have adopted the inclusion of mmWave frequency bands,
which present a potential avenue for enhanced spectrum
availability [1]. Among the 5G mmWave bands are the 26
GHz (n258 band), 28 GHz (n257 band), 39 GHz (n260 band),
and 47 GHz [2]. A noteworthy consideration is the proximity
of the 3GPP band n258 to the 23.8 GHz frequency. This
latter frequency is significant for meteorological instruments,
such as the Advanced Microwave Sounding Unit (AMSU)-
A [3] and the Advanced Technology Microwave Sounder
(ATMS). The ATMS is the state-of-the-art microwave sensing
instrument with functionality equivalent to AMSU and with
improved sampling and coverage [4]. Installed on weather
monitoring satellites, these sensors are tailored to assess
atmospheric radiance, which is pivotal for estimating water
vapor density in the atmosphere, with water vapor being a
determinant factor in numerical weather prediction (NWP)
models. Because 23.8 GHz is an ideal frequency band for
water vapor the water molecules in the atmosphere have a
resonance frequency of 22.235 GHz, and a frequency near this
resonance is specifically suitable for water vapor measurement
by passive spaceborne sensors [5]. In addition, water vapor
has the highest electromagnetic signal absorption in this band
compared to other bands, and this band is less sensitive to
other atmospheric gases such as oxygen (O2), ozone (O3),
carbon monoxide (CO), and nitrogen oxides (NOx) because
these gases have different resonances. The sensitivity of the
radiance measurement in terms of brightness temperature to
geophysical parameters can be seen in Fig. 1.

The adjacency of the 23.8 GHz frequency to the 5G
n258 band brings forth potential challenges in terms of radio
frequency interference (RFI). There are some concerns in
weather forecasting and earth remote sensing communities,
including the National Oceanic and Atmospheric Administra-
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Fig. 1: Relative sensitivity of the microwave radiance mea-
surement to geophysical parameters with frequency [5].

tion (NOAA), that there may be negative impacts on weather
forecast accuracy due to the spectrum coexistence and RFI
[6]–[8]. In fact, any unintended overlap between these bands
could influence the measurements taken by the passive sensors
on weather satellites. The potential energy leakage from the
5G bands into the 23.8 GHz spectrum might introduce vari-
ations in the measured atmospheric thermal emissions. Such
deviations can introduce uncertainties in weather prediction
models. Recent updates to the 3GPP’s 5G NR technical
specifications have been formulated with measures intended
to protect meteorological satellite services. These measures
advocate for reducing radiative emissions from adjacent 5G
signals within the frequency range of 24.25 to 27.5 GHz
[9]. However, NOAA asserts that the current emission stan-
dards fall short. They warn that without stricter control on
5G radiative emissions, the quality of vital data, crucial for
accurate meteorological predictions, may be at risk. Therefore,
there is a need to characterize and quantify the influence of
5G transmissions on weather data collection and subsequent
prediction models.

There are limited studies in the literature that quantitatively
assessed the impact of RFI in 23.8 GHz frequency on weather
forecast accuracy. NOAA officials presented their estimation
before the House Committee on Science, Space, and Technol-
ogy that the -20 dBW/200 MHz limit first proposed by the
Federal Communications Commission (FCC) as the out-of-
band RFI threshold limit for 5G base stations is not sufficient
because it would lead to a loss of passive microwave data by
roughly 77 percent. It was also estimated that the microwave
observation loss can degrade the forecast accuracy by 30%
and in extreme conditions it can lead to a reduction in forecast
lead time by 2 to 3 days for a hurricane track [10], [11]. In a
study conducted by the European Centre for Medium-Range
Weather Forecasts (ECMWF), it was determined through a
modeling experiment that if all observations provided by polar-
orbiting satellites were unavailable, in a 5-day forecast, NWP
models would not have provided any useful prediction that
Hurricane Sandy would make devastating landfall on the New
Jersey coast, and instead it was predicted that the hurricane

would stay offshore in the Atlantic Ocean [12]. Although
this study indicated the importance of satellite observations,
it cannot specifically present a clear understanding of the
impact of RFI in 23.8 GHz because all infrared and microwave
sounding and imagers data were withheld in that study. In a
study conducted by Palade et al. [13], aggregate uplink and
downlink interference in the 23.8 GHz band were estimated for
a network of interferers in New York City by considering real-
istic 3D building data and simulating ray-tracing propagation.
Their results showed the level of aggregate RFI at the passive
microwave sensor of AMSU-A onboard operational weather
satellite MetOp-B from a high-density network of interferers
is harmful under different levels of atmospheric attenuation,
demonstrating that the concern raised by weather and remote
sensing communities is well-founded.

To address this concern, there is a need to evaluate the
impact of aggregate RFI caused by the spectrum coexistence
on the accuracy and performance of data assimilation and
to characterize the impact on weather forecast accuracy. In
the previous study conducted by our team [14], the effect
of 5G mmWave RFI in the 23.8 GHz band on the data
assimilation-based weather forecast precision was investigated
by considering uniform RFI throughout the contiguous United
States assuming two 5G power leakage levels of -15 and -20
dBW, which was the least conservative leakage limits proposed
by the FCC [11]. It was shown that the corresponding uniform
induced noise in brightness temperature (contamination) was
about 0.9 and 0.3 K, respectively, which could result in
erroneous predictions of weather parameters. Since a few sim-
plifying assumptions including geo-spatially uniform leaked
power without RFI aggregation were used in that study, a more
comprehensive study was needed to model different aspects
of the problem in a relatively more realistic way. Following
the previous preliminary studies [15], [16], a comprehensive
investigation is conducted in this paper to evaluate the impact
of 5G mmWave out-of-band RFI on the weather forecast
accuracy by predicting the spatio-temporal distribution of 5G
base stations throughout the US and considering a range of
leaked power to understand what levels of leaked powers
at passive sensors can be harmful to the NWP models. The
predicted non-uniform distribution of 5G base stations is then
used to calculate the aggregated leaked power for AMSU-A
observations throughout the US. Then, by applying the aggre-
gated induced noise (contamination) to radiance observational
data in terms of brightness temperature, the impact of RFI is
studied by conducting a series of weather forecast simulations
using the Weather Research and Forecasting (WRF) NWP
model to simulate weather processes along with WRF Data
Assimilation (WRFDA) to process the radiance observational
data. WRFDA and WRF are widely used in research and
operational forecasting [17], [18].

II. METHODOLOGY

A. Spatio-Temporal Distribution of 5G Base Stations

The spatio-temporal estimation of the 5G mmWave deploy-
ment is complex and depends on several factors including



technical, financial, regulatory and other considerations such
as zoning laws. As the focus of this paper is to assess the
impact of the technology on weather forecast accuracy, the
detailed spatial configuration of 5G mmWave transmitters is
beyond the scope of this study. Therefore, the problem is
simplified to estimate how this technology is adopted and
diffused among users from its deployment start date to the
later stages when its deployment becomes saturated. As 5G
mmWave has significantly improved features such as higher
speed and lower latency, the temporal trend of 5G mmWave
n258 band adoption can be assumed to be somewhat similar
to the growth patterns of broadband adoption [19], [20] since
they both represent networks that have significantly advanced
capabilities in comparison with their predecessors. The dif-
fusion of a new technology in time typically has three main
phases, including the early adoption stage, which has a very
slow increase rate; the second phase with rapid increase in
adoption rate; and the final phase, in which adoption of the
technology becomes saturated, leading to tailing off the growth
rate. This temporal evolution looks like an “S” shape, as shown
in Fig. 2 for the broadband adoption depicted by blue markers
during the time of its deployment on the upper x-axis. To apply
this pattern to estimate the 5G mmWave deployment growth,
the Gompertz diffusion model [21] is adopted to be trained
on the broadband adoption data [22] using the nonlinear least
squares (NLS) technique. The mathematical form of the model
is expressed in Eq. 1,

Yt = b1 exp(−b2 exp(−b3t)), (1)

where Yt is the subscription percentage, t is time in year,
and b1−3 are learnable parameters. Then, using the trained
Gompertz model, 5G mmWave adoption is predicted in the
number of subscribers in 100 population as shown in Fig.
2. Literature review revealed that the so-called 5G mmWave
network rolled out in April 2019 for the first time in the
US [23]; however, as frequency bands ranging from n257
to n261 are all classified as NR 5G mmWave frequency
bands, it shouldn’t be considered that the deployment in all
of these bands would grow with equal rate. Furthermore,
since the n258 is the frequency band of concern because of
its potential impact on weather satellites, we only focus on
predicting the deployment of 5G mmWave specific to the n258
band. According to [24], September 2021 is considered as the
start date of the n258 band deployment in our modeling. We
emphasize that while the exact growth pattern will shift if
the deployment start date is earlier or later, the overall trends
provided and the general conclusions drawn in the rest of the
paper in regards to the impact of 5G mmWave deployment on
weather forecasting are still valid.

Although 5G mmWave offers much faster data transfer
speeds and lower latency than traditional cellular technologies,
it also comes with some limitations, particularly in terms of
coverage. Due to the high frequency of the mmWave spectrum,
the signal cannot propagate far, making the technology more
suitable and cost-effective for dense urban areas. Since the
typical coverage radius of each mmWave base station is sig-

nificantly smaller than that of LTE sub-6 GHz, a large number
of stations is required to have consistent and reliable coverage
in suburban areas or small towns, which makes it unreasonable
for network operators to justify the investment in 5G mmWave
infrastructure in those less populated areas. Therefore, for the
analyses presented in this paper, the mmWave network is only
considered for dense urban areas, and the sub-6 GHz network
is considered for such suburban and rural areas. Accordingly,
using the county-level census data [25], only counties which
are classified as metropolitan areas are taken into account
to estimate the future adoption of 5G mmWave in terms of
number of active subscribers, given that the percent of people
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Fig. 2: 5G mmWave adoption growth rate predicted using
Gompertz model [21].

subscribing to the technology and the population of the coun-
ties are known using the trained Gompertz model and census
data, respectively. The total number of 5G mmWave base
stations for each metropolitan county (Nc) can be estimated
by Nc = Dt/(ηsp×B) [19], where Dt is the total demand of
a county, B is the bandwidth of 5G mmWave spectrum which
can be as high as 500 MHz, and ηsp is spectral efficiency. Dt

can be calculated by multiplying the number of subscribers by
the average download speed demand per user of 100 Mbps,
which is considered a minimum requirement for a high quality
5G mmWave network [26]. The spectral efficiency depends on
several factors such as the specific implementation, the channel
conditions, and the amount of bandwidth allocated to a par-
ticular transmission. In the literature, the spectral efficiency of
5G mmWave networks is reported in a wide range between 2
to 52 bit/s/Hz per base station (BS) [19], [26], [27], which can
be attributed to the deployment condition and the number of
antennas in a multiple-input multiple-output (MIMO) system.
Here we adopted three values of 7, 15, and 25 bit/s/Hz/BS
as the baseline spectral efficiency for different 5G deployment
phases. It is evident that higher spectral efficiency results in
a lower number of base stations and lower aggregate leakage.
Considering the mentioned data processing and assumptions,
the distribution of the base stations throughout the contiguous
US is obtained for different deployment phases such as years
2025, 2030, and 2040. As an example, the distribution of 5G



Fig. 3: Predicted number of base stations in each county for
ηsp = 15 bit/s/Hz/BS in years 2025 and 2040

base stations with n258 transmitters is shown in Fig. 3 for
spectral efficiency of 15 bit/s/Hz/BS and for the two years,
2025 and 2040. In the above, we emphasize that we have
assumed that all base stations have the same spectral efficiency
in every county. Further, the base station distributions within
each county are assumed to be uniform because the data
employed in the modeling is at the county-level resolution.

B. Leakage from a Single Base Station

The filtering process is indispensable in the transmission
of 5G signals. The critical role of filters lies in ensuring
effective out-of-band suppression, preventing interference with
other frequency bands used for purposes such as weather
sensing. In this regard, for estimating the leaked power from
the n258 band to the weather sensing band, we consider a
scenario where a single base station transmits a signal in a
channel ranging from 24.25 GHz to 24.75 GHz. This channel
corresponds to the closest mm-wave 5G channel to the sensing
band around 23.8 GHz. Taking into account two cases of weak
and strong filtering, Fig. 4 illustrates the frequency responses
of 2nd and 5th order Chebyshev filters with a bandwidth of 500
MHz and a center frequency of 24.5 GHz, with 0.2 dB ripple
[28]. It is evident that the roll-off rate of a filter increases as
its order rises, thereby the leakage to the weather sensing band
around 23.8 GHz decreases by using a higher order filtering
response in the base station side. One can obtain the power
leakage from this channel to the weather sensing band through

an integration over the AMSU-A sensing band, ranging from
23.665 GHz to 23.935 GHz, as follows [29]:

Sy(f) = Sx(f)|H(f)|2, Sx(f) =
P

BW
, (2)

PLeaked =

∫ 23.935E9

23.665E9

Sy(f)df, (3)

where H(f) represents the frequency response of the filter.
Moreover, Sx(f) and Sy(f) indicate the power spectral den-
sities of the input and output signals, respectively. P stands for
the total power distributed over the transmission bandwidth of
BW . Finally, PLeaked indicates the leaked power to the weather
sensing band, shown in Fig. 4.

Assuming P = 10 W and BW = 500 MHz, PLeaked is
obtained to be −36 dBW and −44 dBW by having 2nd and
5th order filtering responses, respectively. Subsequently, by
applying Friis formula in dB scale, the received interference
power by the AMSU-A radiometer from a single base station
(PS

RFI) is calculated as follows [28]:

PS
RFI = PLeaked +GBS +GAMSU-A − PL, (4)

PL = 20 log
4πR

λ
, (5)

where GBS and GAMSU-A are the gains of the base station’s
antenna array and AMSU-A receiver, respectively. Addition-
ally, R indicates the distance of the AMSU-A from Earth, and
λ represents the wavelength of the leaked signal. Considering
R = 800 km, along with GBS = 20 dBi, GAMSU-A = 34 dBi
representing their maximum values [13], [30] for the severe
interference scenario where the main beam directions of the
base station and the AMSU-A antenna patterns are assumed to
be aligned toward each other. In this case, the highest leaked
power reaching the satellite’s receiver would be −160 dBW
and −168 dBW with 2nd and 5th order filtering responses
for the signal transmission, respectively. It is noted that if the
5G channel is far away from 23.8 GHz, the leakage would be
negligible.

It is worth noting that the calculated values can vary de-
pending on the transmitted power, orientations of the satellite’s
receiver and base station’s transmitter, as well as the weather
conditions, as investigated in [31]. Furthermore, as previously
discussed, the type of filtering utilized in the base stations
for transmitting 5G signals is another factor influencing the
estimation of leaked power. In [31], the leaked power from
a single base station — operating in the n258 band — is
considered −3 dBm, which is the suggested limit for the
protection of Earth exploration services [32]. The authors
reported that this leaked signal from a single base station
reaches the satellite with a power level between −330 dBW
and −150 dBW, which is a considerably wide range due to
the mentioned factors.
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Fig. 4: Frequency responses of the 2nd and 5th order Cheby-
shev filters

C. Calculation of Aggregate RFI

To calculate the aggregate RFI in terms of brightness tem-
perature (contamination) a few processing steps are involved.
First, it is necessary to locate weather satellite footprints
and their corresponding observation coverage area to estimate
the number of 5G base stations in each covered area, and
subsequently to calculate the aggregate leaked power and
induced noise in brightness temperature. In this study, the
Super Tuesday Tornado Outbreak, which took place in the
Southern United States and the lower Ohio Valley on February
5, 2008, is selected as a case study to investigate the 5G
out-of-band RFI on the weather forecast precision. Therefore,
all AMSU-A radiance observations covering the contiguous
US are collected to be assimilated to update the initial and
boundary conditions used for a 12-hour forecast simulation
starting from 7 AM EST. The light blue circles shown in Fig. 5
are the AMSU-A observations from several satellites including
Metop-A, NOAA-15, NOAA-16, and NOAA-18 measured
approximately between 5 to 9 AM EST.

The AMSU-A instrument functions as a cross-track scan-
ning radiometer, designed to observe radiance across 15 dis-
tinct channels. Within this array, 12 channels operate in the
50–60-GHz range, while the remaining 3 window channels
are positioned at frequencies of 23.8, 31.4, and 89 GHz. The
instrument operates by acquiring a sequence of 30 Earth obser-
vation scenesby employing a “stop and stare” methodology. It
executes a scanning increment of 3.33 degrees, with a temporal
resolution of 20 milliseconds for each sampling event. The
instrument’s antenna features a beam width characterized by
a half-power beam width (HPBW) of 3.3 degrees, resulting in
an Instantaneous Field of View (IFOV) approximately 48 km
in diameter at nadir. The IFOV for larger scan angles is larger
than that at nadir such that it reaches around 180 km, which
results in the instrument resolution decreasing for the scan

positions near the limb region of the scan swath, as depicted
in Fig. 5.

To calculate the aggregate RFI in terms of aggregate leaked
power received by the AMSU-A radiometer, the distribution
of base stations at the county level, and the leaked power at
the radiometer from a single base station (PS

RFI) are used. For
each observation, the satellite footprint has a coverage area
calculated using the satellite’s zenith angle and its altitude.
Each observation may cover parts of adjacent counties. Here, it
is assumed that each observation is only affected by the leaked
signals emitted from the base stations within the covered area
of that observation, a reasonable assumption for mmWave
propagation. Therefore, by calculating the percentage area
from each nearby county covered by the observation we can
obtain the coefficients of a weighted aggregation method (as
shown in Fig. 5) to estimate the number of base stations in the
covered area, and subsequently to calculate the total leaked
power for that observation. This additional power results
in higher brightness temperature measured by the AMSU-A
instrument in its channel 1, which is the frequency of concern
at 23.8 GHz. In the presence of leaked power, the total radio
frequency power received by the sensor can be expressed using
Eq. 6:

PT = kTBB + PT
RFI, (6)

where B is the channel bandwidth in Hz, k = 1.381 ×
10−23 J/K is the Boltzmann constant, TB is the brightness
temperature of the background radiation, and PT

RFI is the
aggregate leaked power received by the radiometer obtained
by PT

RFI = NBS
Obs · PS

RFI, where NBS
Obs is the total number

of base stations in the area covered by a single satellite
observation, assuming that all NBS

Obs base stations operate
at the same transmission power level. Accordingly, the in-
duced noise in brightness temperature (contamination), which
increases the scene brightness temperature, is obtained by
δT = PT

RFI/kB. The δT represents the level of contamination
in natural upwelling background radiation [33], and B is
270× 106 Hz. For the calculations in this step, we considered
a wide range of PS

RFI to study the effects of received leaked
power variations because it is a function of several varying

Fig. 5: AMSU-A observations from four satellites depicted as
blue circles. Similar to Fig. 3(b) is in the background.



factors such as transmitter and receiver orientation, filtering
response, atmospheric attenuation, etc. Using the aggregation
method and the above-mentioned equation, the distribution
of induced noise in brightness temperature (contamination)
throughout the US is predicted for different PS

RFI values and
spectral efficiencies. For example, Fig. 6 shows the predicted
distribution of the 5G induced noise in brightness temperature
(contamination) for 5G mmWave (n258 band) deployment in
years 2025 and 2040 for PS

RFI = −175 dBW and spectral
efficiency of 15 bit/s/Hz/BS. It can be seen that the highest
levels of RFI are expected to happen in dense urban areas such
as Chicago, New York City, and Los Angeles while most of
the other counties have low levels of RFI. It should be noted
that the maximum induced noise in brightness temperature
can be as high as 18 K for this case in the year 2040, which
is considerably high. Furthermore, such values could be even
higher for higher received leaked power and lower spectral
efficiencies.

D. Data Assimilation-Based NWP model

NWP models incorporate data assimilation (DA) method-
ologies, utilizing real-time observational data acquired from
various sensors and monitoring apparatus to refine and update
their initial and boundary conditions, thereby diminishing
forecast inaccuracies. Observational data of radiance, sourced
from satellite measurements, constitute a critical category of
inputs significantly influencing the NWP model’s performance.
These radiance observations are frequently integrated into
variational DA algorithms employed by these models, with
the aim of enhancing both the accuracy and reliability of me-
teorological predictions. In this study, WRFDA [17] is adopted
as the data assimilation package and more specifically the
3D Variational DA algorithm (3DVAR) is used to assimilate
the observations. Details of this algorithm can be found in
[14], [34]. In WRFDA, the Community Radiative Transfer
Model (CRTM) developed at the US Joint Center for Satellite
Data Assimilation (JCSDA) is used as the radiative transfer
model for processing the microwave observational data [35].
In the next section, numerical results of the weather forecast
simulations are presented to analyze the potential impact of the
5G mmWave n258 frequency band on forecasts of the Super
Tuesday tornado outbreak case [36].

III. RESULTS AND DISCUSSION

A. Weather Forecast Simulations

A series of forecast simulations with a 12-hour horizon were
conducted for the extreme weather event of the Super Tuesday
Tornado outbreak, focusing on a parametric analysis of various
factors involved. These factors include leaked power received
by the radiometer from a single base station (PS

RFI), spectral
efficiency (ηsp), and the timing of 5G mmWave deployment
in year. To assess the deviation in forecasts, the parameter of
accumulated total cumulus precipitation was chosen as a pri-
mary forecast parameter. This decision is informed by the fact
that the concerned frequency, 23.8 GHz, corresponds to the

AMSU-A channel 1, which is predominantly utilized for ob-
servations of surface conditions and atmospheric precipitable
water, while the majority of the other channels are dedicated
to atmospheric temperature sounding [37]. Consequently, the
most pronounced impact of RFI at this frequency is anticipated
to be on the accuracy of weather forecasts pertaining to water
vapor and precipitation parameters. It should be noted that
other forecast parameters such as temperature, wind speed,
cloud fraction, etc. are also affected by RFI, however, here we
focus on precipitation forecast. Fig. 7(a) shows the distribution
of the predicted accumulated total precipitation without any
radio frequency interference. It can be seen that the maximum
accumulated precipitation was around 37 mm. In Fig. 7(b),
the impact of 5G mmWave n258 band with PS

RFI = −175
dBW and spectral efficiency of 15 bit/s/Hz/BS in deployment
year 2040 is presented in terms of deviation from forecast
without RFI. It is shown that such a level of 5G mmWave RFI
can affect the precipitation forecast up to 10 mm, which is a
significant prediction error for a 12-hour forecast. It can also
be seen that the forecast error is associated with regions where
there was already predicted rainfall, and the RFI does not lead
to an expanded area of forecasted precipitation. The impact of
RFI on forecast results originates from the observation quality
controls employed within the data assimilation process. There
exist multiple quality controls and screening criteria that are
interdependent across different channels. An overview of some

Fig. 6: Predicted RFI in terms of induced noise in brightness
temperature (contamination) for PS

RFI = −175 dBW and ηsp =
15 bit/s/Hz/BS in year (a) 2025, and (b) 2040



of the AMSU-A quality controls can be found in [38]. In
essence, even though the brightness temperature data from
AMSU-A channel 1 may not be used or assimilated directly
for land surfaces, the contaminated data from this channel can
still influence the quality flag of brightness temperature data
in other channels. This, in turn, could lead to the loss of some
observations in the presence of high levels of RFI. This can be
attributed to the reason behind the distribution of forecast error
shown in 7(b) where in some computational grids the error is
negative and in some others the error is positive. The details
of observations across different channels that are flagged as
bad due to various RFI levels fall beyond the scope of this
paper and will be considered in future work.

To see the impact of different RFI levels in terms of PS
RFI,

spectral efficiency, and the deployment time of 5G mmWave
n258 band, mean absolute percentage error (MAPE) is calcu-
lated for all cases. It should be noted that for this metric, the
relative error was averaged only for the computational grids
where the original precipitation value is non-zero. Fig. 8 shows
the variations of MAPE versus interference power received by
the radiometer from a single base station (PS

RFI) for different
spectral efficiencies in three deployment years. It can be seen
that the spectral efficiency and deployment timeline determine
the tolerable limit (0% MAPE) of 5G mmWave impact on
precipitation forecast. For example, in the early stage of the
deployment (year 2025), the permissible interference level

Fig. 7: (a) 12-hour forecast of accumulated total precipitation
without any RFI, (b) deviation in accumulated total precipi-
tation forecast for PS

RFI = −175 dBW, ηsp = 15 bit/s/Hz/BS,
and year 2040

received by the radiometer from a single base station can be
as high as −195 dBW for spectral efficiencies of 15 and 25
bit/s/Hz/BS. However, this level will drop to −200 dBw in
later deployment stages (2030 and 2040) with a higher number
of base stations. It can also be seen that in the year 2040, if
PS

RFI = −165 dBW, the MAPE can be up to 20%, which is a
significant level of potential error in the precipitation forecast.

B. Perspective on Modeling and Results

We now discuss several aspects of the modeling and numer-
ical results presented here. One consideration that should be
taken into account is that not all 5G base stations are located
outdoor. There should be also some picocells and microcells,
which could be installed in indoor spaces such as shopping
malls, large office buildings, etc.. When the base stations are
located indoors, due to propagation losses there is almost
surely no impact of any leakage on AMSU-A sensors. To in-
vestigate the effect of base station types in terms of installation
environment (indoor vs. outdoor), it is required to estimate
what percentage of total number of base stations are outdoor
to estimate their impacts on weather satellite observations. As
such, since the information about the future base stations is
very limited, we undertake a parametric study by incorporating
the outdoor base station percentage as a variable. As shown
in Fig. 9, MAPE variations of accumulated total precipitation
forecast is plotted versus PS

RFI for different outdoor base station
percentages. The graphs in this figure indicate that even if
70% of base stations are outdoor, the forecast errors due to
the noise induced by outdoor 5G mmWave base stations are
still significant and approximately the same as the case where
all base stations are located outdoor. It is noteworthy that
the trend of MAPE with an increase of interference power
is generally increasing in both Figs. 8 and 9, however it may
not be monotonic since there is a high degree of non-linearity
in weather forecast algorithms that rely on data assimilation.
In addition, under different RFI conditions, the geo-spatial
distribution of dismissed observations changes in different
ways because of the interdependency of channels in the quality
control process within the DA algorithm [18].

Another consideration that should be noted is that the
transmission power levels of base stations may not remain
at full load throughout the day. Instead, to reduce energy
consumption, the transmission power at each base station
varies in accordance with the data traffic load. This variation
is due to the fact that transmission power is adjusted based
on the daily data traffic load profile, as a smaller number of
user equipment (UE) are active during off-peak hours. On the
other hand, AMSU-A instruments onboard different satellites
provide microwave observations at different times, meaning
that any possible impact on weather forecasts caused by 5G
mmWave RFI is time-dependent. Cheng et al. [39] reported
that the power level of macrocell and microcell base stations
in an idle state can be as low as 55% and 75%, respectively, of
the full load level during off-peak times. Accordingly, if we
assume base stations operate at half full load power during
off-peak time, it can be estimated that under this operating
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Fig. 9: Mean absolute percentage error of accumulated total precipitation forecast versus PS
RFI for ηsp = 15 bit/s/Hz/BS and

different percentages of outdoor base stations, and three deployment times in year

condition the value of the leaked power at the radiometer from
a single base station (PS

RFI) can be reduced by an order of
−3 dBW. It should be noted that such level of variations in
PS

RFI is already incorporated in our analyses. Specifically, we
have conducted a parametric study on a wide range of PS

RFI
from −210 dBW to −165 dBW, and it can be seen in Fig. 8
that around 3 dBW higher or lower interference power (PS

RFI)
from some base stations can still lead to the same order of
magnitude errors in weather forecasts.

In summary, while the exact 5G mmWave deployment
growth pattern that emerges in practice is ongoing and yet to
be determined, the overall trends provided and the numerical
impact assessments in the paper on weather forecasting are
still valid.

IV. CONCLUSION AND FUTURE WORK

We developed a modeling and numerical framework to
evaluate the potential effect of the 5G mmWave n258 band’s
commercial deployment on numerical weather forecast ac-
curacy. By predicting the spatio-temporal distribution of 5G
mmWave base stations at the US county level and considering
signal transmission, out-of-band radiation, radio propagation
and spectral efficiency, the aggregate interference power was

calculated for each AMSU-A satellite observation footprint to
study the impact of contaminated microwave observations on
weather forecasting accuracy. Results showed that if interfer-
ence power at the radiometer from a single base station is at a
level of −175 dBW for a network of base stations with a spec-
tral efficiency of 15 bit/s/Hz/BS, the aggregate interference
power has limited impact in the year 2025 but can result in an
induced noise in brightness temperature (contamination) of up
to 17 K in the year 2040. Furthermore, that level of RFI can
significantly impact the 12-hour forecast of a severe weather
event such as the Super Tuesday Tornado Outbreak with
forecasting error of up to 10 mm in precipitation. The results
also showed that if the level of interference power received by
the radiometer from a single base station is −200 dBW, then
there is no impact on forecasting errors even in 2040. The
potential impact from the 5G mmWave n258 band on weather
forecasting is increasingly relevant as deployment densities
evolve, and needs renewed attention from both technological
and policy perspectives. Future work will address the impact of
5G mmWave on weather forecasting using other NWP models
such as the Unified Forecast System (UFS) [40].
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